/* bnx2x_sp.c: Qlogic Everest network driver. * * Copyright 2011-2013 Broadcom Corporation * Copyright (c) 2014 QLogic Corporation * All rights reserved * * Unless you and Qlogic execute a separate written software license * agreement governing use of this software, this software is licensed to you * under the terms of the GNU General Public License version 2, available * at http://www.gnu.org/licenses/gpl-2.0.html (the "GPL"). * * Notwithstanding the above, under no circumstances may you combine this * software in any way with any other Qlogic software provided under a * license other than the GPL, without Qlogic's express prior written * consent. * * Maintained by: Ariel Elior <ariel.elior@qlogic.com> * Written by: Vladislav Zolotarov * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/crc32.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/crc32c.h> #include "bnx2x.h" #include "bnx2x_cmn.h" #include "bnx2x_sp.h" #define BNX2X_MAX_EMUL_MULTI 16 /**** Exe Queue interfaces ****/ /** * bnx2x_exe_queue_init - init the Exe Queue object * * @o: pointer to the object * @exe_len: length * @owner: pointer to the owner * @validate: validate function pointer * @optimize: optimize function pointer * @exec: execute function pointer * @get: get function pointer */ static inline void bnx2x_exe_queue_init(struct bnx2x *bp, struct bnx2x_exe_queue_obj *o, int exe_len, union bnx2x_qable_obj *owner, exe_q_validate validate, exe_q_remove remove, exe_q_optimize optimize, exe_q_execute exec, exe_q_get get) { memset(o, 0, sizeof(*o)); INIT_LIST_HEAD(&o->exe_queue); INIT_LIST_HEAD(&o->pending_comp); spin_lock_init(&o->lock); o->exe_chunk_len = exe_len; o->owner = owner; /* Owner specific callbacks */ o->validate = validate; o->remove = remove; o->optimize = optimize; o->execute = exec; o->get = get; DP(BNX2X_MSG_SP, "Setup the execution queue with the chunk length of %d\n", exe_len); } static inline void bnx2x_exe_queue_free_elem(struct bnx2x *bp, struct bnx2x_exeq_elem *elem) { DP(BNX2X_MSG_SP, "Deleting an exe_queue element\n"); kfree(elem); } static inline int bnx2x_exe_queue_length(struct bnx2x_exe_queue_obj *o) { struct bnx2x_exeq_elem *elem; int cnt = 0; spin_lock_bh(&o->lock); list_for_each_entry(elem, &o->exe_queue, link) cnt++; spin_unlock_bh(&o->lock); return cnt; } /** * bnx2x_exe_queue_add - add a new element to the execution queue * * @bp: driver handle * @o: queue * @cmd: new command to add * @restore: true - do not optimize the command * * If the element is optimized or is illegal, frees it. */ static inline int bnx2x_exe_queue_add(struct bnx2x *bp, struct bnx2x_exe_queue_obj *o, struct bnx2x_exeq_elem *elem, bool restore) { int rc; spin_lock_bh(&o->lock); if (!restore) { /* Try to cancel this element queue */ rc = o->optimize(bp, o->owner, elem); if (rc) goto free_and_exit; /* Check if this request is ok */ rc = o->validate(bp, o->owner, elem); if (rc) { DP(BNX2X_MSG_SP, "Preamble failed: %d\n", rc); goto free_and_exit; } } /* If so, add it to the execution queue */ list_add_tail(&elem->link, &o->exe_queue); spin_unlock_bh(&o->lock); return 0; free_and_exit: bnx2x_exe_queue_free_elem(bp, elem); spin_unlock_bh(&o->lock); return rc; } static inline void __bnx2x_exe_queue_reset_pending( struct bnx2x *bp, struct bnx2x_exe_queue_obj *o) { struct bnx2x_exeq_elem *elem; while (!list_empty(&o->pending_comp)) { elem = list_first_entry(&o->pending_comp, struct bnx2x_exeq_elem, link); list_del(&elem->link); bnx2x_exe_queue_free_elem(bp, elem); } } /** * bnx2x_exe_queue_step - execute one execution chunk atomically * * @bp: driver handle * @o: queue * @ramrod_flags: flags * * (Should be called while holding the exe_queue->lock). */ static inline int bnx2x_exe_queue_step(struct bnx2x *bp, struct bnx2x_exe_queue_obj *o, unsigned long *ramrod_flags) { struct bnx2x_exeq_elem *elem, spacer; int cur_len = 0, rc; memset(&spacer, 0, sizeof(spacer)); /* Next step should not be performed until the current is finished, * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to * properly clear object internals without sending any command to the FW * which also implies there won't be any completion to clear the * 'pending' list. */ if (!list_empty(&o->pending_comp)) { if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) { DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n"); __bnx2x_exe_queue_reset_pending(bp, o); } else { return 1; } } /* Run through the pending commands list and create a next * execution chunk. */ while (!list_empty(&o->exe_queue)) { elem = list_first_entry(&o->exe_queue, struct bnx2x_exeq_elem, link); WARN_ON(!elem->cmd_len); if (cur_len + elem->cmd_len <= o->exe_chunk_len) { cur_len += elem->cmd_len; /* Prevent from both lists being empty when moving an * element. This will allow the call of * bnx2x_exe_queue_empty() without locking. */ list_add_tail(&spacer.link, &o->pending_comp); mb(); list_move_tail(&elem->link, &o->pending_comp); list_del(&spacer.link); } else break; } /* Sanity check */ if (!cur_len) return 0; rc = o->execute(bp, o->owner, &o->pending_comp, ramrod_flags); if (rc < 0) /* In case of an error return the commands back to the queue * and reset the pending_comp. */ list_splice_init(&o->pending_comp, &o->exe_queue); else if (!rc) /* If zero is returned, means there are no outstanding pending * completions and we may dismiss the pending list. */ __bnx2x_exe_queue_reset_pending(bp, o); return rc; } static inline bool bnx2x_exe_queue_empty(struct bnx2x_exe_queue_obj *o) { bool empty = list_empty(&o->exe_queue); /* Don't reorder!!! */ mb(); return empty && list_empty(&o->pending_comp); } static inline struct bnx2x_exeq_elem *bnx2x_exe_queue_alloc_elem( struct bnx2x *bp) { DP(BNX2X_MSG_SP, "Allocating a new exe_queue element\n"); return kzalloc(sizeof(struct bnx2x_exeq_elem), GFP_ATOMIC); } /************************ raw_obj functions ***********************************/ static bool bnx2x_raw_check_pending(struct bnx2x_raw_obj *o) { return !!test_bit(o->state, o->pstate); } static void bnx2x_raw_clear_pending(struct bnx2x_raw_obj *o) { smp_mb__before_atomic(); clear_bit(o->state, o->pstate); smp_mb__after_atomic(); } static void bnx2x_raw_set_pending(struct bnx2x_raw_obj *o) { smp_mb__before_atomic(); set_bit(o->state, o->pstate); smp_mb__after_atomic(); } /** * bnx2x_state_wait - wait until the given bit(state) is cleared * * @bp: device handle * @state: state which is to be cleared * @state_p: state buffer * */ static inline int bnx2x_state_wait(struct bnx2x *bp, int state, unsigned long *pstate) { /* can take a while if any port is running */ int cnt = 5000; if (CHIP_REV_IS_EMUL(bp)) cnt *= 20; DP(BNX2X_MSG_SP, "waiting for state to become %d\n", state); might_sleep(); while (cnt--) { if (!test_bit(state, pstate)) { #ifdef BNX2X_STOP_ON_ERROR DP(BNX2X_MSG_SP, "exit (cnt %d)\n", 5000 - cnt); #endif return 0; } usleep_range(1000, 2000); if (bp->panic) return -EIO; } /* timeout! */ BNX2X_ERR("timeout waiting for state %d\n", state); #ifdef BNX2X_STOP_ON_ERROR bnx2x_panic(); #endif return -EBUSY; } static int bnx2x_raw_wait(struct bnx2x *bp, struct bnx2x_raw_obj *raw) { return bnx2x_state_wait(bp, raw->state, raw->pstate); } /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/ /* credit handling callbacks */ static bool bnx2x_get_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int *offset) { struct bnx2x_credit_pool_obj *mp = o->macs_pool; WARN_ON(!mp); return mp->get_entry(mp, offset); } static bool bnx2x_get_credit_mac(struct bnx2x_vlan_mac_obj *o) { struct bnx2x_credit_pool_obj *mp = o->macs_pool; WARN_ON(!mp); return mp->get(mp, 1); } static bool bnx2x_get_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int *offset) { struct bnx2x_credit_pool_obj *vp = o->vlans_pool; WARN_ON(!vp); return vp->get_entry(vp, offset); } static bool bnx2x_get_credit_vlan(struct bnx2x_vlan_mac_obj *o) { struct bnx2x_credit_pool_obj *vp = o->vlans_pool; WARN_ON(!vp); return vp->get(vp, 1); } static bool bnx2x_get_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o) { struct bnx2x_credit_pool_obj *mp = o->macs_pool; struct bnx2x_credit_pool_obj *vp = o->vlans_pool; if (!mp->get(mp, 1)) return false; if (!vp->get(vp, 1)) { mp->put(mp, 1); return false; } return true; } static bool bnx2x_put_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int offset) { struct bnx2x_credit_pool_obj *mp = o->macs_pool; return mp->put_entry(mp, offset); } static bool bnx2x_put_credit_mac(struct bnx2x_vlan_mac_obj *o) { struct bnx2x_credit_pool_obj *mp = o->macs_pool; return mp->put(mp, 1); } static bool bnx2x_put_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int offset) { struct bnx2x_credit_pool_obj *vp = o->vlans_pool; return vp->put_entry(vp, offset); } static bool bnx2x_put_credit_vlan(struct bnx2x_vlan_mac_obj *o) { struct bnx2x_credit_pool_obj *vp = o->vlans_pool; return vp->put(vp, 1); } static bool bnx2x_put_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o) { struct bnx2x_credit_pool_obj *mp = o->macs_pool; struct bnx2x_credit_pool_obj *vp = o->vlans_pool; if (!mp->put(mp, 1)) return false; if (!vp->put(vp, 1)) { mp->get(mp, 1); return false; } return true; } /** * __bnx2x_vlan_mac_h_write_trylock - try getting the vlan mac writer lock * * @bp: device handle * @o: vlan_mac object * * @details: Non-blocking implementation; should be called under execution * queue lock. */ static int __bnx2x_vlan_mac_h_write_trylock(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o) { if (o->head_reader) { DP(BNX2X_MSG_SP, "vlan_mac_lock writer - There are readers; Busy\n"); return -EBUSY; } DP(BNX2X_MSG_SP, "vlan_mac_lock writer - Taken\n"); return 0; } /** * __bnx2x_vlan_mac_h_exec_pending - execute step instead of a previous step * * @bp: device handle * @o: vlan_mac object * * @details Should be called under execution queue lock; notice it might release * and reclaim it during its run. */ static void __bnx2x_vlan_mac_h_exec_pending(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o) { int rc; unsigned long ramrod_flags = o->saved_ramrod_flags; DP(BNX2X_MSG_SP, "vlan_mac_lock execute pending command with ramrod flags %lu\n", ramrod_flags); o->head_exe_request = false; o->saved_ramrod_flags = 0; rc = bnx2x_exe_queue_step(bp, &o->exe_queue, &ramrod_flags); if ((rc != 0) && (rc != 1)) { BNX2X_ERR("execution of pending commands failed with rc %d\n", rc); #ifdef BNX2X_STOP_ON_ERROR bnx2x_panic(); #endif } } /** * __bnx2x_vlan_mac_h_pend - Pend an execution step which couldn't run * * @bp: device handle * @o: vlan_mac object * @ramrod_flags: ramrod flags of missed execution * * @details Should be called under execution queue lock. */ static void __bnx2x_vlan_mac_h_pend(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o, unsigned long ramrod_flags) { o->head_exe_request = true; o->saved_ramrod_flags = ramrod_flags; DP(BNX2X_MSG_SP, "Placing pending execution with ramrod flags %lu\n", ramrod_flags); } /** * __bnx2x_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock * * @bp: device handle * @o: vlan_mac object * * @details Should be called under execution queue lock. Notice if a pending * execution exists, it would perform it - possibly releasing and * reclaiming the execution queue lock. */ static void __bnx2x_vlan_mac_h_write_unlock(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o) { /* It's possible a new pending execution was added since this writer * executed. If so, execute again. [Ad infinitum] */ while (o->head_exe_request) { DP(BNX2X_MSG_SP, "vlan_mac_lock - writer release encountered a pending request\n"); __bnx2x_vlan_mac_h_exec_pending(bp, o); } } /** * __bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock * * @bp: device handle * @o: vlan_mac object * * @details Should be called under the execution queue lock. May sleep. May * release and reclaim execution queue lock during its run. */ static int __bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o) { /* If we got here, we're holding lock --> no WRITER exists */ o->head_reader++; DP(BNX2X_MSG_SP, "vlan_mac_lock - locked reader - number %d\n", o->head_reader); return 0; } /** * bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock * * @bp: device handle * @o: vlan_mac object * * @details May sleep. Claims and releases execution queue lock during its run. */ int bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o) { int rc; spin_lock_bh(&o->exe_queue.lock); rc = __bnx2x_vlan_mac_h_read_lock(bp, o); spin_unlock_bh(&o->exe_queue.lock); return rc; } /** * __bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock * * @bp: device handle * @o: vlan_mac object * * @details Should be called under execution queue lock. Notice if a pending * execution exists, it would be performed if this was the last * reader. possibly releasing and reclaiming the execution queue lock. */ static void __bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o) { if (!o->head_reader) { BNX2X_ERR("Need to release vlan mac reader lock, but lock isn't taken\n"); #ifdef BNX2X_STOP_ON_ERROR bnx2x_panic(); #endif } else { o->head_reader--; DP(BNX2X_MSG_SP, "vlan_mac_lock - decreased readers to %d\n", o->head_reader); } /* It's possible a new pending execution was added, and that this reader * was last - if so we need to execute the command. */ if (!o->head_reader && o->head_exe_request) { DP(BNX2X_MSG_SP, "vlan_mac_lock - reader release encountered a pending request\n"); /* Writer release will do the trick */ __bnx2x_vlan_mac_h_write_unlock(bp, o); } } /** * bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock * * @bp: device handle * @o: vlan_mac object * * @details Notice if a pending execution exists, it would be performed if this * was the last reader. Claims and releases the execution queue lock * during its run. */ void bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o) { spin_lock_bh(&o->exe_queue.lock); __bnx2x_vlan_mac_h_read_unlock(bp, o); spin_unlock_bh(&o->exe_queue.lock); } static int bnx2x_get_n_elements(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o, int n, u8 *base, u8 stride, u8 size) { struct bnx2x_vlan_mac_registry_elem *pos; u8 *next = base; int counter = 0; int read_lock; DP(BNX2X_MSG_SP, "get_n_elements - taking vlan_mac_lock (reader)\n"); read_lock = bnx2x_vlan_mac_h_read_lock(bp, o); if (read_lock != 0) BNX2X_ERR("get_n_elements failed to get vlan mac reader lock; Access without lock\n"); /* traverse list */ list_for_each_entry(pos, &o->head, link) { if (counter < n) { memcpy(next, &pos->u, size); counter++; DP(BNX2X_MSG_SP, "copied element number %d to address %p element was:\n", counter, next); next += stride + size; } } if (read_lock == 0) { DP(BNX2X_MSG_SP, "get_n_elements - releasing vlan_mac_lock (reader)\n"); bnx2x_vlan_mac_h_read_unlock(bp, o); } return counter * ETH_ALEN; } /* check_add() callbacks */ static int bnx2x_check_mac_add(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o, union bnx2x_classification_ramrod_data *data) { struct bnx2x_vlan_mac_registry_elem *pos; DP(BNX2X_MSG_SP, "Checking MAC %pM for ADD command\n", data->mac.mac); if (!is_valid_ether_addr(data->mac.mac)) return -EINVAL; /* Check if a requested MAC already exists */ list_for_each_entry(pos, &o->head, link) if (ether_addr_equal(data->mac.mac, pos->u.mac.mac) && (data->mac.is_inner_mac == pos->u.mac.is_inner_mac)) return -EEXIST; return 0; } static int bnx2x_check_vlan_add(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o, union bnx2x_classification_ramrod_data *data) { struct bnx2x_vlan_mac_registry_elem *pos; DP(BNX2X_MSG_SP, "Checking VLAN %d for ADD command\n", data->vlan.vlan); list_for_each_entry(pos, &o->head, link) if (data->vlan.vlan == pos->u.vlan.vlan) return -EEXIST; return 0; } static int bnx2x_check_vlan_mac_add(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o, union bnx2x_classification_ramrod_data *data) { struct bnx2x_vlan_mac_registry_elem *pos; DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for ADD command\n", data->vlan_mac.mac, data->vlan_mac.vlan); list_for_each_entry(pos, &o->head, link) if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) && (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac, ETH_ALEN)) && (data->vlan_mac.is_inner_mac == pos->u.vlan_mac.is_inner_mac)) return -EEXIST; return 0; } /* check_del() callbacks */ static struct bnx2x_vlan_mac_registry_elem * bnx2x_check_mac_del(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o, union bnx2x_classification_ramrod_data *data) { struct bnx2x_vlan_mac_registry_elem *pos; DP(BNX2X_MSG_SP, "Checking MAC %pM for DEL command\n", data->mac.mac); list_for_each_entry(pos, &o->head, link) if (ether_addr_equal(data->mac.mac, pos->u.mac.mac) && (data->mac.is_inner_mac == pos->u.mac.is_inner_mac)) return pos; return NULL; } static struct bnx2x_vlan_mac_registry_elem * bnx2x_check_vlan_del(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o, union bnx2x_classification_ramrod_data *data) { struct bnx2x_vlan_mac_registry_elem *pos; DP(BNX2X_MSG_SP, "Checking VLAN %d for DEL command\n", data->vlan.vlan); list_for_each_entry(pos, &o->head, link) if (data->vlan.vlan == pos->u.vlan.vlan) return pos; return NULL; } static struct bnx2x_vlan_mac_registry_elem * bnx2x_check_vlan_mac_del(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o, union bnx2x_classification_ramrod_data *data) { struct bnx2x_vlan_mac_registry_elem *pos; DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for DEL command\n", data->vlan_mac.mac, data->vlan_mac.vlan); list_for_each_entry(pos, &o->head, link) if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) && (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac, ETH_ALEN)) && (data->vlan_mac.is_inner_mac == pos->u.vlan_mac.is_inner_mac)) return pos; return NULL; } /* check_move() callback */ static bool bnx2x_check_move(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *src_o, struct bnx2x_vlan_mac_obj *dst_o, union bnx2x_classification_ramrod_data *data) { struct bnx2x_vlan_mac_registry_elem *pos; int rc; /* Check if we can delete the requested configuration from the first * object. */ pos = src_o->check_del(bp, src_o, data); /* check if configuration can be added */ rc = dst_o->check_add(bp, dst_o, data); /* If this classification can not be added (is already set) * or can't be deleted - return an error. */ if (rc || !pos) return false; return true; } static bool bnx2x_check_move_always_err( struct bnx2x *bp, struct bnx2x_vlan_mac_obj *src_o, struct bnx2x_vlan_mac_obj *dst_o, union bnx2x_classification_ramrod_data *data) { return false; } static inline u8 bnx2x_vlan_mac_get_rx_tx_flag(struct bnx2x_vlan_mac_obj *o) { struct bnx2x_raw_obj *raw = &o->raw; u8 rx_tx_flag = 0; if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) || (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX)) rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_TX_CMD; if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) || (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX)) rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_RX_CMD; return rx_tx_flag; } static void bnx2x_set_mac_in_nig(struct bnx2x *bp, bool add, unsigned char *dev_addr, int index) { u32 wb_data[2]; u32 reg_offset = BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM : NIG_REG_LLH0_FUNC_MEM; if (!IS_MF_SI(bp) && !IS_MF_AFEX(bp)) return; if (index > BNX2X_LLH_CAM_MAX_PF_LINE) return; DP(BNX2X_MSG_SP, "Going to %s LLH configuration at entry %d\n", (add ? "ADD" : "DELETE"), index); if (add) { /* LLH_FUNC_MEM is a u64 WB register */ reg_offset += 8*index; wb_data[0] = ((dev_addr[2] << 24) | (dev_addr[3] << 16) | (dev_addr[4] << 8) | dev_addr[5]); wb_data[1] = ((dev_addr[0] << 8) | dev_addr[1]); REG_WR_DMAE(bp, reg_offset, wb_data, 2); } REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM_ENABLE : NIG_REG_LLH0_FUNC_MEM_ENABLE) + 4*index, add); } /** * bnx2x_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod * * @bp: device handle * @o: queue for which we want to configure this rule * @add: if true the command is an ADD command, DEL otherwise * @opcode: CLASSIFY_RULE_OPCODE_XXX * @hdr: pointer to a header to setup * */ static inline void bnx2x_vlan_mac_set_cmd_hdr_e2(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o, bool add, int opcode, struct eth_classify_cmd_header *hdr) { struct bnx2x_raw_obj *raw = &o->raw; hdr->client_id = raw->cl_id; hdr->func_id = raw->func_id; /* Rx or/and Tx (internal switching) configuration ? */ hdr->cmd_general_data |= bnx2x_vlan_mac_get_rx_tx_flag(o); if (add) hdr->cmd_general_data |= ETH_CLASSIFY_CMD_HEADER_IS_ADD; hdr->cmd_general_data |= (opcode << ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT); } /** * bnx2x_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header * * @cid: connection id * @type: BNX2X_FILTER_XXX_PENDING * @hdr: pointer to header to setup * @rule_cnt: * * currently we always configure one rule and echo field to contain a CID and an * opcode type. */ static inline void bnx2x_vlan_mac_set_rdata_hdr_e2(u32 cid, int type, struct eth_classify_header *hdr, int rule_cnt) { hdr->echo = cpu_to_le32((cid & BNX2X_SWCID_MASK) | (type << BNX2X_SWCID_SHIFT)); hdr->rule_cnt = (u8)rule_cnt; } /* hw_config() callbacks */ static void bnx2x_set_one_mac_e2(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o, struct bnx2x_exeq_elem *elem, int rule_idx, int cam_offset) { struct bnx2x_raw_obj *raw = &o->raw; struct eth_classify_rules_ramrod_data *data = (struct eth_classify_rules_ramrod_data *)(raw->rdata); int rule_cnt = rule_idx + 1, cmd = elem->cmd_data.vlan_mac.cmd; union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx]; bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false; unsigned long *vlan_mac_flags = &elem->cmd_data.vlan_mac.vlan_mac_flags; u8 *mac = elem->cmd_data.vlan_mac.u.mac.mac; /* Set LLH CAM entry: currently only iSCSI and ETH macs are * relevant. In addition, current implementation is tuned for a * single ETH MAC. * * When multiple unicast ETH MACs PF configuration in switch * independent mode is required (NetQ, multiple netdev MACs, * etc.), consider better utilisation of 8 per function MAC * entries in the LLH register. There is also * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the * total number of CAM entries to 16. * * Currently we won't configure NIG for MACs other than a primary ETH * MAC and iSCSI L2 MAC. * * If this MAC is moving from one Queue to another, no need to change * NIG configuration. */ if (cmd != BNX2X_VLAN_MAC_MOVE) { if (test_bit(BNX2X_ISCSI_ETH_MAC, vlan_mac_flags)) bnx2x_set_mac_in_nig(bp, add, mac, BNX2X_LLH_CAM_ISCSI_ETH_LINE); else if (test_bit(BNX2X_ETH_MAC, vlan_mac_flags)) bnx2x_set_mac_in_nig(bp, add, mac, BNX2X_LLH_CAM_ETH_LINE); } /* Reset the ramrod data buffer for the first rule */ if (rule_idx == 0) memset(data, 0, sizeof(*data)); /* Setup a command header */ bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_MAC, &rule_entry->mac.header); DP(BNX2X_MSG_SP, "About to %s MAC %pM for Queue %d\n", (add ? "add" : "delete"), mac, raw->cl_id); /* Set a MAC itself */ bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb, &rule_entry->mac.mac_mid, &rule_entry->mac.mac_lsb, mac); rule_entry->mac.inner_mac = cpu_to_le16(elem->cmd_data.vlan_mac.u.mac.is_inner_mac); /* MOVE: Add a rule that will add this MAC to the target Queue */ if (cmd == BNX2X_VLAN_MAC_MOVE) { rule_entry++; rule_cnt++; /* Setup ramrod data */ bnx2x_vlan_mac_set_cmd_hdr_e2(bp, elem->cmd_data.vlan_mac.target_obj, true, CLASSIFY_RULE_OPCODE_MAC, &rule_entry->mac.header); /* Set a MAC itself */ bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb, &rule_entry->mac.mac_mid, &rule_entry->mac.mac_lsb, mac); rule_entry->mac.inner_mac = cpu_to_le16(elem->cmd_data.vlan_mac. u.mac.is_inner_mac); } /* Set the ramrod data header */ /* TODO: take this to the higher level in order to prevent multiple writing */ bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header, rule_cnt); } /** * bnx2x_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod * * @bp: device handle * @o: queue * @type: * @cam_offset: offset in cam memory * @hdr: pointer to a header to setup * * E1/E1H */ static inline void bnx2x_vlan_mac_set_rdata_hdr_e1x(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o, int type, int cam_offset, struct mac_configuration_hdr *hdr) { struct bnx2x_raw_obj *r = &o->raw; hdr->length = 1; hdr->offset = (u8)cam_offset; hdr->client_id = cpu_to_le16(0xff); hdr->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) | (type << BNX2X_SWCID_SHIFT)); } static inline void bnx2x_vlan_mac_set_cfg_entry_e1x(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o, bool add, int opcode, u8 *mac, u16 vlan_id, struct mac_configuration_entry *cfg_entry) { struct bnx2x_raw_obj *r = &o->raw; u32 cl_bit_vec = (1 << r->cl_id); cfg_entry->clients_bit_vector = cpu_to_le32(cl_bit_vec); cfg_entry->pf_id = r->func_id; cfg_entry->vlan_id = cpu_to_le16(vlan_id); if (add) { SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE, T_ETH_MAC_COMMAND_SET); SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE, opcode); /* Set a MAC in a ramrod data */ bnx2x_set_fw_mac_addr(&cfg_entry->msb_mac_addr, &cfg_entry->middle_mac_addr, &cfg_entry->lsb_mac_addr, mac); } else SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE, T_ETH_MAC_COMMAND_INVALIDATE); } static inline void bnx2x_vlan_mac_set_rdata_e1x(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o, int type, int cam_offset, bool add, u8 *mac, u16 vlan_id, int opcode, struct mac_configuration_cmd *config) { struct mac_configuration_entry *cfg_entry = &config->config_table[0]; struct bnx2x_raw_obj *raw = &o->raw; bnx2x_vlan_mac_set_rdata_hdr_e1x(bp, o, type, cam_offset, &config->hdr); bnx2x_vlan_mac_set_cfg_entry_e1x(bp, o, add, opcode, mac, vlan_id, cfg_entry); DP(BNX2X_MSG_SP, "%s MAC %pM CLID %d CAM offset %d\n", (add ? "setting" : "clearing"), mac, raw->cl_id, cam_offset); } /** * bnx2x_set_one_mac_e1x - fill a single MAC rule ramrod data * * @bp: device handle * @o: bnx2x_vlan_mac_obj * @elem: bnx2x_exeq_elem * @rule_idx: rule_idx * @cam_offset: cam_offset */ static void bnx2x_set_one_mac_e1x(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o, struct bnx2x_exeq_elem *elem, int rule_idx, int cam_offset) { struct bnx2x_raw_obj *raw = &o->raw; struct mac_configuration_cmd *config = (struct mac_configuration_cmd *)(raw->rdata); /* 57710 and 57711 do not support MOVE command, * so it's either ADD or DEL */ bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ? true : false; /* Reset the ramrod data buffer */ memset(config, 0, sizeof(*config)); bnx2x_vlan_mac_set_rdata_e1x(bp, o, raw->state, cam_offset, add, elem->cmd_data.vlan_mac.u.mac.mac, 0, ETH_VLAN_FILTER_ANY_VLAN, config); } static void bnx2x_set_one_vlan_e2(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o, struct bnx2x_exeq_elem *elem, int rule_idx, int cam_offset) { struct bnx2x_raw_obj *raw = &o->raw; struct eth_classify_rules_ramrod_data *data = (struct eth_classify_rules_ramrod_data *)(raw->rdata); int rule_cnt = rule_idx + 1; union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx]; enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd; bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false; u16 vlan = elem->cmd_data.vlan_mac.u.vlan.vlan; /* Reset the ramrod data buffer for the first rule */ if (rule_idx == 0) memset(data, 0, sizeof(*data)); /* Set a rule header */ bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_VLAN, &rule_entry->vlan.header); DP(BNX2X_MSG_SP, "About to %s VLAN %d\n", (add ? "add" : "delete"), vlan); /* Set a VLAN itself */ rule_entry->vlan.vlan = cpu_to_le16(vlan); /* MOVE: Add a rule that will add this MAC to the target Queue */ if (cmd == BNX2X_VLAN_MAC_MOVE) { rule_entry++; rule_cnt++; /* Setup ramrod data */ bnx2x_vlan_mac_set_cmd_hdr_e2(bp, elem->cmd_data.vlan_mac.target_obj, true, CLASSIFY_RULE_OPCODE_VLAN, &rule_entry->vlan.header); /* Set a VLAN itself */ rule_entry->vlan.vlan = cpu_to_le16(vlan); } /* Set the ramrod data header */ /* TODO: take this to the higher level in order to prevent multiple writing */ bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header, rule_cnt); } static void bnx2x_set_one_vlan_mac_e2(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o, struct bnx2x_exeq_elem *elem, int rule_idx, int cam_offset) { struct bnx2x_raw_obj *raw = &o->raw; struct eth_classify_rules_ramrod_data *data = (struct eth_classify_rules_ramrod_data *)(raw->rdata); int rule_cnt = rule_idx + 1; union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx]; enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd; bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false; u16 vlan = elem->cmd_data.vlan_mac.u.vlan_mac.vlan; u8 *mac = elem->cmd_data.vlan_mac.u.vlan_mac.mac; u16 inner_mac; /* Reset the ramrod data buffer for the first rule */ if (rule_idx == 0) memset(data, 0, sizeof(*data)); /* Set a rule header */ bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_PAIR, &rule_entry->pair.header); /* Set VLAN and MAC themselves */ rule_entry->pair.vlan = cpu_to_le16(vlan); bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb, &rule_entry->pair.mac_mid, &rule_entry->pair.mac_lsb, mac); inner_mac = elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac; rule_entry->pair.inner_mac = cpu_to_le16(inner_mac); /* MOVE: Add a rule that will add this MAC/VLAN to the target Queue */ if (cmd == BNX2X_VLAN_MAC_MOVE) { struct bnx2x_vlan_mac_obj *target_obj; rule_entry++; rule_cnt++; /* Setup ramrod data */ target_obj = elem->cmd_data.vlan_mac.target_obj; bnx2x_vlan_mac_set_cmd_hdr_e2(bp, target_obj, true, CLASSIFY_RULE_OPCODE_PAIR, &rule_entry->pair.header); /* Set a VLAN itself */ rule_entry->pair.vlan = cpu_to_le16(vlan); bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb, &rule_entry->pair.mac_mid, &rule_entry->pair.mac_lsb, mac); rule_entry->pair.inner_mac = cpu_to_le16(inner_mac); } /* Set the ramrod data header */ bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header, rule_cnt); } /** * bnx2x_set_one_vlan_mac_e1h - * * @bp: device handle * @o: bnx2x_vlan_mac_obj * @elem: bnx2x_exeq_elem * @rule_idx: rule_idx * @cam_offset: cam_offset */ static void bnx2x_set_one_vlan_mac_e1h(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o, struct bnx2x_exeq_elem *elem, int rule_idx, int cam_offset) { struct bnx2x_raw_obj *raw = &o->raw; struct mac_configuration_cmd *config = (struct mac_configuration_cmd *)(raw->rdata); /* 57710 and 57711 do not support MOVE command, * so it's either ADD or DEL */ bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ? true : false; /* Reset the ramrod data buffer */ memset(config, 0, sizeof(*config)); bnx2x_vlan_mac_set_rdata_e1x(bp, o, BNX2X_FILTER_VLAN_MAC_PENDING, cam_offset, add, elem->cmd_data.vlan_mac.u.vlan_mac.mac, elem->cmd_data.vlan_mac.u.vlan_mac.vlan, ETH_VLAN_FILTER_CLASSIFY, config); } /** * bnx2x_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element * * @bp: device handle * @p: command parameters * @ppos: pointer to the cookie * * reconfigure next MAC/VLAN/VLAN-MAC element from the * previously configured elements list. * * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is taken * into an account * * pointer to the cookie - that should be given back in the next call to make * function handle the next element. If *ppos is set to NULL it will restart the * iterator. If returned *ppos == NULL this means that the last element has been * handled. * */ static int bnx2x_vlan_mac_restore(struct bnx2x *bp, struct bnx2x_vlan_mac_ramrod_params *p, struct bnx2x_vlan_mac_registry_elem **ppos) { struct bnx2x_vlan_mac_registry_elem *pos; struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj; /* If list is empty - there is nothing to do here */ if (list_empty(&o->head)) { *ppos = NULL; return 0; } /* make a step... */ if (*ppos == NULL) *ppos = list_first_entry(&o->head, struct bnx2x_vlan_mac_registry_elem, link); else *ppos = list_next_entry(*ppos, link); pos = *ppos; /* If it's the last step - return NULL */ if (list_is_last(&pos->link, &o->head)) *ppos = NULL; /* Prepare a 'user_req' */ memcpy(&p->user_req.u, &pos->u, sizeof(pos->u)); /* Set the command */ p->user_req.cmd = BNX2X_VLAN_MAC_ADD; /* Set vlan_mac_flags */ p->user_req.vlan_mac_flags = pos->vlan_mac_flags; /* Set a restore bit */ __set_bit(RAMROD_RESTORE, &p->ramrod_flags); return bnx2x_config_vlan_mac(bp, p); } /* bnx2x_exeq_get_mac/bnx2x_exeq_get_vlan/bnx2x_exeq_get_vlan_mac return a * pointer to an element with a specific criteria and NULL if such an element * hasn't been found. */ static struct bnx2x_exeq_elem *bnx2x_exeq_get_mac( struct bnx2x_exe_queue_obj *o, struct bnx2x_exeq_elem *elem) { struct bnx2x_exeq_elem *pos; struct bnx2x_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.mac; /* Check pending for execution commands */ list_for_each_entry(pos, &o->exe_queue, link) if (!memcmp(&pos->cmd_data.vlan_mac.u.mac, data, sizeof(*data)) && (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd)) return pos; return NULL; } static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan( struct bnx2x_exe_queue_obj *o, struct bnx2x_exeq_elem *elem) { struct bnx2x_exeq_elem *pos; struct bnx2x_vlan_ramrod_data *data = &elem->cmd_data.vlan_mac.u.vlan; /* Check pending for execution commands */ list_for_each_entry(pos, &o->exe_queue, link) if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan, data, sizeof(*data)) && (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd)) return pos; return NULL; } static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan_mac( struct bnx2x_exe_queue_obj *o, struct bnx2x_exeq_elem *elem) { struct bnx2x_exeq_elem *pos; struct bnx2x_vlan_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.vlan_mac; /* Check pending for execution commands */ list_for_each_entry(pos, &o->exe_queue, link) if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan_mac, data, sizeof(*data)) && (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd)) return pos; return NULL; } /** * bnx2x_validate_vlan_mac_add - check if an ADD command can be executed * * @bp: device handle * @qo: bnx2x_qable_obj * @elem: bnx2x_exeq_elem * * Checks that the requested configuration can be added. If yes and if * requested, consume CAM credit. * * The 'validate' is run after the 'optimize'. * */ static inline int bnx2x_validate_vlan_mac_add(struct bnx2x *bp, union bnx2x_qable_obj *qo, struct bnx2x_exeq_elem *elem) { struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac; struct bnx2x_exe_queue_obj *exeq = &o->exe_queue; int rc; /* Check the registry */ rc = o->check_add(bp, o, &elem->cmd_data.vlan_mac.u); if (rc) { DP(BNX2X_MSG_SP, "ADD command is not allowed considering current registry state.\n"); return rc; } /* Check if there is a pending ADD command for this * MAC/VLAN/VLAN-MAC. Return an error if there is. */ if (exeq->get(exeq, elem)) { DP(BNX2X_MSG_SP, "There is a pending ADD command already\n"); return -EEXIST; } /* TODO: Check the pending MOVE from other objects where this * object is a destination object. */ /* Consume the credit if not requested not to */ if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT, &elem->cmd_data.vlan_mac.vlan_mac_flags) || o->get_credit(o))) return -EINVAL; return 0; } /** * bnx2x_validate_vlan_mac_del - check if the DEL command can be executed * * @bp: device handle * @qo: quable object to check * @elem: element that needs to be deleted * * Checks that the requested configuration can be deleted. If yes and if * requested, returns a CAM credit. * * The 'validate' is run after the 'optimize'. */ static inline int bnx2x_validate_vlan_mac_del(struct bnx2x *bp, union bnx2x_qable_obj *qo, struct bnx2x_exeq_elem *elem) { struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac; struct bnx2x_vlan_mac_registry_elem *pos; struct bnx2x_exe_queue_obj *exeq = &o->exe_queue; struct bnx2x_exeq_elem query_elem; /* If this classification can not be deleted (doesn't exist) * - return a BNX2X_EXIST. */ pos = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u); if (!pos) { DP(BNX2X_MSG_SP, "DEL command is not allowed considering current registry state\n"); return -EEXIST; } /* Check if there are pending DEL or MOVE commands for this * MAC/VLAN/VLAN-MAC. Return an error if so. */ memcpy(&query_elem, elem, sizeof(query_elem)); /* Check for MOVE commands */ query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_MOVE; if (exeq->get(exeq, &query_elem)) { BNX2X_ERR("There is a pending MOVE command already\n"); return -EINVAL; } /* Check for DEL commands */ if (exeq->get(exeq, elem)) { DP(BNX2X_MSG_SP, "There is a pending DEL command already\n"); return -EEXIST; } /* Return the credit to the credit pool if not requested not to */ if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT, &elem->cmd_data.vlan_mac.vlan_mac_flags) || o->put_credit(o))) { BNX2X_ERR("Failed to return a credit\n"); return -EINVAL; } return 0; } /** * bnx2x_validate_vlan_mac_move - check if the MOVE command can be executed * * @bp: device handle * @qo: quable object to check (source) * @elem: element that needs to be moved * * Checks that the requested configuration can be moved. If yes and if * requested, returns a CAM credit. * * The 'validate' is run after the 'optimize'. */ static inline int bnx2x_validate_vlan_mac_move(struct bnx2x *bp, union bnx2x_qable_obj *qo, struct bnx2x_exeq_elem *elem) { struct bnx2x_vlan_mac_obj *src_o = &qo->vlan_mac; struct bnx2x_vlan_mac_obj *dest_o = elem->cmd_data.vlan_mac.target_obj; struct bnx2x_exeq_elem query_elem; struct bnx2x_exe_queue_obj *src_exeq = &src_o->exe_queue; struct bnx2x_exe_queue_obj *dest_exeq = &dest_o->exe_queue; /* Check if we can perform this operation based on the current registry * state. */ if (!src_o->check_move(bp, src_o, dest_o, &elem->cmd_data.vlan_mac.u)) { DP(BNX2X_MSG_SP, "MOVE command is not allowed considering current registry state\n"); return -EINVAL; } /* Check if there is an already pending DEL or MOVE command for the * source object or ADD command for a destination object. Return an * error if so. */ memcpy(&query_elem, elem, sizeof(query_elem)); /* Check DEL on source */ query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL; if (src_exeq->get(src_exeq, &query_elem)) { BNX2X_ERR("There is a pending DEL command on the source queue already\n"); return -EINVAL; } /* Check MOVE on source */ if (src_exeq->get(src_exeq, elem)) { DP(BNX2X_MSG_SP, "There is a pending MOVE command already\n"); return -EEXIST; } /* Check ADD on destination */ query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD; if (dest_exeq->get(dest_exeq, &query_elem)) { BNX2X_ERR("There is a pending ADD command on the destination queue already\n"); return -EINVAL; } /* Consume the credit if not requested not to */ if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT_DEST, &elem->cmd_data.vlan_mac.vlan_mac_flags) || dest_o->get_credit(dest_o))) return -EINVAL; if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT, &elem->cmd_data.vlan_mac.vlan_mac_flags) || src_o->put_credit(src_o))) { /* return the credit taken from dest... */ dest_o->put_credit(dest_o); return -EINVAL; } return 0; } static int bnx2x_validate_vlan_mac(struct bnx2x *bp, union bnx2x_qable_obj *qo, struct bnx2x_exeq_elem *elem) { switch (elem->cmd_data.vlan_mac.cmd) { case BNX2X_VLAN_MAC_ADD: return bnx2x_validate_vlan_mac_add(bp, qo, elem); case BNX2X_VLAN_MAC_DEL: return bnx2x_validate_vlan_mac_del(bp, qo, elem); case BNX2X_VLAN_MAC_MOVE: return bnx2x_validate_vlan_mac_move(bp, qo, elem); default: return -EINVAL; } } static int bnx2x_remove_vlan_mac(struct bnx2x *bp, union bnx2x_qable_obj *qo, struct bnx2x_exeq_elem *elem) { int rc = 0; /* If consumption wasn't required, nothing to do */ if (test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT, &elem->cmd_data.vlan_mac.vlan_mac_flags)) return 0; switch (elem->cmd_data.vlan_mac.cmd) { case BNX2X_VLAN_MAC_ADD: case BNX2X_VLAN_MAC_MOVE: rc = qo->vlan_mac.put_credit(&qo->vlan_mac); break; case BNX2X_VLAN_MAC_DEL: rc = qo->vlan_mac.get_credit(&qo->vlan_mac); break; default: return -EINVAL; } if (rc != true) return -EINVAL; return 0; } /** * bnx2x_wait_vlan_mac - passively wait for 5 seconds until all work completes. * * @bp: device handle * @o: bnx2x_vlan_mac_obj * */ static int bnx2x_wait_vlan_mac(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o) { int cnt = 5000, rc; struct bnx2x_exe_queue_obj *exeq = &o->exe_queue; struct bnx2x_raw_obj *raw = &o->raw; while (cnt--) { /* Wait for the current command to complete */ rc = raw->wait_comp(bp, raw); if (rc) return rc; /* Wait until there are no pending commands */ if (!bnx2x_exe_queue_empty(exeq)) usleep_range(1000, 2000); else return 0; } return -EBUSY; } static int __bnx2x_vlan_mac_execute_step(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o, unsigned long *ramrod_flags) { int rc = 0; spin_lock_bh(&o->exe_queue.lock); DP(BNX2X_MSG_SP, "vlan_mac_execute_step - trying to take writer lock\n"); rc = __bnx2x_vlan_mac_h_write_trylock(bp, o); if (rc != 0) { __bnx2x_vlan_mac_h_pend(bp, o, *ramrod_flags); /* Calling function should not differentiate between this case * and the case in which there is already a pending ramrod */ rc = 1; } else { rc = bnx2x_exe_queue_step(bp, &o->exe_queue, ramrod_flags); } spin_unlock_bh(&o->exe_queue.lock); return rc; } /** * bnx2x_complete_vlan_mac - complete one VLAN-MAC ramrod * * @bp: device handle * @o: bnx2x_vlan_mac_obj * @cqe: * @cont: if true schedule next execution chunk * */ static int bnx2x_complete_vlan_mac(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o, union event_ring_elem *cqe, unsigned long *ramrod_flags) { struct bnx2x_raw_obj *r = &o->raw; int rc; /* Clearing the pending list & raw state should be made * atomically (as execution flow assumes they represent the same). */ spin_lock_bh(&o->exe_queue.lock); /* Reset pending list */ __bnx2x_exe_queue_reset_pending(bp, &o->exe_queue); /* Clear pending */ r->clear_pending(r); spin_unlock_bh(&o->exe_queue.lock); /* If ramrod failed this is most likely a SW bug */ if (cqe->message.error) return -EINVAL; /* Run the next bulk of pending commands if requested */ if (test_bit(RAMROD_CONT, ramrod_flags)) { rc = __bnx2x_vlan_mac_execute_step(bp, o, ramrod_flags); if (rc < 0) return rc; } /* If there is more work to do return PENDING */ if (!bnx2x_exe_queue_empty(&o->exe_queue)) return 1; return 0; } /** * bnx2x_optimize_vlan_mac - optimize ADD and DEL commands. * * @bp: device handle * @o: bnx2x_qable_obj * @elem: bnx2x_exeq_elem */ static int bnx2x_optimize_vlan_mac(struct bnx2x *bp, union bnx2x_qable_obj *qo, struct bnx2x_exeq_elem *elem) { struct bnx2x_exeq_elem query, *pos; struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac; struct bnx2x_exe_queue_obj *exeq = &o->exe_queue; memcpy(&query, elem, sizeof(query)); switch (elem->cmd_data.vlan_mac.cmd) { case BNX2X_VLAN_MAC_ADD: query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL; break; case BNX2X_VLAN_MAC_DEL: query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD; break; default: /* Don't handle anything other than ADD or DEL */ return 0; } /* If we found the appropriate element - delete it */ pos = exeq->get(exeq, &query); if (pos) { /* Return the credit of the optimized command */ if (!test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT, &pos->cmd_data.vlan_mac.vlan_mac_flags)) { if ((query.cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) && !o->put_credit(o)) { BNX2X_ERR("Failed to return the credit for the optimized ADD command\n"); return -EINVAL; } else if (!o->get_credit(o)) { /* VLAN_MAC_DEL */ BNX2X_ERR("Failed to recover the credit from the optimized DEL command\n"); return -EINVAL; } } DP(BNX2X_MSG_SP, "Optimizing %s command\n", (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ? "ADD" : "DEL"); list_del(&pos->link); bnx2x_exe_queue_free_elem(bp, pos); return 1; } return 0; } /** * bnx2x_vlan_mac_get_registry_elem - prepare a registry element * * @bp: device handle * @o: * @elem: * @restore: * @re: * * prepare a registry element according to the current command request. */ static inline int bnx2x_vlan_mac_get_registry_elem( struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o, struct bnx2x_exeq_elem *elem, bool restore, struct bnx2x_vlan_mac_registry_elem **re) { enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd; struct bnx2x_vlan_mac_registry_elem *reg_elem; /* Allocate a new registry element if needed. */ if (!restore && ((cmd == BNX2X_VLAN_MAC_ADD) || (cmd == BNX2X_VLAN_MAC_MOVE))) { reg_elem = kzalloc(sizeof(*reg_elem), GFP_ATOMIC); if (!reg_elem) return -ENOMEM; /* Get a new CAM offset */ if (!o->get_cam_offset(o, ®_elem->cam_offset)) { /* This shall never happen, because we have checked the * CAM availability in the 'validate'. */ WARN_ON(1); kfree(reg_elem); return -EINVAL; } DP(BNX2X_MSG_SP, "Got cam offset %d\n", reg_elem->cam_offset); /* Set a VLAN-MAC data */ memcpy(®_elem->u, &elem->cmd_data.vlan_mac.u, sizeof(reg_elem->u)); /* Copy the flags (needed for DEL and RESTORE flows) */ reg_elem->vlan_mac_flags = elem->cmd_data.vlan_mac.vlan_mac_flags; } else /* DEL, RESTORE */ reg_elem = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u); *re = reg_elem; return 0; } /** * bnx2x_execute_vlan_mac - execute vlan mac command * * @bp: device handle * @qo: * @exe_chunk: * @ramrod_flags: * * go and send a ramrod! */ static int bnx2x_execute_vlan_mac(struct bnx2x *bp, union bnx2x_qable_obj *qo, struct list_head *exe_chunk, unsigned long *ramrod_flags) { struct bnx2x_exeq_elem *elem; struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac, *cam_obj; struct bnx2x_raw_obj *r = &o->raw; int rc, idx = 0; bool restore = test_bit(RAMROD_RESTORE, ramrod_flags); bool drv_only = test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags); struct bnx2x_vlan_mac_registry_elem *reg_elem; enum bnx2x_vlan_mac_cmd cmd; /* If DRIVER_ONLY execution is requested, cleanup a registry * and exit. Otherwise send a ramrod to FW. */ if (!drv_only) { WARN_ON(r->check_pending(r)); /* Set pending */ r->set_pending(r); /* Fill the ramrod data */ list_for_each_entry(elem, exe_chunk, link) { cmd = elem->cmd_data.vlan_mac.cmd; /* We will add to the target object in MOVE command, so * change the object for a CAM search. */ if (cmd == BNX2X_VLAN_MAC_MOVE) cam_obj = elem->cmd_data.vlan_mac.target_obj; else cam_obj = o; rc = bnx2x_vlan_mac_get_registry_elem(bp, cam_obj, elem, restore, ®_elem); if (rc) goto error_exit; WARN_ON(!reg_elem); /* Push a new entry into the registry */ if (!restore && ((cmd == BNX2X_VLAN_MAC_ADD) || (cmd == BNX2X_VLAN_MAC_MOVE))) list_add(®_elem->link, &cam_obj->head); /* Configure a single command in a ramrod data buffer */ o->set_one_rule(bp, o, elem, idx, reg_elem->cam_offset); /* MOVE command consumes 2 entries in the ramrod data */ if (cmd == BNX2X_VLAN_MAC_MOVE) idx += 2; else idx++; } /* No need for an explicit memory barrier here as long we would * need to ensure the ordering of writing to the SPQ element * and updating of the SPQ producer which involves a memory * read and we will have to put a full memory barrier there * (inside bnx2x_sp_post()). */ rc = bnx2x_sp_post(bp, o->ramrod_cmd, r->cid, U64_HI(r->rdata_mapping), U64_LO(r->rdata_mapping), ETH_CONNECTION_TYPE); if (rc) goto error_exit; } /* Now, when we are done with the ramrod - clean up the registry */ list_for_each_entry(elem, exe_chunk, link) { cmd = elem->cmd_data.vlan_mac.cmd; if ((cmd == BNX2X_VLAN_MAC_DEL) || (cmd == BNX2X_VLAN_MAC_MOVE)) { reg_elem = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u); WARN_ON(!reg_elem); o->put_cam_offset(o, reg_elem->cam_offset); list_del(®_elem->link); kfree(reg_elem); } } if (!drv_only) return 1; else return 0; error_exit: r->clear_pending(r); /* Cleanup a registry in case of a failure */ list_for_each_entry(elem, exe_chunk, link) { cmd = elem->cmd_data.vlan_mac.cmd; if (cmd == BNX2X_VLAN_MAC_MOVE) cam_obj = elem->cmd_data.vlan_mac.target_obj; else cam_obj = o; /* Delete all newly added above entries */ if (!restore && ((cmd == BNX2X_VLAN_MAC_ADD) || (cmd == BNX2X_VLAN_MAC_MOVE))) { reg_elem = o->check_del(bp, cam_obj, &elem->cmd_data.vlan_mac.u); if (reg_elem) { list_del(®_elem->link); kfree(reg_elem); } } } return rc; } static inline int bnx2x_vlan_mac_push_new_cmd( struct bnx2x *bp, struct bnx2x_vlan_mac_ramrod_params *p) { struct bnx2x_exeq_elem *elem; struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj; bool restore = test_bit(RAMROD_RESTORE, &p->ramrod_flags); /* Allocate the execution queue element */ elem = bnx2x_exe_queue_alloc_elem(bp); if (!elem) return -ENOMEM; /* Set the command 'length' */ switch (p->user_req.cmd) { case BNX2X_VLAN_MAC_MOVE: elem->cmd_len = 2; break; default: elem->cmd_len = 1; } /* Fill the object specific info */ memcpy(&elem->cmd_data.vlan_mac, &p->user_req, sizeof(p->user_req)); /* Try to add a new command to the pending list */ return bnx2x_exe_queue_add(bp, &o->exe_queue, elem, restore); } /** * bnx2x_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules. * * @bp: device handle * @p: * */ int bnx2x_config_vlan_mac(struct bnx2x *bp, struct bnx2x_vlan_mac_ramrod_params *p) { int rc = 0; struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj; unsigned long *ramrod_flags = &p->ramrod_flags; bool cont = test_bit(RAMROD_CONT, ramrod_flags); struct bnx2x_raw_obj *raw = &o->raw; /* * Add new elements to the execution list for commands that require it. */ if (!cont) { rc = bnx2x_vlan_mac_push_new_cmd(bp, p); if (rc) return rc; } /* If nothing will be executed further in this iteration we want to * return PENDING if there are pending commands */ if (!bnx2x_exe_queue_empty(&o->exe_queue)) rc = 1; if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) { DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n"); raw->clear_pending(raw); } /* Execute commands if required */ if (cont || test_bit(RAMROD_EXEC, ramrod_flags) || test_bit(RAMROD_COMP_WAIT, ramrod_flags)) { rc = __bnx2x_vlan_mac_execute_step(bp, p->vlan_mac_obj, &p->ramrod_flags); if (rc < 0) return rc; } /* RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set * then user want to wait until the last command is done. */ if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) { /* Wait maximum for the current exe_queue length iterations plus * one (for the current pending command). */ int max_iterations = bnx2x_exe_queue_length(&o->exe_queue) + 1; while (!bnx2x_exe_queue_empty(&o->exe_queue) && max_iterations--) { /* Wait for the current command to complete */ rc = raw->wait_comp(bp, raw); if (rc) return rc; /* Make a next step */ rc = __bnx2x_vlan_mac_execute_step(bp, p->vlan_mac_obj, &p->ramrod_flags); if (rc < 0) return rc; } return 0; } return rc; } /** * bnx2x_vlan_mac_del_all - delete elements with given vlan_mac_flags spec * * @bp: device handle * @o: * @vlan_mac_flags: * @ramrod_flags: execution flags to be used for this deletion * * if the last operation has completed successfully and there are no * more elements left, positive value if the last operation has completed * successfully and there are more previously configured elements, negative * value is current operation has failed. */ static int bnx2x_vlan_mac_del_all(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o, unsigned long *vlan_mac_flags, unsigned long *ramrod_flags) { struct bnx2x_vlan_mac_registry_elem *pos = NULL; struct bnx2x_vlan_mac_ramrod_params p; struct bnx2x_exe_queue_obj *exeq = &o->exe_queue; struct bnx2x_exeq_elem *exeq_pos, *exeq_pos_n; unsigned long flags; int read_lock; int rc = 0; /* Clear pending commands first */ spin_lock_bh(&exeq->lock); list_for_each_entry_safe(exeq_pos, exeq_pos_n, &exeq->exe_queue, link) { flags = exeq_pos->cmd_data.vlan_mac.vlan_mac_flags; if (BNX2X_VLAN_MAC_CMP_FLAGS(flags) == BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) { rc = exeq->remove(bp, exeq->owner, exeq_pos); if (rc) { BNX2X_ERR("Failed to remove command\n"); spin_unlock_bh(&exeq->lock); return rc; } list_del(&exeq_pos->link); bnx2x_exe_queue_free_elem(bp, exeq_pos); } } spin_unlock_bh(&exeq->lock); /* Prepare a command request */ memset(&p, 0, sizeof(p)); p.vlan_mac_obj = o; p.ramrod_flags = *ramrod_flags; p.user_req.cmd = BNX2X_VLAN_MAC_DEL; /* Add all but the last VLAN-MAC to the execution queue without actually * execution anything. */ __clear_bit(RAMROD_COMP_WAIT, &p.ramrod_flags); __clear_bit(RAMROD_EXEC, &p.ramrod_flags); __clear_bit(RAMROD_CONT, &p.ramrod_flags); DP(BNX2X_MSG_SP, "vlan_mac_del_all -- taking vlan_mac_lock (reader)\n"); read_lock = bnx2x_vlan_mac_h_read_lock(bp, o); if (read_lock != 0) return read_lock; list_for_each_entry(pos, &o->head, link) { flags = pos->vlan_mac_flags; if (BNX2X_VLAN_MAC_CMP_FLAGS(flags) == BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) { p.user_req.vlan_mac_flags = pos->vlan_mac_flags; memcpy(&p.user_req.u, &pos->u, sizeof(pos->u)); rc = bnx2x_config_vlan_mac(bp, &p); if (rc < 0) { BNX2X_ERR("Failed to add a new DEL command\n"); bnx2x_vlan_mac_h_read_unlock(bp, o); return rc; } } } DP(BNX2X_MSG_SP, "vlan_mac_del_all -- releasing vlan_mac_lock (reader)\n"); bnx2x_vlan_mac_h_read_unlock(bp, o); p.ramrod_flags = *ramrod_flags; __set_bit(RAMROD_CONT, &p.ramrod_flags); return bnx2x_config_vlan_mac(bp, &p); } static inline void bnx2x_init_raw_obj(struct bnx2x_raw_obj *raw, u8 cl_id, u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping, int state, unsigned long *pstate, bnx2x_obj_type type) { raw->func_id = func_id; raw->cid = cid; raw->cl_id = cl_id; raw->rdata = rdata; raw->rdata_mapping = rdata_mapping; raw->state = state; raw->pstate = pstate; raw->obj_type = type; raw->check_pending = bnx2x_raw_check_pending; raw->clear_pending = bnx2x_raw_clear_pending; raw->set_pending = bnx2x_raw_set_pending; raw->wait_comp = bnx2x_raw_wait; } static inline void bnx2x_init_vlan_mac_common(struct bnx2x_vlan_mac_obj *o, u8 cl_id, u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping, int state, unsigned long *pstate, bnx2x_obj_type type, struct bnx2x_credit_pool_obj *macs_pool, struct bnx2x_credit_pool_obj *vlans_pool) { INIT_LIST_HEAD(&o->head); o->head_reader = 0; o->head_exe_request = false; o->saved_ramrod_flags = 0; o->macs_pool = macs_pool; o->vlans_pool = vlans_pool; o->delete_all = bnx2x_vlan_mac_del_all; o->restore = bnx2x_vlan_mac_restore; o->complete = bnx2x_complete_vlan_mac; o->wait = bnx2x_wait_vlan_mac; bnx2x_init_raw_obj(&o->raw, cl_id, cid, func_id, rdata, rdata_mapping, state, pstate, type); } void bnx2x_init_mac_obj(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *mac_obj, u8 cl_id, u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping, int state, unsigned long *pstate, bnx2x_obj_type type, struct bnx2x_credit_pool_obj *macs_pool) { union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)mac_obj; bnx2x_init_vlan_mac_common(mac_obj, cl_id, cid, func_id, rdata, rdata_mapping, state, pstate, type, macs_pool, NULL); /* CAM credit pool handling */ mac_obj->get_credit = bnx2x_get_credit_mac; mac_obj->put_credit = bnx2x_put_credit_mac; mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac; mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac; if (CHIP_IS_E1x(bp)) { mac_obj->set_one_rule = bnx2x_set_one_mac_e1x; mac_obj->check_del = bnx2x_check_mac_del; mac_obj->check_add = bnx2x_check_mac_add; mac_obj->check_move = bnx2x_check_move_always_err; mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_SET_MAC; /* Exe Queue */ bnx2x_exe_queue_init(bp, &mac_obj->exe_queue, 1, qable_obj, bnx2x_validate_vlan_mac, bnx2x_remove_vlan_mac, bnx2x_optimize_vlan_mac, bnx2x_execute_vlan_mac, bnx2x_exeq_get_mac); } else { mac_obj->set_one_rule = bnx2x_set_one_mac_e2; mac_obj->check_del = bnx2x_check_mac_del; mac_obj->check_add = bnx2x_check_mac_add; mac_obj->check_move = bnx2x_check_move; mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES; mac_obj->get_n_elements = bnx2x_get_n_elements; /* Exe Queue */ bnx2x_exe_queue_init(bp, &mac_obj->exe_queue, CLASSIFY_RULES_COUNT, qable_obj, bnx2x_validate_vlan_mac, bnx2x_remove_vlan_mac, bnx2x_optimize_vlan_mac, bnx2x_execute_vlan_mac, bnx2x_exeq_get_mac); } } void bnx2x_init_vlan_obj(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *vlan_obj, u8 cl_id, u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping, int state, unsigned long *pstate, bnx2x_obj_type type, struct bnx2x_credit_pool_obj *vlans_pool) { union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)vlan_obj; bnx2x_init_vlan_mac_common(vlan_obj, cl_id, cid, func_id, rdata, rdata_mapping, state, pstate, type, NULL, vlans_pool); vlan_obj->get_credit = bnx2x_get_credit_vlan; vlan_obj->put_credit = bnx2x_put_credit_vlan; vlan_obj->get_cam_offset = bnx2x_get_cam_offset_vlan; vlan_obj->put_cam_offset = bnx2x_put_cam_offset_vlan; if (CHIP_IS_E1x(bp)) { BNX2X_ERR("Do not support chips others than E2 and newer\n"); BUG(); } else { vlan_obj->set_one_rule = bnx2x_set_one_vlan_e2; vlan_obj->check_del = bnx2x_check_vlan_del; vlan_obj->check_add = bnx2x_check_vlan_add; vlan_obj->check_move = bnx2x_check_move; vlan_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES; vlan_obj->get_n_elements = bnx2x_get_n_elements; /* Exe Queue */ bnx2x_exe_queue_init(bp, &vlan_obj->exe_queue, CLASSIFY_RULES_COUNT, qable_obj, bnx2x_validate_vlan_mac, bnx2x_remove_vlan_mac, bnx2x_optimize_vlan_mac, bnx2x_execute_vlan_mac, bnx2x_exeq_get_vlan); } } void bnx2x_init_vlan_mac_obj(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *vlan_mac_obj, u8 cl_id, u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping, int state, unsigned long *pstate, bnx2x_obj_type type, struct bnx2x_credit_pool_obj *macs_pool, struct bnx2x_credit_pool_obj *vlans_pool) { union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)vlan_mac_obj; bnx2x_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id, rdata, rdata_mapping, state, pstate, type, macs_pool, vlans_pool); /* CAM pool handling */ vlan_mac_obj->get_credit = bnx2x_get_credit_vlan_mac; vlan_mac_obj->put_credit = bnx2x_put_credit_vlan_mac; /* CAM offset is relevant for 57710 and 57711 chips only which have a * single CAM for both MACs and VLAN-MAC pairs. So the offset * will be taken from MACs' pool object only. */ vlan_mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac; vlan_mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac; if (CHIP_IS_E1(bp)) { BNX2X_ERR("Do not support chips others than E2\n"); BUG(); } else if (CHIP_IS_E1H(bp)) { vlan_mac_obj->set_one_rule = bnx2x_set_one_vlan_mac_e1h; vlan_mac_obj->check_del = bnx2x_check_vlan_mac_del; vlan_mac_obj->check_add = bnx2x_check_vlan_mac_add; vlan_mac_obj->check_move = bnx2x_check_move_always_err; vlan_mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_SET_MAC; /* Exe Queue */ bnx2x_exe_queue_init(bp, &vlan_mac_obj->exe_queue, 1, qable_obj, bnx2x_validate_vlan_mac, bnx2x_remove_vlan_mac, bnx2x_optimize_vlan_mac, bnx2x_execute_vlan_mac, bnx2x_exeq_get_vlan_mac); } else { vlan_mac_obj->set_one_rule = bnx2x_set_one_vlan_mac_e2; vlan_mac_obj->check_del = bnx2x_check_vlan_mac_del; vlan_mac_obj->check_add = bnx2x_check_vlan_mac_add; vlan_mac_obj->check_move = bnx2x_check_move; vlan_mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES; /* Exe Queue */ bnx2x_exe_queue_init(bp, &vlan_mac_obj->exe_queue, CLASSIFY_RULES_COUNT, qable_obj, bnx2x_validate_vlan_mac, bnx2x_remove_vlan_mac, bnx2x_optimize_vlan_mac, bnx2x_execute_vlan_mac, bnx2x_exeq_get_vlan_mac); } } /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */ static inline void __storm_memset_mac_filters(struct bnx2x *bp, struct tstorm_eth_mac_filter_config *mac_filters, u16 pf_id) { size_t size = sizeof(struct tstorm_eth_mac_filter_config); u32 addr = BAR_TSTRORM_INTMEM + TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id); __storm_memset_struct(bp, addr, size, (u32 *)mac_filters); } static int bnx2x_set_rx_mode_e1x(struct bnx2x *bp, struct bnx2x_rx_mode_ramrod_params *p) { /* update the bp MAC filter structure */ u32 mask = (1 << p->cl_id); struct tstorm_eth_mac_filter_config *mac_filters = (struct tstorm_eth_mac_filter_config *)p->rdata; /* initial setting is drop-all */ u8 drop_all_ucast = 1, drop_all_mcast = 1; u8 accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0; u8 unmatched_unicast = 0; /* In e1x there we only take into account rx accept flag since tx switching * isn't enabled. */ if (test_bit(BNX2X_ACCEPT_UNICAST, &p->rx_accept_flags)) /* accept matched ucast */ drop_all_ucast = 0; if (test_bit(BNX2X_ACCEPT_MULTICAST, &p->rx_accept_flags)) /* accept matched mcast */ drop_all_mcast = 0; if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, &p->rx_accept_flags)) { /* accept all mcast */ drop_all_ucast = 0; accp_all_ucast = 1; } if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, &p->rx_accept_flags)) { /* accept all mcast */ drop_all_mcast = 0; accp_all_mcast = 1; } if (test_bit(BNX2X_ACCEPT_BROADCAST, &p->rx_accept_flags)) /* accept (all) bcast */ accp_all_bcast = 1; if (test_bit(BNX2X_ACCEPT_UNMATCHED, &p->rx_accept_flags)) /* accept unmatched unicasts */ unmatched_unicast = 1; mac_filters->ucast_drop_all = drop_all_ucast ? mac_filters->ucast_drop_all | mask : mac_filters->ucast_drop_all & ~mask; mac_filters->mcast_drop_all = drop_all_mcast ? mac_filters->mcast_drop_all | mask : mac_filters->mcast_drop_all & ~mask; mac_filters->ucast_accept_all = accp_all_ucast ? mac_filters->ucast_accept_all | mask : mac_filters->ucast_accept_all & ~mask; mac_filters->mcast_accept_all = accp_all_mcast ? mac_filters->mcast_accept_all | mask : mac_filters->mcast_accept_all & ~mask; mac_filters->bcast_accept_all = accp_all_bcast ? mac_filters->bcast_accept_all | mask : mac_filters->bcast_accept_all & ~mask; mac_filters->unmatched_unicast = unmatched_unicast ? mac_filters->unmatched_unicast | mask : mac_filters->unmatched_unicast & ~mask; DP(BNX2X_MSG_SP, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n" "accp_mcast 0x%x\naccp_bcast 0x%x\n", mac_filters->ucast_drop_all, mac_filters->mcast_drop_all, mac_filters->ucast_accept_all, mac_filters->mcast_accept_all, mac_filters->bcast_accept_all); /* write the MAC filter structure*/ __storm_memset_mac_filters(bp, mac_filters, p->func_id); /* The operation is completed */ clear_bit(p->state, p->pstate); smp_mb__after_atomic(); return 0; } /* Setup ramrod data */ static inline void bnx2x_rx_mode_set_rdata_hdr_e2(u32 cid, struct eth_classify_header *hdr, u8 rule_cnt) { hdr->echo = cpu_to_le32(cid); hdr->rule_cnt = rule_cnt; } static inline void bnx2x_rx_mode_set_cmd_state_e2(struct bnx2x *bp, unsigned long *accept_flags, struct eth_filter_rules_cmd *cmd, bool clear_accept_all) { u16 state; /* start with 'drop-all' */ state = ETH_FILTER_RULES_CMD_UCAST_DROP_ALL | ETH_FILTER_RULES_CMD_MCAST_DROP_ALL; if (test_bit(BNX2X_ACCEPT_UNICAST, accept_flags)) state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL; if (test_bit(BNX2X_ACCEPT_MULTICAST, accept_flags)) state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL; if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, accept_flags)) { state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL; state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL; } if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, accept_flags)) { state |= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL; state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL; } if (test_bit(BNX2X_ACCEPT_BROADCAST, accept_flags)) state |= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL; if (test_bit(BNX2X_ACCEPT_UNMATCHED, accept_flags)) { state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL; state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED; } if (test_bit(BNX2X_ACCEPT_ANY_VLAN, accept_flags)) state |= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN; /* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */ if (clear_accept_all) { state &= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL; state &= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL; state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL; state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED; } cmd->state = cpu_to_le16(state); } static int bnx2x_set_rx_mode_e2(struct bnx2x *bp, struct bnx2x_rx_mode_ramrod_params *p) { struct eth_filter_rules_ramrod_data *data = p->rdata; int rc; u8 rule_idx = 0; /* Reset the ramrod data buffer */ memset(data, 0, sizeof(*data)); /* Setup ramrod data */ /* Tx (internal switching) */ if (test_bit(RAMROD_TX, &p->ramrod_flags)) { data->rules[rule_idx].client_id = p->cl_id; data->rules[rule_idx].func_id = p->func_id; data->rules[rule_idx].cmd_general_data = ETH_FILTER_RULES_CMD_TX_CMD; bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags, &(data->rules[rule_idx++]), false); } /* Rx */ if (test_bit(RAMROD_RX, &p->ramrod_flags)) { data->rules[rule_idx].client_id = p->cl_id; data->rules[rule_idx].func_id = p->func_id; data->rules[rule_idx].cmd_general_data = ETH_FILTER_RULES_CMD_RX_CMD; bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags, &(data->rules[rule_idx++]), false); } /* If FCoE Queue configuration has been requested configure the Rx and * internal switching modes for this queue in separate rules. * * FCoE queue shell never be set to ACCEPT_ALL packets of any sort: * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED. */ if (test_bit(BNX2X_RX_MODE_FCOE_ETH, &p->rx_mode_flags)) { /* Tx (internal switching) */ if (test_bit(RAMROD_TX, &p->ramrod_flags)) { data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id); data->rules[rule_idx].func_id = p->func_id; data->rules[rule_idx].cmd_general_data = ETH_FILTER_RULES_CMD_TX_CMD; bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags, &(data->rules[rule_idx]), true); rule_idx++; } /* Rx */ if (test_bit(RAMROD_RX, &p->ramrod_flags)) { data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id); data->rules[rule_idx].func_id = p->func_id; data->rules[rule_idx].cmd_general_data = ETH_FILTER_RULES_CMD_RX_CMD; bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags, &(data->rules[rule_idx]), true); rule_idx++; } } /* Set the ramrod header (most importantly - number of rules to * configure). */ bnx2x_rx_mode_set_rdata_hdr_e2(p->cid, &data->header, rule_idx); DP(BNX2X_MSG_SP, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n", data->header.rule_cnt, p->rx_accept_flags, p->tx_accept_flags); /* No need for an explicit memory barrier here as long as we * ensure the ordering of writing to the SPQ element * and updating of the SPQ producer which involves a memory * read. If the memory read is removed we will have to put a * full memory barrier there (inside bnx2x_sp_post()). */ /* Send a ramrod */ rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_FILTER_RULES, p->cid, U64_HI(p->rdata_mapping), U64_LO(p->rdata_mapping), ETH_CONNECTION_TYPE); if (rc) return rc; /* Ramrod completion is pending */ return 1; } static int bnx2x_wait_rx_mode_comp_e2(struct bnx2x *bp, struct bnx2x_rx_mode_ramrod_params *p) { return bnx2x_state_wait(bp, p->state, p->pstate); } static int bnx2x_empty_rx_mode_wait(struct bnx2x *bp, struct bnx2x_rx_mode_ramrod_params *p) { /* Do nothing */ return 0; } int bnx2x_config_rx_mode(struct bnx2x *bp, struct bnx2x_rx_mode_ramrod_params *p) { int rc; /* Configure the new classification in the chip */ rc = p->rx_mode_obj->config_rx_mode(bp, p); if (rc < 0) return rc; /* Wait for a ramrod completion if was requested */ if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) { rc = p->rx_mode_obj->wait_comp(bp, p); if (rc) return rc; } return rc; } void bnx2x_init_rx_mode_obj(struct bnx2x *bp, struct bnx2x_rx_mode_obj *o) { if (CHIP_IS_E1x(bp)) { o->wait_comp = bnx2x_empty_rx_mode_wait; o->config_rx_mode = bnx2x_set_rx_mode_e1x; } else { o->wait_comp = bnx2x_wait_rx_mode_comp_e2; o->config_rx_mode = bnx2x_set_rx_mode_e2; } } /********************* Multicast verbs: SET, CLEAR ****************************/ static inline u8 bnx2x_mcast_bin_from_mac(u8 *mac) { return (crc32c_le(0, mac, ETH_ALEN) >> 24) & 0xff; } struct bnx2x_mcast_mac_elem { struct list_head link; u8 mac[ETH_ALEN]; u8 pad[2]; /* For a natural alignment of the following buffer */ }; struct bnx2x_mcast_bin_elem { struct list_head link; int bin; int type; /* BNX2X_MCAST_CMD_SET_{ADD, DEL} */ }; union bnx2x_mcast_elem { struct bnx2x_mcast_bin_elem bin_elem; struct bnx2x_mcast_mac_elem mac_elem; }; struct bnx2x_mcast_elem_group { struct list_head mcast_group_link; union bnx2x_mcast_elem mcast_elems[]; }; #define MCAST_MAC_ELEMS_PER_PG \ ((PAGE_SIZE - sizeof(struct bnx2x_mcast_elem_group)) / \ sizeof(union bnx2x_mcast_elem)) struct bnx2x_pending_mcast_cmd { struct list_head link; struct list_head group_head; int type; /* BNX2X_MCAST_CMD_X */ union { struct list_head macs_head; u32 macs_num; /* Needed for DEL command */ int next_bin; /* Needed for RESTORE flow with aprox match */ } data; bool set_convert; /* in case type == BNX2X_MCAST_CMD_SET, this is set * when macs_head had been converted to a list of * bnx2x_mcast_bin_elem. */ bool done; /* set to true, when the command has been handled, * practically used in 57712 handling only, where one pending * command may be handled in a few operations. As long as for * other chips every operation handling is completed in a * single ramrod, there is no need to utilize this field. */ }; static int bnx2x_mcast_wait(struct bnx2x *bp, struct bnx2x_mcast_obj *o) { if (bnx2x_state_wait(bp, o->sched_state, o->raw.pstate) || o->raw.wait_comp(bp, &o->raw)) return -EBUSY; return 0; } static void bnx2x_free_groups(struct list_head *mcast_group_list) { struct bnx2x_mcast_elem_group *current_mcast_group; while (!list_empty(mcast_group_list)) { current_mcast_group = list_first_entry(mcast_group_list, struct bnx2x_mcast_elem_group, mcast_group_link); list_del(¤t_mcast_group->mcast_group_link); free_page((unsigned long)current_mcast_group); } } static int bnx2x_mcast_enqueue_cmd(struct bnx2x *bp, struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p, enum bnx2x_mcast_cmd cmd) { struct bnx2x_pending_mcast_cmd *new_cmd; struct bnx2x_mcast_list_elem *pos; struct bnx2x_mcast_elem_group *elem_group; struct bnx2x_mcast_mac_elem *mac_elem; int total_elems = 0, macs_list_len = 0, offset = 0; /* When adding MACs we'll need to store their values */ if (cmd == BNX2X_MCAST_CMD_ADD || cmd == BNX2X_MCAST_CMD_SET) macs_list_len = p->mcast_list_len; /* If the command is empty ("handle pending commands only"), break */ if (!p->mcast_list_len) return 0; /* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */ new_cmd = kzalloc(sizeof(*new_cmd), GFP_ATOMIC); if (!new_cmd) return -ENOMEM; INIT_LIST_HEAD(&new_cmd->data.macs_head); INIT_LIST_HEAD(&new_cmd->group_head); new_cmd->type = cmd; new_cmd->done = false; DP(BNX2X_MSG_SP, "About to enqueue a new %d command. macs_list_len=%d\n", cmd, macs_list_len); switch (cmd) { case BNX2X_MCAST_CMD_ADD: case BNX2X_MCAST_CMD_SET: /* For a set command, we need to allocate sufficient memory for * all the bins, since we can't analyze at this point how much * memory would be required. */ total_elems = macs_list_len; if (cmd == BNX2X_MCAST_CMD_SET) { if (total_elems < BNX2X_MCAST_BINS_NUM) total_elems = BNX2X_MCAST_BINS_NUM; } while (total_elems > 0) { elem_group = (struct bnx2x_mcast_elem_group *) __get_free_page(GFP_ATOMIC | __GFP_ZERO); if (!elem_group) { bnx2x_free_groups(&new_cmd->group_head); kfree(new_cmd); return -ENOMEM; } total_elems -= MCAST_MAC_ELEMS_PER_PG; list_add_tail(&elem_group->mcast_group_link, &new_cmd->group_head); } elem_group = list_first_entry(&new_cmd->group_head, struct bnx2x_mcast_elem_group, mcast_group_link); list_for_each_entry(pos, &p->mcast_list, link) { mac_elem = &elem_group->mcast_elems[offset].mac_elem; memcpy(mac_elem->mac, pos->mac, ETH_ALEN); /* Push the MACs of the current command into the pending * command MACs list: FIFO */ list_add_tail(&mac_elem->link, &new_cmd->data.macs_head); offset++; if (offset == MCAST_MAC_ELEMS_PER_PG) { offset = 0; elem_group = list_next_entry(elem_group, mcast_group_link); } } break; case BNX2X_MCAST_CMD_DEL: new_cmd->data.macs_num = p->mcast_list_len; break; case BNX2X_MCAST_CMD_RESTORE: new_cmd->data.next_bin = 0; break; default: kfree(new_cmd); BNX2X_ERR("Unknown command: %d\n", cmd); return -EINVAL; } /* Push the new pending command to the tail of the pending list: FIFO */ list_add_tail(&new_cmd->link, &o->pending_cmds_head); o->set_sched(o); return 1; } /** * bnx2x_mcast_get_next_bin - get the next set bin (index) * * @o: * @last: index to start looking from (including) * * returns the next found (set) bin or a negative value if none is found. */ static inline int bnx2x_mcast_get_next_bin(struct bnx2x_mcast_obj *o, int last) { int i, j, inner_start = last % BIT_VEC64_ELEM_SZ; for (i = last / BIT_VEC64_ELEM_SZ; i < BNX2X_MCAST_VEC_SZ; i++) { if (o->registry.aprox_match.vec[i]) for (j = inner_start; j < BIT_VEC64_ELEM_SZ; j++) { int cur_bit = j + BIT_VEC64_ELEM_SZ * i; if (BIT_VEC64_TEST_BIT(o->registry.aprox_match. vec, cur_bit)) { return cur_bit; } } inner_start = 0; } /* None found */ return -1; } /** * bnx2x_mcast_clear_first_bin - find the first set bin and clear it * * @o: * * returns the index of the found bin or -1 if none is found */ static inline int bnx2x_mcast_clear_first_bin(struct bnx2x_mcast_obj *o) { int cur_bit = bnx2x_mcast_get_next_bin(o, 0); if (cur_bit >= 0) BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, cur_bit); return cur_bit; } static inline u8 bnx2x_mcast_get_rx_tx_flag(struct bnx2x_mcast_obj *o) { struct bnx2x_raw_obj *raw = &o->raw; u8 rx_tx_flag = 0; if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) || (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX)) rx_tx_flag |= ETH_MULTICAST_RULES_CMD_TX_CMD; if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) || (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX)) rx_tx_flag |= ETH_MULTICAST_RULES_CMD_RX_CMD; return rx_tx_flag; } static void bnx2x_mcast_set_one_rule_e2(struct bnx2x *bp, struct bnx2x_mcast_obj *o, int idx, union bnx2x_mcast_config_data *cfg_data, enum bnx2x_mcast_cmd cmd) { struct bnx2x_raw_obj *r = &o->raw; struct eth_multicast_rules_ramrod_data *data = (struct eth_multicast_rules_ramrod_data *)(r->rdata); u8 func_id = r->func_id; u8 rx_tx_add_flag = bnx2x_mcast_get_rx_tx_flag(o); int bin; if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE) || (cmd == BNX2X_MCAST_CMD_SET_ADD)) rx_tx_add_flag |= ETH_MULTICAST_RULES_CMD_IS_ADD; data->rules[idx].cmd_general_data |= rx_tx_add_flag; /* Get a bin and update a bins' vector */ switch (cmd) { case BNX2X_MCAST_CMD_ADD: bin = bnx2x_mcast_bin_from_mac(cfg_data->mac); BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin); break; case BNX2X_MCAST_CMD_DEL: /* If there were no more bins to clear * (bnx2x_mcast_clear_first_bin() returns -1) then we would * clear any (0xff) bin. * See bnx2x_mcast_validate_e2() for explanation when it may * happen. */ bin = bnx2x_mcast_clear_first_bin(o); break; case BNX2X_MCAST_CMD_RESTORE: bin = cfg_data->bin; break; case BNX2X_MCAST_CMD_SET_ADD: bin = cfg_data->bin; BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin); break; case BNX2X_MCAST_CMD_SET_DEL: bin = cfg_data->bin; BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, bin); break; default: BNX2X_ERR("Unknown command: %d\n", cmd); return; } DP(BNX2X_MSG_SP, "%s bin %d\n", ((rx_tx_add_flag & ETH_MULTICAST_RULES_CMD_IS_ADD) ? "Setting" : "Clearing"), bin); data->rules[idx].bin_id = (u8)bin; data->rules[idx].func_id = func_id; data->rules[idx].engine_id = o->engine_id; } /** * bnx2x_mcast_handle_restore_cmd_e2 - restore configuration from the registry * * @bp: device handle * @o: * @start_bin: index in the registry to start from (including) * @rdata_idx: index in the ramrod data to start from * * returns last handled bin index or -1 if all bins have been handled */ static inline int bnx2x_mcast_handle_restore_cmd_e2( struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_bin, int *rdata_idx) { int cur_bin, cnt = *rdata_idx; union bnx2x_mcast_config_data cfg_data = {NULL}; /* go through the registry and configure the bins from it */ for (cur_bin = bnx2x_mcast_get_next_bin(o, start_bin); cur_bin >= 0; cur_bin = bnx2x_mcast_get_next_bin(o, cur_bin + 1)) { cfg_data.bin = (u8)cur_bin; o->set_one_rule(bp, o, cnt, &cfg_data, BNX2X_MCAST_CMD_RESTORE); cnt++; DP(BNX2X_MSG_SP, "About to configure a bin %d\n", cur_bin); /* Break if we reached the maximum number * of rules. */ if (cnt >= o->max_cmd_len) break; } *rdata_idx = cnt; return cur_bin; } static inline void bnx2x_mcast_hdl_pending_add_e2(struct bnx2x *bp, struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos, int *line_idx) { struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n; int cnt = *line_idx; union bnx2x_mcast_config_data cfg_data = {NULL}; list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head, link) { cfg_data.mac = &pmac_pos->mac[0]; o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type); cnt++; DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n", pmac_pos->mac); list_del(&pmac_pos->link); /* Break if we reached the maximum number * of rules. */ if (cnt >= o->max_cmd_len) break; } *line_idx = cnt; /* if no more MACs to configure - we are done */ if (list_empty(&cmd_pos->data.macs_head)) cmd_pos->done = true; } static inline void bnx2x_mcast_hdl_pending_del_e2(struct bnx2x *bp, struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos, int *line_idx) { int cnt = *line_idx; while (cmd_pos->data.macs_num) { o->set_one_rule(bp, o, cnt, NULL, cmd_pos->type); cnt++; cmd_pos->data.macs_num--; DP(BNX2X_MSG_SP, "Deleting MAC. %d left,cnt is %d\n", cmd_pos->data.macs_num, cnt); /* Break if we reached the maximum * number of rules. */ if (cnt >= o->max_cmd_len) break; } *line_idx = cnt; /* If we cleared all bins - we are done */ if (!cmd_pos->data.macs_num) cmd_pos->done = true; } static inline void bnx2x_mcast_hdl_pending_restore_e2(struct bnx2x *bp, struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos, int *line_idx) { cmd_pos->data.next_bin = o->hdl_restore(bp, o, cmd_pos->data.next_bin, line_idx); if (cmd_pos->data.next_bin < 0) /* If o->set_restore returned -1 we are done */ cmd_pos->done = true; else /* Start from the next bin next time */ cmd_pos->data.next_bin++; } static void bnx2x_mcast_hdl_pending_set_e2_convert(struct bnx2x *bp, struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos) { u64 cur[BNX2X_MCAST_VEC_SZ], req[BNX2X_MCAST_VEC_SZ]; struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n; struct bnx2x_mcast_bin_elem *p_item; struct bnx2x_mcast_elem_group *elem_group; int cnt = 0, mac_cnt = 0, offset = 0, i; memset(req, 0, sizeof(u64) * BNX2X_MCAST_VEC_SZ); memcpy(cur, o->registry.aprox_match.vec, sizeof(u64) * BNX2X_MCAST_VEC_SZ); /* Fill `current' with the required set of bins to configure */ list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head, link) { int bin = bnx2x_mcast_bin_from_mac(pmac_pos->mac); DP(BNX2X_MSG_SP, "Set contains %pM mcast MAC\n", pmac_pos->mac); BIT_VEC64_SET_BIT(req, bin); list_del(&pmac_pos->link); mac_cnt++; } /* We no longer have use for the MACs; Need to re-use memory for * a list that will be used to configure bins. */ cmd_pos->set_convert = true; INIT_LIST_HEAD(&cmd_pos->data.macs_head); elem_group = list_first_entry(&cmd_pos->group_head, struct bnx2x_mcast_elem_group, mcast_group_link); for (i = 0; i < BNX2X_MCAST_BINS_NUM; i++) { bool b_current = !!BIT_VEC64_TEST_BIT(cur, i); bool b_required = !!BIT_VEC64_TEST_BIT(req, i); if (b_current == b_required) continue; p_item = &elem_group->mcast_elems[offset].bin_elem; p_item->bin = i; p_item->type = b_required ? BNX2X_MCAST_CMD_SET_ADD : BNX2X_MCAST_CMD_SET_DEL; list_add_tail(&p_item->link , &cmd_pos->data.macs_head); cnt++; offset++; if (offset == MCAST_MAC_ELEMS_PER_PG) { offset = 0; elem_group = list_next_entry(elem_group, mcast_group_link); } } /* We now definitely know how many commands are hiding here. * Also need to correct the disruption we've added to guarantee this * would be enqueued. */ o->total_pending_num -= (o->max_cmd_len + mac_cnt); o->total_pending_num += cnt; DP(BNX2X_MSG_SP, "o->total_pending_num=%d\n", o->total_pending_num); } static void bnx2x_mcast_hdl_pending_set_e2(struct bnx2x *bp, struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos, int *cnt) { union bnx2x_mcast_config_data cfg_data = {NULL}; struct bnx2x_mcast_bin_elem *p_item, *p_item_n; /* This is actually a 2-part scheme - it starts by converting the MACs * into a list of bins to be added/removed, and correcting the numbers * on the object. this is now allowed, as we're now sure that all * previous configured requests have already applied. * The second part is actually adding rules for the newly introduced * entries [like all the rest of the hdl_pending functions]. */ if (!cmd_pos->set_convert) bnx2x_mcast_hdl_pending_set_e2_convert(bp, o, cmd_pos); list_for_each_entry_safe(p_item, p_item_n, &cmd_pos->data.macs_head, link) { cfg_data.bin = (u8)p_item->bin; o->set_one_rule(bp, o, *cnt, &cfg_data, p_item->type); (*cnt)++; list_del(&p_item->link); /* Break if we reached the maximum number of rules. */ if (*cnt >= o->max_cmd_len) break; } /* if no more MACs to configure - we are done */ if (list_empty(&cmd_pos->data.macs_head)) cmd_pos->done = true; } static inline int bnx2x_mcast_handle_pending_cmds_e2(struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p) { struct bnx2x_pending_mcast_cmd *cmd_pos, *cmd_pos_n; int cnt = 0; struct bnx2x_mcast_obj *o = p->mcast_obj; list_for_each_entry_safe(cmd_pos, cmd_pos_n, &o->pending_cmds_head, link) { switch (cmd_pos->type) { case BNX2X_MCAST_CMD_ADD: bnx2x_mcast_hdl_pending_add_e2(bp, o, cmd_pos, &cnt); break; case BNX2X_MCAST_CMD_DEL: bnx2x_mcast_hdl_pending_del_e2(bp, o, cmd_pos, &cnt); break; case BNX2X_MCAST_CMD_RESTORE: bnx2x_mcast_hdl_pending_restore_e2(bp, o, cmd_pos, &cnt); break; case BNX2X_MCAST_CMD_SET: bnx2x_mcast_hdl_pending_set_e2(bp, o, cmd_pos, &cnt); break; default: BNX2X_ERR("Unknown command: %d\n", cmd_pos->type); return -EINVAL; } /* If the command has been completed - remove it from the list * and free the memory */ if (cmd_pos->done) { list_del(&cmd_pos->link); bnx2x_free_groups(&cmd_pos->group_head); kfree(cmd_pos); } /* Break if we reached the maximum number of rules */ if (cnt >= o->max_cmd_len) break; } return cnt; } static inline void bnx2x_mcast_hdl_add(struct bnx2x *bp, struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p, int *line_idx) { struct bnx2x_mcast_list_elem *mlist_pos; union bnx2x_mcast_config_data cfg_data = {NULL}; int cnt = *line_idx; list_for_each_entry(mlist_pos, &p->mcast_list, link) { cfg_data.mac = mlist_pos->mac; o->set_one_rule(bp, o, cnt, &cfg_data, BNX2X_MCAST_CMD_ADD); cnt++; DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n", mlist_pos->mac); } *line_idx = cnt; } static inline void bnx2x_mcast_hdl_del(struct bnx2x *bp, struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p, int *line_idx) { int cnt = *line_idx, i; for (i = 0; i < p->mcast_list_len; i++) { o->set_one_rule(bp, o, cnt, NULL, BNX2X_MCAST_CMD_DEL); cnt++; DP(BNX2X_MSG_SP, "Deleting MAC. %d left\n", p->mcast_list_len - i - 1); } *line_idx = cnt; } /** * bnx2x_mcast_handle_current_cmd - * * @bp: device handle * @p: * @cmd: * @start_cnt: first line in the ramrod data that may be used * * This function is called iff there is enough place for the current command in * the ramrod data. * Returns number of lines filled in the ramrod data in total. */ static inline int bnx2x_mcast_handle_current_cmd(struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p, enum bnx2x_mcast_cmd cmd, int start_cnt) { struct bnx2x_mcast_obj *o = p->mcast_obj; int cnt = start_cnt; DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len); switch (cmd) { case BNX2X_MCAST_CMD_ADD: bnx2x_mcast_hdl_add(bp, o, p, &cnt); break; case BNX2X_MCAST_CMD_DEL: bnx2x_mcast_hdl_del(bp, o, p, &cnt); break; case BNX2X_MCAST_CMD_RESTORE: o->hdl_restore(bp, o, 0, &cnt); break; default: BNX2X_ERR("Unknown command: %d\n", cmd); return -EINVAL; } /* The current command has been handled */ p->mcast_list_len = 0; return cnt; } static int bnx2x_mcast_validate_e2(struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p, enum bnx2x_mcast_cmd cmd) { struct bnx2x_mcast_obj *o = p->mcast_obj; int reg_sz = o->get_registry_size(o); switch (cmd) { /* DEL command deletes all currently configured MACs */ case BNX2X_MCAST_CMD_DEL: o->set_registry_size(o, 0); /* fall through */ /* RESTORE command will restore the entire multicast configuration */ case BNX2X_MCAST_CMD_RESTORE: /* Here we set the approximate amount of work to do, which in * fact may be only less as some MACs in postponed ADD * command(s) scheduled before this command may fall into * the same bin and the actual number of bins set in the * registry would be less than we estimated here. See * bnx2x_mcast_set_one_rule_e2() for further details. */ p->mcast_list_len = reg_sz; break; case BNX2X_MCAST_CMD_ADD: case BNX2X_MCAST_CMD_CONT: /* Here we assume that all new MACs will fall into new bins. * However we will correct the real registry size after we * handle all pending commands. */ o->set_registry_size(o, reg_sz + p->mcast_list_len); break; case BNX2X_MCAST_CMD_SET: /* We can only learn how many commands would actually be used * when this is being configured. So for now, simply guarantee * the command will be enqueued [to refrain from adding logic * that handles this and THEN learns it needs several ramrods]. * Just like for ADD/Cont, the mcast_list_len might be an over * estimation; or even more so, since we don't take into * account the possibility of removal of existing bins. */ o->set_registry_size(o, reg_sz + p->mcast_list_len); o->total_pending_num += o->max_cmd_len; break; default: BNX2X_ERR("Unknown command: %d\n", cmd); return -EINVAL; } /* Increase the total number of MACs pending to be configured */ o->total_pending_num += p->mcast_list_len; return 0; } static void bnx2x_mcast_revert_e2(struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p, int old_num_bins, enum bnx2x_mcast_cmd cmd) { struct bnx2x_mcast_obj *o = p->mcast_obj; o->set_registry_size(o, old_num_bins); o->total_pending_num -= p->mcast_list_len; if (cmd == BNX2X_MCAST_CMD_SET) o->total_pending_num -= o->max_cmd_len; } /** * bnx2x_mcast_set_rdata_hdr_e2 - sets a header values * * @bp: device handle * @p: * @len: number of rules to handle */ static inline void bnx2x_mcast_set_rdata_hdr_e2(struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p, u8 len) { struct bnx2x_raw_obj *r = &p->mcast_obj->raw; struct eth_multicast_rules_ramrod_data *data = (struct eth_multicast_rules_ramrod_data *)(r->rdata); data->header.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) | (BNX2X_FILTER_MCAST_PENDING << BNX2X_SWCID_SHIFT)); data->header.rule_cnt = len; } /** * bnx2x_mcast_refresh_registry_e2 - recalculate the actual number of set bins * * @bp: device handle * @o: * * Recalculate the actual number of set bins in the registry using Brian * Kernighan's algorithm: it's execution complexity is as a number of set bins. * * returns 0 for the compliance with bnx2x_mcast_refresh_registry_e1(). */ static inline int bnx2x_mcast_refresh_registry_e2(struct bnx2x *bp, struct bnx2x_mcast_obj *o) { int i, cnt = 0; u64 elem; for (i = 0; i < BNX2X_MCAST_VEC_SZ; i++) { elem = o->registry.aprox_match.vec[i]; for (; elem; cnt++) elem &= elem - 1; } o->set_registry_size(o, cnt); return 0; } static int bnx2x_mcast_setup_e2(struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p, enum bnx2x_mcast_cmd cmd) { struct bnx2x_raw_obj *raw = &p->mcast_obj->raw; struct bnx2x_mcast_obj *o = p->mcast_obj; struct eth_multicast_rules_ramrod_data *data = (struct eth_multicast_rules_ramrod_data *)(raw->rdata); int cnt = 0, rc; /* Reset the ramrod data buffer */ memset(data, 0, sizeof(*data)); cnt = bnx2x_mcast_handle_pending_cmds_e2(bp, p); /* If there are no more pending commands - clear SCHEDULED state */ if (list_empty(&o->pending_cmds_head)) o->clear_sched(o); /* The below may be true iff there was enough room in ramrod * data for all pending commands and for the current * command. Otherwise the current command would have been added * to the pending commands and p->mcast_list_len would have been * zeroed. */ if (p->mcast_list_len > 0) cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, cnt); /* We've pulled out some MACs - update the total number of * outstanding. */ o->total_pending_num -= cnt; /* send a ramrod */ WARN_ON(o->total_pending_num < 0); WARN_ON(cnt > o->max_cmd_len); bnx2x_mcast_set_rdata_hdr_e2(bp, p, (u8)cnt); /* Update a registry size if there are no more pending operations. * * We don't want to change the value of the registry size if there are * pending operations because we want it to always be equal to the * exact or the approximate number (see bnx2x_mcast_validate_e2()) of * set bins after the last requested operation in order to properly * evaluate the size of the next DEL/RESTORE operation. * * Note that we update the registry itself during command(s) handling * - see bnx2x_mcast_set_one_rule_e2(). That's because for 57712 we * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but * with a limited amount of update commands (per MAC/bin) and we don't * know in this scope what the actual state of bins configuration is * going to be after this ramrod. */ if (!o->total_pending_num) bnx2x_mcast_refresh_registry_e2(bp, o); /* If CLEAR_ONLY was requested - don't send a ramrod and clear * RAMROD_PENDING status immediately. due to the SET option, it's also * possible that after evaluating the differences there's no need for * a ramrod. In that case, we can skip it as well. */ if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags) || !cnt) { raw->clear_pending(raw); return 0; } else { /* No need for an explicit memory barrier here as long as we * ensure the ordering of writing to the SPQ element * and updating of the SPQ producer which involves a memory * read. If the memory read is removed we will have to put a * full memory barrier there (inside bnx2x_sp_post()). */ /* Send a ramrod */ rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_MULTICAST_RULES, raw->cid, U64_HI(raw->rdata_mapping), U64_LO(raw->rdata_mapping), ETH_CONNECTION_TYPE); if (rc) return rc; /* Ramrod completion is pending */ return 1; } } static int bnx2x_mcast_validate_e1h(struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p, enum bnx2x_mcast_cmd cmd) { if (cmd == BNX2X_MCAST_CMD_SET) { BNX2X_ERR("Can't use `set' command on e1h!\n"); return -EINVAL; } /* Mark, that there is a work to do */ if ((cmd == BNX2X_MCAST_CMD_DEL) || (cmd == BNX2X_MCAST_CMD_RESTORE)) p->mcast_list_len = 1; return 0; } static void bnx2x_mcast_revert_e1h(struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p, int old_num_bins, enum bnx2x_mcast_cmd cmd) { /* Do nothing */ } #define BNX2X_57711_SET_MC_FILTER(filter, bit) \ do { \ (filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \ } while (0) static inline void bnx2x_mcast_hdl_add_e1h(struct bnx2x *bp, struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p, u32 *mc_filter) { struct bnx2x_mcast_list_elem *mlist_pos; int bit; list_for_each_entry(mlist_pos, &p->mcast_list, link) { bit = bnx2x_mcast_bin_from_mac(mlist_pos->mac); BNX2X_57711_SET_MC_FILTER(mc_filter, bit); DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC, bin %d\n", mlist_pos->mac, bit); /* bookkeeping... */ BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bit); } } static inline void bnx2x_mcast_hdl_restore_e1h(struct bnx2x *bp, struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p, u32 *mc_filter) { int bit; for (bit = bnx2x_mcast_get_next_bin(o, 0); bit >= 0; bit = bnx2x_mcast_get_next_bin(o, bit + 1)) { BNX2X_57711_SET_MC_FILTER(mc_filter, bit); DP(BNX2X_MSG_SP, "About to set bin %d\n", bit); } } /* On 57711 we write the multicast MACs' approximate match * table by directly into the TSTORM's internal RAM. So we don't * really need to handle any tricks to make it work. */ static int bnx2x_mcast_setup_e1h(struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p, enum bnx2x_mcast_cmd cmd) { int i; struct bnx2x_mcast_obj *o = p->mcast_obj; struct bnx2x_raw_obj *r = &o->raw; /* If CLEAR_ONLY has been requested - clear the registry * and clear a pending bit. */ if (!test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) { u32 mc_filter[MC_HASH_SIZE] = {0}; /* Set the multicast filter bits before writing it into * the internal memory. */ switch (cmd) { case BNX2X_MCAST_CMD_ADD: bnx2x_mcast_hdl_add_e1h(bp, o, p, mc_filter); break; case BNX2X_MCAST_CMD_DEL: DP(BNX2X_MSG_SP, "Invalidating multicast MACs configuration\n"); /* clear the registry */ memset(o->registry.aprox_match.vec, 0, sizeof(o->registry.aprox_match.vec)); break; case BNX2X_MCAST_CMD_RESTORE: bnx2x_mcast_hdl_restore_e1h(bp, o, p, mc_filter); break; default: BNX2X_ERR("Unknown command: %d\n", cmd); return -EINVAL; } /* Set the mcast filter in the internal memory */ for (i = 0; i < MC_HASH_SIZE; i++) REG_WR(bp, MC_HASH_OFFSET(bp, i), mc_filter[i]); } else /* clear the registry */ memset(o->registry.aprox_match.vec, 0, sizeof(o->registry.aprox_match.vec)); /* We are done */ r->clear_pending(r); return 0; } static int bnx2x_mcast_validate_e1(struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p, enum bnx2x_mcast_cmd cmd) { struct bnx2x_mcast_obj *o = p->mcast_obj; int reg_sz = o->get_registry_size(o); if (cmd == BNX2X_MCAST_CMD_SET) { BNX2X_ERR("Can't use `set' command on e1!\n"); return -EINVAL; } switch (cmd) { /* DEL command deletes all currently configured MACs */ case BNX2X_MCAST_CMD_DEL: o->set_registry_size(o, 0); /* fall through */ /* RESTORE command will restore the entire multicast configuration */ case BNX2X_MCAST_CMD_RESTORE: p->mcast_list_len = reg_sz; DP(BNX2X_MSG_SP, "Command %d, p->mcast_list_len=%d\n", cmd, p->mcast_list_len); break; case BNX2X_MCAST_CMD_ADD: case BNX2X_MCAST_CMD_CONT: /* Multicast MACs on 57710 are configured as unicast MACs and * there is only a limited number of CAM entries for that * matter. */ if (p->mcast_list_len > o->max_cmd_len) { BNX2X_ERR("Can't configure more than %d multicast MACs on 57710\n", o->max_cmd_len); return -EINVAL; } /* Every configured MAC should be cleared if DEL command is * called. Only the last ADD command is relevant as long as * every ADD commands overrides the previous configuration. */ DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len); if (p->mcast_list_len > 0) o->set_registry_size(o, p->mcast_list_len); break; default: BNX2X_ERR("Unknown command: %d\n", cmd); return -EINVAL; } /* We want to ensure that commands are executed one by one for 57710. * Therefore each none-empty command will consume o->max_cmd_len. */ if (p->mcast_list_len) o->total_pending_num += o->max_cmd_len; return 0; } static void bnx2x_mcast_revert_e1(struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p, int old_num_macs, enum bnx2x_mcast_cmd cmd) { struct bnx2x_mcast_obj *o = p->mcast_obj; o->set_registry_size(o, old_num_macs); /* If current command hasn't been handled yet and we are * here means that it's meant to be dropped and we have to * update the number of outstanding MACs accordingly. */ if (p->mcast_list_len) o->total_pending_num -= o->max_cmd_len; } static void bnx2x_mcast_set_one_rule_e1(struct bnx2x *bp, struct bnx2x_mcast_obj *o, int idx, union bnx2x_mcast_config_data *cfg_data, enum bnx2x_mcast_cmd cmd) { struct bnx2x_raw_obj *r = &o->raw; struct mac_configuration_cmd *data = (struct mac_configuration_cmd *)(r->rdata); /* copy mac */ if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE)) { bnx2x_set_fw_mac_addr(&data->config_table[idx].msb_mac_addr, &data->config_table[idx].middle_mac_addr, &data->config_table[idx].lsb_mac_addr, cfg_data->mac); data->config_table[idx].vlan_id = 0; data->config_table[idx].pf_id = r->func_id; data->config_table[idx].clients_bit_vector = cpu_to_le32(1 << r->cl_id); SET_FLAG(data->config_table[idx].flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE, T_ETH_MAC_COMMAND_SET); } } /** * bnx2x_mcast_set_rdata_hdr_e1 - set header values in mac_configuration_cmd * * @bp: device handle * @p: * @len: number of rules to handle */ static inline void bnx2x_mcast_set_rdata_hdr_e1(struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p, u8 len) { struct bnx2x_raw_obj *r = &p->mcast_obj->raw; struct mac_configuration_cmd *data = (struct mac_configuration_cmd *)(r->rdata); u8 offset = (CHIP_REV_IS_SLOW(bp) ? BNX2X_MAX_EMUL_MULTI*(1 + r->func_id) : BNX2X_MAX_MULTICAST*(1 + r->func_id)); data->hdr.offset = offset; data->hdr.client_id = cpu_to_le16(0xff); data->hdr.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) | (BNX2X_FILTER_MCAST_PENDING << BNX2X_SWCID_SHIFT)); data->hdr.length = len; } /** * bnx2x_mcast_handle_restore_cmd_e1 - restore command for 57710 * * @bp: device handle * @o: * @start_idx: index in the registry to start from * @rdata_idx: index in the ramrod data to start from * * restore command for 57710 is like all other commands - always a stand alone * command - start_idx and rdata_idx will always be 0. This function will always * succeed. * returns -1 to comply with 57712 variant. */ static inline int bnx2x_mcast_handle_restore_cmd_e1( struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_idx, int *rdata_idx) { struct bnx2x_mcast_mac_elem *elem; int i = 0; union bnx2x_mcast_config_data cfg_data = {NULL}; /* go through the registry and configure the MACs from it. */ list_for_each_entry(elem, &o->registry.exact_match.macs, link) { cfg_data.mac = &elem->mac[0]; o->set_one_rule(bp, o, i, &cfg_data, BNX2X_MCAST_CMD_RESTORE); i++; DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n", cfg_data.mac); } *rdata_idx = i; return -1; } static inline int bnx2x_mcast_handle_pending_cmds_e1( struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p) { struct bnx2x_pending_mcast_cmd *cmd_pos; struct bnx2x_mcast_mac_elem *pmac_pos; struct bnx2x_mcast_obj *o = p->mcast_obj; union bnx2x_mcast_config_data cfg_data = {NULL}; int cnt = 0; /* If nothing to be done - return */ if (list_empty(&o->pending_cmds_head)) return 0; /* Handle the first command */ cmd_pos = list_first_entry(&o->pending_cmds_head, struct bnx2x_pending_mcast_cmd, link); switch (cmd_pos->type) { case BNX2X_MCAST_CMD_ADD: list_for_each_entry(pmac_pos, &cmd_pos->data.macs_head, link) { cfg_data.mac = &pmac_pos->mac[0]; o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type); cnt++; DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n", pmac_pos->mac); } break; case BNX2X_MCAST_CMD_DEL: cnt = cmd_pos->data.macs_num; DP(BNX2X_MSG_SP, "About to delete %d multicast MACs\n", cnt); break; case BNX2X_MCAST_CMD_RESTORE: o->hdl_restore(bp, o, 0, &cnt); break; default: BNX2X_ERR("Unknown command: %d\n", cmd_pos->type); return -EINVAL; } list_del(&cmd_pos->link); bnx2x_free_groups(&cmd_pos->group_head); kfree(cmd_pos); return cnt; } /** * bnx2x_get_fw_mac_addr - revert the bnx2x_set_fw_mac_addr(). * * @fw_hi: * @fw_mid: * @fw_lo: * @mac: */ static inline void bnx2x_get_fw_mac_addr(__le16 *fw_hi, __le16 *fw_mid, __le16 *fw_lo, u8 *mac) { mac[1] = ((u8 *)fw_hi)[0]; mac[0] = ((u8 *)fw_hi)[1]; mac[3] = ((u8 *)fw_mid)[0]; mac[2] = ((u8 *)fw_mid)[1]; mac[5] = ((u8 *)fw_lo)[0]; mac[4] = ((u8 *)fw_lo)[1]; } /** * bnx2x_mcast_refresh_registry_e1 - * * @bp: device handle * @cnt: * * Check the ramrod data first entry flag to see if it's a DELETE or ADD command * and update the registry correspondingly: if ADD - allocate a memory and add * the entries to the registry (list), if DELETE - clear the registry and free * the memory. */ static inline int bnx2x_mcast_refresh_registry_e1(struct bnx2x *bp, struct bnx2x_mcast_obj *o) { struct bnx2x_raw_obj *raw = &o->raw; struct bnx2x_mcast_mac_elem *elem; struct mac_configuration_cmd *data = (struct mac_configuration_cmd *)(raw->rdata); /* If first entry contains a SET bit - the command was ADD, * otherwise - DEL_ALL */ if (GET_FLAG(data->config_table[0].flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE)) { int i, len = data->hdr.length; /* Break if it was a RESTORE command */ if (!list_empty(&o->registry.exact_match.macs)) return 0; elem = kcalloc(len, sizeof(*elem), GFP_ATOMIC); if (!elem) { BNX2X_ERR("Failed to allocate registry memory\n"); return -ENOMEM; } for (i = 0; i < len; i++, elem++) { bnx2x_get_fw_mac_addr( &data->config_table[i].msb_mac_addr, &data->config_table[i].middle_mac_addr, &data->config_table[i].lsb_mac_addr, elem->mac); DP(BNX2X_MSG_SP, "Adding registry entry for [%pM]\n", elem->mac); list_add_tail(&elem->link, &o->registry.exact_match.macs); } } else { elem = list_first_entry(&o->registry.exact_match.macs, struct bnx2x_mcast_mac_elem, link); DP(BNX2X_MSG_SP, "Deleting a registry\n"); kfree(elem); INIT_LIST_HEAD(&o->registry.exact_match.macs); } return 0; } static int bnx2x_mcast_setup_e1(struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p, enum bnx2x_mcast_cmd cmd) { struct bnx2x_mcast_obj *o = p->mcast_obj; struct bnx2x_raw_obj *raw = &o->raw; struct mac_configuration_cmd *data = (struct mac_configuration_cmd *)(raw->rdata); int cnt = 0, i, rc; /* Reset the ramrod data buffer */ memset(data, 0, sizeof(*data)); /* First set all entries as invalid */ for (i = 0; i < o->max_cmd_len ; i++) SET_FLAG(data->config_table[i].flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE, T_ETH_MAC_COMMAND_INVALIDATE); /* Handle pending commands first */ cnt = bnx2x_mcast_handle_pending_cmds_e1(bp, p); /* If there are no more pending commands - clear SCHEDULED state */ if (list_empty(&o->pending_cmds_head)) o->clear_sched(o); /* The below may be true iff there were no pending commands */ if (!cnt) cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, 0); /* For 57710 every command has o->max_cmd_len length to ensure that * commands are done one at a time. */ o->total_pending_num -= o->max_cmd_len; /* send a ramrod */ WARN_ON(cnt > o->max_cmd_len); /* Set ramrod header (in particular, a number of entries to update) */ bnx2x_mcast_set_rdata_hdr_e1(bp, p, (u8)cnt); /* update a registry: we need the registry contents to be always up * to date in order to be able to execute a RESTORE opcode. Here * we use the fact that for 57710 we sent one command at a time * hence we may take the registry update out of the command handling * and do it in a simpler way here. */ rc = bnx2x_mcast_refresh_registry_e1(bp, o); if (rc) return rc; /* If CLEAR_ONLY was requested - don't send a ramrod and clear * RAMROD_PENDING status immediately. */ if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) { raw->clear_pending(raw); return 0; } else { /* No need for an explicit memory barrier here as long as we * ensure the ordering of writing to the SPQ element * and updating of the SPQ producer which involves a memory * read. If the memory read is removed we will have to put a * full memory barrier there (inside bnx2x_sp_post()). */ /* Send a ramrod */ rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_SET_MAC, raw->cid, U64_HI(raw->rdata_mapping), U64_LO(raw->rdata_mapping), ETH_CONNECTION_TYPE); if (rc) return rc; /* Ramrod completion is pending */ return 1; } } static int bnx2x_mcast_get_registry_size_exact(struct bnx2x_mcast_obj *o) { return o->registry.exact_match.num_macs_set; } static int bnx2x_mcast_get_registry_size_aprox(struct bnx2x_mcast_obj *o) { return o->registry.aprox_match.num_bins_set; } static void bnx2x_mcast_set_registry_size_exact(struct bnx2x_mcast_obj *o, int n) { o->registry.exact_match.num_macs_set = n; } static void bnx2x_mcast_set_registry_size_aprox(struct bnx2x_mcast_obj *o, int n) { o->registry.aprox_match.num_bins_set = n; } int bnx2x_config_mcast(struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p, enum bnx2x_mcast_cmd cmd) { struct bnx2x_mcast_obj *o = p->mcast_obj; struct bnx2x_raw_obj *r = &o->raw; int rc = 0, old_reg_size; /* This is needed to recover number of currently configured mcast macs * in case of failure. */ old_reg_size = o->get_registry_size(o); /* Do some calculations and checks */ rc = o->validate(bp, p, cmd); if (rc) return rc; /* Return if there is no work to do */ if ((!p->mcast_list_len) && (!o->check_sched(o))) return 0; DP(BNX2X_MSG_SP, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n", o->total_pending_num, p->mcast_list_len, o->max_cmd_len); /* Enqueue the current command to the pending list if we can't complete * it in the current iteration */ if (r->check_pending(r) || ((o->max_cmd_len > 0) && (o->total_pending_num > o->max_cmd_len))) { rc = o->enqueue_cmd(bp, p->mcast_obj, p, cmd); if (rc < 0) goto error_exit1; /* As long as the current command is in a command list we * don't need to handle it separately. */ p->mcast_list_len = 0; } if (!r->check_pending(r)) { /* Set 'pending' state */ r->set_pending(r); /* Configure the new classification in the chip */ rc = o->config_mcast(bp, p, cmd); if (rc < 0) goto error_exit2; /* Wait for a ramrod completion if was requested */ if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) rc = o->wait_comp(bp, o); } return rc; error_exit2: r->clear_pending(r); error_exit1: o->revert(bp, p, old_reg_size, cmd); return rc; } static void bnx2x_mcast_clear_sched(struct bnx2x_mcast_obj *o) { smp_mb__before_atomic(); clear_bit(o->sched_state, o->raw.pstate); smp_mb__after_atomic(); } static void bnx2x_mcast_set_sched(struct bnx2x_mcast_obj *o) { smp_mb__before_atomic(); set_bit(o->sched_state, o->raw.pstate); smp_mb__after_atomic(); } static bool bnx2x_mcast_check_sched(struct bnx2x_mcast_obj *o) { return !!test_bit(o->sched_state, o->raw.pstate); } static bool bnx2x_mcast_check_pending(struct bnx2x_mcast_obj *o) { return o->raw.check_pending(&o->raw) || o->check_sched(o); } void bnx2x_init_mcast_obj(struct bnx2x *bp, struct bnx2x_mcast_obj *mcast_obj, u8 mcast_cl_id, u32 mcast_cid, u8 func_id, u8 engine_id, void *rdata, dma_addr_t rdata_mapping, int state, unsigned long *pstate, bnx2x_obj_type type) { memset(mcast_obj, 0, sizeof(*mcast_obj)); bnx2x_init_raw_obj(&mcast_obj->raw, mcast_cl_id, mcast_cid, func_id, rdata, rdata_mapping, state, pstate, type); mcast_obj->engine_id = engine_id; INIT_LIST_HEAD(&mcast_obj->pending_cmds_head); mcast_obj->sched_state = BNX2X_FILTER_MCAST_SCHED; mcast_obj->check_sched = bnx2x_mcast_check_sched; mcast_obj->set_sched = bnx2x_mcast_set_sched; mcast_obj->clear_sched = bnx2x_mcast_clear_sched; if (CHIP_IS_E1(bp)) { mcast_obj->config_mcast = bnx2x_mcast_setup_e1; mcast_obj->enqueue_cmd = bnx2x_mcast_enqueue_cmd; mcast_obj->hdl_restore = bnx2x_mcast_handle_restore_cmd_e1; mcast_obj->check_pending = bnx2x_mcast_check_pending; if (CHIP_REV_IS_SLOW(bp)) mcast_obj->max_cmd_len = BNX2X_MAX_EMUL_MULTI; else mcast_obj->max_cmd_len = BNX2X_MAX_MULTICAST; mcast_obj->wait_comp = bnx2x_mcast_wait; mcast_obj->set_one_rule = bnx2x_mcast_set_one_rule_e1; mcast_obj->validate = bnx2x_mcast_validate_e1; mcast_obj->revert = bnx2x_mcast_revert_e1; mcast_obj->get_registry_size = bnx2x_mcast_get_registry_size_exact; mcast_obj->set_registry_size = bnx2x_mcast_set_registry_size_exact; /* 57710 is the only chip that uses the exact match for mcast * at the moment. */ INIT_LIST_HEAD(&mcast_obj->registry.exact_match.macs); } else if (CHIP_IS_E1H(bp)) { mcast_obj->config_mcast = bnx2x_mcast_setup_e1h; mcast_obj->enqueue_cmd = NULL; mcast_obj->hdl_restore = NULL; mcast_obj->check_pending = bnx2x_mcast_check_pending; /* 57711 doesn't send a ramrod, so it has unlimited credit * for one command. */ mcast_obj->max_cmd_len = -1; mcast_obj->wait_comp = bnx2x_mcast_wait; mcast_obj->set_one_rule = NULL; mcast_obj->validate = bnx2x_mcast_validate_e1h; mcast_obj->revert = bnx2x_mcast_revert_e1h; mcast_obj->get_registry_size = bnx2x_mcast_get_registry_size_aprox; mcast_obj->set_registry_size = bnx2x_mcast_set_registry_size_aprox; } else { mcast_obj->config_mcast = bnx2x_mcast_setup_e2; mcast_obj->enqueue_cmd = bnx2x_mcast_enqueue_cmd; mcast_obj->hdl_restore = bnx2x_mcast_handle_restore_cmd_e2; mcast_obj->check_pending = bnx2x_mcast_check_pending; /* TODO: There should be a proper HSI define for this number!!! */ mcast_obj->max_cmd_len = 16; mcast_obj->wait_comp = bnx2x_mcast_wait; mcast_obj->set_one_rule = bnx2x_mcast_set_one_rule_e2; mcast_obj->validate = bnx2x_mcast_validate_e2; mcast_obj->revert = bnx2x_mcast_revert_e2; mcast_obj->get_registry_size = bnx2x_mcast_get_registry_size_aprox; mcast_obj->set_registry_size = bnx2x_mcast_set_registry_size_aprox; } } /*************************** Credit handling **********************************/ /** * atomic_add_ifless - add if the result is less than a given value. * * @v: pointer of type atomic_t * @a: the amount to add to v... * @u: ...if (v + a) is less than u. * * returns true if (v + a) was less than u, and false otherwise. * */ static inline bool __atomic_add_ifless(atomic_t *v, int a, int u) { int c, old; c = atomic_read(v); for (;;) { if (unlikely(c + a >= u)) return false; old = atomic_cmpxchg((v), c, c + a); if (likely(old == c)) break; c = old; } return true; } /** * atomic_dec_ifmoe - dec if the result is more or equal than a given value. * * @v: pointer of type atomic_t * @a: the amount to dec from v... * @u: ...if (v - a) is more or equal than u. * * returns true if (v - a) was more or equal than u, and false * otherwise. */ static inline bool __atomic_dec_ifmoe(atomic_t *v, int a, int u) { int c, old; c = atomic_read(v); for (;;) { if (unlikely(c - a < u)) return false; old = atomic_cmpxchg((v), c, c - a); if (likely(old == c)) break; c = old; } return true; } static bool bnx2x_credit_pool_get(struct bnx2x_credit_pool_obj *o, int cnt) { bool rc; smp_mb(); rc = __atomic_dec_ifmoe(&o->credit, cnt, 0); smp_mb(); return rc; } static bool bnx2x_credit_pool_put(struct bnx2x_credit_pool_obj *o, int cnt) { bool rc; smp_mb(); /* Don't let to refill if credit + cnt > pool_sz */ rc = __atomic_add_ifless(&o->credit, cnt, o->pool_sz + 1); smp_mb(); return rc; } static int bnx2x_credit_pool_check(struct bnx2x_credit_pool_obj *o) { int cur_credit; smp_mb(); cur_credit = atomic_read(&o->credit); return cur_credit; } static bool bnx2x_credit_pool_always_true(struct bnx2x_credit_pool_obj *o, int cnt) { return true; } static bool bnx2x_credit_pool_get_entry( struct bnx2x_credit_pool_obj *o, int *offset) { int idx, vec, i; *offset = -1; /* Find "internal cam-offset" then add to base for this object... */ for (vec = 0; vec < BNX2X_POOL_VEC_SIZE; vec++) { /* Skip the current vector if there are no free entries in it */ if (!o->pool_mirror[vec]) continue; /* If we've got here we are going to find a free entry */ for (idx = vec * BIT_VEC64_ELEM_SZ, i = 0; i < BIT_VEC64_ELEM_SZ; idx++, i++) if (BIT_VEC64_TEST_BIT(o->pool_mirror, idx)) { /* Got one!! */ BIT_VEC64_CLEAR_BIT(o->pool_mirror, idx); *offset = o->base_pool_offset + idx; return true; } } return false; } static bool bnx2x_credit_pool_put_entry( struct bnx2x_credit_pool_obj *o, int offset) { if (offset < o->base_pool_offset) return false; offset -= o->base_pool_offset; if (offset >= o->pool_sz) return false; /* Return the entry to the pool */ BIT_VEC64_SET_BIT(o->pool_mirror, offset); return true; } static bool bnx2x_credit_pool_put_entry_always_true( struct bnx2x_credit_pool_obj *o, int offset) { return true; } static bool bnx2x_credit_pool_get_entry_always_true( struct bnx2x_credit_pool_obj *o, int *offset) { *offset = -1; return true; } /** * bnx2x_init_credit_pool - initialize credit pool internals. * * @p: * @base: Base entry in the CAM to use. * @credit: pool size. * * If base is negative no CAM entries handling will be performed. * If credit is negative pool operations will always succeed (unlimited pool). * */ void bnx2x_init_credit_pool(struct bnx2x_credit_pool_obj *p, int base, int credit) { /* Zero the object first */ memset(p, 0, sizeof(*p)); /* Set the table to all 1s */ memset(&p->pool_mirror, 0xff, sizeof(p->pool_mirror)); /* Init a pool as full */ atomic_set(&p->credit, credit); /* The total poll size */ p->pool_sz = credit; p->base_pool_offset = base; /* Commit the change */ smp_mb(); p->check = bnx2x_credit_pool_check; /* if pool credit is negative - disable the checks */ if (credit >= 0) { p->put = bnx2x_credit_pool_put; p->get = bnx2x_credit_pool_get; p->put_entry = bnx2x_credit_pool_put_entry; p->get_entry = bnx2x_credit_pool_get_entry; } else { p->put = bnx2x_credit_pool_always_true; p->get = bnx2x_credit_pool_always_true; p->put_entry = bnx2x_credit_pool_put_entry_always_true; p->get_entry = bnx2x_credit_pool_get_entry_always_true; } /* If base is negative - disable entries handling */ if (base < 0) { p->put_entry = bnx2x_credit_pool_put_entry_always_true; p->get_entry = bnx2x_credit_pool_get_entry_always_true; } } void bnx2x_init_mac_credit_pool(struct bnx2x *bp, struct bnx2x_credit_pool_obj *p, u8 func_id, u8 func_num) { /* TODO: this will be defined in consts as well... */ #define BNX2X_CAM_SIZE_EMUL 5 int cam_sz; if (CHIP_IS_E1(bp)) { /* In E1, Multicast is saved in cam... */ if (!CHIP_REV_IS_SLOW(bp)) cam_sz = (MAX_MAC_CREDIT_E1 / 2) - BNX2X_MAX_MULTICAST; else cam_sz = BNX2X_CAM_SIZE_EMUL - BNX2X_MAX_EMUL_MULTI; bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz); } else if (CHIP_IS_E1H(bp)) { /* CAM credit is equaly divided between all active functions * on the PORT!. */ if ((func_num > 0)) { if (!CHIP_REV_IS_SLOW(bp)) cam_sz = (MAX_MAC_CREDIT_E1H / (2*func_num)); else cam_sz = BNX2X_CAM_SIZE_EMUL; bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz); } else { /* this should never happen! Block MAC operations. */ bnx2x_init_credit_pool(p, 0, 0); } } else { /* CAM credit is equaly divided between all active functions * on the PATH. */ if (func_num > 0) { if (!CHIP_REV_IS_SLOW(bp)) cam_sz = PF_MAC_CREDIT_E2(bp, func_num); else cam_sz = BNX2X_CAM_SIZE_EMUL; /* No need for CAM entries handling for 57712 and * newer. */ bnx2x_init_credit_pool(p, -1, cam_sz); } else { /* this should never happen! Block MAC operations. */ bnx2x_init_credit_pool(p, 0, 0); } } } void bnx2x_init_vlan_credit_pool(struct bnx2x *bp, struct bnx2x_credit_pool_obj *p, u8 func_id, u8 func_num) { if (CHIP_IS_E1x(bp)) { /* There is no VLAN credit in HW on 57710 and 57711 only * MAC / MAC-VLAN can be set */ bnx2x_init_credit_pool(p, 0, -1); } else { /* CAM credit is equally divided between all active functions * on the PATH. */ if (func_num > 0) { int credit = PF_VLAN_CREDIT_E2(bp, func_num); bnx2x_init_credit_pool(p, -1/*unused for E2*/, credit); } else /* this should never happen! Block VLAN operations. */ bnx2x_init_credit_pool(p, 0, 0); } } /****************** RSS Configuration ******************/ /** * bnx2x_debug_print_ind_table - prints the indirection table configuration. * * @bp: driver handle * @p: pointer to rss configuration * * Prints it when NETIF_MSG_IFUP debug level is configured. */ static inline void bnx2x_debug_print_ind_table(struct bnx2x *bp, struct bnx2x_config_rss_params *p) { int i; DP(BNX2X_MSG_SP, "Setting indirection table to:\n"); DP(BNX2X_MSG_SP, "0x0000: "); for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) { DP_CONT(BNX2X_MSG_SP, "0x%02x ", p->ind_table[i]); /* Print 4 bytes in a line */ if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) && (((i + 1) & 0x3) == 0)) { DP_CONT(BNX2X_MSG_SP, "\n"); DP(BNX2X_MSG_SP, "0x%04x: ", i + 1); } } DP_CONT(BNX2X_MSG_SP, "\n"); } /** * bnx2x_setup_rss - configure RSS * * @bp: device handle * @p: rss configuration * * sends on UPDATE ramrod for that matter. */ static int bnx2x_setup_rss(struct bnx2x *bp, struct bnx2x_config_rss_params *p) { struct bnx2x_rss_config_obj *o = p->rss_obj; struct bnx2x_raw_obj *r = &o->raw; struct eth_rss_update_ramrod_data *data = (struct eth_rss_update_ramrod_data *)(r->rdata); u16 caps = 0; u8 rss_mode = 0; int rc; memset(data, 0, sizeof(*data)); DP(BNX2X_MSG_SP, "Configuring RSS\n"); /* Set an echo field */ data->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) | (r->state << BNX2X_SWCID_SHIFT)); /* RSS mode */ if (test_bit(BNX2X_RSS_MODE_DISABLED, &p->rss_flags)) rss_mode = ETH_RSS_MODE_DISABLED; else if (test_bit(BNX2X_RSS_MODE_REGULAR, &p->rss_flags)) rss_mode = ETH_RSS_MODE_REGULAR; data->rss_mode = rss_mode; DP(BNX2X_MSG_SP, "rss_mode=%d\n", rss_mode); /* RSS capabilities */ if (test_bit(BNX2X_RSS_IPV4, &p->rss_flags)) caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY; if (test_bit(BNX2X_RSS_IPV4_TCP, &p->rss_flags)) caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY; if (test_bit(BNX2X_RSS_IPV4_UDP, &p->rss_flags)) caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY; if (test_bit(BNX2X_RSS_IPV6, &p->rss_flags)) caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY; if (test_bit(BNX2X_RSS_IPV6_TCP, &p->rss_flags)) caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY; if (test_bit(BNX2X_RSS_IPV6_UDP, &p->rss_flags)) caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY; if (test_bit(BNX2X_RSS_IPV4_VXLAN, &p->rss_flags)) caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_VXLAN_CAPABILITY; if (test_bit(BNX2X_RSS_IPV6_VXLAN, &p->rss_flags)) caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_VXLAN_CAPABILITY; if (test_bit(BNX2X_RSS_TUNN_INNER_HDRS, &p->rss_flags)) caps |= ETH_RSS_UPDATE_RAMROD_DATA_TUNN_INNER_HDRS_CAPABILITY; /* RSS keys */ if (test_bit(BNX2X_RSS_SET_SRCH, &p->rss_flags)) { u8 *dst = (u8 *)(data->rss_key) + sizeof(data->rss_key); const u8 *src = (const u8 *)p->rss_key; int i; /* Apparently, bnx2x reads this array in reverse order * We need to byte swap rss_key to comply with Toeplitz specs. */ for (i = 0; i < sizeof(data->rss_key); i++) *--dst = *src++; caps |= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY; } data->capabilities = cpu_to_le16(caps); /* Hashing mask */ data->rss_result_mask = p->rss_result_mask; /* RSS engine ID */ data->rss_engine_id = o->engine_id; DP(BNX2X_MSG_SP, "rss_engine_id=%d\n", data->rss_engine_id); /* Indirection table */ memcpy(data->indirection_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE); /* Remember the last configuration */ memcpy(o->ind_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE); /* Print the indirection table */ if (netif_msg_ifup(bp)) bnx2x_debug_print_ind_table(bp, p); /* No need for an explicit memory barrier here as long as we * ensure the ordering of writing to the SPQ element * and updating of the SPQ producer which involves a memory * read. If the memory read is removed we will have to put a * full memory barrier there (inside bnx2x_sp_post()). */ /* Send a ramrod */ rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_RSS_UPDATE, r->cid, U64_HI(r->rdata_mapping), U64_LO(r->rdata_mapping), ETH_CONNECTION_TYPE); if (rc < 0) return rc; return 1; } void bnx2x_get_rss_ind_table(struct bnx2x_rss_config_obj *rss_obj, u8 *ind_table) { memcpy(ind_table, rss_obj->ind_table, sizeof(rss_obj->ind_table)); } int bnx2x_config_rss(struct bnx2x *bp, struct bnx2x_config_rss_params *p) { int rc; struct bnx2x_rss_config_obj *o = p->rss_obj; struct bnx2x_raw_obj *r = &o->raw; /* Do nothing if only driver cleanup was requested */ if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) { DP(BNX2X_MSG_SP, "Not configuring RSS ramrod_flags=%lx\n", p->ramrod_flags); return 0; } r->set_pending(r); rc = o->config_rss(bp, p); if (rc < 0) { r->clear_pending(r); return rc; } if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) rc = r->wait_comp(bp, r); return rc; } void bnx2x_init_rss_config_obj(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj, u8 cl_id, u32 cid, u8 func_id, u8 engine_id, void *rdata, dma_addr_t rdata_mapping, int state, unsigned long *pstate, bnx2x_obj_type type) { bnx2x_init_raw_obj(&rss_obj->raw, cl_id, cid, func_id, rdata, rdata_mapping, state, pstate, type); rss_obj->engine_id = engine_id; rss_obj->config_rss = bnx2x_setup_rss; } /********************** Queue state object ***********************************/ /** * bnx2x_queue_state_change - perform Queue state change transition * * @bp: device handle * @params: parameters to perform the transition * * returns 0 in case of successfully completed transition, negative error * code in case of failure, positive (EBUSY) value if there is a completion * to that is still pending (possible only if RAMROD_COMP_WAIT is * not set in params->ramrod_flags for asynchronous commands). * */ int bnx2x_queue_state_change(struct bnx2x *bp, struct bnx2x_queue_state_params *params) { struct bnx2x_queue_sp_obj *o = params->q_obj; int rc, pending_bit; unsigned long *pending = &o->pending; /* Check that the requested transition is legal */ rc = o->check_transition(bp, o, params); if (rc) { BNX2X_ERR("check transition returned an error. rc %d\n", rc); return -EINVAL; } /* Set "pending" bit */ DP(BNX2X_MSG_SP, "pending bit was=%lx\n", o->pending); pending_bit = o->set_pending(o, params); DP(BNX2X_MSG_SP, "pending bit now=%lx\n", o->pending); /* Don't send a command if only driver cleanup was requested */ if (test_bit(RAMROD_DRV_CLR_ONLY, ¶ms->ramrod_flags)) o->complete_cmd(bp, o, pending_bit); else { /* Send a ramrod */ rc = o->send_cmd(bp, params); if (rc) { o->next_state = BNX2X_Q_STATE_MAX; clear_bit(pending_bit, pending); smp_mb__after_atomic(); return rc; } if (test_bit(RAMROD_COMP_WAIT, ¶ms->ramrod_flags)) { rc = o->wait_comp(bp, o, pending_bit); if (rc) return rc; return 0; } } return !!test_bit(pending_bit, pending); } static int bnx2x_queue_set_pending(struct bnx2x_queue_sp_obj *obj, struct bnx2x_queue_state_params *params) { enum bnx2x_queue_cmd cmd = params->cmd, bit; /* ACTIVATE and DEACTIVATE commands are implemented on top of * UPDATE command. */ if ((cmd == BNX2X_Q_CMD_ACTIVATE) || (cmd == BNX2X_Q_CMD_DEACTIVATE)) bit = BNX2X_Q_CMD_UPDATE; else bit = cmd; set_bit(bit, &obj->pending); return bit; } static int bnx2x_queue_wait_comp(struct bnx2x *bp, struct bnx2x_queue_sp_obj *o, enum bnx2x_queue_cmd cmd) { return bnx2x_state_wait(bp, cmd, &o->pending); } /** * bnx2x_queue_comp_cmd - complete the state change command. * * @bp: device handle * @o: * @cmd: * * Checks that the arrived completion is expected. */ static int bnx2x_queue_comp_cmd(struct bnx2x *bp, struct bnx2x_queue_sp_obj *o, enum bnx2x_queue_cmd cmd) { unsigned long cur_pending = o->pending; if (!test_and_clear_bit(cmd, &cur_pending)) { BNX2X_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n", cmd, o->cids[BNX2X_PRIMARY_CID_INDEX], o->state, cur_pending, o->next_state); return -EINVAL; } if (o->next_tx_only >= o->max_cos) /* >= because tx only must always be smaller than cos since the * primary connection supports COS 0 */ BNX2X_ERR("illegal value for next tx_only: %d. max cos was %d", o->next_tx_only, o->max_cos); DP(BNX2X_MSG_SP, "Completing command %d for queue %d, setting state to %d\n", cmd, o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_state); if (o->next_tx_only) /* print num tx-only if any exist */ DP(BNX2X_MSG_SP, "primary cid %d: num tx-only cons %d\n", o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_tx_only); o->state = o->next_state; o->num_tx_only = o->next_tx_only; o->next_state = BNX2X_Q_STATE_MAX; /* It's important that o->state and o->next_state are * updated before o->pending. */ wmb(); clear_bit(cmd, &o->pending); smp_mb__after_atomic(); return 0; } static void bnx2x_q_fill_setup_data_e2(struct bnx2x *bp, struct bnx2x_queue_state_params *cmd_params, struct client_init_ramrod_data *data) { struct bnx2x_queue_setup_params *params = &cmd_params->params.setup; /* Rx data */ /* IPv6 TPA supported for E2 and above only */ data->rx.tpa_en |= test_bit(BNX2X_Q_FLG_TPA_IPV6, ¶ms->flags) * CLIENT_INIT_RX_DATA_TPA_EN_IPV6; } static void bnx2x_q_fill_init_general_data(struct bnx2x *bp, struct bnx2x_queue_sp_obj *o, struct bnx2x_general_setup_params *params, struct client_init_general_data *gen_data, unsigned long *flags) { gen_data->client_id = o->cl_id; if (test_bit(BNX2X_Q_FLG_STATS, flags)) { gen_data->statistics_counter_id = params->stat_id; gen_data->statistics_en_flg = 1; gen_data->statistics_zero_flg = test_bit(BNX2X_Q_FLG_ZERO_STATS, flags); } else gen_data->statistics_counter_id = DISABLE_STATISTIC_COUNTER_ID_VALUE; gen_data->is_fcoe_flg = test_bit(BNX2X_Q_FLG_FCOE, flags); gen_data->activate_flg = test_bit(BNX2X_Q_FLG_ACTIVE, flags); gen_data->sp_client_id = params->spcl_id; gen_data->mtu = cpu_to_le16(params->mtu); gen_data->func_id = o->func_id; gen_data->cos = params->cos; gen_data->traffic_type = test_bit(BNX2X_Q_FLG_FCOE, flags) ? LLFC_TRAFFIC_TYPE_FCOE : LLFC_TRAFFIC_TYPE_NW; gen_data->fp_hsi_ver = params->fp_hsi; DP(BNX2X_MSG_SP, "flags: active %d, cos %d, stats en %d\n", gen_data->activate_flg, gen_data->cos, gen_data->statistics_en_flg); } static void bnx2x_q_fill_init_tx_data(struct bnx2x_queue_sp_obj *o, struct bnx2x_txq_setup_params *params, struct client_init_tx_data *tx_data, unsigned long *flags) { tx_data->enforce_security_flg = test_bit(BNX2X_Q_FLG_TX_SEC, flags); tx_data->default_vlan = cpu_to_le16(params->default_vlan); tx_data->default_vlan_flg = test_bit(BNX2X_Q_FLG_DEF_VLAN, flags); tx_data->tx_switching_flg = test_bit(BNX2X_Q_FLG_TX_SWITCH, flags); tx_data->anti_spoofing_flg = test_bit(BNX2X_Q_FLG_ANTI_SPOOF, flags); tx_data->force_default_pri_flg = test_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, flags); tx_data->refuse_outband_vlan_flg = test_bit(BNX2X_Q_FLG_REFUSE_OUTBAND_VLAN, flags); tx_data->tunnel_lso_inc_ip_id = test_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, flags); tx_data->tunnel_non_lso_pcsum_location = test_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, flags) ? CSUM_ON_PKT : CSUM_ON_BD; tx_data->tx_status_block_id = params->fw_sb_id; tx_data->tx_sb_index_number = params->sb_cq_index; tx_data->tss_leading_client_id = params->tss_leading_cl_id; tx_data->tx_bd_page_base.lo = cpu_to_le32(U64_LO(params->dscr_map)); tx_data->tx_bd_page_base.hi = cpu_to_le32(U64_HI(params->dscr_map)); /* Don't configure any Tx switching mode during queue SETUP */ tx_data->state = 0; } static void bnx2x_q_fill_init_pause_data(struct bnx2x_queue_sp_obj *o, struct rxq_pause_params *params, struct client_init_rx_data *rx_data) { /* flow control data */ rx_data->cqe_pause_thr_low = cpu_to_le16(params->rcq_th_lo); rx_data->cqe_pause_thr_high = cpu_to_le16(params->rcq_th_hi); rx_data->bd_pause_thr_low = cpu_to_le16(params->bd_th_lo); rx_data->bd_pause_thr_high = cpu_to_le16(params->bd_th_hi); rx_data->sge_pause_thr_low = cpu_to_le16(params->sge_th_lo); rx_data->sge_pause_thr_high = cpu_to_le16(params->sge_th_hi); rx_data->rx_cos_mask = cpu_to_le16(params->pri_map); } static void bnx2x_q_fill_init_rx_data(struct bnx2x_queue_sp_obj *o, struct bnx2x_rxq_setup_params *params, struct client_init_rx_data *rx_data, unsigned long *flags) { rx_data->tpa_en = test_bit(BNX2X_Q_FLG_TPA, flags) * CLIENT_INIT_RX_DATA_TPA_EN_IPV4; rx_data->tpa_en |= test_bit(BNX2X_Q_FLG_TPA_GRO, flags) * CLIENT_INIT_RX_DATA_TPA_MODE; rx_data->vmqueue_mode_en_flg = 0; rx_data->cache_line_alignment_log_size = params->cache_line_log; rx_data->enable_dynamic_hc = test_bit(BNX2X_Q_FLG_DHC, flags); rx_data->max_sges_for_packet = params->max_sges_pkt; rx_data->client_qzone_id = params->cl_qzone_id; rx_data->max_agg_size = cpu_to_le16(params->tpa_agg_sz); /* Always start in DROP_ALL mode */ rx_data->state = cpu_to_le16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL | CLIENT_INIT_RX_DATA_MCAST_DROP_ALL); /* We don't set drop flags */ rx_data->drop_ip_cs_err_flg = 0; rx_data->drop_tcp_cs_err_flg = 0; rx_data->drop_ttl0_flg = 0; rx_data->drop_udp_cs_err_flg = 0; rx_data->inner_vlan_removal_enable_flg = test_bit(BNX2X_Q_FLG_VLAN, flags); rx_data->outer_vlan_removal_enable_flg = test_bit(BNX2X_Q_FLG_OV, flags); rx_data->status_block_id = params->fw_sb_id; rx_data->rx_sb_index_number = params->sb_cq_index; rx_data->max_tpa_queues = params->max_tpa_queues; rx_data->max_bytes_on_bd = cpu_to_le16(params->buf_sz); rx_data->sge_buff_size = cpu_to_le16(params->sge_buf_sz); rx_data->bd_page_base.lo = cpu_to_le32(U64_LO(params->dscr_map)); rx_data->bd_page_base.hi = cpu_to_le32(U64_HI(params->dscr_map)); rx_data->sge_page_base.lo = cpu_to_le32(U64_LO(params->sge_map)); rx_data->sge_page_base.hi = cpu_to_le32(U64_HI(params->sge_map)); rx_data->cqe_page_base.lo = cpu_to_le32(U64_LO(params->rcq_map)); rx_data->cqe_page_base.hi = cpu_to_le32(U64_HI(params->rcq_map)); rx_data->is_leading_rss = test_bit(BNX2X_Q_FLG_LEADING_RSS, flags); if (test_bit(BNX2X_Q_FLG_MCAST, flags)) { rx_data->approx_mcast_engine_id = params->mcast_engine_id; rx_data->is_approx_mcast = 1; } rx_data->rss_engine_id = params->rss_engine_id; /* silent vlan removal */ rx_data->silent_vlan_removal_flg = test_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, flags); rx_data->silent_vlan_value = cpu_to_le16(params->silent_removal_value); rx_data->silent_vlan_mask = cpu_to_le16(params->silent_removal_mask); } /* initialize the general, tx and rx parts of a queue object */ static void bnx2x_q_fill_setup_data_cmn(struct bnx2x *bp, struct bnx2x_queue_state_params *cmd_params, struct client_init_ramrod_data *data) { bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj, &cmd_params->params.setup.gen_params, &data->general, &cmd_params->params.setup.flags); bnx2x_q_fill_init_tx_data(cmd_params->q_obj, &cmd_params->params.setup.txq_params, &data->tx, &cmd_params->params.setup.flags); bnx2x_q_fill_init_rx_data(cmd_params->q_obj, &cmd_params->params.setup.rxq_params, &data->rx, &cmd_params->params.setup.flags); bnx2x_q_fill_init_pause_data(cmd_params->q_obj, &cmd_params->params.setup.pause_params, &data->rx); } /* initialize the general and tx parts of a tx-only queue object */ static void bnx2x_q_fill_setup_tx_only(struct bnx2x *bp, struct bnx2x_queue_state_params *cmd_params, struct tx_queue_init_ramrod_data *data) { bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj, &cmd_params->params.tx_only.gen_params, &data->general, &cmd_params->params.tx_only.flags); bnx2x_q_fill_init_tx_data(cmd_params->q_obj, &cmd_params->params.tx_only.txq_params, &data->tx, &cmd_params->params.tx_only.flags); DP(BNX2X_MSG_SP, "cid %d, tx bd page lo %x hi %x", cmd_params->q_obj->cids[0], data->tx.tx_bd_page_base.lo, data->tx.tx_bd_page_base.hi); } /** * bnx2x_q_init - init HW/FW queue * * @bp: device handle * @params: * * HW/FW initial Queue configuration: * - HC: Rx and Tx * - CDU context validation * */ static inline int bnx2x_q_init(struct bnx2x *bp, struct bnx2x_queue_state_params *params) { struct bnx2x_queue_sp_obj *o = params->q_obj; struct bnx2x_queue_init_params *init = ¶ms->params.init; u16 hc_usec; u8 cos; /* Tx HC configuration */ if (test_bit(BNX2X_Q_TYPE_HAS_TX, &o->type) && test_bit(BNX2X_Q_FLG_HC, &init->tx.flags)) { hc_usec = init->tx.hc_rate ? 1000000 / init->tx.hc_rate : 0; bnx2x_update_coalesce_sb_index(bp, init->tx.fw_sb_id, init->tx.sb_cq_index, !test_bit(BNX2X_Q_FLG_HC_EN, &init->tx.flags), hc_usec); } /* Rx HC configuration */ if (test_bit(BNX2X_Q_TYPE_HAS_RX, &o->type) && test_bit(BNX2X_Q_FLG_HC, &init->rx.flags)) { hc_usec = init->rx.hc_rate ? 1000000 / init->rx.hc_rate : 0; bnx2x_update_coalesce_sb_index(bp, init->rx.fw_sb_id, init->rx.sb_cq_index, !test_bit(BNX2X_Q_FLG_HC_EN, &init->rx.flags), hc_usec); } /* Set CDU context validation values */ for (cos = 0; cos < o->max_cos; cos++) { DP(BNX2X_MSG_SP, "setting context validation. cid %d, cos %d\n", o->cids[cos], cos); DP(BNX2X_MSG_SP, "context pointer %p\n", init->cxts[cos]); bnx2x_set_ctx_validation(bp, init->cxts[cos], o->cids[cos]); } /* As no ramrod is sent, complete the command immediately */ o->complete_cmd(bp, o, BNX2X_Q_CMD_INIT); mmiowb(); smp_mb(); return 0; } static inline int bnx2x_q_send_setup_e1x(struct bnx2x *bp, struct bnx2x_queue_state_params *params) { struct bnx2x_queue_sp_obj *o = params->q_obj; struct client_init_ramrod_data *rdata = (struct client_init_ramrod_data *)o->rdata; dma_addr_t data_mapping = o->rdata_mapping; int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP; /* Clear the ramrod data */ memset(rdata, 0, sizeof(*rdata)); /* Fill the ramrod data */ bnx2x_q_fill_setup_data_cmn(bp, params, rdata); /* No need for an explicit memory barrier here as long as we * ensure the ordering of writing to the SPQ element * and updating of the SPQ producer which involves a memory * read. If the memory read is removed we will have to put a * full memory barrier there (inside bnx2x_sp_post()). */ return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX], U64_HI(data_mapping), U64_LO(data_mapping), ETH_CONNECTION_TYPE); } static inline int bnx2x_q_send_setup_e2(struct bnx2x *bp, struct bnx2x_queue_state_params *params) { struct bnx2x_queue_sp_obj *o = params->q_obj; struct client_init_ramrod_data *rdata = (struct client_init_ramrod_data *)o->rdata; dma_addr_t data_mapping = o->rdata_mapping; int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP; /* Clear the ramrod data */ memset(rdata, 0, sizeof(*rdata)); /* Fill the ramrod data */ bnx2x_q_fill_setup_data_cmn(bp, params, rdata); bnx2x_q_fill_setup_data_e2(bp, params, rdata); /* No need for an explicit memory barrier here as long as we * ensure the ordering of writing to the SPQ element * and updating of the SPQ producer which involves a memory * read. If the memory read is removed we will have to put a * full memory barrier there (inside bnx2x_sp_post()). */ return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX], U64_HI(data_mapping), U64_LO(data_mapping), ETH_CONNECTION_TYPE); } static inline int bnx2x_q_send_setup_tx_only(struct bnx2x *bp, struct bnx2x_queue_state_params *params) { struct bnx2x_queue_sp_obj *o = params->q_obj; struct tx_queue_init_ramrod_data *rdata = (struct tx_queue_init_ramrod_data *)o->rdata; dma_addr_t data_mapping = o->rdata_mapping; int ramrod = RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP; struct bnx2x_queue_setup_tx_only_params *tx_only_params = ¶ms->params.tx_only; u8 cid_index = tx_only_params->cid_index; if (cid_index >= o->max_cos) { BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n", o->cl_id, cid_index); return -EINVAL; } DP(BNX2X_MSG_SP, "parameters received: cos: %d sp-id: %d\n", tx_only_params->gen_params.cos, tx_only_params->gen_params.spcl_id); /* Clear the ramrod data */ memset(rdata, 0, sizeof(*rdata)); /* Fill the ramrod data */ bnx2x_q_fill_setup_tx_only(bp, params, rdata); DP(BNX2X_MSG_SP, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n", o->cids[cid_index], rdata->general.client_id, rdata->general.sp_client_id, rdata->general.cos); /* No need for an explicit memory barrier here as long as we * ensure the ordering of writing to the SPQ element * and updating of the SPQ producer which involves a memory * read. If the memory read is removed we will have to put a * full memory barrier there (inside bnx2x_sp_post()). */ return bnx2x_sp_post(bp, ramrod, o->cids[cid_index], U64_HI(data_mapping), U64_LO(data_mapping), ETH_CONNECTION_TYPE); } static void bnx2x_q_fill_update_data(struct bnx2x *bp, struct bnx2x_queue_sp_obj *obj, struct bnx2x_queue_update_params *params, struct client_update_ramrod_data *data) { /* Client ID of the client to update */ data->client_id = obj->cl_id; /* Function ID of the client to update */ data->func_id = obj->func_id; /* Default VLAN value */ data->default_vlan = cpu_to_le16(params->def_vlan); /* Inner VLAN stripping */ data->inner_vlan_removal_enable_flg = test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM, ¶ms->update_flags); data->inner_vlan_removal_change_flg = test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM_CHNG, ¶ms->update_flags); /* Outer VLAN stripping */ data->outer_vlan_removal_enable_flg = test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM, ¶ms->update_flags); data->outer_vlan_removal_change_flg = test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM_CHNG, ¶ms->update_flags); /* Drop packets that have source MAC that doesn't belong to this * Queue. */ data->anti_spoofing_enable_flg = test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, ¶ms->update_flags); data->anti_spoofing_change_flg = test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG, ¶ms->update_flags); /* Activate/Deactivate */ data->activate_flg = test_bit(BNX2X_Q_UPDATE_ACTIVATE, ¶ms->update_flags); data->activate_change_flg = test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, ¶ms->update_flags); /* Enable default VLAN */ data->default_vlan_enable_flg = test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, ¶ms->update_flags); data->default_vlan_change_flg = test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG, ¶ms->update_flags); /* silent vlan removal */ data->silent_vlan_change_flg = test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, ¶ms->update_flags); data->silent_vlan_removal_flg = test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, ¶ms->update_flags); data->silent_vlan_value = cpu_to_le16(params->silent_removal_value); data->silent_vlan_mask = cpu_to_le16(params->silent_removal_mask); /* tx switching */ data->tx_switching_flg = test_bit(BNX2X_Q_UPDATE_TX_SWITCHING, ¶ms->update_flags); data->tx_switching_change_flg = test_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG, ¶ms->update_flags); /* PTP */ data->handle_ptp_pkts_flg = test_bit(BNX2X_Q_UPDATE_PTP_PKTS, ¶ms->update_flags); data->handle_ptp_pkts_change_flg = test_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG, ¶ms->update_flags); } static inline int bnx2x_q_send_update(struct bnx2x *bp, struct bnx2x_queue_state_params *params) { struct bnx2x_queue_sp_obj *o = params->q_obj; struct client_update_ramrod_data *rdata = (struct client_update_ramrod_data *)o->rdata; dma_addr_t data_mapping = o->rdata_mapping; struct bnx2x_queue_update_params *update_params = ¶ms->params.update; u8 cid_index = update_params->cid_index; if (cid_index >= o->max_cos) { BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n", o->cl_id, cid_index); return -EINVAL; } /* Clear the ramrod data */ memset(rdata, 0, sizeof(*rdata)); /* Fill the ramrod data */ bnx2x_q_fill_update_data(bp, o, update_params, rdata); /* No need for an explicit memory barrier here as long as we * ensure the ordering of writing to the SPQ element * and updating of the SPQ producer which involves a memory * read. If the memory read is removed we will have to put a * full memory barrier there (inside bnx2x_sp_post()). */ return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_CLIENT_UPDATE, o->cids[cid_index], U64_HI(data_mapping), U64_LO(data_mapping), ETH_CONNECTION_TYPE); } /** * bnx2x_q_send_deactivate - send DEACTIVATE command * * @bp: device handle * @params: * * implemented using the UPDATE command. */ static inline int bnx2x_q_send_deactivate(struct bnx2x *bp, struct bnx2x_queue_state_params *params) { struct bnx2x_queue_update_params *update = ¶ms->params.update; memset(update, 0, sizeof(*update)); __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags); return bnx2x_q_send_update(bp, params); } /** * bnx2x_q_send_activate - send ACTIVATE command * * @bp: device handle * @params: * * implemented using the UPDATE command. */ static inline int bnx2x_q_send_activate(struct bnx2x *bp, struct bnx2x_queue_state_params *params) { struct bnx2x_queue_update_params *update = ¶ms->params.update; memset(update, 0, sizeof(*update)); __set_bit(BNX2X_Q_UPDATE_ACTIVATE, &update->update_flags); __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags); return bnx2x_q_send_update(bp, params); } static void bnx2x_q_fill_update_tpa_data(struct bnx2x *bp, struct bnx2x_queue_sp_obj *obj, struct bnx2x_queue_update_tpa_params *params, struct tpa_update_ramrod_data *data) { data->client_id = obj->cl_id; data->complete_on_both_clients = params->complete_on_both_clients; data->dont_verify_rings_pause_thr_flg = params->dont_verify_thr; data->max_agg_size = cpu_to_le16(params->max_agg_sz); data->max_sges_for_packet = params->max_sges_pkt; data->max_tpa_queues = params->max_tpa_queues; data->sge_buff_size = cpu_to_le16(params->sge_buff_sz); data->sge_page_base_hi = cpu_to_le32(U64_HI(params->sge_map)); data->sge_page_base_lo = cpu_to_le32(U64_LO(params->sge_map)); data->sge_pause_thr_high = cpu_to_le16(params->sge_pause_thr_high); data->sge_pause_thr_low = cpu_to_le16(params->sge_pause_thr_low); data->tpa_mode = params->tpa_mode; data->update_ipv4 = params->update_ipv4; data->update_ipv6 = params->update_ipv6; } static inline int bnx2x_q_send_update_tpa(struct bnx2x *bp, struct bnx2x_queue_state_params *params) { struct bnx2x_queue_sp_obj *o = params->q_obj; struct tpa_update_ramrod_data *rdata = (struct tpa_update_ramrod_data *)o->rdata; dma_addr_t data_mapping = o->rdata_mapping; struct bnx2x_queue_update_tpa_params *update_tpa_params = ¶ms->params.update_tpa; u16 type; /* Clear the ramrod data */ memset(rdata, 0, sizeof(*rdata)); /* Fill the ramrod data */ bnx2x_q_fill_update_tpa_data(bp, o, update_tpa_params, rdata); /* Add the function id inside the type, so that sp post function * doesn't automatically add the PF func-id, this is required * for operations done by PFs on behalf of their VFs */ type = ETH_CONNECTION_TYPE | ((o->func_id) << SPE_HDR_FUNCTION_ID_SHIFT); /* No need for an explicit memory barrier here as long as we * ensure the ordering of writing to the SPQ element * and updating of the SPQ producer which involves a memory * read. If the memory read is removed we will have to put a * full memory barrier there (inside bnx2x_sp_post()). */ return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TPA_UPDATE, o->cids[BNX2X_PRIMARY_CID_INDEX], U64_HI(data_mapping), U64_LO(data_mapping), type); } static inline int bnx2x_q_send_halt(struct bnx2x *bp, struct bnx2x_queue_state_params *params) { struct bnx2x_queue_sp_obj *o = params->q_obj; return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_HALT, o->cids[BNX2X_PRIMARY_CID_INDEX], 0, o->cl_id, ETH_CONNECTION_TYPE); } static inline int bnx2x_q_send_cfc_del(struct bnx2x *bp, struct bnx2x_queue_state_params *params) { struct bnx2x_queue_sp_obj *o = params->q_obj; u8 cid_idx = params->params.cfc_del.cid_index; if (cid_idx >= o->max_cos) { BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n", o->cl_id, cid_idx); return -EINVAL; } return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_CFC_DEL, o->cids[cid_idx], 0, 0, NONE_CONNECTION_TYPE); } static inline int bnx2x_q_send_terminate(struct bnx2x *bp, struct bnx2x_queue_state_params *params) { struct bnx2x_queue_sp_obj *o = params->q_obj; u8 cid_index = params->params.terminate.cid_index; if (cid_index >= o->max_cos) { BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n", o->cl_id, cid_index); return -EINVAL; } return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TERMINATE, o->cids[cid_index], 0, 0, ETH_CONNECTION_TYPE); } static inline int bnx2x_q_send_empty(struct bnx2x *bp, struct bnx2x_queue_state_params *params) { struct bnx2x_queue_sp_obj *o = params->q_obj; return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_EMPTY, o->cids[BNX2X_PRIMARY_CID_INDEX], 0, 0, ETH_CONNECTION_TYPE); } static inline int bnx2x_queue_send_cmd_cmn(struct bnx2x *bp, struct bnx2x_queue_state_params *params) { switch (params->cmd) { case BNX2X_Q_CMD_INIT: return bnx2x_q_init(bp, params); case BNX2X_Q_CMD_SETUP_TX_ONLY: return bnx2x_q_send_setup_tx_only(bp, params); case BNX2X_Q_CMD_DEACTIVATE: return bnx2x_q_send_deactivate(bp, params); case BNX2X_Q_CMD_ACTIVATE: return bnx2x_q_send_activate(bp, params); case BNX2X_Q_CMD_UPDATE: return bnx2x_q_send_update(bp, params); case BNX2X_Q_CMD_UPDATE_TPA: return bnx2x_q_send_update_tpa(bp, params); case BNX2X_Q_CMD_HALT: return bnx2x_q_send_halt(bp, params); case BNX2X_Q_CMD_CFC_DEL: return bnx2x_q_send_cfc_del(bp, params); case BNX2X_Q_CMD_TERMINATE: return bnx2x_q_send_terminate(bp, params); case BNX2X_Q_CMD_EMPTY: return bnx2x_q_send_empty(bp, params); default: BNX2X_ERR("Unknown command: %d\n", params->cmd); return -EINVAL; } } static int bnx2x_queue_send_cmd_e1x(struct bnx2x *bp, struct bnx2x_queue_state_params *params) { switch (params->cmd) { case BNX2X_Q_CMD_SETUP: return bnx2x_q_send_setup_e1x(bp, params); case BNX2X_Q_CMD_INIT: case BNX2X_Q_CMD_SETUP_TX_ONLY: case BNX2X_Q_CMD_DEACTIVATE: case BNX2X_Q_CMD_ACTIVATE: case BNX2X_Q_CMD_UPDATE: case BNX2X_Q_CMD_UPDATE_TPA: case BNX2X_Q_CMD_HALT: case BNX2X_Q_CMD_CFC_DEL: case BNX2X_Q_CMD_TERMINATE: case BNX2X_Q_CMD_EMPTY: return bnx2x_queue_send_cmd_cmn(bp, params); default: BNX2X_ERR("Unknown command: %d\n", params->cmd); return -EINVAL; } } static int bnx2x_queue_send_cmd_e2(struct bnx2x *bp, struct bnx2x_queue_state_params *params) { switch (params->cmd) { case BNX2X_Q_CMD_SETUP: return bnx2x_q_send_setup_e2(bp, params); case BNX2X_Q_CMD_INIT: case BNX2X_Q_CMD_SETUP_TX_ONLY: case BNX2X_Q_CMD_DEACTIVATE: case BNX2X_Q_CMD_ACTIVATE: case BNX2X_Q_CMD_UPDATE: case BNX2X_Q_CMD_UPDATE_TPA: case BNX2X_Q_CMD_HALT: case BNX2X_Q_CMD_CFC_DEL: case BNX2X_Q_CMD_TERMINATE: case BNX2X_Q_CMD_EMPTY: return bnx2x_queue_send_cmd_cmn(bp, params); default: BNX2X_ERR("Unknown command: %d\n", params->cmd); return -EINVAL; } } /** * bnx2x_queue_chk_transition - check state machine of a regular Queue * * @bp: device handle * @o: * @params: * * (not Forwarding) * It both checks if the requested command is legal in a current * state and, if it's legal, sets a `next_state' in the object * that will be used in the completion flow to set the `state' * of the object. * * returns 0 if a requested command is a legal transition, * -EINVAL otherwise. */ static int bnx2x_queue_chk_transition(struct bnx2x *bp, struct bnx2x_queue_sp_obj *o, struct bnx2x_queue_state_params *params) { enum bnx2x_q_state state = o->state, next_state = BNX2X_Q_STATE_MAX; enum bnx2x_queue_cmd cmd = params->cmd; struct bnx2x_queue_update_params *update_params = ¶ms->params.update; u8 next_tx_only = o->num_tx_only; /* Forget all pending for completion commands if a driver only state * transition has been requested. */ if (test_bit(RAMROD_DRV_CLR_ONLY, ¶ms->ramrod_flags)) { o->pending = 0; o->next_state = BNX2X_Q_STATE_MAX; } /* Don't allow a next state transition if we are in the middle of * the previous one. */ if (o->pending) { BNX2X_ERR("Blocking transition since pending was %lx\n", o->pending); return -EBUSY; } switch (state) { case BNX2X_Q_STATE_RESET: if (cmd == BNX2X_Q_CMD_INIT) next_state = BNX2X_Q_STATE_INITIALIZED; break; case BNX2X_Q_STATE_INITIALIZED: if (cmd == BNX2X_Q_CMD_SETUP) { if (test_bit(BNX2X_Q_FLG_ACTIVE, ¶ms->params.setup.flags)) next_state = BNX2X_Q_STATE_ACTIVE; else next_state = BNX2X_Q_STATE_INACTIVE; } break; case BNX2X_Q_STATE_ACTIVE: if (cmd == BNX2X_Q_CMD_DEACTIVATE) next_state = BNX2X_Q_STATE_INACTIVE; else if ((cmd == BNX2X_Q_CMD_EMPTY) || (cmd == BNX2X_Q_CMD_UPDATE_TPA)) next_state = BNX2X_Q_STATE_ACTIVE; else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) { next_state = BNX2X_Q_STATE_MULTI_COS; next_tx_only = 1; } else if (cmd == BNX2X_Q_CMD_HALT) next_state = BNX2X_Q_STATE_STOPPED; else if (cmd == BNX2X_Q_CMD_UPDATE) { /* If "active" state change is requested, update the * state accordingly. */ if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update_params->update_flags) && !test_bit(BNX2X_Q_UPDATE_ACTIVATE, &update_params->update_flags)) next_state = BNX2X_Q_STATE_INACTIVE; else next_state = BNX2X_Q_STATE_ACTIVE; } break; case BNX2X_Q_STATE_MULTI_COS: if (cmd == BNX2X_Q_CMD_TERMINATE) next_state = BNX2X_Q_STATE_MCOS_TERMINATED; else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) { next_state = BNX2X_Q_STATE_MULTI_COS; next_tx_only = o->num_tx_only + 1; } else if ((cmd == BNX2X_Q_CMD_EMPTY) || (cmd == BNX2X_Q_CMD_UPDATE_TPA)) next_state = BNX2X_Q_STATE_MULTI_COS; else if (cmd == BNX2X_Q_CMD_UPDATE) { /* If "active" state change is requested, update the * state accordingly. */ if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update_params->update_flags) && !test_bit(BNX2X_Q_UPDATE_ACTIVATE, &update_params->update_flags)) next_state = BNX2X_Q_STATE_INACTIVE; else next_state = BNX2X_Q_STATE_MULTI_COS; } break; case BNX2X_Q_STATE_MCOS_TERMINATED: if (cmd == BNX2X_Q_CMD_CFC_DEL) { next_tx_only = o->num_tx_only - 1; if (next_tx_only == 0) next_state = BNX2X_Q_STATE_ACTIVE; else next_state = BNX2X_Q_STATE_MULTI_COS; } break; case BNX2X_Q_STATE_INACTIVE: if (cmd == BNX2X_Q_CMD_ACTIVATE) next_state = BNX2X_Q_STATE_ACTIVE; else if ((cmd == BNX2X_Q_CMD_EMPTY) || (cmd == BNX2X_Q_CMD_UPDATE_TPA)) next_state = BNX2X_Q_STATE_INACTIVE; else if (cmd == BNX2X_Q_CMD_HALT) next_state = BNX2X_Q_STATE_STOPPED; else if (cmd == BNX2X_Q_CMD_UPDATE) { /* If "active" state change is requested, update the * state accordingly. */ if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update_params->update_flags) && test_bit(BNX2X_Q_UPDATE_ACTIVATE, &update_params->update_flags)){ if (o->num_tx_only == 0) next_state = BNX2X_Q_STATE_ACTIVE; else /* tx only queues exist for this queue */ next_state = BNX2X_Q_STATE_MULTI_COS; } else next_state = BNX2X_Q_STATE_INACTIVE; } break; case BNX2X_Q_STATE_STOPPED: if (cmd == BNX2X_Q_CMD_TERMINATE) next_state = BNX2X_Q_STATE_TERMINATED; break; case BNX2X_Q_STATE_TERMINATED: if (cmd == BNX2X_Q_CMD_CFC_DEL) next_state = BNX2X_Q_STATE_RESET; break; default: BNX2X_ERR("Illegal state: %d\n", state); } /* Transition is assured */ if (next_state != BNX2X_Q_STATE_MAX) { DP(BNX2X_MSG_SP, "Good state transition: %d(%d)->%d\n", state, cmd, next_state); o->next_state = next_state; o->next_tx_only = next_tx_only; return 0; } DP(BNX2X_MSG_SP, "Bad state transition request: %d %d\n", state, cmd); return -EINVAL; } void bnx2x_init_queue_obj(struct bnx2x *bp, struct bnx2x_queue_sp_obj *obj, u8 cl_id, u32 *cids, u8 cid_cnt, u8 func_id, void *rdata, dma_addr_t rdata_mapping, unsigned long type) { memset(obj, 0, sizeof(*obj)); /* We support only BNX2X_MULTI_TX_COS Tx CoS at the moment */ BUG_ON(BNX2X_MULTI_TX_COS < cid_cnt); memcpy(obj->cids, cids, sizeof(obj->cids[0]) * cid_cnt); obj->max_cos = cid_cnt; obj->cl_id = cl_id; obj->func_id = func_id; obj->rdata = rdata; obj->rdata_mapping = rdata_mapping; obj->type = type; obj->next_state = BNX2X_Q_STATE_MAX; if (CHIP_IS_E1x(bp)) obj->send_cmd = bnx2x_queue_send_cmd_e1x; else obj->send_cmd = bnx2x_queue_send_cmd_e2; obj->check_transition = bnx2x_queue_chk_transition; obj->complete_cmd = bnx2x_queue_comp_cmd; obj->wait_comp = bnx2x_queue_wait_comp; obj->set_pending = bnx2x_queue_set_pending; } /* return a queue object's logical state*/ int bnx2x_get_q_logical_state(struct bnx2x *bp, struct bnx2x_queue_sp_obj *obj) { switch (obj->state) { case BNX2X_Q_STATE_ACTIVE: case BNX2X_Q_STATE_MULTI_COS: return BNX2X_Q_LOGICAL_STATE_ACTIVE; case BNX2X_Q_STATE_RESET: case BNX2X_Q_STATE_INITIALIZED: case BNX2X_Q_STATE_MCOS_TERMINATED: case BNX2X_Q_STATE_INACTIVE: case BNX2X_Q_STATE_STOPPED: case BNX2X_Q_STATE_TERMINATED: case BNX2X_Q_STATE_FLRED: return BNX2X_Q_LOGICAL_STATE_STOPPED; default: return -EINVAL; } } /********************** Function state object *********************************/ enum bnx2x_func_state bnx2x_func_get_state(struct bnx2x *bp, struct bnx2x_func_sp_obj *o) { /* in the middle of transaction - return INVALID state */ if (o->pending) return BNX2X_F_STATE_MAX; /* unsure the order of reading of o->pending and o->state * o->pending should be read first */ rmb(); return o->state; } static int bnx2x_func_wait_comp(struct bnx2x *bp, struct bnx2x_func_sp_obj *o, enum bnx2x_func_cmd cmd) { return bnx2x_state_wait(bp, cmd, &o->pending); } /** * bnx2x_func_state_change_comp - complete the state machine transition * * @bp: device handle * @o: * @cmd: * * Called on state change transition. Completes the state * machine transition only - no HW interaction. */ static inline int bnx2x_func_state_change_comp(struct bnx2x *bp, struct bnx2x_func_sp_obj *o, enum bnx2x_func_cmd cmd) { unsigned long cur_pending = o->pending; if (!test_and_clear_bit(cmd, &cur_pending)) { BNX2X_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n", cmd, BP_FUNC(bp), o->state, cur_pending, o->next_state); return -EINVAL; } DP(BNX2X_MSG_SP, "Completing command %d for func %d, setting state to %d\n", cmd, BP_FUNC(bp), o->next_state); o->state = o->next_state; o->next_state = BNX2X_F_STATE_MAX; /* It's important that o->state and o->next_state are * updated before o->pending. */ wmb(); clear_bit(cmd, &o->pending); smp_mb__after_atomic(); return 0; } /** * bnx2x_func_comp_cmd - complete the state change command * * @bp: device handle * @o: * @cmd: * * Checks that the arrived completion is expected. */ static int bnx2x_func_comp_cmd(struct bnx2x *bp, struct bnx2x_func_sp_obj *o, enum bnx2x_func_cmd cmd) { /* Complete the state machine part first, check if it's a * legal completion. */ int rc = bnx2x_func_state_change_comp(bp, o, cmd); return rc; } /** * bnx2x_func_chk_transition - perform function state machine transition * * @bp: device handle * @o: * @params: * * It both checks if the requested command is legal in a current * state and, if it's legal, sets a `next_state' in the object * that will be used in the completion flow to set the `state' * of the object. * * returns 0 if a requested command is a legal transition, * -EINVAL otherwise. */ static int bnx2x_func_chk_transition(struct bnx2x *bp, struct bnx2x_func_sp_obj *o, struct bnx2x_func_state_params *params) { enum bnx2x_func_state state = o->state, next_state = BNX2X_F_STATE_MAX; enum bnx2x_func_cmd cmd = params->cmd; /* Forget all pending for completion commands if a driver only state * transition has been requested. */ if (test_bit(RAMROD_DRV_CLR_ONLY, ¶ms->ramrod_flags)) { o->pending = 0; o->next_state = BNX2X_F_STATE_MAX; } /* Don't allow a next state transition if we are in the middle of * the previous one. */ if (o->pending) return -EBUSY; switch (state) { case BNX2X_F_STATE_RESET: if (cmd == BNX2X_F_CMD_HW_INIT) next_state = BNX2X_F_STATE_INITIALIZED; break; case BNX2X_F_STATE_INITIALIZED: if (cmd == BNX2X_F_CMD_START) next_state = BNX2X_F_STATE_STARTED; else if (cmd == BNX2X_F_CMD_HW_RESET) next_state = BNX2X_F_STATE_RESET; break; case BNX2X_F_STATE_STARTED: if (cmd == BNX2X_F_CMD_STOP) next_state = BNX2X_F_STATE_INITIALIZED; /* afex ramrods can be sent only in started mode, and only * if not pending for function_stop ramrod completion * for these events - next state remained STARTED. */ else if ((cmd == BNX2X_F_CMD_AFEX_UPDATE) && (!test_bit(BNX2X_F_CMD_STOP, &o->pending))) next_state = BNX2X_F_STATE_STARTED; else if ((cmd == BNX2X_F_CMD_AFEX_VIFLISTS) && (!test_bit(BNX2X_F_CMD_STOP, &o->pending))) next_state = BNX2X_F_STATE_STARTED; /* Switch_update ramrod can be sent in either started or * tx_stopped state, and it doesn't change the state. */ else if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) && (!test_bit(BNX2X_F_CMD_STOP, &o->pending))) next_state = BNX2X_F_STATE_STARTED; else if ((cmd == BNX2X_F_CMD_SET_TIMESYNC) && (!test_bit(BNX2X_F_CMD_STOP, &o->pending))) next_state = BNX2X_F_STATE_STARTED; else if (cmd == BNX2X_F_CMD_TX_STOP) next_state = BNX2X_F_STATE_TX_STOPPED; break; case BNX2X_F_STATE_TX_STOPPED: if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) && (!test_bit(BNX2X_F_CMD_STOP, &o->pending))) next_state = BNX2X_F_STATE_TX_STOPPED; else if ((cmd == BNX2X_F_CMD_SET_TIMESYNC) && (!test_bit(BNX2X_F_CMD_STOP, &o->pending))) next_state = BNX2X_F_STATE_TX_STOPPED; else if (cmd == BNX2X_F_CMD_TX_START) next_state = BNX2X_F_STATE_STARTED; break; default: BNX2X_ERR("Unknown state: %d\n", state); } /* Transition is assured */ if (next_state != BNX2X_F_STATE_MAX) { DP(BNX2X_MSG_SP, "Good function state transition: %d(%d)->%d\n", state, cmd, next_state); o->next_state = next_state; return 0; } DP(BNX2X_MSG_SP, "Bad function state transition request: %d %d\n", state, cmd); return -EINVAL; } /** * bnx2x_func_init_func - performs HW init at function stage * * @bp: device handle * @drv: * * Init HW when the current phase is * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only * HW blocks. */ static inline int bnx2x_func_init_func(struct bnx2x *bp, const struct bnx2x_func_sp_drv_ops *drv) { return drv->init_hw_func(bp); } /** * bnx2x_func_init_port - performs HW init at port stage * * @bp: device handle * @drv: * * Init HW when the current phase is * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and * FUNCTION-only HW blocks. * */ static inline int bnx2x_func_init_port(struct bnx2x *bp, const struct bnx2x_func_sp_drv_ops *drv) { int rc = drv->init_hw_port(bp); if (rc) return rc; return bnx2x_func_init_func(bp, drv); } /** * bnx2x_func_init_cmn_chip - performs HW init at chip-common stage * * @bp: device handle * @drv: * * Init HW when the current phase is * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP, * PORT-only and FUNCTION-only HW blocks. */ static inline int bnx2x_func_init_cmn_chip(struct bnx2x *bp, const struct bnx2x_func_sp_drv_ops *drv) { int rc = drv->init_hw_cmn_chip(bp); if (rc) return rc; return bnx2x_func_init_port(bp, drv); } /** * bnx2x_func_init_cmn - performs HW init at common stage * * @bp: device handle * @drv: * * Init HW when the current phase is * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON, * PORT-only and FUNCTION-only HW blocks. */ static inline int bnx2x_func_init_cmn(struct bnx2x *bp, const struct bnx2x_func_sp_drv_ops *drv) { int rc = drv->init_hw_cmn(bp); if (rc) return rc; return bnx2x_func_init_port(bp, drv); } static int bnx2x_func_hw_init(struct bnx2x *bp, struct bnx2x_func_state_params *params) { u32 load_code = params->params.hw_init.load_phase; struct bnx2x_func_sp_obj *o = params->f_obj; const struct bnx2x_func_sp_drv_ops *drv = o->drv; int rc = 0; DP(BNX2X_MSG_SP, "function %d load_code %x\n", BP_ABS_FUNC(bp), load_code); /* Prepare buffers for unzipping the FW */ rc = drv->gunzip_init(bp); if (rc) return rc; /* Prepare FW */ rc = drv->init_fw(bp); if (rc) { BNX2X_ERR("Error loading firmware\n"); goto init_err; } /* Handle the beginning of COMMON_XXX pases separately... */ switch (load_code) { case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: rc = bnx2x_func_init_cmn_chip(bp, drv); if (rc) goto init_err; break; case FW_MSG_CODE_DRV_LOAD_COMMON: rc = bnx2x_func_init_cmn(bp, drv); if (rc) goto init_err; break; case FW_MSG_CODE_DRV_LOAD_PORT: rc = bnx2x_func_init_port(bp, drv); if (rc) goto init_err; break; case FW_MSG_CODE_DRV_LOAD_FUNCTION: rc = bnx2x_func_init_func(bp, drv); if (rc) goto init_err; break; default: BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code); rc = -EINVAL; } init_err: drv->gunzip_end(bp); /* In case of success, complete the command immediately: no ramrods * have been sent. */ if (!rc) o->complete_cmd(bp, o, BNX2X_F_CMD_HW_INIT); return rc; } /** * bnx2x_func_reset_func - reset HW at function stage * * @bp: device handle * @drv: * * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only * FUNCTION-only HW blocks. */ static inline void bnx2x_func_reset_func(struct bnx2x *bp, const struct bnx2x_func_sp_drv_ops *drv) { drv->reset_hw_func(bp); } /** * bnx2x_func_reset_port - reset HW at port stage * * @bp: device handle * @drv: * * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset * FUNCTION-only and PORT-only HW blocks. * * !!!IMPORTANT!!! * * It's important to call reset_port before reset_func() as the last thing * reset_func does is pf_disable() thus disabling PGLUE_B, which * makes impossible any DMAE transactions. */ static inline void bnx2x_func_reset_port(struct bnx2x *bp, const struct bnx2x_func_sp_drv_ops *drv) { drv->reset_hw_port(bp); bnx2x_func_reset_func(bp, drv); } /** * bnx2x_func_reset_cmn - reset HW at common stage * * @bp: device handle * @drv: * * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON, * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks. */ static inline void bnx2x_func_reset_cmn(struct bnx2x *bp, const struct bnx2x_func_sp_drv_ops *drv) { bnx2x_func_reset_port(bp, drv); drv->reset_hw_cmn(bp); } static inline int bnx2x_func_hw_reset(struct bnx2x *bp, struct bnx2x_func_state_params *params) { u32 reset_phase = params->params.hw_reset.reset_phase; struct bnx2x_func_sp_obj *o = params->f_obj; const struct bnx2x_func_sp_drv_ops *drv = o->drv; DP(BNX2X_MSG_SP, "function %d reset_phase %x\n", BP_ABS_FUNC(bp), reset_phase); switch (reset_phase) { case FW_MSG_CODE_DRV_UNLOAD_COMMON: bnx2x_func_reset_cmn(bp, drv); break; case FW_MSG_CODE_DRV_UNLOAD_PORT: bnx2x_func_reset_port(bp, drv); break; case FW_MSG_CODE_DRV_UNLOAD_FUNCTION: bnx2x_func_reset_func(bp, drv); break; default: BNX2X_ERR("Unknown reset_phase (0x%x) from MCP\n", reset_phase); break; } /* Complete the command immediately: no ramrods have been sent. */ o->complete_cmd(bp, o, BNX2X_F_CMD_HW_RESET); return 0; } static inline int bnx2x_func_send_start(struct bnx2x *bp, struct bnx2x_func_state_params *params) { struct bnx2x_func_sp_obj *o = params->f_obj; struct function_start_data *rdata = (struct function_start_data *)o->rdata; dma_addr_t data_mapping = o->rdata_mapping; struct bnx2x_func_start_params *start_params = ¶ms->params.start; memset(rdata, 0, sizeof(*rdata)); /* Fill the ramrod data with provided parameters */ rdata->function_mode = (u8)start_params->mf_mode; rdata->sd_vlan_tag = cpu_to_le16(start_params->sd_vlan_tag); rdata->path_id = BP_PATH(bp); rdata->network_cos_mode = start_params->network_cos_mode; rdata->dmae_cmd_id = BNX2X_FW_DMAE_C; rdata->vxlan_dst_port = cpu_to_le16(start_params->vxlan_dst_port); rdata->geneve_dst_port = cpu_to_le16(start_params->geneve_dst_port); rdata->inner_clss_l2gre = start_params->inner_clss_l2gre; rdata->inner_clss_l2geneve = start_params->inner_clss_l2geneve; rdata->inner_clss_vxlan = start_params->inner_clss_vxlan; rdata->inner_rss = start_params->inner_rss; rdata->sd_accept_mf_clss_fail = start_params->class_fail; if (start_params->class_fail_ethtype) { rdata->sd_accept_mf_clss_fail_match_ethtype = 1; rdata->sd_accept_mf_clss_fail_ethtype = cpu_to_le16(start_params->class_fail_ethtype); } rdata->sd_vlan_force_pri_flg = start_params->sd_vlan_force_pri; rdata->sd_vlan_force_pri_val = start_params->sd_vlan_force_pri_val; if (start_params->sd_vlan_eth_type) rdata->sd_vlan_eth_type = cpu_to_le16(start_params->sd_vlan_eth_type); else rdata->sd_vlan_eth_type = cpu_to_le16(0x8100); rdata->no_added_tags = start_params->no_added_tags; rdata->c2s_pri_tt_valid = start_params->c2s_pri_valid; if (rdata->c2s_pri_tt_valid) { memcpy(rdata->c2s_pri_trans_table.val, start_params->c2s_pri, MAX_VLAN_PRIORITIES); rdata->c2s_pri_default = start_params->c2s_pri_default; } /* No need for an explicit memory barrier here as long we would * need to ensure the ordering of writing to the SPQ element * and updating of the SPQ producer which involves a memory * read and we will have to put a full memory barrier there * (inside bnx2x_sp_post()). */ return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_START, 0, U64_HI(data_mapping), U64_LO(data_mapping), NONE_CONNECTION_TYPE); } static inline int bnx2x_func_send_switch_update(struct bnx2x *bp, struct bnx2x_func_state_params *params) { struct bnx2x_func_sp_obj *o = params->f_obj; struct function_update_data *rdata = (struct function_update_data *)o->rdata; dma_addr_t data_mapping = o->rdata_mapping; struct bnx2x_func_switch_update_params *switch_update_params = ¶ms->params.switch_update; memset(rdata, 0, sizeof(*rdata)); /* Fill the ramrod data with provided parameters */ if (test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG, &switch_update_params->changes)) { rdata->tx_switch_suspend_change_flg = 1; rdata->tx_switch_suspend = test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND, &switch_update_params->changes); } if (test_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG, &switch_update_params->changes)) { rdata->sd_vlan_tag_change_flg = 1; rdata->sd_vlan_tag = cpu_to_le16(switch_update_params->vlan); } if (test_bit(BNX2X_F_UPDATE_SD_VLAN_ETH_TYPE_CHNG, &switch_update_params->changes)) { rdata->sd_vlan_eth_type_change_flg = 1; rdata->sd_vlan_eth_type = cpu_to_le16(switch_update_params->vlan_eth_type); } if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_CHNG, &switch_update_params->changes)) { rdata->sd_vlan_force_pri_change_flg = 1; if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_FLAG, &switch_update_params->changes)) rdata->sd_vlan_force_pri_flg = 1; rdata->sd_vlan_force_pri_flg = switch_update_params->vlan_force_prio; } if (test_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG, &switch_update_params->changes)) { rdata->update_tunn_cfg_flg = 1; if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_L2GRE, &switch_update_params->changes)) rdata->inner_clss_l2gre = 1; if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_VXLAN, &switch_update_params->changes)) rdata->inner_clss_vxlan = 1; if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_L2GENEVE, &switch_update_params->changes)) rdata->inner_clss_l2geneve = 1; if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS, &switch_update_params->changes)) rdata->inner_rss = 1; rdata->vxlan_dst_port = cpu_to_le16(switch_update_params->vxlan_dst_port); rdata->geneve_dst_port = cpu_to_le16(switch_update_params->geneve_dst_port); } rdata->echo = SWITCH_UPDATE; /* No need for an explicit memory barrier here as long as we * ensure the ordering of writing to the SPQ element * and updating of the SPQ producer which involves a memory * read. If the memory read is removed we will have to put a * full memory barrier there (inside bnx2x_sp_post()). */ return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0, U64_HI(data_mapping), U64_LO(data_mapping), NONE_CONNECTION_TYPE); } static inline int bnx2x_func_send_afex_update(struct bnx2x *bp, struct bnx2x_func_state_params *params) { struct bnx2x_func_sp_obj *o = params->f_obj; struct function_update_data *rdata = (struct function_update_data *)o->afex_rdata; dma_addr_t data_mapping = o->afex_rdata_mapping; struct bnx2x_func_afex_update_params *afex_update_params = ¶ms->params.afex_update; memset(rdata, 0, sizeof(*rdata)); /* Fill the ramrod data with provided parameters */ rdata->vif_id_change_flg = 1; rdata->vif_id = cpu_to_le16(afex_update_params->vif_id); rdata->afex_default_vlan_change_flg = 1; rdata->afex_default_vlan = cpu_to_le16(afex_update_params->afex_default_vlan); rdata->allowed_priorities_change_flg = 1; rdata->allowed_priorities = afex_update_params->allowed_priorities; rdata->echo = AFEX_UPDATE; /* No need for an explicit memory barrier here as long as we * ensure the ordering of writing to the SPQ element * and updating of the SPQ producer which involves a memory * read. If the memory read is removed we will have to put a * full memory barrier there (inside bnx2x_sp_post()). */ DP(BNX2X_MSG_SP, "afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x\n", rdata->vif_id, rdata->afex_default_vlan, rdata->allowed_priorities); return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0, U64_HI(data_mapping), U64_LO(data_mapping), NONE_CONNECTION_TYPE); } static inline int bnx2x_func_send_afex_viflists(struct bnx2x *bp, struct bnx2x_func_state_params *params) { struct bnx2x_func_sp_obj *o = params->f_obj; struct afex_vif_list_ramrod_data *rdata = (struct afex_vif_list_ramrod_data *)o->afex_rdata; struct bnx2x_func_afex_viflists_params *afex_vif_params = ¶ms->params.afex_viflists; u64 *p_rdata = (u64 *)rdata; memset(rdata, 0, sizeof(*rdata)); /* Fill the ramrod data with provided parameters */ rdata->vif_list_index = cpu_to_le16(afex_vif_params->vif_list_index); rdata->func_bit_map = afex_vif_params->func_bit_map; rdata->afex_vif_list_command = afex_vif_params->afex_vif_list_command; rdata->func_to_clear = afex_vif_params->func_to_clear; /* send in echo type of sub command */ rdata->echo = afex_vif_params->afex_vif_list_command; /* No need for an explicit memory barrier here as long we would * need to ensure the ordering of writing to the SPQ element * and updating of the SPQ producer which involves a memory * read and we will have to put a full memory barrier there * (inside bnx2x_sp_post()). */ DP(BNX2X_MSG_SP, "afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x\n", rdata->afex_vif_list_command, rdata->vif_list_index, rdata->func_bit_map, rdata->func_to_clear); /* this ramrod sends data directly and not through DMA mapping */ return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS, 0, U64_HI(*p_rdata), U64_LO(*p_rdata), NONE_CONNECTION_TYPE); } static inline int bnx2x_func_send_stop(struct bnx2x *bp, struct bnx2x_func_state_params *params) { return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_STOP, 0, 0, 0, NONE_CONNECTION_TYPE); } static inline int bnx2x_func_send_tx_stop(struct bnx2x *bp, struct bnx2x_func_state_params *params) { return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC, 0, 0, 0, NONE_CONNECTION_TYPE); } static inline int bnx2x_func_send_tx_start(struct bnx2x *bp, struct bnx2x_func_state_params *params) { struct bnx2x_func_sp_obj *o = params->f_obj; struct flow_control_configuration *rdata = (struct flow_control_configuration *)o->rdata; dma_addr_t data_mapping = o->rdata_mapping; struct bnx2x_func_tx_start_params *tx_start_params = ¶ms->params.tx_start; int i; memset(rdata, 0, sizeof(*rdata)); rdata->dcb_enabled = tx_start_params->dcb_enabled; rdata->dcb_version = tx_start_params->dcb_version; rdata->dont_add_pri_0_en = tx_start_params->dont_add_pri_0_en; for (i = 0; i < ARRAY_SIZE(rdata->traffic_type_to_priority_cos); i++) rdata->traffic_type_to_priority_cos[i] = tx_start_params->traffic_type_to_priority_cos[i]; for (i = 0; i < MAX_TRAFFIC_TYPES; i++) rdata->dcb_outer_pri[i] = tx_start_params->dcb_outer_pri[i]; /* No need for an explicit memory barrier here as long as we * ensure the ordering of writing to the SPQ element * and updating of the SPQ producer which involves a memory * read. If the memory read is removed we will have to put a * full memory barrier there (inside bnx2x_sp_post()). */ return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_START_TRAFFIC, 0, U64_HI(data_mapping), U64_LO(data_mapping), NONE_CONNECTION_TYPE); } static inline int bnx2x_func_send_set_timesync(struct bnx2x *bp, struct bnx2x_func_state_params *params) { struct bnx2x_func_sp_obj *o = params->f_obj; struct set_timesync_ramrod_data *rdata = (struct set_timesync_ramrod_data *)o->rdata; dma_addr_t data_mapping = o->rdata_mapping; struct bnx2x_func_set_timesync_params *set_timesync_params = ¶ms->params.set_timesync; memset(rdata, 0, sizeof(*rdata)); /* Fill the ramrod data with provided parameters */ rdata->drift_adjust_cmd = set_timesync_params->drift_adjust_cmd; rdata->offset_cmd = set_timesync_params->offset_cmd; rdata->add_sub_drift_adjust_value = set_timesync_params->add_sub_drift_adjust_value; rdata->drift_adjust_value = set_timesync_params->drift_adjust_value; rdata->drift_adjust_period = set_timesync_params->drift_adjust_period; rdata->offset_delta.lo = cpu_to_le32(U64_LO(set_timesync_params->offset_delta)); rdata->offset_delta.hi = cpu_to_le32(U64_HI(set_timesync_params->offset_delta)); DP(BNX2X_MSG_SP, "Set timesync command params: drift_cmd = %d, offset_cmd = %d, add_sub_drift = %d, drift_val = %d, drift_period = %d, offset_lo = %d, offset_hi = %d\n", rdata->drift_adjust_cmd, rdata->offset_cmd, rdata->add_sub_drift_adjust_value, rdata->drift_adjust_value, rdata->drift_adjust_period, rdata->offset_delta.lo, rdata->offset_delta.hi); return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_SET_TIMESYNC, 0, U64_HI(data_mapping), U64_LO(data_mapping), NONE_CONNECTION_TYPE); } static int bnx2x_func_send_cmd(struct bnx2x *bp, struct bnx2x_func_state_params *params) { switch (params->cmd) { case BNX2X_F_CMD_HW_INIT: return bnx2x_func_hw_init(bp, params); case BNX2X_F_CMD_START: return bnx2x_func_send_start(bp, params); case BNX2X_F_CMD_STOP: return bnx2x_func_send_stop(bp, params); case BNX2X_F_CMD_HW_RESET: return bnx2x_func_hw_reset(bp, params); case BNX2X_F_CMD_AFEX_UPDATE: return bnx2x_func_send_afex_update(bp, params); case BNX2X_F_CMD_AFEX_VIFLISTS: return bnx2x_func_send_afex_viflists(bp, params); case BNX2X_F_CMD_TX_STOP: return bnx2x_func_send_tx_stop(bp, params); case BNX2X_F_CMD_TX_START: return bnx2x_func_send_tx_start(bp, params); case BNX2X_F_CMD_SWITCH_UPDATE: return bnx2x_func_send_switch_update(bp, params); case BNX2X_F_CMD_SET_TIMESYNC: return bnx2x_func_send_set_timesync(bp, params); default: BNX2X_ERR("Unknown command: %d\n", params->cmd); return -EINVAL; } } void bnx2x_init_func_obj(struct bnx2x *bp, struct bnx2x_func_sp_obj *obj, void *rdata, dma_addr_t rdata_mapping, void *afex_rdata, dma_addr_t afex_rdata_mapping, struct bnx2x_func_sp_drv_ops *drv_iface) { memset(obj, 0, sizeof(*obj)); mutex_init(&obj->one_pending_mutex); obj->rdata = rdata; obj->rdata_mapping = rdata_mapping; obj->afex_rdata = afex_rdata; obj->afex_rdata_mapping = afex_rdata_mapping; obj->send_cmd = bnx2x_func_send_cmd; obj->check_transition = bnx2x_func_chk_transition; obj->complete_cmd = bnx2x_func_comp_cmd; obj->wait_comp = bnx2x_func_wait_comp; obj->drv = drv_iface; } /** * bnx2x_func_state_change - perform Function state change transition * * @bp: device handle * @params: parameters to perform the transaction * * returns 0 in case of successfully completed transition, * negative error code in case of failure, positive * (EBUSY) value if there is a completion to that is * still pending (possible only if RAMROD_COMP_WAIT is * not set in params->ramrod_flags for asynchronous * commands). */ int bnx2x_func_state_change(struct bnx2x *bp, struct bnx2x_func_state_params *params) { struct bnx2x_func_sp_obj *o = params->f_obj; int rc, cnt = 300; enum bnx2x_func_cmd cmd = params->cmd; unsigned long *pending = &o->pending; mutex_lock(&o->one_pending_mutex); /* Check that the requested transition is legal */ rc = o->check_transition(bp, o, params); if ((rc == -EBUSY) && (test_bit(RAMROD_RETRY, ¶ms->ramrod_flags))) { while ((rc == -EBUSY) && (--cnt > 0)) { mutex_unlock(&o->one_pending_mutex); msleep(10); mutex_lock(&o->one_pending_mutex); rc = o->check_transition(bp, o, params); } if (rc == -EBUSY) { mutex_unlock(&o->one_pending_mutex); BNX2X_ERR("timeout waiting for previous ramrod completion\n"); return rc; } } else if (rc) { mutex_unlock(&o->one_pending_mutex); return rc; } /* Set "pending" bit */ set_bit(cmd, pending); /* Don't send a command if only driver cleanup was requested */ if (test_bit(RAMROD_DRV_CLR_ONLY, ¶ms->ramrod_flags)) { bnx2x_func_state_change_comp(bp, o, cmd); mutex_unlock(&o->one_pending_mutex); } else { /* Send a ramrod */ rc = o->send_cmd(bp, params); mutex_unlock(&o->one_pending_mutex); if (rc) { o->next_state = BNX2X_F_STATE_MAX; clear_bit(cmd, pending); smp_mb__after_atomic(); return rc; } if (test_bit(RAMROD_COMP_WAIT, ¶ms->ramrod_flags)) { rc = o->wait_comp(bp, o, cmd); if (rc) return rc; return 0; } } return !!test_bit(cmd, pending); }