/* * Remote VUB300 SDIO/SDmem Host Controller Driver * * Copyright (C) 2010 Elan Digital Systems Limited * * based on USB Skeleton driver - 2.2 * * Copyright (C) 2001-2004 Greg Kroah-Hartman (greg@kroah.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, version 2 * * VUB300: is a USB 2.0 client device with a single SDIO/SDmem/MMC slot * Any SDIO/SDmem/MMC device plugged into the VUB300 will appear, * by virtue of this driver, to have been plugged into a local * SDIO host controller, similar to, say, a PCI Ricoh controller * This is because this kernel device driver is both a USB 2.0 * client device driver AND an MMC host controller driver. Thus * if there is an existing driver for the inserted SDIO/SDmem/MMC * device then that driver will be used by the kernel to manage * the device in exactly the same fashion as if it had been * directly plugged into, say, a local pci bus Ricoh controller * * RANT: this driver was written using a display 128x48 - converting it * to a line width of 80 makes it very difficult to support. In * particular functions have been broken down into sub functions * and the original meaningful names have been shortened into * cryptic ones. * The problem is that executing a fragment of code subject to * two conditions means an indentation of 24, thus leaving only * 56 characters for a C statement. And that is quite ridiculous! * * Data types: data passed to/from the VUB300 is fixed to a number of * bits and driver data fields reflect that limit by using * u8, u16, u32 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct host_controller_info { u8 info_size; u16 firmware_version; u8 number_of_ports; } __packed; #define FIRMWARE_BLOCK_BOUNDARY 1024 struct sd_command_header { u8 header_size; u8 header_type; u8 port_number; u8 command_type; /* Bit7 - Rd/Wr */ u8 command_index; u8 transfer_size[4]; /* ReadSize + ReadSize */ u8 response_type; u8 arguments[4]; u8 block_count[2]; u8 block_size[2]; u8 block_boundary[2]; u8 reserved[44]; /* to pad out to 64 bytes */ } __packed; struct sd_irqpoll_header { u8 header_size; u8 header_type; u8 port_number; u8 command_type; /* Bit7 - Rd/Wr */ u8 padding[16]; /* don't ask why !! */ u8 poll_timeout_msb; u8 poll_timeout_lsb; u8 reserved[42]; /* to pad out to 64 bytes */ } __packed; struct sd_common_header { u8 header_size; u8 header_type; u8 port_number; } __packed; struct sd_response_header { u8 header_size; u8 header_type; u8 port_number; u8 command_type; u8 command_index; u8 command_response[0]; } __packed; struct sd_status_header { u8 header_size; u8 header_type; u8 port_number; u16 port_flags; u32 sdio_clock; u16 host_header_size; u16 func_header_size; u16 ctrl_header_size; } __packed; struct sd_error_header { u8 header_size; u8 header_type; u8 port_number; u8 error_code; } __packed; struct sd_interrupt_header { u8 header_size; u8 header_type; u8 port_number; } __packed; struct offload_registers_access { u8 command_byte[4]; u8 Respond_Byte[4]; } __packed; #define INTERRUPT_REGISTER_ACCESSES 15 struct sd_offloaded_interrupt { u8 header_size; u8 header_type; u8 port_number; struct offload_registers_access reg[INTERRUPT_REGISTER_ACCESSES]; } __packed; struct sd_register_header { u8 header_size; u8 header_type; u8 port_number; u8 command_type; u8 command_index; u8 command_response[6]; } __packed; #define PIGGYBACK_REGISTER_ACCESSES 14 struct sd_offloaded_piggyback { struct sd_register_header sdio; struct offload_registers_access reg[PIGGYBACK_REGISTER_ACCESSES]; } __packed; union sd_response { struct sd_common_header common; struct sd_status_header status; struct sd_error_header error; struct sd_interrupt_header interrupt; struct sd_response_header response; struct sd_offloaded_interrupt irq; struct sd_offloaded_piggyback pig; } __packed; union sd_command { struct sd_command_header head; struct sd_irqpoll_header poll; } __packed; enum SD_RESPONSE_TYPE { SDRT_UNSPECIFIED = 0, SDRT_NONE, SDRT_1, SDRT_1B, SDRT_2, SDRT_3, SDRT_4, SDRT_5, SDRT_5B, SDRT_6, SDRT_7, }; #define RESPONSE_INTERRUPT 0x01 #define RESPONSE_ERROR 0x02 #define RESPONSE_STATUS 0x03 #define RESPONSE_IRQ_DISABLED 0x05 #define RESPONSE_IRQ_ENABLED 0x06 #define RESPONSE_PIGGYBACKED 0x07 #define RESPONSE_NO_INTERRUPT 0x08 #define RESPONSE_PIG_DISABLED 0x09 #define RESPONSE_PIG_ENABLED 0x0A #define SD_ERROR_1BIT_TIMEOUT 0x01 #define SD_ERROR_4BIT_TIMEOUT 0x02 #define SD_ERROR_1BIT_CRC_WRONG 0x03 #define SD_ERROR_4BIT_CRC_WRONG 0x04 #define SD_ERROR_1BIT_CRC_ERROR 0x05 #define SD_ERROR_4BIT_CRC_ERROR 0x06 #define SD_ERROR_NO_CMD_ENDBIT 0x07 #define SD_ERROR_NO_1BIT_DATEND 0x08 #define SD_ERROR_NO_4BIT_DATEND 0x09 #define SD_ERROR_1BIT_UNEXPECTED_TIMEOUT 0x0A #define SD_ERROR_4BIT_UNEXPECTED_TIMEOUT 0x0B #define SD_ERROR_ILLEGAL_COMMAND 0x0C #define SD_ERROR_NO_DEVICE 0x0D #define SD_ERROR_TRANSFER_LENGTH 0x0E #define SD_ERROR_1BIT_DATA_TIMEOUT 0x0F #define SD_ERROR_4BIT_DATA_TIMEOUT 0x10 #define SD_ERROR_ILLEGAL_STATE 0x11 #define SD_ERROR_UNKNOWN_ERROR 0x12 #define SD_ERROR_RESERVED_ERROR 0x13 #define SD_ERROR_INVALID_FUNCTION 0x14 #define SD_ERROR_OUT_OF_RANGE 0x15 #define SD_ERROR_STAT_CMD 0x16 #define SD_ERROR_STAT_DATA 0x17 #define SD_ERROR_STAT_CMD_TIMEOUT 0x18 #define SD_ERROR_SDCRDY_STUCK 0x19 #define SD_ERROR_UNHANDLED 0x1A #define SD_ERROR_OVERRUN 0x1B #define SD_ERROR_PIO_TIMEOUT 0x1C #define FUN(c) (0x000007 & (c->arg>>28)) #define REG(c) (0x01FFFF & (c->arg>>9)) static bool limit_speed_to_24_MHz; module_param(limit_speed_to_24_MHz, bool, 0644); MODULE_PARM_DESC(limit_speed_to_24_MHz, "Limit Max SDIO Clock Speed to 24 MHz"); static bool pad_input_to_usb_pkt; module_param(pad_input_to_usb_pkt, bool, 0644); MODULE_PARM_DESC(pad_input_to_usb_pkt, "Pad USB data input transfers to whole USB Packet"); static bool disable_offload_processing; module_param(disable_offload_processing, bool, 0644); MODULE_PARM_DESC(disable_offload_processing, "Disable Offload Processing"); static bool force_1_bit_data_xfers; module_param(force_1_bit_data_xfers, bool, 0644); MODULE_PARM_DESC(force_1_bit_data_xfers, "Force SDIO Data Transfers to 1-bit Mode"); static bool force_polling_for_irqs; module_param(force_polling_for_irqs, bool, 0644); MODULE_PARM_DESC(force_polling_for_irqs, "Force Polling for SDIO interrupts"); static int firmware_irqpoll_timeout = 1024; module_param(firmware_irqpoll_timeout, int, 0644); MODULE_PARM_DESC(firmware_irqpoll_timeout, "VUB300 firmware irqpoll timeout"); static int force_max_req_size = 128; module_param(force_max_req_size, int, 0644); MODULE_PARM_DESC(force_max_req_size, "set max request size in kBytes"); #ifdef SMSC_DEVELOPMENT_BOARD static int firmware_rom_wait_states = 0x04; #else static int firmware_rom_wait_states = 0x1C; #endif module_param(firmware_rom_wait_states, int, 0644); MODULE_PARM_DESC(firmware_rom_wait_states, "ROM wait states byte=RRRIIEEE (Reserved Internal External)"); #define ELAN_VENDOR_ID 0x2201 #define VUB300_VENDOR_ID 0x0424 #define VUB300_PRODUCT_ID 0x012C static const struct usb_device_id vub300_table[] = { {USB_DEVICE(ELAN_VENDOR_ID, VUB300_PRODUCT_ID)}, {USB_DEVICE(VUB300_VENDOR_ID, VUB300_PRODUCT_ID)}, {} /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, vub300_table); static struct workqueue_struct *cmndworkqueue; static struct workqueue_struct *pollworkqueue; static struct workqueue_struct *deadworkqueue; static inline int interface_to_InterfaceNumber(struct usb_interface *interface) { if (!interface) return -1; if (!interface->cur_altsetting) return -1; return interface->cur_altsetting->desc.bInterfaceNumber; } struct sdio_register { unsigned func_num:3; unsigned sdio_reg:17; unsigned activate:1; unsigned prepared:1; unsigned regvalue:8; unsigned response:8; unsigned sparebit:26; }; struct vub300_mmc_host { struct usb_device *udev; struct usb_interface *interface; struct kref kref; struct mutex cmd_mutex; struct mutex irq_mutex; char vub_name[3 + (9 * 8) + 4 + 1]; /* max of 7 sdio fn's */ u8 cmnd_out_ep; /* EndPoint for commands */ u8 cmnd_res_ep; /* EndPoint for responses */ u8 data_out_ep; /* EndPoint for out data */ u8 data_inp_ep; /* EndPoint for inp data */ bool card_powered; bool card_present; bool read_only; bool large_usb_packets; bool app_spec; /* ApplicationSpecific */ bool irq_enabled; /* by the MMC CORE */ bool irq_disabled; /* in the firmware */ unsigned bus_width:4; u8 total_offload_count; u8 dynamic_register_count; u8 resp_len; u32 datasize; int errors; int usb_transport_fail; int usb_timed_out; int irqs_queued; struct sdio_register sdio_register[16]; struct offload_interrupt_function_register { #define MAXREGBITS 4 #define MAXREGS (1<mmc; usb_free_urb(vub300->command_out_urb); vub300->command_out_urb = NULL; usb_free_urb(vub300->command_res_urb); vub300->command_res_urb = NULL; usb_put_dev(vub300->udev); mmc_free_host(mmc); /* * and hence also frees vub300 * which is contained at the end of struct mmc */ } static void vub300_queue_cmnd_work(struct vub300_mmc_host *vub300) { kref_get(&vub300->kref); if (queue_work(cmndworkqueue, &vub300->cmndwork)) { /* * then the cmndworkqueue was not previously * running and the above get ref is obvious * required and will be put when the thread * terminates by a specific call */ } else { /* * the cmndworkqueue was already running from * a previous invocation and thus to keep the * kref counts correct we must undo the get */ kref_put(&vub300->kref, vub300_delete); } } static void vub300_queue_poll_work(struct vub300_mmc_host *vub300, int delay) { kref_get(&vub300->kref); if (queue_delayed_work(pollworkqueue, &vub300->pollwork, delay)) { /* * then the pollworkqueue was not previously * running and the above get ref is obvious * required and will be put when the thread * terminates by a specific call */ } else { /* * the pollworkqueue was already running from * a previous invocation and thus to keep the * kref counts correct we must undo the get */ kref_put(&vub300->kref, vub300_delete); } } static void vub300_queue_dead_work(struct vub300_mmc_host *vub300) { kref_get(&vub300->kref); if (queue_work(deadworkqueue, &vub300->deadwork)) { /* * then the deadworkqueue was not previously * running and the above get ref is obvious * required and will be put when the thread * terminates by a specific call */ } else { /* * the deadworkqueue was already running from * a previous invocation and thus to keep the * kref counts correct we must undo the get */ kref_put(&vub300->kref, vub300_delete); } } static void irqpoll_res_completed(struct urb *urb) { /* urb completion handler - hardirq */ struct vub300_mmc_host *vub300 = (struct vub300_mmc_host *)urb->context; if (urb->status) vub300->usb_transport_fail = urb->status; complete(&vub300->irqpoll_complete); } static void irqpoll_out_completed(struct urb *urb) { /* urb completion handler - hardirq */ struct vub300_mmc_host *vub300 = (struct vub300_mmc_host *)urb->context; if (urb->status) { vub300->usb_transport_fail = urb->status; complete(&vub300->irqpoll_complete); return; } else { int ret; unsigned int pipe = usb_rcvbulkpipe(vub300->udev, vub300->cmnd_res_ep); usb_fill_bulk_urb(vub300->command_res_urb, vub300->udev, pipe, &vub300->resp, sizeof(vub300->resp), irqpoll_res_completed, vub300); vub300->command_res_urb->actual_length = 0; ret = usb_submit_urb(vub300->command_res_urb, GFP_ATOMIC); if (ret) { vub300->usb_transport_fail = ret; complete(&vub300->irqpoll_complete); } return; } } static void send_irqpoll(struct vub300_mmc_host *vub300) { /* cmd_mutex is held by vub300_pollwork_thread */ int retval; int timeout = 0xFFFF & (0x0001FFFF - firmware_irqpoll_timeout); vub300->cmnd.poll.header_size = 22; vub300->cmnd.poll.header_type = 1; vub300->cmnd.poll.port_number = 0; vub300->cmnd.poll.command_type = 2; vub300->cmnd.poll.poll_timeout_lsb = 0xFF & (unsigned)timeout; vub300->cmnd.poll.poll_timeout_msb = 0xFF & (unsigned)(timeout >> 8); usb_fill_bulk_urb(vub300->command_out_urb, vub300->udev, usb_sndbulkpipe(vub300->udev, vub300->cmnd_out_ep) , &vub300->cmnd, sizeof(vub300->cmnd) , irqpoll_out_completed, vub300); retval = usb_submit_urb(vub300->command_out_urb, GFP_KERNEL); if (0 > retval) { vub300->usb_transport_fail = retval; vub300_queue_poll_work(vub300, 1); complete(&vub300->irqpoll_complete); return; } else { return; } } static void new_system_port_status(struct vub300_mmc_host *vub300) { int old_card_present = vub300->card_present; int new_card_present = (0x0001 & vub300->system_port_status.port_flags) ? 1 : 0; vub300->read_only = (0x0010 & vub300->system_port_status.port_flags) ? 1 : 0; if (new_card_present && !old_card_present) { dev_info(&vub300->udev->dev, "card just inserted\n"); vub300->card_present = 1; vub300->bus_width = 0; if (disable_offload_processing) strncpy(vub300->vub_name, "EMPTY Processing Disabled", sizeof(vub300->vub_name)); else vub300->vub_name[0] = 0; mmc_detect_change(vub300->mmc, 1); } else if (!new_card_present && old_card_present) { dev_info(&vub300->udev->dev, "card just ejected\n"); vub300->card_present = 0; mmc_detect_change(vub300->mmc, 0); } else { /* no change */ } } static void __add_offloaded_reg_to_fifo(struct vub300_mmc_host *vub300, struct offload_registers_access *register_access, u8 func) { u8 r = vub300->fn[func].offload_point + vub300->fn[func].offload_count; memcpy(&vub300->fn[func].reg[MAXREGMASK & r], register_access, sizeof(struct offload_registers_access)); vub300->fn[func].offload_count += 1; vub300->total_offload_count += 1; } static void add_offloaded_reg(struct vub300_mmc_host *vub300, struct offload_registers_access *register_access) { u32 Register = ((0x03 & register_access->command_byte[0]) << 15) | ((0xFF & register_access->command_byte[1]) << 7) | ((0xFE & register_access->command_byte[2]) >> 1); u8 func = ((0x70 & register_access->command_byte[0]) >> 4); u8 regs = vub300->dynamic_register_count; u8 i = 0; while (0 < regs-- && 1 == vub300->sdio_register[i].activate) { if (vub300->sdio_register[i].func_num == func && vub300->sdio_register[i].sdio_reg == Register) { if (vub300->sdio_register[i].prepared == 0) vub300->sdio_register[i].prepared = 1; vub300->sdio_register[i].response = register_access->Respond_Byte[2]; vub300->sdio_register[i].regvalue = register_access->Respond_Byte[3]; return; } else { i += 1; continue; } } __add_offloaded_reg_to_fifo(vub300, register_access, func); } static void check_vub300_port_status(struct vub300_mmc_host *vub300) { /* * cmd_mutex is held by vub300_pollwork_thread, * vub300_deadwork_thread or vub300_cmndwork_thread */ int retval; retval = usb_control_msg(vub300->udev, usb_rcvctrlpipe(vub300->udev, 0), GET_SYSTEM_PORT_STATUS, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0x0000, 0x0000, &vub300->system_port_status, sizeof(vub300->system_port_status), 1000); if (sizeof(vub300->system_port_status) == retval) new_system_port_status(vub300); } static void __vub300_irqpoll_response(struct vub300_mmc_host *vub300) { /* cmd_mutex is held by vub300_pollwork_thread */ if (vub300->command_res_urb->actual_length == 0) return; switch (vub300->resp.common.header_type) { case RESPONSE_INTERRUPT: mutex_lock(&vub300->irq_mutex); if (vub300->irq_enabled) mmc_signal_sdio_irq(vub300->mmc); else vub300->irqs_queued += 1; vub300->irq_disabled = 1; mutex_unlock(&vub300->irq_mutex); break; case RESPONSE_ERROR: if (vub300->resp.error.error_code == SD_ERROR_NO_DEVICE) check_vub300_port_status(vub300); break; case RESPONSE_STATUS: vub300->system_port_status = vub300->resp.status; new_system_port_status(vub300); if (!vub300->card_present) vub300_queue_poll_work(vub300, HZ / 5); break; case RESPONSE_IRQ_DISABLED: { int offloaded_data_length = vub300->resp.common.header_size - 3; int register_count = offloaded_data_length >> 3; int ri = 0; while (register_count--) { add_offloaded_reg(vub300, &vub300->resp.irq.reg[ri]); ri += 1; } mutex_lock(&vub300->irq_mutex); if (vub300->irq_enabled) mmc_signal_sdio_irq(vub300->mmc); else vub300->irqs_queued += 1; vub300->irq_disabled = 1; mutex_unlock(&vub300->irq_mutex); break; } case RESPONSE_IRQ_ENABLED: { int offloaded_data_length = vub300->resp.common.header_size - 3; int register_count = offloaded_data_length >> 3; int ri = 0; while (register_count--) { add_offloaded_reg(vub300, &vub300->resp.irq.reg[ri]); ri += 1; } mutex_lock(&vub300->irq_mutex); if (vub300->irq_enabled) mmc_signal_sdio_irq(vub300->mmc); else vub300->irqs_queued += 1; vub300->irq_disabled = 0; mutex_unlock(&vub300->irq_mutex); break; } case RESPONSE_NO_INTERRUPT: vub300_queue_poll_work(vub300, 1); break; default: break; } } static void __do_poll(struct vub300_mmc_host *vub300) { /* cmd_mutex is held by vub300_pollwork_thread */ unsigned long commretval; mod_timer(&vub300->inactivity_timer, jiffies + HZ); init_completion(&vub300->irqpoll_complete); send_irqpoll(vub300); commretval = wait_for_completion_timeout(&vub300->irqpoll_complete, msecs_to_jiffies(500)); if (vub300->usb_transport_fail) { /* no need to do anything */ } else if (commretval == 0) { vub300->usb_timed_out = 1; usb_kill_urb(vub300->command_out_urb); usb_kill_urb(vub300->command_res_urb); } else { /* commretval > 0 */ __vub300_irqpoll_response(vub300); } } /* this thread runs only when the driver * is trying to poll the device for an IRQ */ static void vub300_pollwork_thread(struct work_struct *work) { /* NOT irq */ struct vub300_mmc_host *vub300 = container_of(work, struct vub300_mmc_host, pollwork.work); if (!vub300->interface) { kref_put(&vub300->kref, vub300_delete); return; } mutex_lock(&vub300->cmd_mutex); if (vub300->cmd) { vub300_queue_poll_work(vub300, 1); } else if (!vub300->card_present) { /* no need to do anything */ } else { /* vub300->card_present */ mutex_lock(&vub300->irq_mutex); if (!vub300->irq_enabled) { mutex_unlock(&vub300->irq_mutex); } else if (vub300->irqs_queued) { vub300->irqs_queued -= 1; mmc_signal_sdio_irq(vub300->mmc); mod_timer(&vub300->inactivity_timer, jiffies + HZ); mutex_unlock(&vub300->irq_mutex); } else { /* NOT vub300->irqs_queued */ mutex_unlock(&vub300->irq_mutex); __do_poll(vub300); } } mutex_unlock(&vub300->cmd_mutex); kref_put(&vub300->kref, vub300_delete); } static void vub300_deadwork_thread(struct work_struct *work) { /* NOT irq */ struct vub300_mmc_host *vub300 = container_of(work, struct vub300_mmc_host, deadwork); if (!vub300->interface) { kref_put(&vub300->kref, vub300_delete); return; } mutex_lock(&vub300->cmd_mutex); if (vub300->cmd) { /* * a command got in as the inactivity * timer expired - so we just let the * processing of the command show if * the device is dead */ } else if (vub300->card_present) { check_vub300_port_status(vub300); } else if (vub300->mmc && vub300->mmc->card) { /* * the MMC core must not have responded * to the previous indication - lets * hope that it eventually does so we * will just ignore this for now */ } else { check_vub300_port_status(vub300); } mod_timer(&vub300->inactivity_timer, jiffies + HZ); mutex_unlock(&vub300->cmd_mutex); kref_put(&vub300->kref, vub300_delete); } static void vub300_inactivity_timer_expired(struct timer_list *t) { /* softirq */ struct vub300_mmc_host *vub300 = from_timer(vub300, t, inactivity_timer); if (!vub300->interface) { kref_put(&vub300->kref, vub300_delete); } else if (vub300->cmd) { mod_timer(&vub300->inactivity_timer, jiffies + HZ); } else { vub300_queue_dead_work(vub300); mod_timer(&vub300->inactivity_timer, jiffies + HZ); } } static int vub300_response_error(u8 error_code) { switch (error_code) { case SD_ERROR_PIO_TIMEOUT: case SD_ERROR_1BIT_TIMEOUT: case SD_ERROR_4BIT_TIMEOUT: return -ETIMEDOUT; case SD_ERROR_STAT_DATA: case SD_ERROR_OVERRUN: case SD_ERROR_STAT_CMD: case SD_ERROR_STAT_CMD_TIMEOUT: case SD_ERROR_SDCRDY_STUCK: case SD_ERROR_UNHANDLED: case SD_ERROR_1BIT_CRC_WRONG: case SD_ERROR_4BIT_CRC_WRONG: case SD_ERROR_1BIT_CRC_ERROR: case SD_ERROR_4BIT_CRC_ERROR: case SD_ERROR_NO_CMD_ENDBIT: case SD_ERROR_NO_1BIT_DATEND: case SD_ERROR_NO_4BIT_DATEND: case SD_ERROR_1BIT_DATA_TIMEOUT: case SD_ERROR_4BIT_DATA_TIMEOUT: case SD_ERROR_1BIT_UNEXPECTED_TIMEOUT: case SD_ERROR_4BIT_UNEXPECTED_TIMEOUT: return -EILSEQ; case 33: return -EILSEQ; case SD_ERROR_ILLEGAL_COMMAND: return -EINVAL; case SD_ERROR_NO_DEVICE: return -ENOMEDIUM; default: return -ENODEV; } } static void command_res_completed(struct urb *urb) { /* urb completion handler - hardirq */ struct vub300_mmc_host *vub300 = (struct vub300_mmc_host *)urb->context; if (urb->status) { /* we have to let the initiator handle the error */ } else if (vub300->command_res_urb->actual_length == 0) { /* * we have seen this happen once or twice and * we suspect a buggy USB host controller */ } else if (!vub300->data) { /* this means that the command (typically CMD52) succeeded */ } else if (vub300->resp.common.header_type != 0x02) { /* * this is an error response from the VUB300 chip * and we let the initiator handle it */ } else if (vub300->urb) { vub300->cmd->error = vub300_response_error(vub300->resp.error.error_code); usb_unlink_urb(vub300->urb); } else { vub300->cmd->error = vub300_response_error(vub300->resp.error.error_code); usb_sg_cancel(&vub300->sg_request); } complete(&vub300->command_complete); /* got_response_in */ } static void command_out_completed(struct urb *urb) { /* urb completion handler - hardirq */ struct vub300_mmc_host *vub300 = (struct vub300_mmc_host *)urb->context; if (urb->status) { complete(&vub300->command_complete); } else { int ret; unsigned int pipe = usb_rcvbulkpipe(vub300->udev, vub300->cmnd_res_ep); usb_fill_bulk_urb(vub300->command_res_urb, vub300->udev, pipe, &vub300->resp, sizeof(vub300->resp), command_res_completed, vub300); vub300->command_res_urb->actual_length = 0; ret = usb_submit_urb(vub300->command_res_urb, GFP_ATOMIC); if (ret == 0) { /* * the urb completion handler will call * our completion handler */ } else { /* * and thus we only call it directly * when it will not be called */ complete(&vub300->command_complete); } } } /* * the STUFF bits are masked out for the comparisons */ static void snoop_block_size_and_bus_width(struct vub300_mmc_host *vub300, u32 cmd_arg) { if ((0xFBFFFE00 & cmd_arg) == 0x80022200) vub300->fbs[1] = (cmd_arg << 8) | (0x00FF & vub300->fbs[1]); else if ((0xFBFFFE00 & cmd_arg) == 0x80022000) vub300->fbs[1] = (0xFF & cmd_arg) | (0xFF00 & vub300->fbs[1]); else if ((0xFBFFFE00 & cmd_arg) == 0x80042200) vub300->fbs[2] = (cmd_arg << 8) | (0x00FF & vub300->fbs[2]); else if ((0xFBFFFE00 & cmd_arg) == 0x80042000) vub300->fbs[2] = (0xFF & cmd_arg) | (0xFF00 & vub300->fbs[2]); else if ((0xFBFFFE00 & cmd_arg) == 0x80062200) vub300->fbs[3] = (cmd_arg << 8) | (0x00FF & vub300->fbs[3]); else if ((0xFBFFFE00 & cmd_arg) == 0x80062000) vub300->fbs[3] = (0xFF & cmd_arg) | (0xFF00 & vub300->fbs[3]); else if ((0xFBFFFE00 & cmd_arg) == 0x80082200) vub300->fbs[4] = (cmd_arg << 8) | (0x00FF & vub300->fbs[4]); else if ((0xFBFFFE00 & cmd_arg) == 0x80082000) vub300->fbs[4] = (0xFF & cmd_arg) | (0xFF00 & vub300->fbs[4]); else if ((0xFBFFFE00 & cmd_arg) == 0x800A2200) vub300->fbs[5] = (cmd_arg << 8) | (0x00FF & vub300->fbs[5]); else if ((0xFBFFFE00 & cmd_arg) == 0x800A2000) vub300->fbs[5] = (0xFF & cmd_arg) | (0xFF00 & vub300->fbs[5]); else if ((0xFBFFFE00 & cmd_arg) == 0x800C2200) vub300->fbs[6] = (cmd_arg << 8) | (0x00FF & vub300->fbs[6]); else if ((0xFBFFFE00 & cmd_arg) == 0x800C2000) vub300->fbs[6] = (0xFF & cmd_arg) | (0xFF00 & vub300->fbs[6]); else if ((0xFBFFFE00 & cmd_arg) == 0x800E2200) vub300->fbs[7] = (cmd_arg << 8) | (0x00FF & vub300->fbs[7]); else if ((0xFBFFFE00 & cmd_arg) == 0x800E2000) vub300->fbs[7] = (0xFF & cmd_arg) | (0xFF00 & vub300->fbs[7]); else if ((0xFBFFFE03 & cmd_arg) == 0x80000E00) vub300->bus_width = 1; else if ((0xFBFFFE03 & cmd_arg) == 0x80000E02) vub300->bus_width = 4; } static void send_command(struct vub300_mmc_host *vub300) { /* cmd_mutex is held by vub300_cmndwork_thread */ struct mmc_command *cmd = vub300->cmd; struct mmc_data *data = vub300->data; int retval; int i; u8 response_type; if (vub300->app_spec) { switch (cmd->opcode) { case 6: response_type = SDRT_1; vub300->resp_len = 6; if (0x00000000 == (0x00000003 & cmd->arg)) vub300->bus_width = 1; else if (0x00000002 == (0x00000003 & cmd->arg)) vub300->bus_width = 4; else dev_err(&vub300->udev->dev, "unexpected ACMD6 bus_width=%d\n", 0x00000003 & cmd->arg); break; case 13: response_type = SDRT_1; vub300->resp_len = 6; break; case 22: response_type = SDRT_1; vub300->resp_len = 6; break; case 23: response_type = SDRT_1; vub300->resp_len = 6; break; case 41: response_type = SDRT_3; vub300->resp_len = 6; break; case 42: response_type = SDRT_1; vub300->resp_len = 6; break; case 51: response_type = SDRT_1; vub300->resp_len = 6; break; case 55: response_type = SDRT_1; vub300->resp_len = 6; break; default: vub300->resp_len = 0; cmd->error = -EINVAL; complete(&vub300->command_complete); return; } vub300->app_spec = 0; } else { switch (cmd->opcode) { case 0: response_type = SDRT_NONE; vub300->resp_len = 0; break; case 1: response_type = SDRT_3; vub300->resp_len = 6; break; case 2: response_type = SDRT_2; vub300->resp_len = 17; break; case 3: response_type = SDRT_6; vub300->resp_len = 6; break; case 4: response_type = SDRT_NONE; vub300->resp_len = 0; break; case 5: response_type = SDRT_4; vub300->resp_len = 6; break; case 6: response_type = SDRT_1; vub300->resp_len = 6; break; case 7: response_type = SDRT_1B; vub300->resp_len = 6; break; case 8: response_type = SDRT_7; vub300->resp_len = 6; break; case 9: response_type = SDRT_2; vub300->resp_len = 17; break; case 10: response_type = SDRT_2; vub300->resp_len = 17; break; case 12: response_type = SDRT_1B; vub300->resp_len = 6; break; case 13: response_type = SDRT_1; vub300->resp_len = 6; break; case 15: response_type = SDRT_NONE; vub300->resp_len = 0; break; case 16: for (i = 0; i < ARRAY_SIZE(vub300->fbs); i++) vub300->fbs[i] = 0xFFFF & cmd->arg; response_type = SDRT_1; vub300->resp_len = 6; break; case 17: case 18: case 24: case 25: case 27: response_type = SDRT_1; vub300->resp_len = 6; break; case 28: case 29: response_type = SDRT_1B; vub300->resp_len = 6; break; case 30: case 32: case 33: response_type = SDRT_1; vub300->resp_len = 6; break; case 38: response_type = SDRT_1B; vub300->resp_len = 6; break; case 42: response_type = SDRT_1; vub300->resp_len = 6; break; case 52: response_type = SDRT_5; vub300->resp_len = 6; snoop_block_size_and_bus_width(vub300, cmd->arg); break; case 53: response_type = SDRT_5; vub300->resp_len = 6; break; case 55: response_type = SDRT_1; vub300->resp_len = 6; vub300->app_spec = 1; break; case 56: response_type = SDRT_1; vub300->resp_len = 6; break; default: vub300->resp_len = 0; cmd->error = -EINVAL; complete(&vub300->command_complete); return; } } /* * it is a shame that we can not use "sizeof(struct sd_command_header)" * this is because the packet _must_ be padded to 64 bytes */ vub300->cmnd.head.header_size = 20; vub300->cmnd.head.header_type = 0x00; vub300->cmnd.head.port_number = 0; /* "0" means port 1 */ vub300->cmnd.head.command_type = 0x00; /* standard read command */ vub300->cmnd.head.response_type = response_type; vub300->cmnd.head.command_index = cmd->opcode; vub300->cmnd.head.arguments[0] = cmd->arg >> 24; vub300->cmnd.head.arguments[1] = cmd->arg >> 16; vub300->cmnd.head.arguments[2] = cmd->arg >> 8; vub300->cmnd.head.arguments[3] = cmd->arg >> 0; if (cmd->opcode == 52) { int fn = 0x7 & (cmd->arg >> 28); vub300->cmnd.head.block_count[0] = 0; vub300->cmnd.head.block_count[1] = 0; vub300->cmnd.head.block_size[0] = (vub300->fbs[fn] >> 8) & 0xFF; vub300->cmnd.head.block_size[1] = (vub300->fbs[fn] >> 0) & 0xFF; vub300->cmnd.head.command_type = 0x00; vub300->cmnd.head.transfer_size[0] = 0; vub300->cmnd.head.transfer_size[1] = 0; vub300->cmnd.head.transfer_size[2] = 0; vub300->cmnd.head.transfer_size[3] = 0; } else if (!data) { vub300->cmnd.head.block_count[0] = 0; vub300->cmnd.head.block_count[1] = 0; vub300->cmnd.head.block_size[0] = (vub300->fbs[0] >> 8) & 0xFF; vub300->cmnd.head.block_size[1] = (vub300->fbs[0] >> 0) & 0xFF; vub300->cmnd.head.command_type = 0x00; vub300->cmnd.head.transfer_size[0] = 0; vub300->cmnd.head.transfer_size[1] = 0; vub300->cmnd.head.transfer_size[2] = 0; vub300->cmnd.head.transfer_size[3] = 0; } else if (cmd->opcode == 53) { int fn = 0x7 & (cmd->arg >> 28); if (0x08 & vub300->cmnd.head.arguments[0]) { /* BLOCK MODE */ vub300->cmnd.head.block_count[0] = (data->blocks >> 8) & 0xFF; vub300->cmnd.head.block_count[1] = (data->blocks >> 0) & 0xFF; vub300->cmnd.head.block_size[0] = (data->blksz >> 8) & 0xFF; vub300->cmnd.head.block_size[1] = (data->blksz >> 0) & 0xFF; } else { /* BYTE MODE */ vub300->cmnd.head.block_count[0] = 0; vub300->cmnd.head.block_count[1] = 0; vub300->cmnd.head.block_size[0] = (vub300->datasize >> 8) & 0xFF; vub300->cmnd.head.block_size[1] = (vub300->datasize >> 0) & 0xFF; } vub300->cmnd.head.command_type = (MMC_DATA_READ & data->flags) ? 0x00 : 0x80; vub300->cmnd.head.transfer_size[0] = (vub300->datasize >> 24) & 0xFF; vub300->cmnd.head.transfer_size[1] = (vub300->datasize >> 16) & 0xFF; vub300->cmnd.head.transfer_size[2] = (vub300->datasize >> 8) & 0xFF; vub300->cmnd.head.transfer_size[3] = (vub300->datasize >> 0) & 0xFF; if (vub300->datasize < vub300->fbs[fn]) { vub300->cmnd.head.block_count[0] = 0; vub300->cmnd.head.block_count[1] = 0; } } else { vub300->cmnd.head.block_count[0] = (data->blocks >> 8) & 0xFF; vub300->cmnd.head.block_count[1] = (data->blocks >> 0) & 0xFF; vub300->cmnd.head.block_size[0] = (data->blksz >> 8) & 0xFF; vub300->cmnd.head.block_size[1] = (data->blksz >> 0) & 0xFF; vub300->cmnd.head.command_type = (MMC_DATA_READ & data->flags) ? 0x00 : 0x80; vub300->cmnd.head.transfer_size[0] = (vub300->datasize >> 24) & 0xFF; vub300->cmnd.head.transfer_size[1] = (vub300->datasize >> 16) & 0xFF; vub300->cmnd.head.transfer_size[2] = (vub300->datasize >> 8) & 0xFF; vub300->cmnd.head.transfer_size[3] = (vub300->datasize >> 0) & 0xFF; if (vub300->datasize < vub300->fbs[0]) { vub300->cmnd.head.block_count[0] = 0; vub300->cmnd.head.block_count[1] = 0; } } if (vub300->cmnd.head.block_size[0] || vub300->cmnd.head.block_size[1]) { u16 block_size = vub300->cmnd.head.block_size[1] | (vub300->cmnd.head.block_size[0] << 8); u16 block_boundary = FIRMWARE_BLOCK_BOUNDARY - (FIRMWARE_BLOCK_BOUNDARY % block_size); vub300->cmnd.head.block_boundary[0] = (block_boundary >> 8) & 0xFF; vub300->cmnd.head.block_boundary[1] = (block_boundary >> 0) & 0xFF; } else { vub300->cmnd.head.block_boundary[0] = 0; vub300->cmnd.head.block_boundary[1] = 0; } usb_fill_bulk_urb(vub300->command_out_urb, vub300->udev, usb_sndbulkpipe(vub300->udev, vub300->cmnd_out_ep), &vub300->cmnd, sizeof(vub300->cmnd), command_out_completed, vub300); retval = usb_submit_urb(vub300->command_out_urb, GFP_KERNEL); if (retval < 0) { cmd->error = retval; complete(&vub300->command_complete); return; } else { return; } } /* * timer callback runs in atomic mode * so it cannot call usb_kill_urb() */ static void vub300_sg_timed_out(struct timer_list *t) { struct vub300_mmc_host *vub300 = from_timer(vub300, t, sg_transfer_timer); vub300->usb_timed_out = 1; usb_sg_cancel(&vub300->sg_request); usb_unlink_urb(vub300->command_out_urb); usb_unlink_urb(vub300->command_res_urb); } static u16 roundup_to_multiple_of_64(u16 number) { return 0xFFC0 & (0x3F + number); } /* * this is a separate function to solve the 80 column width restriction */ static void __download_offload_pseudocode(struct vub300_mmc_host *vub300, const struct firmware *fw) { u8 register_count = 0; u16 ts = 0; u16 interrupt_size = 0; const u8 *data = fw->data; int size = fw->size; u8 c; dev_info(&vub300->udev->dev, "using %s for SDIO offload processing\n", vub300->vub_name); do { c = *data++; } while (size-- && c); /* skip comment */ dev_info(&vub300->udev->dev, "using offload firmware %s %s\n", fw->data, vub300->vub_name); if (size < 4) { dev_err(&vub300->udev->dev, "corrupt offload pseudocode in firmware %s\n", vub300->vub_name); strncpy(vub300->vub_name, "corrupt offload pseudocode", sizeof(vub300->vub_name)); return; } interrupt_size += *data++; size -= 1; interrupt_size <<= 8; interrupt_size += *data++; size -= 1; if (interrupt_size < size) { u16 xfer_length = roundup_to_multiple_of_64(interrupt_size); u8 *xfer_buffer = kmalloc(xfer_length, GFP_KERNEL); if (xfer_buffer) { int retval; memcpy(xfer_buffer, data, interrupt_size); memset(xfer_buffer + interrupt_size, 0, xfer_length - interrupt_size); size -= interrupt_size; data += interrupt_size; retval = usb_control_msg(vub300->udev, usb_sndctrlpipe(vub300->udev, 0), SET_INTERRUPT_PSEUDOCODE, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0x0000, 0x0000, xfer_buffer, xfer_length, 1000); kfree(xfer_buffer); if (retval < 0) goto copy_error_message; } else { dev_err(&vub300->udev->dev, "not enough memory for xfer buffer to send" " INTERRUPT_PSEUDOCODE for %s %s\n", fw->data, vub300->vub_name); strncpy(vub300->vub_name, "SDIO interrupt pseudocode download failed", sizeof(vub300->vub_name)); return; } } else { dev_err(&vub300->udev->dev, "corrupt interrupt pseudocode in firmware %s %s\n", fw->data, vub300->vub_name); strncpy(vub300->vub_name, "corrupt interrupt pseudocode", sizeof(vub300->vub_name)); return; } ts += *data++; size -= 1; ts <<= 8; ts += *data++; size -= 1; if (ts < size) { u16 xfer_length = roundup_to_multiple_of_64(ts); u8 *xfer_buffer = kmalloc(xfer_length, GFP_KERNEL); if (xfer_buffer) { int retval; memcpy(xfer_buffer, data, ts); memset(xfer_buffer + ts, 0, xfer_length - ts); size -= ts; data += ts; retval = usb_control_msg(vub300->udev, usb_sndctrlpipe(vub300->udev, 0), SET_TRANSFER_PSEUDOCODE, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0x0000, 0x0000, xfer_buffer, xfer_length, 1000); kfree(xfer_buffer); if (retval < 0) goto copy_error_message; } else { dev_err(&vub300->udev->dev, "not enough memory for xfer buffer to send" " TRANSFER_PSEUDOCODE for %s %s\n", fw->data, vub300->vub_name); strncpy(vub300->vub_name, "SDIO transfer pseudocode download failed", sizeof(vub300->vub_name)); return; } } else { dev_err(&vub300->udev->dev, "corrupt transfer pseudocode in firmware %s %s\n", fw->data, vub300->vub_name); strncpy(vub300->vub_name, "corrupt transfer pseudocode", sizeof(vub300->vub_name)); return; } register_count += *data++; size -= 1; if (register_count * 4 == size) { int I = vub300->dynamic_register_count = register_count; int i = 0; while (I--) { unsigned int func_num = 0; vub300->sdio_register[i].func_num = *data++; size -= 1; func_num += *data++; size -= 1; func_num <<= 8; func_num += *data++; size -= 1; func_num <<= 8; func_num += *data++; size -= 1; vub300->sdio_register[i].sdio_reg = func_num; vub300->sdio_register[i].activate = 1; vub300->sdio_register[i].prepared = 0; i += 1; } dev_info(&vub300->udev->dev, "initialized %d dynamic pseudocode registers\n", vub300->dynamic_register_count); return; } else { dev_err(&vub300->udev->dev, "corrupt dynamic registers in firmware %s\n", vub300->vub_name); strncpy(vub300->vub_name, "corrupt dynamic registers", sizeof(vub300->vub_name)); return; } return; copy_error_message: strncpy(vub300->vub_name, "SDIO pseudocode download failed", sizeof(vub300->vub_name)); } /* * if the binary containing the EMPTY PseudoCode can not be found * vub300->vub_name is set anyway in order to prevent an automatic retry */ static void download_offload_pseudocode(struct vub300_mmc_host *vub300) { struct mmc_card *card = vub300->mmc->card; int sdio_funcs = card->sdio_funcs; const struct firmware *fw = NULL; int l = snprintf(vub300->vub_name, sizeof(vub300->vub_name), "vub_%04X%04X", card->cis.vendor, card->cis.device); int n = 0; int retval; for (n = 0; n < sdio_funcs; n++) { struct sdio_func *sf = card->sdio_func[n]; l += snprintf(vub300->vub_name + l, sizeof(vub300->vub_name) - l, "_%04X%04X", sf->vendor, sf->device); } snprintf(vub300->vub_name + l, sizeof(vub300->vub_name) - l, ".bin"); dev_info(&vub300->udev->dev, "requesting offload firmware %s\n", vub300->vub_name); retval = request_firmware(&fw, vub300->vub_name, &card->dev); if (retval < 0) { strncpy(vub300->vub_name, "vub_default.bin", sizeof(vub300->vub_name)); retval = request_firmware(&fw, vub300->vub_name, &card->dev); if (retval < 0) { strncpy(vub300->vub_name, "no SDIO offload firmware found", sizeof(vub300->vub_name)); } else { __download_offload_pseudocode(vub300, fw); release_firmware(fw); } } else { __download_offload_pseudocode(vub300, fw); release_firmware(fw); } } static void vub300_usb_bulk_msg_completion(struct urb *urb) { /* urb completion handler - hardirq */ complete((struct completion *)urb->context); } static int vub300_usb_bulk_msg(struct vub300_mmc_host *vub300, unsigned int pipe, void *data, int len, int *actual_length, int timeout_msecs) { /* cmd_mutex is held by vub300_cmndwork_thread */ struct usb_device *usb_dev = vub300->udev; struct completion done; int retval; vub300->urb = usb_alloc_urb(0, GFP_KERNEL); if (!vub300->urb) return -ENOMEM; usb_fill_bulk_urb(vub300->urb, usb_dev, pipe, data, len, vub300_usb_bulk_msg_completion, NULL); init_completion(&done); vub300->urb->context = &done; vub300->urb->actual_length = 0; retval = usb_submit_urb(vub300->urb, GFP_KERNEL); if (unlikely(retval)) goto out; if (!wait_for_completion_timeout (&done, msecs_to_jiffies(timeout_msecs))) { retval = -ETIMEDOUT; usb_kill_urb(vub300->urb); } else { retval = vub300->urb->status; } out: *actual_length = vub300->urb->actual_length; usb_free_urb(vub300->urb); vub300->urb = NULL; return retval; } static int __command_read_data(struct vub300_mmc_host *vub300, struct mmc_command *cmd, struct mmc_data *data) { /* cmd_mutex is held by vub300_cmndwork_thread */ int linear_length = vub300->datasize; int padded_length = vub300->large_usb_packets ? ((511 + linear_length) >> 9) << 9 : ((63 + linear_length) >> 6) << 6; if ((padded_length == linear_length) || !pad_input_to_usb_pkt) { int result; unsigned pipe; pipe = usb_rcvbulkpipe(vub300->udev, vub300->data_inp_ep); result = usb_sg_init(&vub300->sg_request, vub300->udev, pipe, 0, data->sg, data->sg_len, 0, GFP_KERNEL); if (result < 0) { usb_unlink_urb(vub300->command_out_urb); usb_unlink_urb(vub300->command_res_urb); cmd->error = result; data->bytes_xfered = 0; return 0; } else { vub300->sg_transfer_timer.expires = jiffies + msecs_to_jiffies(2000 + (linear_length / 16384)); add_timer(&vub300->sg_transfer_timer); usb_sg_wait(&vub300->sg_request); del_timer(&vub300->sg_transfer_timer); if (vub300->sg_request.status < 0) { cmd->error = vub300->sg_request.status; data->bytes_xfered = 0; return 0; } else { data->bytes_xfered = vub300->datasize; return linear_length; } } } else { u8 *buf = kmalloc(padded_length, GFP_KERNEL); if (buf) { int result; unsigned pipe = usb_rcvbulkpipe(vub300->udev, vub300->data_inp_ep); int actual_length = 0; result = vub300_usb_bulk_msg(vub300, pipe, buf, padded_length, &actual_length, 2000 + (padded_length / 16384)); if (result < 0) { cmd->error = result; data->bytes_xfered = 0; kfree(buf); return 0; } else if (actual_length < linear_length) { cmd->error = -EREMOTEIO; data->bytes_xfered = 0; kfree(buf); return 0; } else { sg_copy_from_buffer(data->sg, data->sg_len, buf, linear_length); kfree(buf); data->bytes_xfered = vub300->datasize; return linear_length; } } else { cmd->error = -ENOMEM; data->bytes_xfered = 0; return 0; } } } static int __command_write_data(struct vub300_mmc_host *vub300, struct mmc_command *cmd, struct mmc_data *data) { /* cmd_mutex is held by vub300_cmndwork_thread */ unsigned pipe = usb_sndbulkpipe(vub300->udev, vub300->data_out_ep); int linear_length = vub300->datasize; int modulo_64_length = linear_length & 0x003F; int modulo_512_length = linear_length & 0x01FF; if (linear_length < 64) { int result; int actual_length; sg_copy_to_buffer(data->sg, data->sg_len, vub300->padded_buffer, sizeof(vub300->padded_buffer)); memset(vub300->padded_buffer + linear_length, 0, sizeof(vub300->padded_buffer) - linear_length); result = vub300_usb_bulk_msg(vub300, pipe, vub300->padded_buffer, sizeof(vub300->padded_buffer), &actual_length, 2000 + (sizeof(vub300->padded_buffer) / 16384)); if (result < 0) { cmd->error = result; data->bytes_xfered = 0; } else { data->bytes_xfered = vub300->datasize; } } else if ((!vub300->large_usb_packets && (0 < modulo_64_length)) || (vub300->large_usb_packets && (64 > modulo_512_length)) ) { /* don't you just love these work-rounds */ int padded_length = ((63 + linear_length) >> 6) << 6; u8 *buf = kmalloc(padded_length, GFP_KERNEL); if (buf) { int result; int actual_length; sg_copy_to_buffer(data->sg, data->sg_len, buf, padded_length); memset(buf + linear_length, 0, padded_length - linear_length); result = vub300_usb_bulk_msg(vub300, pipe, buf, padded_length, &actual_length, 2000 + padded_length / 16384); kfree(buf); if (result < 0) { cmd->error = result; data->bytes_xfered = 0; } else { data->bytes_xfered = vub300->datasize; } } else { cmd->error = -ENOMEM; data->bytes_xfered = 0; } } else { /* no data padding required */ int result; unsigned char buf[64 * 4]; sg_copy_to_buffer(data->sg, data->sg_len, buf, sizeof(buf)); result = usb_sg_init(&vub300->sg_request, vub300->udev, pipe, 0, data->sg, data->sg_len, 0, GFP_KERNEL); if (result < 0) { usb_unlink_urb(vub300->command_out_urb); usb_unlink_urb(vub300->command_res_urb); cmd->error = result; data->bytes_xfered = 0; } else { vub300->sg_transfer_timer.expires = jiffies + msecs_to_jiffies(2000 + linear_length / 16384); add_timer(&vub300->sg_transfer_timer); usb_sg_wait(&vub300->sg_request); if (cmd->error) { data->bytes_xfered = 0; } else { del_timer(&vub300->sg_transfer_timer); if (vub300->sg_request.status < 0) { cmd->error = vub300->sg_request.status; data->bytes_xfered = 0; } else { data->bytes_xfered = vub300->datasize; } } } } return linear_length; } static void __vub300_command_response(struct vub300_mmc_host *vub300, struct mmc_command *cmd, struct mmc_data *data, int data_length) { /* cmd_mutex is held by vub300_cmndwork_thread */ long respretval; int msec_timeout = 1000 + data_length / 4; respretval = wait_for_completion_timeout(&vub300->command_complete, msecs_to_jiffies(msec_timeout)); if (respretval == 0) { /* TIMED OUT */ /* we don't know which of "out" and "res" if any failed */ int result; vub300->usb_timed_out = 1; usb_kill_urb(vub300->command_out_urb); usb_kill_urb(vub300->command_res_urb); cmd->error = -ETIMEDOUT; result = usb_lock_device_for_reset(vub300->udev, vub300->interface); if (result == 0) { result = usb_reset_device(vub300->udev); usb_unlock_device(vub300->udev); } } else if (respretval < 0) { /* we don't know which of "out" and "res" if any failed */ usb_kill_urb(vub300->command_out_urb); usb_kill_urb(vub300->command_res_urb); cmd->error = respretval; } else if (cmd->error) { /* * the error occurred sending the command * or receiving the response */ } else if (vub300->command_out_urb->status) { vub300->usb_transport_fail = vub300->command_out_urb->status; cmd->error = -EPROTO == vub300->command_out_urb->status ? -ESHUTDOWN : vub300->command_out_urb->status; } else if (vub300->command_res_urb->status) { vub300->usb_transport_fail = vub300->command_res_urb->status; cmd->error = -EPROTO == vub300->command_res_urb->status ? -ESHUTDOWN : vub300->command_res_urb->status; } else if (vub300->resp.common.header_type == 0x00) { /* * the command completed successfully * and there was no piggybacked data */ } else if (vub300->resp.common.header_type == RESPONSE_ERROR) { cmd->error = vub300_response_error(vub300->resp.error.error_code); if (vub300->data) usb_sg_cancel(&vub300->sg_request); } else if (vub300->resp.common.header_type == RESPONSE_PIGGYBACKED) { int offloaded_data_length = vub300->resp.common.header_size - sizeof(struct sd_register_header); int register_count = offloaded_data_length >> 3; int ri = 0; while (register_count--) { add_offloaded_reg(vub300, &vub300->resp.pig.reg[ri]); ri += 1; } vub300->resp.common.header_size = sizeof(struct sd_register_header); vub300->resp.common.header_type = 0x00; cmd->error = 0; } else if (vub300->resp.common.header_type == RESPONSE_PIG_DISABLED) { int offloaded_data_length = vub300->resp.common.header_size - sizeof(struct sd_register_header); int register_count = offloaded_data_length >> 3; int ri = 0; while (register_count--) { add_offloaded_reg(vub300, &vub300->resp.pig.reg[ri]); ri += 1; } mutex_lock(&vub300->irq_mutex); if (vub300->irqs_queued) { vub300->irqs_queued += 1; } else if (vub300->irq_enabled) { vub300->irqs_queued += 1; vub300_queue_poll_work(vub300, 0); } else { vub300->irqs_queued += 1; } vub300->irq_disabled = 1; mutex_unlock(&vub300->irq_mutex); vub300->resp.common.header_size = sizeof(struct sd_register_header); vub300->resp.common.header_type = 0x00; cmd->error = 0; } else if (vub300->resp.common.header_type == RESPONSE_PIG_ENABLED) { int offloaded_data_length = vub300->resp.common.header_size - sizeof(struct sd_register_header); int register_count = offloaded_data_length >> 3; int ri = 0; while (register_count--) { add_offloaded_reg(vub300, &vub300->resp.pig.reg[ri]); ri += 1; } mutex_lock(&vub300->irq_mutex); if (vub300->irqs_queued) { vub300->irqs_queued += 1; } else if (vub300->irq_enabled) { vub300->irqs_queued += 1; vub300_queue_poll_work(vub300, 0); } else { vub300->irqs_queued += 1; } vub300->irq_disabled = 0; mutex_unlock(&vub300->irq_mutex); vub300->resp.common.header_size = sizeof(struct sd_register_header); vub300->resp.common.header_type = 0x00; cmd->error = 0; } else { cmd->error = -EINVAL; } } static void construct_request_response(struct vub300_mmc_host *vub300, struct mmc_command *cmd) { int resp_len = vub300->resp_len; int less_cmd = (17 == resp_len) ? resp_len : resp_len - 1; int bytes = 3 & less_cmd; int words = less_cmd >> 2; u8 *r = vub300->resp.response.command_response; if (bytes == 3) { cmd->resp[words] = (r[1 + (words << 2)] << 24) | (r[2 + (words << 2)] << 16) | (r[3 + (words << 2)] << 8); } else if (bytes == 2) { cmd->resp[words] = (r[1 + (words << 2)] << 24) | (r[2 + (words << 2)] << 16); } else if (bytes == 1) { cmd->resp[words] = (r[1 + (words << 2)] << 24); } while (words-- > 0) { cmd->resp[words] = (r[1 + (words << 2)] << 24) | (r[2 + (words << 2)] << 16) | (r[3 + (words << 2)] << 8) | (r[4 + (words << 2)] << 0); } if ((cmd->opcode == 53) && (0x000000FF & cmd->resp[0])) cmd->resp[0] &= 0xFFFFFF00; } /* this thread runs only when there is an upper level command req outstanding */ static void vub300_cmndwork_thread(struct work_struct *work) { struct vub300_mmc_host *vub300 = container_of(work, struct vub300_mmc_host, cmndwork); if (!vub300->interface) { kref_put(&vub300->kref, vub300_delete); return; } else { struct mmc_request *req = vub300->req; struct mmc_command *cmd = vub300->cmd; struct mmc_data *data = vub300->data; int data_length; mutex_lock(&vub300->cmd_mutex); init_completion(&vub300->command_complete); if (likely(vub300->vub_name[0]) || !vub300->mmc->card) { /* * the name of the EMPTY Pseudo firmware file * is used as a flag to indicate that the file * has been already downloaded to the VUB300 chip */ } else if (0 == vub300->mmc->card->sdio_funcs) { strncpy(vub300->vub_name, "SD memory device", sizeof(vub300->vub_name)); } else { download_offload_pseudocode(vub300); } send_command(vub300); if (!data) data_length = 0; else if (MMC_DATA_READ & data->flags) data_length = __command_read_data(vub300, cmd, data); else data_length = __command_write_data(vub300, cmd, data); __vub300_command_response(vub300, cmd, data, data_length); vub300->req = NULL; vub300->cmd = NULL; vub300->data = NULL; if (cmd->error) { if (cmd->error == -ENOMEDIUM) check_vub300_port_status(vub300); mutex_unlock(&vub300->cmd_mutex); mmc_request_done(vub300->mmc, req); kref_put(&vub300->kref, vub300_delete); return; } else { construct_request_response(vub300, cmd); vub300->resp_len = 0; mutex_unlock(&vub300->cmd_mutex); kref_put(&vub300->kref, vub300_delete); mmc_request_done(vub300->mmc, req); return; } } } static int examine_cyclic_buffer(struct vub300_mmc_host *vub300, struct mmc_command *cmd, u8 Function) { /* cmd_mutex is held by vub300_mmc_request */ u8 cmd0 = 0xFF & (cmd->arg >> 24); u8 cmd1 = 0xFF & (cmd->arg >> 16); u8 cmd2 = 0xFF & (cmd->arg >> 8); u8 cmd3 = 0xFF & (cmd->arg >> 0); int first = MAXREGMASK & vub300->fn[Function].offload_point; struct offload_registers_access *rf = &vub300->fn[Function].reg[first]; if (cmd0 == rf->command_byte[0] && cmd1 == rf->command_byte[1] && cmd2 == rf->command_byte[2] && cmd3 == rf->command_byte[3]) { u8 checksum = 0x00; cmd->resp[1] = checksum << 24; cmd->resp[0] = (rf->Respond_Byte[0] << 24) | (rf->Respond_Byte[1] << 16) | (rf->Respond_Byte[2] << 8) | (rf->Respond_Byte[3] << 0); vub300->fn[Function].offload_point += 1; vub300->fn[Function].offload_count -= 1; vub300->total_offload_count -= 1; return 1; } else { int delta = 1; /* because it does not match the first one */ u8 register_count = vub300->fn[Function].offload_count - 1; u32 register_point = vub300->fn[Function].offload_point + 1; while (0 < register_count) { int point = MAXREGMASK & register_point; struct offload_registers_access *r = &vub300->fn[Function].reg[point]; if (cmd0 == r->command_byte[0] && cmd1 == r->command_byte[1] && cmd2 == r->command_byte[2] && cmd3 == r->command_byte[3]) { u8 checksum = 0x00; cmd->resp[1] = checksum << 24; cmd->resp[0] = (r->Respond_Byte[0] << 24) | (r->Respond_Byte[1] << 16) | (r->Respond_Byte[2] << 8) | (r->Respond_Byte[3] << 0); vub300->fn[Function].offload_point += delta; vub300->fn[Function].offload_count -= delta; vub300->total_offload_count -= delta; return 1; } else { register_point += 1; register_count -= 1; delta += 1; continue; } } return 0; } } static int satisfy_request_from_offloaded_data(struct vub300_mmc_host *vub300, struct mmc_command *cmd) { /* cmd_mutex is held by vub300_mmc_request */ u8 regs = vub300->dynamic_register_count; u8 i = 0; u8 func = FUN(cmd); u32 reg = REG(cmd); while (0 < regs--) { if ((vub300->sdio_register[i].func_num == func) && (vub300->sdio_register[i].sdio_reg == reg)) { if (!vub300->sdio_register[i].prepared) { return 0; } else if ((0x80000000 & cmd->arg) == 0x80000000) { /* * a write to a dynamic register * nullifies our offloaded value */ vub300->sdio_register[i].prepared = 0; return 0; } else { u8 checksum = 0x00; u8 rsp0 = 0x00; u8 rsp1 = 0x00; u8 rsp2 = vub300->sdio_register[i].response; u8 rsp3 = vub300->sdio_register[i].regvalue; vub300->sdio_register[i].prepared = 0; cmd->resp[1] = checksum << 24; cmd->resp[0] = (rsp0 << 24) | (rsp1 << 16) | (rsp2 << 8) | (rsp3 << 0); return 1; } } else { i += 1; continue; } } if (vub300->total_offload_count == 0) return 0; else if (vub300->fn[func].offload_count == 0) return 0; else return examine_cyclic_buffer(vub300, cmd, func); } static void vub300_mmc_request(struct mmc_host *mmc, struct mmc_request *req) { /* NOT irq */ struct mmc_command *cmd = req->cmd; struct vub300_mmc_host *vub300 = mmc_priv(mmc); if (!vub300->interface) { cmd->error = -ESHUTDOWN; mmc_request_done(mmc, req); return; } else { struct mmc_data *data = req->data; if (!vub300->card_powered) { cmd->error = -ENOMEDIUM; mmc_request_done(mmc, req); return; } if (!vub300->card_present) { cmd->error = -ENOMEDIUM; mmc_request_done(mmc, req); return; } if (vub300->usb_transport_fail) { cmd->error = vub300->usb_transport_fail; mmc_request_done(mmc, req); return; } if (!vub300->interface) { cmd->error = -ENODEV; mmc_request_done(mmc, req); return; } kref_get(&vub300->kref); mutex_lock(&vub300->cmd_mutex); mod_timer(&vub300->inactivity_timer, jiffies + HZ); /* * for performance we have to return immediately * if the requested data has been offloaded */ if (cmd->opcode == 52 && satisfy_request_from_offloaded_data(vub300, cmd)) { cmd->error = 0; mutex_unlock(&vub300->cmd_mutex); kref_put(&vub300->kref, vub300_delete); mmc_request_done(mmc, req); return; } else { vub300->cmd = cmd; vub300->req = req; vub300->data = data; if (data) vub300->datasize = data->blksz * data->blocks; else vub300->datasize = 0; vub300_queue_cmnd_work(vub300); mutex_unlock(&vub300->cmd_mutex); kref_put(&vub300->kref, vub300_delete); /* * the kernel lock diagnostics complain * if the cmd_mutex * is "passed on" * to the cmndwork thread, * so we must release it now * and re-acquire it in the cmndwork thread */ } } } static void __set_clock_speed(struct vub300_mmc_host *vub300, u8 buf[8], struct mmc_ios *ios) { int buf_array_size = 8; /* ARRAY_SIZE(buf) does not work !!! */ int retval; u32 kHzClock; if (ios->clock >= 48000000) kHzClock = 48000; else if (ios->clock >= 24000000) kHzClock = 24000; else if (ios->clock >= 20000000) kHzClock = 20000; else if (ios->clock >= 15000000) kHzClock = 15000; else if (ios->clock >= 200000) kHzClock = 200; else kHzClock = 0; { int i; u64 c = kHzClock; for (i = 0; i < buf_array_size; i++) { buf[i] = c; c >>= 8; } } retval = usb_control_msg(vub300->udev, usb_sndctrlpipe(vub300->udev, 0), SET_CLOCK_SPEED, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0x00, 0x00, buf, buf_array_size, 1000); if (retval != 8) { dev_err(&vub300->udev->dev, "SET_CLOCK_SPEED" " %dkHz failed with retval=%d\n", kHzClock, retval); } else { dev_dbg(&vub300->udev->dev, "SET_CLOCK_SPEED" " %dkHz\n", kHzClock); } } static void vub300_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { /* NOT irq */ struct vub300_mmc_host *vub300 = mmc_priv(mmc); if (!vub300->interface) return; kref_get(&vub300->kref); mutex_lock(&vub300->cmd_mutex); if ((ios->power_mode == MMC_POWER_OFF) && vub300->card_powered) { vub300->card_powered = 0; usb_control_msg(vub300->udev, usb_sndctrlpipe(vub300->udev, 0), SET_SD_POWER, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0x0000, 0x0000, NULL, 0, 1000); /* must wait for the VUB300 u-proc to boot up */ msleep(600); } else if ((ios->power_mode == MMC_POWER_UP) && !vub300->card_powered) { usb_control_msg(vub300->udev, usb_sndctrlpipe(vub300->udev, 0), SET_SD_POWER, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0x0001, 0x0000, NULL, 0, 1000); msleep(600); vub300->card_powered = 1; } else if (ios->power_mode == MMC_POWER_ON) { u8 *buf = kmalloc(8, GFP_KERNEL); if (buf) { __set_clock_speed(vub300, buf, ios); kfree(buf); } } else { /* this should mean no change of state */ } mutex_unlock(&vub300->cmd_mutex); kref_put(&vub300->kref, vub300_delete); } static int vub300_mmc_get_ro(struct mmc_host *mmc) { struct vub300_mmc_host *vub300 = mmc_priv(mmc); return vub300->read_only; } static void vub300_enable_sdio_irq(struct mmc_host *mmc, int enable) { /* NOT irq */ struct vub300_mmc_host *vub300 = mmc_priv(mmc); if (!vub300->interface) return; kref_get(&vub300->kref); if (enable) { set_current_state(TASK_RUNNING); mutex_lock(&vub300->irq_mutex); if (vub300->irqs_queued) { vub300->irqs_queued -= 1; mmc_signal_sdio_irq(vub300->mmc); } else if (vub300->irq_disabled) { vub300->irq_disabled = 0; vub300->irq_enabled = 1; vub300_queue_poll_work(vub300, 0); } else if (vub300->irq_enabled) { /* this should not happen, so we will just ignore it */ } else { vub300->irq_enabled = 1; vub300_queue_poll_work(vub300, 0); } mutex_unlock(&vub300->irq_mutex); set_current_state(TASK_INTERRUPTIBLE); } else { vub300->irq_enabled = 0; } kref_put(&vub300->kref, vub300_delete); } static void vub300_init_card(struct mmc_host *mmc, struct mmc_card *card) { /* NOT irq */ struct vub300_mmc_host *vub300 = mmc_priv(mmc); dev_info(&vub300->udev->dev, "NO host QUIRKS for this card\n"); } static const struct mmc_host_ops vub300_mmc_ops = { .request = vub300_mmc_request, .set_ios = vub300_mmc_set_ios, .get_ro = vub300_mmc_get_ro, .enable_sdio_irq = vub300_enable_sdio_irq, .init_card = vub300_init_card, }; static int vub300_probe(struct usb_interface *interface, const struct usb_device_id *id) { /* NOT irq */ struct vub300_mmc_host *vub300; struct usb_host_interface *iface_desc; struct usb_device *udev = usb_get_dev(interface_to_usbdev(interface)); int i; int retval = -ENOMEM; struct urb *command_out_urb; struct urb *command_res_urb; struct mmc_host *mmc; char manufacturer[48]; char product[32]; char serial_number[32]; usb_string(udev, udev->descriptor.iManufacturer, manufacturer, sizeof(manufacturer)); usb_string(udev, udev->descriptor.iProduct, product, sizeof(product)); usb_string(udev, udev->descriptor.iSerialNumber, serial_number, sizeof(serial_number)); dev_info(&udev->dev, "probing VID:PID(%04X:%04X) %s %s %s\n", le16_to_cpu(udev->descriptor.idVendor), le16_to_cpu(udev->descriptor.idProduct), manufacturer, product, serial_number); command_out_urb = usb_alloc_urb(0, GFP_KERNEL); if (!command_out_urb) { retval = -ENOMEM; goto error0; } command_res_urb = usb_alloc_urb(0, GFP_KERNEL); if (!command_res_urb) { retval = -ENOMEM; goto error1; } /* this also allocates memory for our VUB300 mmc host device */ mmc = mmc_alloc_host(sizeof(struct vub300_mmc_host), &udev->dev); if (!mmc) { retval = -ENOMEM; dev_err(&udev->dev, "not enough memory for the mmc_host\n"); goto error4; } /* MMC core transfer sizes tunable parameters */ mmc->caps = 0; if (!force_1_bit_data_xfers) mmc->caps |= MMC_CAP_4_BIT_DATA; if (!force_polling_for_irqs) mmc->caps |= MMC_CAP_SDIO_IRQ; mmc->caps &= ~MMC_CAP_NEEDS_POLL; /* * MMC_CAP_NEEDS_POLL causes core.c:mmc_rescan() to poll * for devices which results in spurious CMD7's being * issued which stops some SDIO cards from working */ if (limit_speed_to_24_MHz) { mmc->caps |= MMC_CAP_MMC_HIGHSPEED; mmc->caps |= MMC_CAP_SD_HIGHSPEED; mmc->f_max = 24000000; dev_info(&udev->dev, "limiting SDIO speed to 24_MHz\n"); } else { mmc->caps |= MMC_CAP_MMC_HIGHSPEED; mmc->caps |= MMC_CAP_SD_HIGHSPEED; mmc->f_max = 48000000; } mmc->f_min = 200000; mmc->max_blk_count = 511; mmc->max_blk_size = 512; mmc->max_segs = 128; if (force_max_req_size) mmc->max_req_size = force_max_req_size * 1024; else mmc->max_req_size = 64 * 1024; mmc->max_seg_size = mmc->max_req_size; mmc->ocr_avail = 0; mmc->ocr_avail |= MMC_VDD_165_195; mmc->ocr_avail |= MMC_VDD_20_21; mmc->ocr_avail |= MMC_VDD_21_22; mmc->ocr_avail |= MMC_VDD_22_23; mmc->ocr_avail |= MMC_VDD_23_24; mmc->ocr_avail |= MMC_VDD_24_25; mmc->ocr_avail |= MMC_VDD_25_26; mmc->ocr_avail |= MMC_VDD_26_27; mmc->ocr_avail |= MMC_VDD_27_28; mmc->ocr_avail |= MMC_VDD_28_29; mmc->ocr_avail |= MMC_VDD_29_30; mmc->ocr_avail |= MMC_VDD_30_31; mmc->ocr_avail |= MMC_VDD_31_32; mmc->ocr_avail |= MMC_VDD_32_33; mmc->ocr_avail |= MMC_VDD_33_34; mmc->ocr_avail |= MMC_VDD_34_35; mmc->ocr_avail |= MMC_VDD_35_36; mmc->ops = &vub300_mmc_ops; vub300 = mmc_priv(mmc); vub300->mmc = mmc; vub300->card_powered = 0; vub300->bus_width = 0; vub300->cmnd.head.block_size[0] = 0x00; vub300->cmnd.head.block_size[1] = 0x00; vub300->app_spec = 0; mutex_init(&vub300->cmd_mutex); mutex_init(&vub300->irq_mutex); vub300->command_out_urb = command_out_urb; vub300->command_res_urb = command_res_urb; vub300->usb_timed_out = 0; vub300->dynamic_register_count = 0; for (i = 0; i < ARRAY_SIZE(vub300->fn); i++) { vub300->fn[i].offload_point = 0; vub300->fn[i].offload_count = 0; } vub300->total_offload_count = 0; vub300->irq_enabled = 0; vub300->irq_disabled = 0; vub300->irqs_queued = 0; for (i = 0; i < ARRAY_SIZE(vub300->sdio_register); i++) vub300->sdio_register[i++].activate = 0; vub300->udev = udev; vub300->interface = interface; vub300->cmnd_res_ep = 0; vub300->cmnd_out_ep = 0; vub300->data_inp_ep = 0; vub300->data_out_ep = 0; for (i = 0; i < ARRAY_SIZE(vub300->fbs); i++) vub300->fbs[i] = 512; /* * set up the endpoint information * * use the first pair of bulk-in and bulk-out * endpoints for Command/Response+Interrupt * * use the second pair of bulk-in and bulk-out * endpoints for Data In/Out */ vub300->large_usb_packets = 0; iface_desc = interface->cur_altsetting; for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) { struct usb_endpoint_descriptor *endpoint = &iface_desc->endpoint[i].desc; dev_info(&vub300->udev->dev, "vub300 testing %s EndPoint(%d) %02X\n", usb_endpoint_is_bulk_in(endpoint) ? "BULK IN" : usb_endpoint_is_bulk_out(endpoint) ? "BULK OUT" : "UNKNOWN", i, endpoint->bEndpointAddress); if (endpoint->wMaxPacketSize > 64) vub300->large_usb_packets = 1; if (usb_endpoint_is_bulk_in(endpoint)) { if (!vub300->cmnd_res_ep) { vub300->cmnd_res_ep = endpoint->bEndpointAddress; } else if (!vub300->data_inp_ep) { vub300->data_inp_ep = endpoint->bEndpointAddress; } else { dev_warn(&vub300->udev->dev, "ignoring" " unexpected bulk_in endpoint"); } } else if (usb_endpoint_is_bulk_out(endpoint)) { if (!vub300->cmnd_out_ep) { vub300->cmnd_out_ep = endpoint->bEndpointAddress; } else if (!vub300->data_out_ep) { vub300->data_out_ep = endpoint->bEndpointAddress; } else { dev_warn(&vub300->udev->dev, "ignoring" " unexpected bulk_out endpoint"); } } else { dev_warn(&vub300->udev->dev, "vub300 ignoring EndPoint(%d) %02X", i, endpoint->bEndpointAddress); } } if (vub300->cmnd_res_ep && vub300->cmnd_out_ep && vub300->data_inp_ep && vub300->data_out_ep) { dev_info(&vub300->udev->dev, "vub300 %s packets" " using EndPoints %02X %02X %02X %02X\n", vub300->large_usb_packets ? "LARGE" : "SMALL", vub300->cmnd_out_ep, vub300->cmnd_res_ep, vub300->data_out_ep, vub300->data_inp_ep); /* we have the expected EndPoints */ } else { dev_err(&vub300->udev->dev, "Could not find two sets of bulk-in/out endpoint pairs\n"); retval = -EINVAL; goto error5; } retval = usb_control_msg(vub300->udev, usb_rcvctrlpipe(vub300->udev, 0), GET_HC_INF0, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0x0000, 0x0000, &vub300->hc_info, sizeof(vub300->hc_info), 1000); if (retval < 0) goto error5; retval = usb_control_msg(vub300->udev, usb_sndctrlpipe(vub300->udev, 0), SET_ROM_WAIT_STATES, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, firmware_rom_wait_states, 0x0000, NULL, 0, 1000); if (retval < 0) goto error5; dev_info(&vub300->udev->dev, "operating_mode = %s %s %d MHz %s %d byte USB packets\n", (mmc->caps & MMC_CAP_SDIO_IRQ) ? "IRQs" : "POLL", (mmc->caps & MMC_CAP_4_BIT_DATA) ? "4-bit" : "1-bit", mmc->f_max / 1000000, pad_input_to_usb_pkt ? "padding input data to" : "with", vub300->large_usb_packets ? 512 : 64); retval = usb_control_msg(vub300->udev, usb_rcvctrlpipe(vub300->udev, 0), GET_SYSTEM_PORT_STATUS, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0x0000, 0x0000, &vub300->system_port_status, sizeof(vub300->system_port_status), 1000); if (retval < 0) { goto error5; } else if (sizeof(vub300->system_port_status) == retval) { vub300->card_present = (0x0001 & vub300->system_port_status.port_flags) ? 1 : 0; vub300->read_only = (0x0010 & vub300->system_port_status.port_flags) ? 1 : 0; } else { goto error5; } usb_set_intfdata(interface, vub300); INIT_DELAYED_WORK(&vub300->pollwork, vub300_pollwork_thread); INIT_WORK(&vub300->cmndwork, vub300_cmndwork_thread); INIT_WORK(&vub300->deadwork, vub300_deadwork_thread); kref_init(&vub300->kref); timer_setup(&vub300->sg_transfer_timer, vub300_sg_timed_out, 0); kref_get(&vub300->kref); timer_setup(&vub300->inactivity_timer, vub300_inactivity_timer_expired, 0); vub300->inactivity_timer.expires = jiffies + HZ; add_timer(&vub300->inactivity_timer); if (vub300->card_present) dev_info(&vub300->udev->dev, "USB vub300 remote SDIO host controller[%d]" "connected with SD/SDIO card inserted\n", interface_to_InterfaceNumber(interface)); else dev_info(&vub300->udev->dev, "USB vub300 remote SDIO host controller[%d]" "connected with no SD/SDIO card inserted\n", interface_to_InterfaceNumber(interface)); retval = mmc_add_host(mmc); if (retval) goto error6; return 0; error6: del_timer_sync(&vub300->inactivity_timer); error5: mmc_free_host(mmc); /* * and hence also frees vub300 * which is contained at the end of struct mmc */ error4: usb_free_urb(command_res_urb); error1: usb_free_urb(command_out_urb); error0: usb_put_dev(udev); return retval; } static void vub300_disconnect(struct usb_interface *interface) { /* NOT irq */ struct vub300_mmc_host *vub300 = usb_get_intfdata(interface); if (!vub300 || !vub300->mmc) { return; } else { struct mmc_host *mmc = vub300->mmc; if (!vub300->mmc) { return; } else { int ifnum = interface_to_InterfaceNumber(interface); usb_set_intfdata(interface, NULL); /* prevent more I/O from starting */ vub300->interface = NULL; kref_put(&vub300->kref, vub300_delete); mmc_remove_host(mmc); pr_info("USB vub300 remote SDIO host controller[%d]" " now disconnected", ifnum); return; } } } #ifdef CONFIG_PM static int vub300_suspend(struct usb_interface *intf, pm_message_t message) { return 0; } static int vub300_resume(struct usb_interface *intf) { return 0; } #else #define vub300_suspend NULL #define vub300_resume NULL #endif static int vub300_pre_reset(struct usb_interface *intf) { /* NOT irq */ struct vub300_mmc_host *vub300 = usb_get_intfdata(intf); mutex_lock(&vub300->cmd_mutex); return 0; } static int vub300_post_reset(struct usb_interface *intf) { /* NOT irq */ struct vub300_mmc_host *vub300 = usb_get_intfdata(intf); /* we are sure no URBs are active - no locking needed */ vub300->errors = -EPIPE; mutex_unlock(&vub300->cmd_mutex); return 0; } static struct usb_driver vub300_driver = { .name = "vub300", .probe = vub300_probe, .disconnect = vub300_disconnect, .suspend = vub300_suspend, .resume = vub300_resume, .pre_reset = vub300_pre_reset, .post_reset = vub300_post_reset, .id_table = vub300_table, .supports_autosuspend = 1, }; static int __init vub300_init(void) { /* NOT irq */ int result; pr_info("VUB300 Driver rom wait states = %02X irqpoll timeout = %04X", firmware_rom_wait_states, 0x0FFFF & firmware_irqpoll_timeout); cmndworkqueue = create_singlethread_workqueue("kvub300c"); if (!cmndworkqueue) { pr_err("not enough memory for the REQUEST workqueue"); result = -ENOMEM; goto out1; } pollworkqueue = create_singlethread_workqueue("kvub300p"); if (!pollworkqueue) { pr_err("not enough memory for the IRQPOLL workqueue"); result = -ENOMEM; goto out2; } deadworkqueue = create_singlethread_workqueue("kvub300d"); if (!deadworkqueue) { pr_err("not enough memory for the EXPIRED workqueue"); result = -ENOMEM; goto out3; } result = usb_register(&vub300_driver); if (result) { pr_err("usb_register failed. Error number %d", result); goto out4; } return 0; out4: destroy_workqueue(deadworkqueue); out3: destroy_workqueue(pollworkqueue); out2: destroy_workqueue(cmndworkqueue); out1: return result; } static void __exit vub300_exit(void) { usb_deregister(&vub300_driver); flush_workqueue(cmndworkqueue); flush_workqueue(pollworkqueue); flush_workqueue(deadworkqueue); destroy_workqueue(cmndworkqueue); destroy_workqueue(pollworkqueue); destroy_workqueue(deadworkqueue); } module_init(vub300_init); module_exit(vub300_exit); MODULE_AUTHOR("Tony Olech "); MODULE_DESCRIPTION("VUB300 USB to SD/MMC/SDIO adapter driver"); MODULE_LICENSE("GPL");