// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics SA 2014 * Author: Fabien Dessenne for STMicroelectronics. */ #include #include #include #include #include #include #include #include /* HDformatter registers */ #define HDA_ANA_CFG 0x0000 #define HDA_ANA_SCALE_CTRL_Y 0x0004 #define HDA_ANA_SCALE_CTRL_CB 0x0008 #define HDA_ANA_SCALE_CTRL_CR 0x000C #define HDA_ANA_ANC_CTRL 0x0010 #define HDA_ANA_SRC_Y_CFG 0x0014 #define HDA_COEFF_Y_PH1_TAP123 0x0018 #define HDA_COEFF_Y_PH1_TAP456 0x001C #define HDA_COEFF_Y_PH2_TAP123 0x0020 #define HDA_COEFF_Y_PH2_TAP456 0x0024 #define HDA_COEFF_Y_PH3_TAP123 0x0028 #define HDA_COEFF_Y_PH3_TAP456 0x002C #define HDA_COEFF_Y_PH4_TAP123 0x0030 #define HDA_COEFF_Y_PH4_TAP456 0x0034 #define HDA_ANA_SRC_C_CFG 0x0040 #define HDA_COEFF_C_PH1_TAP123 0x0044 #define HDA_COEFF_C_PH1_TAP456 0x0048 #define HDA_COEFF_C_PH2_TAP123 0x004C #define HDA_COEFF_C_PH2_TAP456 0x0050 #define HDA_COEFF_C_PH3_TAP123 0x0054 #define HDA_COEFF_C_PH3_TAP456 0x0058 #define HDA_COEFF_C_PH4_TAP123 0x005C #define HDA_COEFF_C_PH4_TAP456 0x0060 #define HDA_SYNC_AWGI 0x0300 /* HDA_ANA_CFG */ #define CFG_AWG_ASYNC_EN BIT(0) #define CFG_AWG_ASYNC_HSYNC_MTD BIT(1) #define CFG_AWG_ASYNC_VSYNC_MTD BIT(2) #define CFG_AWG_SYNC_DEL BIT(3) #define CFG_AWG_FLTR_MODE_SHIFT 4 #define CFG_AWG_FLTR_MODE_MASK (0xF << CFG_AWG_FLTR_MODE_SHIFT) #define CFG_AWG_FLTR_MODE_SD (0 << CFG_AWG_FLTR_MODE_SHIFT) #define CFG_AWG_FLTR_MODE_ED (1 << CFG_AWG_FLTR_MODE_SHIFT) #define CFG_AWG_FLTR_MODE_HD (2 << CFG_AWG_FLTR_MODE_SHIFT) #define CFG_SYNC_ON_PBPR_MASK BIT(8) #define CFG_PREFILTER_EN_MASK BIT(9) #define CFG_PBPR_SYNC_OFF_SHIFT 16 #define CFG_PBPR_SYNC_OFF_MASK (0x7FF << CFG_PBPR_SYNC_OFF_SHIFT) #define CFG_PBPR_SYNC_OFF_VAL 0x117 /* Voltage dependent. stiH416 */ /* Default scaling values */ #define SCALE_CTRL_Y_DFLT 0x00C50256 #define SCALE_CTRL_CB_DFLT 0x00DB0249 #define SCALE_CTRL_CR_DFLT 0x00DB0249 /* Video DACs control */ #define DAC_CFG_HD_HZUVW_OFF_MASK BIT(1) /* Upsampler values for the alternative 2X Filter */ #define SAMPLER_COEF_NB 8 #define HDA_ANA_SRC_Y_CFG_ALT_2X 0x01130000 static u32 coef_y_alt_2x[] = { 0x00FE83FB, 0x1F900401, 0x00000000, 0x00000000, 0x00F408F9, 0x055F7C25, 0x00000000, 0x00000000 }; #define HDA_ANA_SRC_C_CFG_ALT_2X 0x01750004 static u32 coef_c_alt_2x[] = { 0x001305F7, 0x05274BD0, 0x00000000, 0x00000000, 0x0004907C, 0x09C80B9D, 0x00000000, 0x00000000 }; /* Upsampler values for the 4X Filter */ #define HDA_ANA_SRC_Y_CFG_4X 0x01ED0005 #define HDA_ANA_SRC_C_CFG_4X 0x01ED0004 static u32 coef_yc_4x[] = { 0x00FC827F, 0x008FE20B, 0x00F684FC, 0x050F7C24, 0x00F4857C, 0x0A1F402E, 0x00FA027F, 0x0E076E1D }; /* AWG instructions for some video modes */ #define AWG_MAX_INST 64 /* 720p@50 */ static u32 AWGi_720p_50[] = { 0x00000971, 0x00000C26, 0x0000013B, 0x00000CDA, 0x00000104, 0x00000E7E, 0x00000E7F, 0x0000013B, 0x00000D8E, 0x00000104, 0x00001804, 0x00000971, 0x00000C26, 0x0000003B, 0x00000FB4, 0x00000FB5, 0x00000104, 0x00001AE8 }; #define NN_720p_50 ARRAY_SIZE(AWGi_720p_50) /* 720p@60 */ static u32 AWGi_720p_60[] = { 0x00000971, 0x00000C26, 0x0000013B, 0x00000CDA, 0x00000104, 0x00000E7E, 0x00000E7F, 0x0000013B, 0x00000C44, 0x00000104, 0x00001804, 0x00000971, 0x00000C26, 0x0000003B, 0x00000F0F, 0x00000F10, 0x00000104, 0x00001AE8 }; #define NN_720p_60 ARRAY_SIZE(AWGi_720p_60) /* 1080p@30 */ static u32 AWGi_1080p_30[] = { 0x00000971, 0x00000C2A, 0x0000013B, 0x00000C56, 0x00000104, 0x00000FDC, 0x00000FDD, 0x0000013B, 0x00000C2A, 0x00000104, 0x00001804, 0x00000971, 0x00000C2A, 0x0000003B, 0x00000EBE, 0x00000EBF, 0x00000EBF, 0x00000104, 0x00001A2F, 0x00001C4B, 0x00001C52 }; #define NN_1080p_30 ARRAY_SIZE(AWGi_1080p_30) /* 1080p@25 */ static u32 AWGi_1080p_25[] = { 0x00000971, 0x00000C2A, 0x0000013B, 0x00000C56, 0x00000104, 0x00000FDC, 0x00000FDD, 0x0000013B, 0x00000DE2, 0x00000104, 0x00001804, 0x00000971, 0x00000C2A, 0x0000003B, 0x00000F51, 0x00000F51, 0x00000F52, 0x00000104, 0x00001A2F, 0x00001C4B, 0x00001C52 }; #define NN_1080p_25 ARRAY_SIZE(AWGi_1080p_25) /* 1080p@24 */ static u32 AWGi_1080p_24[] = { 0x00000971, 0x00000C2A, 0x0000013B, 0x00000C56, 0x00000104, 0x00000FDC, 0x00000FDD, 0x0000013B, 0x00000E50, 0x00000104, 0x00001804, 0x00000971, 0x00000C2A, 0x0000003B, 0x00000F76, 0x00000F76, 0x00000F76, 0x00000104, 0x00001A2F, 0x00001C4B, 0x00001C52 }; #define NN_1080p_24 ARRAY_SIZE(AWGi_1080p_24) /* 720x480p@60 */ static u32 AWGi_720x480p_60[] = { 0x00000904, 0x00000F18, 0x0000013B, 0x00001805, 0x00000904, 0x00000C3D, 0x0000003B, 0x00001A06 }; #define NN_720x480p_60 ARRAY_SIZE(AWGi_720x480p_60) /* Video mode category */ enum sti_hda_vid_cat { VID_SD, VID_ED, VID_HD_74M, VID_HD_148M }; struct sti_hda_video_config { struct drm_display_mode mode; u32 *awg_instr; int nb_instr; enum sti_hda_vid_cat vid_cat; }; /* HD analog supported modes * Interlaced modes may be added when supported by the whole display chain */ static const struct sti_hda_video_config hda_supported_modes[] = { /* 1080p30 74.250Mhz */ {{DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)}, AWGi_1080p_30, NN_1080p_30, VID_HD_74M}, /* 1080p30 74.176Mhz */ {{DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74176, 1920, 2008, 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)}, AWGi_1080p_30, NN_1080p_30, VID_HD_74M}, /* 1080p24 74.250Mhz */ {{DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558, 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)}, AWGi_1080p_24, NN_1080p_24, VID_HD_74M}, /* 1080p24 74.176Mhz */ {{DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74176, 1920, 2558, 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)}, AWGi_1080p_24, NN_1080p_24, VID_HD_74M}, /* 1080p25 74.250Mhz */ {{DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)}, AWGi_1080p_25, NN_1080p_25, VID_HD_74M}, /* 720p60 74.250Mhz */ {{DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 1430, 1650, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)}, AWGi_720p_60, NN_720p_60, VID_HD_74M}, /* 720p60 74.176Mhz */ {{DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74176, 1280, 1390, 1430, 1650, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)}, AWGi_720p_60, NN_720p_60, VID_HD_74M}, /* 720p50 74.250Mhz */ {{DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720, 1760, 1980, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)}, AWGi_720p_50, NN_720p_50, VID_HD_74M}, /* 720x480p60 27.027Mhz */ {{DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27027, 720, 736, 798, 858, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC)}, AWGi_720x480p_60, NN_720x480p_60, VID_ED}, /* 720x480p60 27.000Mhz */ {{DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736, 798, 858, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC)}, AWGi_720x480p_60, NN_720x480p_60, VID_ED} }; /** * STI hd analog structure * * @dev: driver device * @drm_dev: pointer to drm device * @mode: current display mode selected * @regs: HD analog register * @video_dacs_ctrl: video DACS control register * @enabled: true if HD analog is enabled else false */ struct sti_hda { struct device dev; struct drm_device *drm_dev; struct drm_display_mode mode; void __iomem *regs; void __iomem *video_dacs_ctrl; struct clk *clk_pix; struct clk *clk_hddac; bool enabled; }; struct sti_hda_connector { struct drm_connector drm_connector; struct drm_encoder *encoder; struct sti_hda *hda; }; #define to_sti_hda_connector(x) \ container_of(x, struct sti_hda_connector, drm_connector) static u32 hda_read(struct sti_hda *hda, int offset) { return readl(hda->regs + offset); } static void hda_write(struct sti_hda *hda, u32 val, int offset) { writel(val, hda->regs + offset); } /** * Search for a video mode in the supported modes table * * @mode: mode being searched * @idx: index of the found mode * * Return true if mode is found */ static bool hda_get_mode_idx(struct drm_display_mode mode, int *idx) { unsigned int i; for (i = 0; i < ARRAY_SIZE(hda_supported_modes); i++) if (drm_mode_equal(&hda_supported_modes[i].mode, &mode)) { *idx = i; return true; } return false; } /** * Enable the HD DACS * * @hda: pointer to HD analog structure * @enable: true if HD DACS need to be enabled, else false */ static void hda_enable_hd_dacs(struct sti_hda *hda, bool enable) { if (hda->video_dacs_ctrl) { u32 val; val = readl(hda->video_dacs_ctrl); if (enable) val &= ~DAC_CFG_HD_HZUVW_OFF_MASK; else val |= DAC_CFG_HD_HZUVW_OFF_MASK; writel(val, hda->video_dacs_ctrl); } } #define DBGFS_DUMP(reg) seq_printf(s, "\n %-25s 0x%08X", #reg, \ readl(hda->regs + reg)) static void hda_dbg_cfg(struct seq_file *s, int val) { seq_puts(s, "\tAWG "); seq_puts(s, val & CFG_AWG_ASYNC_EN ? "enabled" : "disabled"); } static void hda_dbg_awg_microcode(struct seq_file *s, void __iomem *reg) { unsigned int i; seq_puts(s, "\n\n HDA AWG microcode:"); for (i = 0; i < AWG_MAX_INST; i++) { if (i % 8 == 0) seq_printf(s, "\n %04X:", i); seq_printf(s, " %04X", readl(reg + i * 4)); } } static void hda_dbg_video_dacs_ctrl(struct seq_file *s, void __iomem *reg) { u32 val = readl(reg); seq_printf(s, "\n\n %-25s 0x%08X", "VIDEO_DACS_CONTROL", val); seq_puts(s, "\tHD DACs "); seq_puts(s, val & DAC_CFG_HD_HZUVW_OFF_MASK ? "disabled" : "enabled"); } static int hda_dbg_show(struct seq_file *s, void *data) { struct drm_info_node *node = s->private; struct sti_hda *hda = (struct sti_hda *)node->info_ent->data; seq_printf(s, "HD Analog: (vaddr = 0x%p)", hda->regs); DBGFS_DUMP(HDA_ANA_CFG); hda_dbg_cfg(s, readl(hda->regs + HDA_ANA_CFG)); DBGFS_DUMP(HDA_ANA_SCALE_CTRL_Y); DBGFS_DUMP(HDA_ANA_SCALE_CTRL_CB); DBGFS_DUMP(HDA_ANA_SCALE_CTRL_CR); DBGFS_DUMP(HDA_ANA_ANC_CTRL); DBGFS_DUMP(HDA_ANA_SRC_Y_CFG); DBGFS_DUMP(HDA_ANA_SRC_C_CFG); hda_dbg_awg_microcode(s, hda->regs + HDA_SYNC_AWGI); if (hda->video_dacs_ctrl) hda_dbg_video_dacs_ctrl(s, hda->video_dacs_ctrl); seq_putc(s, '\n'); return 0; } static struct drm_info_list hda_debugfs_files[] = { { "hda", hda_dbg_show, 0, NULL }, }; static int hda_debugfs_init(struct sti_hda *hda, struct drm_minor *minor) { unsigned int i; for (i = 0; i < ARRAY_SIZE(hda_debugfs_files); i++) hda_debugfs_files[i].data = hda; return drm_debugfs_create_files(hda_debugfs_files, ARRAY_SIZE(hda_debugfs_files), minor->debugfs_root, minor); } /** * Configure AWG, writing instructions * * @hda: pointer to HD analog structure * @awg_instr: pointer to AWG instructions table * @nb: nb of AWG instructions */ static void sti_hda_configure_awg(struct sti_hda *hda, u32 *awg_instr, int nb) { unsigned int i; DRM_DEBUG_DRIVER("\n"); for (i = 0; i < nb; i++) hda_write(hda, awg_instr[i], HDA_SYNC_AWGI + i * 4); for (i = nb; i < AWG_MAX_INST; i++) hda_write(hda, 0, HDA_SYNC_AWGI + i * 4); } static void sti_hda_disable(struct drm_bridge *bridge) { struct sti_hda *hda = bridge->driver_private; u32 val; if (!hda->enabled) return; DRM_DEBUG_DRIVER("\n"); /* Disable HD DAC and AWG */ val = hda_read(hda, HDA_ANA_CFG); val &= ~CFG_AWG_ASYNC_EN; hda_write(hda, val, HDA_ANA_CFG); hda_write(hda, 0, HDA_ANA_ANC_CTRL); hda_enable_hd_dacs(hda, false); /* Disable/unprepare hda clock */ clk_disable_unprepare(hda->clk_hddac); clk_disable_unprepare(hda->clk_pix); hda->enabled = false; } static void sti_hda_pre_enable(struct drm_bridge *bridge) { struct sti_hda *hda = bridge->driver_private; u32 val, i, mode_idx; u32 src_filter_y, src_filter_c; u32 *coef_y, *coef_c; u32 filter_mode; DRM_DEBUG_DRIVER("\n"); if (hda->enabled) return; /* Prepare/enable clocks */ if (clk_prepare_enable(hda->clk_pix)) DRM_ERROR("Failed to prepare/enable hda_pix clk\n"); if (clk_prepare_enable(hda->clk_hddac)) DRM_ERROR("Failed to prepare/enable hda_hddac clk\n"); if (!hda_get_mode_idx(hda->mode, &mode_idx)) { DRM_ERROR("Undefined mode\n"); return; } switch (hda_supported_modes[mode_idx].vid_cat) { case VID_HD_148M: DRM_ERROR("Beyond HD analog capabilities\n"); return; case VID_HD_74M: /* HD use alternate 2x filter */ filter_mode = CFG_AWG_FLTR_MODE_HD; src_filter_y = HDA_ANA_SRC_Y_CFG_ALT_2X; src_filter_c = HDA_ANA_SRC_C_CFG_ALT_2X; coef_y = coef_y_alt_2x; coef_c = coef_c_alt_2x; break; case VID_ED: /* ED uses 4x filter */ filter_mode = CFG_AWG_FLTR_MODE_ED; src_filter_y = HDA_ANA_SRC_Y_CFG_4X; src_filter_c = HDA_ANA_SRC_C_CFG_4X; coef_y = coef_yc_4x; coef_c = coef_yc_4x; break; case VID_SD: DRM_ERROR("Not supported\n"); return; default: DRM_ERROR("Undefined resolution\n"); return; } DRM_DEBUG_DRIVER("Using HDA mode #%d\n", mode_idx); /* Enable HD Video DACs */ hda_enable_hd_dacs(hda, true); /* Configure scaler */ hda_write(hda, SCALE_CTRL_Y_DFLT, HDA_ANA_SCALE_CTRL_Y); hda_write(hda, SCALE_CTRL_CB_DFLT, HDA_ANA_SCALE_CTRL_CB); hda_write(hda, SCALE_CTRL_CR_DFLT, HDA_ANA_SCALE_CTRL_CR); /* Configure sampler */ hda_write(hda , src_filter_y, HDA_ANA_SRC_Y_CFG); hda_write(hda, src_filter_c, HDA_ANA_SRC_C_CFG); for (i = 0; i < SAMPLER_COEF_NB; i++) { hda_write(hda, coef_y[i], HDA_COEFF_Y_PH1_TAP123 + i * 4); hda_write(hda, coef_c[i], HDA_COEFF_C_PH1_TAP123 + i * 4); } /* Configure main HDFormatter */ val = 0; val |= (hda->mode.flags & DRM_MODE_FLAG_INTERLACE) ? 0 : CFG_AWG_ASYNC_VSYNC_MTD; val |= (CFG_PBPR_SYNC_OFF_VAL << CFG_PBPR_SYNC_OFF_SHIFT); val |= filter_mode; hda_write(hda, val, HDA_ANA_CFG); /* Configure AWG */ sti_hda_configure_awg(hda, hda_supported_modes[mode_idx].awg_instr, hda_supported_modes[mode_idx].nb_instr); /* Enable AWG */ val = hda_read(hda, HDA_ANA_CFG); val |= CFG_AWG_ASYNC_EN; hda_write(hda, val, HDA_ANA_CFG); hda->enabled = true; } static void sti_hda_set_mode(struct drm_bridge *bridge, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct sti_hda *hda = bridge->driver_private; u32 mode_idx; int hddac_rate; int ret; DRM_DEBUG_DRIVER("\n"); drm_mode_copy(&hda->mode, mode); if (!hda_get_mode_idx(hda->mode, &mode_idx)) { DRM_ERROR("Undefined mode\n"); return; } switch (hda_supported_modes[mode_idx].vid_cat) { case VID_HD_74M: /* HD use alternate 2x filter */ hddac_rate = mode->clock * 1000 * 2; break; case VID_ED: /* ED uses 4x filter */ hddac_rate = mode->clock * 1000 * 4; break; default: DRM_ERROR("Undefined mode\n"); return; } /* HD DAC = 148.5Mhz or 108 Mhz */ ret = clk_set_rate(hda->clk_hddac, hddac_rate); if (ret < 0) DRM_ERROR("Cannot set rate (%dHz) for hda_hddac clk\n", hddac_rate); /* HDformatter clock = compositor clock */ ret = clk_set_rate(hda->clk_pix, mode->clock * 1000); if (ret < 0) DRM_ERROR("Cannot set rate (%dHz) for hda_pix clk\n", mode->clock * 1000); } static void sti_hda_bridge_nope(struct drm_bridge *bridge) { /* do nothing */ } static const struct drm_bridge_funcs sti_hda_bridge_funcs = { .pre_enable = sti_hda_pre_enable, .enable = sti_hda_bridge_nope, .disable = sti_hda_disable, .post_disable = sti_hda_bridge_nope, .mode_set = sti_hda_set_mode, }; static int sti_hda_connector_get_modes(struct drm_connector *connector) { unsigned int i; int count = 0; struct sti_hda_connector *hda_connector = to_sti_hda_connector(connector); struct sti_hda *hda = hda_connector->hda; DRM_DEBUG_DRIVER("\n"); for (i = 0; i < ARRAY_SIZE(hda_supported_modes); i++) { struct drm_display_mode *mode = drm_mode_duplicate(hda->drm_dev, &hda_supported_modes[i].mode); if (!mode) continue; mode->vrefresh = drm_mode_vrefresh(mode); /* the first mode is the preferred mode */ if (i == 0) mode->type |= DRM_MODE_TYPE_PREFERRED; drm_mode_probed_add(connector, mode); count++; } return count; } #define CLK_TOLERANCE_HZ 50 static enum drm_mode_status sti_hda_connector_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { int target = mode->clock * 1000; int target_min = target - CLK_TOLERANCE_HZ; int target_max = target + CLK_TOLERANCE_HZ; int result; int idx; struct sti_hda_connector *hda_connector = to_sti_hda_connector(connector); struct sti_hda *hda = hda_connector->hda; if (!hda_get_mode_idx(*mode, &idx)) { return MODE_BAD; } else { result = clk_round_rate(hda->clk_pix, target); DRM_DEBUG_DRIVER("target rate = %d => available rate = %d\n", target, result); if ((result < target_min) || (result > target_max)) { DRM_DEBUG_DRIVER("hda pixclk=%d not supported\n", target); return MODE_BAD; } } return MODE_OK; } static const struct drm_connector_helper_funcs sti_hda_connector_helper_funcs = { .get_modes = sti_hda_connector_get_modes, .mode_valid = sti_hda_connector_mode_valid, }; static int sti_hda_late_register(struct drm_connector *connector) { struct sti_hda_connector *hda_connector = to_sti_hda_connector(connector); struct sti_hda *hda = hda_connector->hda; if (hda_debugfs_init(hda, hda->drm_dev->primary)) { DRM_ERROR("HDA debugfs setup failed\n"); return -EINVAL; } return 0; } static const struct drm_connector_funcs sti_hda_connector_funcs = { .fill_modes = drm_helper_probe_single_connector_modes, .destroy = drm_connector_cleanup, .reset = drm_atomic_helper_connector_reset, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .late_register = sti_hda_late_register, }; static struct drm_encoder *sti_hda_find_encoder(struct drm_device *dev) { struct drm_encoder *encoder; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->encoder_type == DRM_MODE_ENCODER_DAC) return encoder; } return NULL; } static int sti_hda_bind(struct device *dev, struct device *master, void *data) { struct sti_hda *hda = dev_get_drvdata(dev); struct drm_device *drm_dev = data; struct drm_encoder *encoder; struct sti_hda_connector *connector; struct drm_connector *drm_connector; struct drm_bridge *bridge; int err; /* Set the drm device handle */ hda->drm_dev = drm_dev; encoder = sti_hda_find_encoder(drm_dev); if (!encoder) return -ENOMEM; connector = devm_kzalloc(dev, sizeof(*connector), GFP_KERNEL); if (!connector) return -ENOMEM; connector->hda = hda; bridge = devm_kzalloc(dev, sizeof(*bridge), GFP_KERNEL); if (!bridge) return -ENOMEM; bridge->driver_private = hda; bridge->funcs = &sti_hda_bridge_funcs; drm_bridge_attach(encoder, bridge, NULL); connector->encoder = encoder; drm_connector = (struct drm_connector *)connector; drm_connector->polled = DRM_CONNECTOR_POLL_HPD; drm_connector_init(drm_dev, drm_connector, &sti_hda_connector_funcs, DRM_MODE_CONNECTOR_Component); drm_connector_helper_add(drm_connector, &sti_hda_connector_helper_funcs); err = drm_connector_attach_encoder(drm_connector, encoder); if (err) { DRM_ERROR("Failed to attach a connector to a encoder\n"); goto err_sysfs; } /* force to disable hd dacs at startup */ hda_enable_hd_dacs(hda, false); return 0; err_sysfs: return -EINVAL; } static void sti_hda_unbind(struct device *dev, struct device *master, void *data) { } static const struct component_ops sti_hda_ops = { .bind = sti_hda_bind, .unbind = sti_hda_unbind, }; static int sti_hda_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct sti_hda *hda; struct resource *res; DRM_INFO("%s\n", __func__); hda = devm_kzalloc(dev, sizeof(*hda), GFP_KERNEL); if (!hda) return -ENOMEM; hda->dev = pdev->dev; /* Get resources */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hda-reg"); if (!res) { DRM_ERROR("Invalid hda resource\n"); return -ENOMEM; } hda->regs = devm_ioremap_nocache(dev, res->start, resource_size(res)); if (!hda->regs) return -ENOMEM; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "video-dacs-ctrl"); if (res) { hda->video_dacs_ctrl = devm_ioremap_nocache(dev, res->start, resource_size(res)); if (!hda->video_dacs_ctrl) return -ENOMEM; } else { /* If no existing video-dacs-ctrl resource continue the probe */ DRM_DEBUG_DRIVER("No video-dacs-ctrl resource\n"); hda->video_dacs_ctrl = NULL; } /* Get clock resources */ hda->clk_pix = devm_clk_get(dev, "pix"); if (IS_ERR(hda->clk_pix)) { DRM_ERROR("Cannot get hda_pix clock\n"); return PTR_ERR(hda->clk_pix); } hda->clk_hddac = devm_clk_get(dev, "hddac"); if (IS_ERR(hda->clk_hddac)) { DRM_ERROR("Cannot get hda_hddac clock\n"); return PTR_ERR(hda->clk_hddac); } platform_set_drvdata(pdev, hda); return component_add(&pdev->dev, &sti_hda_ops); } static int sti_hda_remove(struct platform_device *pdev) { component_del(&pdev->dev, &sti_hda_ops); return 0; } static const struct of_device_id hda_of_match[] = { { .compatible = "st,stih416-hda", }, { .compatible = "st,stih407-hda", }, { /* end node */ } }; MODULE_DEVICE_TABLE(of, hda_of_match); struct platform_driver sti_hda_driver = { .driver = { .name = "sti-hda", .owner = THIS_MODULE, .of_match_table = hda_of_match, }, .probe = sti_hda_probe, .remove = sti_hda_remove, }; MODULE_AUTHOR("Benjamin Gaignard "); MODULE_DESCRIPTION("STMicroelectronics SoC DRM driver"); MODULE_LICENSE("GPL");