/* * stv6110.c * * Driver for ST STV6110 satellite tuner IC. * * Copyright (C) 2009 NetUP Inc. * Copyright (C) 2009 Igor M. Liplianin * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. */ #include #include #include #include #include "stv6110.h" /* Max transfer size done by I2C transfer functions */ #define MAX_XFER_SIZE 64 static int debug; struct stv6110_priv { int i2c_address; struct i2c_adapter *i2c; u32 mclk; u8 clk_div; u8 gain; u8 regs[8]; }; #define dprintk(args...) \ do { \ if (debug) \ printk(KERN_DEBUG args); \ } while (0) static s32 abssub(s32 a, s32 b) { if (a > b) return a - b; else return b - a; }; static void stv6110_release(struct dvb_frontend *fe) { kfree(fe->tuner_priv); fe->tuner_priv = NULL; } static int stv6110_write_regs(struct dvb_frontend *fe, u8 buf[], int start, int len) { struct stv6110_priv *priv = fe->tuner_priv; int rc; u8 cmdbuf[MAX_XFER_SIZE]; struct i2c_msg msg = { .addr = priv->i2c_address, .flags = 0, .buf = cmdbuf, .len = len + 1 }; dprintk("%s\n", __func__); if (1 + len > sizeof(cmdbuf)) { printk(KERN_WARNING "%s: i2c wr: len=%d is too big!\n", KBUILD_MODNAME, len); return -EINVAL; } if (start + len > 8) return -EINVAL; memcpy(&cmdbuf[1], buf, len); cmdbuf[0] = start; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); rc = i2c_transfer(priv->i2c, &msg, 1); if (rc != 1) dprintk("%s: i2c error\n", __func__); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); return 0; } static int stv6110_read_regs(struct dvb_frontend *fe, u8 regs[], int start, int len) { struct stv6110_priv *priv = fe->tuner_priv; int rc; u8 reg[] = { start }; struct i2c_msg msg[] = { { .addr = priv->i2c_address, .flags = 0, .buf = reg, .len = 1, }, { .addr = priv->i2c_address, .flags = I2C_M_RD, .buf = regs, .len = len, }, }; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); rc = i2c_transfer(priv->i2c, msg, 2); if (rc != 2) dprintk("%s: i2c error\n", __func__); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); memcpy(&priv->regs[start], regs, len); return 0; } static int stv6110_read_reg(struct dvb_frontend *fe, int start) { u8 buf[] = { 0 }; stv6110_read_regs(fe, buf, start, 1); return buf[0]; } static int stv6110_sleep(struct dvb_frontend *fe) { u8 reg[] = { 0 }; stv6110_write_regs(fe, reg, 0, 1); return 0; } static u32 carrier_width(u32 symbol_rate, enum fe_rolloff rolloff) { u32 rlf; switch (rolloff) { case ROLLOFF_20: rlf = 20; break; case ROLLOFF_25: rlf = 25; break; default: rlf = 35; break; } return symbol_rate + ((symbol_rate * rlf) / 100); } static int stv6110_set_bandwidth(struct dvb_frontend *fe, u32 bandwidth) { struct stv6110_priv *priv = fe->tuner_priv; u8 r8, ret = 0x04; int i; if ((bandwidth / 2) > 36000000) /*BW/2 max=31+5=36 mhz for r8=31*/ r8 = 31; else if ((bandwidth / 2) < 5000000) /* BW/2 min=5Mhz for F=0 */ r8 = 0; else /*if 5 < BW/2 < 36*/ r8 = (bandwidth / 2) / 1000000 - 5; /* ctrl3, RCCLKOFF = 0 Activate the calibration Clock */ /* ctrl3, CF = r8 Set the LPF value */ priv->regs[RSTV6110_CTRL3] &= ~((1 << 6) | 0x1f); priv->regs[RSTV6110_CTRL3] |= (r8 & 0x1f); stv6110_write_regs(fe, &priv->regs[RSTV6110_CTRL3], RSTV6110_CTRL3, 1); /* stat1, CALRCSTRT = 1 Start LPF auto calibration*/ priv->regs[RSTV6110_STAT1] |= 0x02; stv6110_write_regs(fe, &priv->regs[RSTV6110_STAT1], RSTV6110_STAT1, 1); i = 0; /* Wait for CALRCSTRT == 0 */ while ((i < 10) && (ret != 0)) { ret = ((stv6110_read_reg(fe, RSTV6110_STAT1)) & 0x02); mdelay(1); /* wait for LPF auto calibration */ i++; } /* RCCLKOFF = 1 calibration done, desactivate the calibration Clock */ priv->regs[RSTV6110_CTRL3] |= (1 << 6); stv6110_write_regs(fe, &priv->regs[RSTV6110_CTRL3], RSTV6110_CTRL3, 1); return 0; } static int stv6110_init(struct dvb_frontend *fe) { struct stv6110_priv *priv = fe->tuner_priv; u8 buf0[] = { 0x07, 0x11, 0xdc, 0x85, 0x17, 0x01, 0xe6, 0x1e }; memcpy(priv->regs, buf0, 8); /* K = (Reference / 1000000) - 16 */ priv->regs[RSTV6110_CTRL1] &= ~(0x1f << 3); priv->regs[RSTV6110_CTRL1] |= ((((priv->mclk / 1000000) - 16) & 0x1f) << 3); /* divisor value for the output clock */ priv->regs[RSTV6110_CTRL2] &= ~0xc0; priv->regs[RSTV6110_CTRL2] |= (priv->clk_div << 6); stv6110_write_regs(fe, &priv->regs[RSTV6110_CTRL1], RSTV6110_CTRL1, 8); msleep(1); stv6110_set_bandwidth(fe, 72000000); return 0; } static int stv6110_get_frequency(struct dvb_frontend *fe, u32 *frequency) { struct stv6110_priv *priv = fe->tuner_priv; u32 nbsteps, divider, psd2, freq; u8 regs[] = { 0, 0, 0, 0, 0, 0, 0, 0 }; stv6110_read_regs(fe, regs, 0, 8); /*N*/ divider = (priv->regs[RSTV6110_TUNING2] & 0x0f) << 8; divider += priv->regs[RSTV6110_TUNING1]; /*R*/ nbsteps = (priv->regs[RSTV6110_TUNING2] >> 6) & 3; /*p*/ psd2 = (priv->regs[RSTV6110_TUNING2] >> 4) & 1; freq = divider * (priv->mclk / 1000); freq /= (1 << (nbsteps + psd2)); freq /= 4; *frequency = freq; return 0; } static int stv6110_set_frequency(struct dvb_frontend *fe, u32 frequency) { struct stv6110_priv *priv = fe->tuner_priv; u8 ret = 0x04; u32 divider, ref, p, presc, i, result_freq, vco_freq; s32 p_calc, p_calc_opt = 1000, r_div, r_div_opt = 0, p_val; dprintk("%s, freq=%d kHz, mclk=%d Hz\n", __func__, frequency, priv->mclk); /* K = (Reference / 1000000) - 16 */ priv->regs[RSTV6110_CTRL1] &= ~(0x1f << 3); priv->regs[RSTV6110_CTRL1] |= ((((priv->mclk / 1000000) - 16) & 0x1f) << 3); /* BB_GAIN = db/2 */ priv->regs[RSTV6110_CTRL2] &= ~0x0f; priv->regs[RSTV6110_CTRL2] |= (priv->gain & 0x0f); if (frequency <= 1023000) { p = 1; presc = 0; } else if (frequency <= 1300000) { p = 1; presc = 1; } else if (frequency <= 2046000) { p = 0; presc = 0; } else { p = 0; presc = 1; } /* DIV4SEL = p*/ priv->regs[RSTV6110_TUNING2] &= ~(1 << 4); priv->regs[RSTV6110_TUNING2] |= (p << 4); /* PRESC32ON = presc */ priv->regs[RSTV6110_TUNING2] &= ~(1 << 5); priv->regs[RSTV6110_TUNING2] |= (presc << 5); p_val = (int)(1 << (p + 1)) * 10;/* P = 2 or P = 4 */ for (r_div = 0; r_div <= 3; r_div++) { p_calc = (priv->mclk / 100000); p_calc /= (1 << (r_div + 1)); if ((abssub(p_calc, p_val)) < (abssub(p_calc_opt, p_val))) r_div_opt = r_div; p_calc_opt = (priv->mclk / 100000); p_calc_opt /= (1 << (r_div_opt + 1)); } ref = priv->mclk / ((1 << (r_div_opt + 1)) * (1 << (p + 1))); divider = (((frequency * 1000) + (ref >> 1)) / ref); /* RDIV = r_div_opt */ priv->regs[RSTV6110_TUNING2] &= ~(3 << 6); priv->regs[RSTV6110_TUNING2] |= (((r_div_opt) & 3) << 6); /* NDIV_MSB = MSB(divider) */ priv->regs[RSTV6110_TUNING2] &= ~0x0f; priv->regs[RSTV6110_TUNING2] |= (((divider) >> 8) & 0x0f); /* NDIV_LSB, LSB(divider) */ priv->regs[RSTV6110_TUNING1] = (divider & 0xff); /* CALVCOSTRT = 1 VCO Auto Calibration */ priv->regs[RSTV6110_STAT1] |= 0x04; stv6110_write_regs(fe, &priv->regs[RSTV6110_CTRL1], RSTV6110_CTRL1, 8); i = 0; /* Wait for CALVCOSTRT == 0 */ while ((i < 10) && (ret != 0)) { ret = ((stv6110_read_reg(fe, RSTV6110_STAT1)) & 0x04); msleep(1); /* wait for VCO auto calibration */ i++; } ret = stv6110_read_reg(fe, RSTV6110_STAT1); stv6110_get_frequency(fe, &result_freq); vco_freq = divider * ((priv->mclk / 1000) / ((1 << (r_div_opt + 1)))); dprintk("%s, stat1=%x, lo_freq=%d kHz, vco_frec=%d kHz\n", __func__, ret, result_freq, vco_freq); return 0; } static int stv6110_set_params(struct dvb_frontend *fe) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; u32 bandwidth = carrier_width(c->symbol_rate, c->rolloff); stv6110_set_frequency(fe, c->frequency); stv6110_set_bandwidth(fe, bandwidth); return 0; } static int stv6110_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth) { struct stv6110_priv *priv = fe->tuner_priv; u8 r8 = 0; u8 regs[] = { 0, 0, 0, 0, 0, 0, 0, 0 }; stv6110_read_regs(fe, regs, 0, 8); /* CF */ r8 = priv->regs[RSTV6110_CTRL3] & 0x1f; *bandwidth = (r8 + 5) * 2000000;/* x2 for ZIF tuner BW/2 = F+5 Mhz */ return 0; } static const struct dvb_tuner_ops stv6110_tuner_ops = { .info = { .name = "ST STV6110", .frequency_min_hz = 950 * MHz, .frequency_max_hz = 2150 * MHz, .frequency_step_hz = 1 * MHz, }, .init = stv6110_init, .release = stv6110_release, .sleep = stv6110_sleep, .set_params = stv6110_set_params, .get_frequency = stv6110_get_frequency, .set_frequency = stv6110_set_frequency, .get_bandwidth = stv6110_get_bandwidth, .set_bandwidth = stv6110_set_bandwidth, }; struct dvb_frontend *stv6110_attach(struct dvb_frontend *fe, const struct stv6110_config *config, struct i2c_adapter *i2c) { struct stv6110_priv *priv = NULL; u8 reg0[] = { 0x00, 0x07, 0x11, 0xdc, 0x85, 0x17, 0x01, 0xe6, 0x1e }; struct i2c_msg msg[] = { { .addr = config->i2c_address, .flags = 0, .buf = reg0, .len = 9 } }; int ret; /* divisor value for the output clock */ reg0[2] &= ~0xc0; reg0[2] |= (config->clk_div << 6); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); ret = i2c_transfer(i2c, msg, 1); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); if (ret != 1) return NULL; priv = kzalloc(sizeof(struct stv6110_priv), GFP_KERNEL); if (priv == NULL) return NULL; priv->i2c_address = config->i2c_address; priv->i2c = i2c; priv->mclk = config->mclk; priv->clk_div = config->clk_div; priv->gain = config->gain; memcpy(&priv->regs, ®0[1], 8); memcpy(&fe->ops.tuner_ops, &stv6110_tuner_ops, sizeof(struct dvb_tuner_ops)); fe->tuner_priv = priv; printk(KERN_INFO "STV6110 attached on addr=%x!\n", priv->i2c_address); return fe; } EXPORT_SYMBOL_GPL(stv6110_attach); module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); MODULE_DESCRIPTION("ST STV6110 driver"); MODULE_AUTHOR("Igor M. Liplianin"); MODULE_LICENSE("GPL");