/* * Copyright (C) 2015 Cavium, Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License * as published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nic_reg.h" #include "nic.h" #include "nicvf_queues.h" #include "thunder_bgx.h" #include "../common/cavium_ptp.h" #define DRV_NAME "nicvf" #define DRV_VERSION "1.0" /* NOTE: Packets bigger than 1530 are split across multiple pages and XDP needs * the buffer to be contiguous. Allow XDP to be set up only if we don't exceed * this value, keeping headroom for the 14 byte Ethernet header and two * VLAN tags (for QinQ) */ #define MAX_XDP_MTU (1530 - ETH_HLEN - VLAN_HLEN * 2) /* Supported devices */ static const struct pci_device_id nicvf_id_table[] = { { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_THUNDER_NIC_VF, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_88XX_NIC_VF) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_THUNDER_PASS1_NIC_VF, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_88XX_PASS1_NIC_VF) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_THUNDER_NIC_VF, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_81XX_NIC_VF) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_THUNDER_NIC_VF, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_83XX_NIC_VF) }, { 0, } /* end of table */ }; MODULE_AUTHOR("Sunil Goutham"); MODULE_DESCRIPTION("Cavium Thunder NIC Virtual Function Driver"); MODULE_LICENSE("GPL v2"); MODULE_VERSION(DRV_VERSION); MODULE_DEVICE_TABLE(pci, nicvf_id_table); static int debug = 0x00; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Debug message level bitmap"); static int cpi_alg = CPI_ALG_NONE; module_param(cpi_alg, int, 0444); MODULE_PARM_DESC(cpi_alg, "PFC algorithm (0=none, 1=VLAN, 2=VLAN16, 3=IP Diffserv)"); /* workqueue for handling kernel ndo_set_rx_mode() calls */ static struct workqueue_struct *nicvf_rx_mode_wq; static inline u8 nicvf_netdev_qidx(struct nicvf *nic, u8 qidx) { if (nic->sqs_mode) return qidx + ((nic->sqs_id + 1) * MAX_CMP_QUEUES_PER_QS); else return qidx; } /* The Cavium ThunderX network controller can *only* be found in SoCs * containing the ThunderX ARM64 CPU implementation. All accesses to the device * registers on this platform are implicitly strongly ordered with respect * to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use * with no memory barriers in this driver. The readq()/writeq() functions add * explicit ordering operation which in this case are redundant, and only * add overhead. */ /* Register read/write APIs */ void nicvf_reg_write(struct nicvf *nic, u64 offset, u64 val) { writeq_relaxed(val, nic->reg_base + offset); } u64 nicvf_reg_read(struct nicvf *nic, u64 offset) { return readq_relaxed(nic->reg_base + offset); } void nicvf_queue_reg_write(struct nicvf *nic, u64 offset, u64 qidx, u64 val) { void __iomem *addr = nic->reg_base + offset; writeq_relaxed(val, addr + (qidx << NIC_Q_NUM_SHIFT)); } u64 nicvf_queue_reg_read(struct nicvf *nic, u64 offset, u64 qidx) { void __iomem *addr = nic->reg_base + offset; return readq_relaxed(addr + (qidx << NIC_Q_NUM_SHIFT)); } /* VF -> PF mailbox communication */ static void nicvf_write_to_mbx(struct nicvf *nic, union nic_mbx *mbx) { u64 *msg = (u64 *)mbx; nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 0, msg[0]); nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 8, msg[1]); } int nicvf_send_msg_to_pf(struct nicvf *nic, union nic_mbx *mbx) { int timeout = NIC_MBOX_MSG_TIMEOUT; int sleep = 10; nic->pf_acked = false; nic->pf_nacked = false; nicvf_write_to_mbx(nic, mbx); /* Wait for previous message to be acked, timeout 2sec */ while (!nic->pf_acked) { if (nic->pf_nacked) { netdev_err(nic->netdev, "PF NACK to mbox msg 0x%02x from VF%d\n", (mbx->msg.msg & 0xFF), nic->vf_id); return -EINVAL; } msleep(sleep); if (nic->pf_acked) break; timeout -= sleep; if (!timeout) { netdev_err(nic->netdev, "PF didn't ACK to mbox msg 0x%02x from VF%d\n", (mbx->msg.msg & 0xFF), nic->vf_id); return -EBUSY; } } return 0; } /* Checks if VF is able to comminicate with PF * and also gets the VNIC number this VF is associated to. */ static int nicvf_check_pf_ready(struct nicvf *nic) { union nic_mbx mbx = {}; mbx.msg.msg = NIC_MBOX_MSG_READY; if (nicvf_send_msg_to_pf(nic, &mbx)) { netdev_err(nic->netdev, "PF didn't respond to READY msg\n"); return 0; } return 1; } static void nicvf_send_cfg_done(struct nicvf *nic) { union nic_mbx mbx = {}; mbx.msg.msg = NIC_MBOX_MSG_CFG_DONE; if (nicvf_send_msg_to_pf(nic, &mbx)) { netdev_err(nic->netdev, "PF didn't respond to CFG DONE msg\n"); } } static void nicvf_read_bgx_stats(struct nicvf *nic, struct bgx_stats_msg *bgx) { if (bgx->rx) nic->bgx_stats.rx_stats[bgx->idx] = bgx->stats; else nic->bgx_stats.tx_stats[bgx->idx] = bgx->stats; } static void nicvf_handle_mbx_intr(struct nicvf *nic) { union nic_mbx mbx = {}; u64 *mbx_data; u64 mbx_addr; int i; mbx_addr = NIC_VF_PF_MAILBOX_0_1; mbx_data = (u64 *)&mbx; for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) { *mbx_data = nicvf_reg_read(nic, mbx_addr); mbx_data++; mbx_addr += sizeof(u64); } netdev_dbg(nic->netdev, "Mbox message: msg: 0x%x\n", mbx.msg.msg); switch (mbx.msg.msg) { case NIC_MBOX_MSG_READY: nic->pf_acked = true; nic->vf_id = mbx.nic_cfg.vf_id & 0x7F; nic->tns_mode = mbx.nic_cfg.tns_mode & 0x7F; nic->node = mbx.nic_cfg.node_id; if (!nic->set_mac_pending) ether_addr_copy(nic->netdev->dev_addr, mbx.nic_cfg.mac_addr); nic->sqs_mode = mbx.nic_cfg.sqs_mode; nic->loopback_supported = mbx.nic_cfg.loopback_supported; nic->link_up = false; nic->duplex = 0; nic->speed = 0; break; case NIC_MBOX_MSG_ACK: nic->pf_acked = true; break; case NIC_MBOX_MSG_NACK: nic->pf_nacked = true; break; case NIC_MBOX_MSG_RSS_SIZE: nic->rss_info.rss_size = mbx.rss_size.ind_tbl_size; nic->pf_acked = true; break; case NIC_MBOX_MSG_BGX_STATS: nicvf_read_bgx_stats(nic, &mbx.bgx_stats); nic->pf_acked = true; break; case NIC_MBOX_MSG_BGX_LINK_CHANGE: nic->pf_acked = true; nic->link_up = mbx.link_status.link_up; nic->duplex = mbx.link_status.duplex; nic->speed = mbx.link_status.speed; nic->mac_type = mbx.link_status.mac_type; if (nic->link_up) { netdev_info(nic->netdev, "Link is Up %d Mbps %s duplex\n", nic->speed, nic->duplex == DUPLEX_FULL ? "Full" : "Half"); netif_carrier_on(nic->netdev); netif_tx_start_all_queues(nic->netdev); } else { netdev_info(nic->netdev, "Link is Down\n"); netif_carrier_off(nic->netdev); netif_tx_stop_all_queues(nic->netdev); } break; case NIC_MBOX_MSG_ALLOC_SQS: nic->sqs_count = mbx.sqs_alloc.qs_count; nic->pf_acked = true; break; case NIC_MBOX_MSG_SNICVF_PTR: /* Primary VF: make note of secondary VF's pointer * to be used while packet transmission. */ nic->snicvf[mbx.nicvf.sqs_id] = (struct nicvf *)mbx.nicvf.nicvf; nic->pf_acked = true; break; case NIC_MBOX_MSG_PNICVF_PTR: /* Secondary VF/Qset: make note of primary VF's pointer * to be used while packet reception, to handover packet * to primary VF's netdev. */ nic->pnicvf = (struct nicvf *)mbx.nicvf.nicvf; nic->pf_acked = true; break; case NIC_MBOX_MSG_PFC: nic->pfc.autoneg = mbx.pfc.autoneg; nic->pfc.fc_rx = mbx.pfc.fc_rx; nic->pfc.fc_tx = mbx.pfc.fc_tx; nic->pf_acked = true; break; default: netdev_err(nic->netdev, "Invalid message from PF, msg 0x%x\n", mbx.msg.msg); break; } nicvf_clear_intr(nic, NICVF_INTR_MBOX, 0); } static int nicvf_hw_set_mac_addr(struct nicvf *nic, struct net_device *netdev) { union nic_mbx mbx = {}; mbx.mac.msg = NIC_MBOX_MSG_SET_MAC; mbx.mac.vf_id = nic->vf_id; ether_addr_copy(mbx.mac.mac_addr, netdev->dev_addr); return nicvf_send_msg_to_pf(nic, &mbx); } static void nicvf_config_cpi(struct nicvf *nic) { union nic_mbx mbx = {}; mbx.cpi_cfg.msg = NIC_MBOX_MSG_CPI_CFG; mbx.cpi_cfg.vf_id = nic->vf_id; mbx.cpi_cfg.cpi_alg = nic->cpi_alg; mbx.cpi_cfg.rq_cnt = nic->qs->rq_cnt; nicvf_send_msg_to_pf(nic, &mbx); } static void nicvf_get_rss_size(struct nicvf *nic) { union nic_mbx mbx = {}; mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE; mbx.rss_size.vf_id = nic->vf_id; nicvf_send_msg_to_pf(nic, &mbx); } void nicvf_config_rss(struct nicvf *nic) { union nic_mbx mbx = {}; struct nicvf_rss_info *rss = &nic->rss_info; int ind_tbl_len = rss->rss_size; int i, nextq = 0; mbx.rss_cfg.vf_id = nic->vf_id; mbx.rss_cfg.hash_bits = rss->hash_bits; while (ind_tbl_len) { mbx.rss_cfg.tbl_offset = nextq; mbx.rss_cfg.tbl_len = min(ind_tbl_len, RSS_IND_TBL_LEN_PER_MBX_MSG); mbx.rss_cfg.msg = mbx.rss_cfg.tbl_offset ? NIC_MBOX_MSG_RSS_CFG_CONT : NIC_MBOX_MSG_RSS_CFG; for (i = 0; i < mbx.rss_cfg.tbl_len; i++) mbx.rss_cfg.ind_tbl[i] = rss->ind_tbl[nextq++]; nicvf_send_msg_to_pf(nic, &mbx); ind_tbl_len -= mbx.rss_cfg.tbl_len; } } void nicvf_set_rss_key(struct nicvf *nic) { struct nicvf_rss_info *rss = &nic->rss_info; u64 key_addr = NIC_VNIC_RSS_KEY_0_4; int idx; for (idx = 0; idx < RSS_HASH_KEY_SIZE; idx++) { nicvf_reg_write(nic, key_addr, rss->key[idx]); key_addr += sizeof(u64); } } static int nicvf_rss_init(struct nicvf *nic) { struct nicvf_rss_info *rss = &nic->rss_info; int idx; nicvf_get_rss_size(nic); if (cpi_alg != CPI_ALG_NONE) { rss->enable = false; rss->hash_bits = 0; return 0; } rss->enable = true; netdev_rss_key_fill(rss->key, RSS_HASH_KEY_SIZE * sizeof(u64)); nicvf_set_rss_key(nic); rss->cfg = RSS_IP_HASH_ENA | RSS_TCP_HASH_ENA | RSS_UDP_HASH_ENA; nicvf_reg_write(nic, NIC_VNIC_RSS_CFG, rss->cfg); rss->hash_bits = ilog2(rounddown_pow_of_two(rss->rss_size)); for (idx = 0; idx < rss->rss_size; idx++) rss->ind_tbl[idx] = ethtool_rxfh_indir_default(idx, nic->rx_queues); nicvf_config_rss(nic); return 1; } /* Request PF to allocate additional Qsets */ static void nicvf_request_sqs(struct nicvf *nic) { union nic_mbx mbx = {}; int sqs; int sqs_count = nic->sqs_count; int rx_queues = 0, tx_queues = 0; /* Only primary VF should request */ if (nic->sqs_mode || !nic->sqs_count) return; mbx.sqs_alloc.msg = NIC_MBOX_MSG_ALLOC_SQS; mbx.sqs_alloc.vf_id = nic->vf_id; mbx.sqs_alloc.qs_count = nic->sqs_count; if (nicvf_send_msg_to_pf(nic, &mbx)) { /* No response from PF */ nic->sqs_count = 0; return; } /* Return if no Secondary Qsets available */ if (!nic->sqs_count) return; if (nic->rx_queues > MAX_RCV_QUEUES_PER_QS) rx_queues = nic->rx_queues - MAX_RCV_QUEUES_PER_QS; tx_queues = nic->tx_queues + nic->xdp_tx_queues; if (tx_queues > MAX_SND_QUEUES_PER_QS) tx_queues = tx_queues - MAX_SND_QUEUES_PER_QS; /* Set no of Rx/Tx queues in each of the SQsets */ for (sqs = 0; sqs < nic->sqs_count; sqs++) { mbx.nicvf.msg = NIC_MBOX_MSG_SNICVF_PTR; mbx.nicvf.vf_id = nic->vf_id; mbx.nicvf.sqs_id = sqs; nicvf_send_msg_to_pf(nic, &mbx); nic->snicvf[sqs]->sqs_id = sqs; if (rx_queues > MAX_RCV_QUEUES_PER_QS) { nic->snicvf[sqs]->qs->rq_cnt = MAX_RCV_QUEUES_PER_QS; rx_queues -= MAX_RCV_QUEUES_PER_QS; } else { nic->snicvf[sqs]->qs->rq_cnt = rx_queues; rx_queues = 0; } if (tx_queues > MAX_SND_QUEUES_PER_QS) { nic->snicvf[sqs]->qs->sq_cnt = MAX_SND_QUEUES_PER_QS; tx_queues -= MAX_SND_QUEUES_PER_QS; } else { nic->snicvf[sqs]->qs->sq_cnt = tx_queues; tx_queues = 0; } nic->snicvf[sqs]->qs->cq_cnt = max(nic->snicvf[sqs]->qs->rq_cnt, nic->snicvf[sqs]->qs->sq_cnt); /* Initialize secondary Qset's queues and its interrupts */ nicvf_open(nic->snicvf[sqs]->netdev); } /* Update stack with actual Rx/Tx queue count allocated */ if (sqs_count != nic->sqs_count) nicvf_set_real_num_queues(nic->netdev, nic->tx_queues, nic->rx_queues); } /* Send this Qset's nicvf pointer to PF. * PF inturn sends primary VF's nicvf struct to secondary Qsets/VFs * so that packets received by these Qsets can use primary VF's netdev */ static void nicvf_send_vf_struct(struct nicvf *nic) { union nic_mbx mbx = {}; mbx.nicvf.msg = NIC_MBOX_MSG_NICVF_PTR; mbx.nicvf.sqs_mode = nic->sqs_mode; mbx.nicvf.nicvf = (u64)nic; nicvf_send_msg_to_pf(nic, &mbx); } static void nicvf_get_primary_vf_struct(struct nicvf *nic) { union nic_mbx mbx = {}; mbx.nicvf.msg = NIC_MBOX_MSG_PNICVF_PTR; nicvf_send_msg_to_pf(nic, &mbx); } int nicvf_set_real_num_queues(struct net_device *netdev, int tx_queues, int rx_queues) { int err = 0; err = netif_set_real_num_tx_queues(netdev, tx_queues); if (err) { netdev_err(netdev, "Failed to set no of Tx queues: %d\n", tx_queues); return err; } err = netif_set_real_num_rx_queues(netdev, rx_queues); if (err) netdev_err(netdev, "Failed to set no of Rx queues: %d\n", rx_queues); return err; } static int nicvf_init_resources(struct nicvf *nic) { int err; /* Enable Qset */ nicvf_qset_config(nic, true); /* Initialize queues and HW for data transfer */ err = nicvf_config_data_transfer(nic, true); if (err) { netdev_err(nic->netdev, "Failed to alloc/config VF's QSet resources\n"); return err; } return 0; } static inline bool nicvf_xdp_rx(struct nicvf *nic, struct bpf_prog *prog, struct cqe_rx_t *cqe_rx, struct snd_queue *sq, struct rcv_queue *rq, struct sk_buff **skb) { struct xdp_buff xdp; struct page *page; u32 action; u16 len, offset = 0; u64 dma_addr, cpu_addr; void *orig_data; /* Retrieve packet buffer's DMA address and length */ len = *((u16 *)((void *)cqe_rx + (3 * sizeof(u64)))); dma_addr = *((u64 *)((void *)cqe_rx + (7 * sizeof(u64)))); cpu_addr = nicvf_iova_to_phys(nic, dma_addr); if (!cpu_addr) return false; cpu_addr = (u64)phys_to_virt(cpu_addr); page = virt_to_page((void *)cpu_addr); xdp.data_hard_start = page_address(page); xdp.data = (void *)cpu_addr; xdp_set_data_meta_invalid(&xdp); xdp.data_end = xdp.data + len; xdp.rxq = &rq->xdp_rxq; orig_data = xdp.data; rcu_read_lock(); action = bpf_prog_run_xdp(prog, &xdp); rcu_read_unlock(); len = xdp.data_end - xdp.data; /* Check if XDP program has changed headers */ if (orig_data != xdp.data) { offset = orig_data - xdp.data; dma_addr -= offset; } switch (action) { case XDP_PASS: /* Check if it's a recycled page, if not * unmap the DMA mapping. * * Recycled page holds an extra reference. */ if (page_ref_count(page) == 1) { dma_addr &= PAGE_MASK; dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, RCV_FRAG_LEN + XDP_PACKET_HEADROOM, DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); } /* Build SKB and pass on packet to network stack */ *skb = build_skb(xdp.data, RCV_FRAG_LEN - cqe_rx->align_pad + offset); if (!*skb) put_page(page); else skb_put(*skb, len); return false; case XDP_TX: nicvf_xdp_sq_append_pkt(nic, sq, (u64)xdp.data, dma_addr, len); return true; default: bpf_warn_invalid_xdp_action(action); /* fall through */ case XDP_ABORTED: trace_xdp_exception(nic->netdev, prog, action); /* fall through */ case XDP_DROP: /* Check if it's a recycled page, if not * unmap the DMA mapping. * * Recycled page holds an extra reference. */ if (page_ref_count(page) == 1) { dma_addr &= PAGE_MASK; dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, RCV_FRAG_LEN + XDP_PACKET_HEADROOM, DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); } put_page(page); return true; } return false; } static void nicvf_snd_ptp_handler(struct net_device *netdev, struct cqe_send_t *cqe_tx) { struct nicvf *nic = netdev_priv(netdev); struct skb_shared_hwtstamps ts; u64 ns; nic = nic->pnicvf; /* Sync for 'ptp_skb' */ smp_rmb(); /* New timestamp request can be queued now */ atomic_set(&nic->tx_ptp_skbs, 0); /* Check for timestamp requested skb */ if (!nic->ptp_skb) return; /* Check if timestamping is timedout, which is set to 10us */ if (cqe_tx->send_status == CQ_TX_ERROP_TSTMP_TIMEOUT || cqe_tx->send_status == CQ_TX_ERROP_TSTMP_CONFLICT) goto no_tstamp; /* Get the timestamp */ memset(&ts, 0, sizeof(ts)); ns = cavium_ptp_tstamp2time(nic->ptp_clock, cqe_tx->ptp_timestamp); ts.hwtstamp = ns_to_ktime(ns); skb_tstamp_tx(nic->ptp_skb, &ts); no_tstamp: /* Free the original skb */ dev_kfree_skb_any(nic->ptp_skb); nic->ptp_skb = NULL; /* Sync 'ptp_skb' */ smp_wmb(); } static void nicvf_snd_pkt_handler(struct net_device *netdev, struct cqe_send_t *cqe_tx, int budget, int *subdesc_cnt, unsigned int *tx_pkts, unsigned int *tx_bytes) { struct sk_buff *skb = NULL; struct page *page; struct nicvf *nic = netdev_priv(netdev); struct snd_queue *sq; struct sq_hdr_subdesc *hdr; struct sq_hdr_subdesc *tso_sqe; sq = &nic->qs->sq[cqe_tx->sq_idx]; hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr); if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) return; /* Check for errors */ if (cqe_tx->send_status) nicvf_check_cqe_tx_errs(nic->pnicvf, cqe_tx); /* Is this a XDP designated Tx queue */ if (sq->is_xdp) { page = (struct page *)sq->xdp_page[cqe_tx->sqe_ptr]; /* Check if it's recycled page or else unmap DMA mapping */ if (page && (page_ref_count(page) == 1)) nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr, hdr->subdesc_cnt); /* Release page reference for recycling */ if (page) put_page(page); sq->xdp_page[cqe_tx->sqe_ptr] = (u64)NULL; *subdesc_cnt += hdr->subdesc_cnt + 1; return; } skb = (struct sk_buff *)sq->skbuff[cqe_tx->sqe_ptr]; if (skb) { /* Check for dummy descriptor used for HW TSO offload on 88xx */ if (hdr->dont_send) { /* Get actual TSO descriptors and free them */ tso_sqe = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2); nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2, tso_sqe->subdesc_cnt); *subdesc_cnt += tso_sqe->subdesc_cnt + 1; } else { nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr, hdr->subdesc_cnt); } *subdesc_cnt += hdr->subdesc_cnt + 1; prefetch(skb); (*tx_pkts)++; *tx_bytes += skb->len; /* If timestamp is requested for this skb, don't free it */ if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && !nic->pnicvf->ptp_skb) nic->pnicvf->ptp_skb = skb; else napi_consume_skb(skb, budget); sq->skbuff[cqe_tx->sqe_ptr] = (u64)NULL; } else { /* In case of SW TSO on 88xx, only last segment will have * a SKB attached, so just free SQEs here. */ if (!nic->hw_tso) *subdesc_cnt += hdr->subdesc_cnt + 1; } } static inline void nicvf_set_rxhash(struct net_device *netdev, struct cqe_rx_t *cqe_rx, struct sk_buff *skb) { u8 hash_type; u32 hash; if (!(netdev->features & NETIF_F_RXHASH)) return; switch (cqe_rx->rss_alg) { case RSS_ALG_TCP_IP: case RSS_ALG_UDP_IP: hash_type = PKT_HASH_TYPE_L4; hash = cqe_rx->rss_tag; break; case RSS_ALG_IP: hash_type = PKT_HASH_TYPE_L3; hash = cqe_rx->rss_tag; break; default: hash_type = PKT_HASH_TYPE_NONE; hash = 0; } skb_set_hash(skb, hash, hash_type); } static inline void nicvf_set_rxtstamp(struct nicvf *nic, struct sk_buff *skb) { u64 ns; if (!nic->ptp_clock || !nic->hw_rx_tstamp) return; /* The first 8 bytes is the timestamp */ ns = cavium_ptp_tstamp2time(nic->ptp_clock, be64_to_cpu(*(__be64 *)skb->data)); skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); __skb_pull(skb, 8); } static void nicvf_rcv_pkt_handler(struct net_device *netdev, struct napi_struct *napi, struct cqe_rx_t *cqe_rx, struct snd_queue *sq, struct rcv_queue *rq) { struct sk_buff *skb = NULL; struct nicvf *nic = netdev_priv(netdev); struct nicvf *snic = nic; int err = 0; int rq_idx; rq_idx = nicvf_netdev_qidx(nic, cqe_rx->rq_idx); if (nic->sqs_mode) { /* Use primary VF's 'nicvf' struct */ nic = nic->pnicvf; netdev = nic->netdev; } /* Check for errors */ if (cqe_rx->err_level || cqe_rx->err_opcode) { err = nicvf_check_cqe_rx_errs(nic, cqe_rx); if (err && !cqe_rx->rb_cnt) return; } /* For XDP, ignore pkts spanning multiple pages */ if (nic->xdp_prog && (cqe_rx->rb_cnt == 1)) { /* Packet consumed by XDP */ if (nicvf_xdp_rx(snic, nic->xdp_prog, cqe_rx, sq, rq, &skb)) return; } else { skb = nicvf_get_rcv_skb(snic, cqe_rx, nic->xdp_prog ? true : false); } if (!skb) return; if (netif_msg_pktdata(nic)) { netdev_info(nic->netdev, "skb 0x%p, len=%d\n", skb, skb->len); print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1, skb->data, skb->len, true); } /* If error packet, drop it here */ if (err) { dev_kfree_skb_any(skb); return; } nicvf_set_rxtstamp(nic, skb); nicvf_set_rxhash(netdev, cqe_rx, skb); skb_record_rx_queue(skb, rq_idx); if (netdev->hw_features & NETIF_F_RXCSUM) { /* HW by default verifies TCP/UDP/SCTP checksums */ skb->ip_summed = CHECKSUM_UNNECESSARY; } else { skb_checksum_none_assert(skb); } skb->protocol = eth_type_trans(skb, netdev); /* Check for stripped VLAN */ if (cqe_rx->vlan_found && cqe_rx->vlan_stripped) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs((__force __be16)cqe_rx->vlan_tci)); if (napi && (netdev->features & NETIF_F_GRO)) napi_gro_receive(napi, skb); else netif_receive_skb(skb); } static int nicvf_cq_intr_handler(struct net_device *netdev, u8 cq_idx, struct napi_struct *napi, int budget) { int processed_cqe, work_done = 0, tx_done = 0; int cqe_count, cqe_head; int subdesc_cnt = 0; struct nicvf *nic = netdev_priv(netdev); struct queue_set *qs = nic->qs; struct cmp_queue *cq = &qs->cq[cq_idx]; struct cqe_rx_t *cq_desc; struct netdev_queue *txq; struct snd_queue *sq = &qs->sq[cq_idx]; struct rcv_queue *rq = &qs->rq[cq_idx]; unsigned int tx_pkts = 0, tx_bytes = 0, txq_idx; spin_lock_bh(&cq->lock); loop: processed_cqe = 0; /* Get no of valid CQ entries to process */ cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx); cqe_count &= CQ_CQE_COUNT; if (!cqe_count) goto done; /* Get head of the valid CQ entries */ cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9; cqe_head &= 0xFFFF; while (processed_cqe < cqe_count) { /* Get the CQ descriptor */ cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head); cqe_head++; cqe_head &= (cq->dmem.q_len - 1); /* Initiate prefetch for next descriptor */ prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head)); if ((work_done >= budget) && napi && (cq_desc->cqe_type != CQE_TYPE_SEND)) { break; } switch (cq_desc->cqe_type) { case CQE_TYPE_RX: nicvf_rcv_pkt_handler(netdev, napi, cq_desc, sq, rq); work_done++; break; case CQE_TYPE_SEND: nicvf_snd_pkt_handler(netdev, (void *)cq_desc, budget, &subdesc_cnt, &tx_pkts, &tx_bytes); tx_done++; break; case CQE_TYPE_SEND_PTP: nicvf_snd_ptp_handler(netdev, (void *)cq_desc); break; case CQE_TYPE_INVALID: case CQE_TYPE_RX_SPLIT: case CQE_TYPE_RX_TCP: /* Ignore for now */ break; } processed_cqe++; } /* Ring doorbell to inform H/W to reuse processed CQEs */ nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR, cq_idx, processed_cqe); if ((work_done < budget) && napi) goto loop; done: /* Update SQ's descriptor free count */ if (subdesc_cnt) nicvf_put_sq_desc(sq, subdesc_cnt); txq_idx = nicvf_netdev_qidx(nic, cq_idx); /* Handle XDP TX queues */ if (nic->pnicvf->xdp_prog) { if (txq_idx < nic->pnicvf->xdp_tx_queues) { nicvf_xdp_sq_doorbell(nic, sq, cq_idx); goto out; } nic = nic->pnicvf; txq_idx -= nic->pnicvf->xdp_tx_queues; } /* Wakeup TXQ if its stopped earlier due to SQ full */ if (tx_done || (atomic_read(&sq->free_cnt) >= MIN_SQ_DESC_PER_PKT_XMIT)) { netdev = nic->pnicvf->netdev; txq = netdev_get_tx_queue(netdev, txq_idx); if (tx_pkts) netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); /* To read updated queue and carrier status */ smp_mb(); if (netif_tx_queue_stopped(txq) && netif_carrier_ok(netdev)) { netif_tx_wake_queue(txq); nic = nic->pnicvf; this_cpu_inc(nic->drv_stats->txq_wake); netif_warn(nic, tx_err, netdev, "Transmit queue wakeup SQ%d\n", txq_idx); } } out: spin_unlock_bh(&cq->lock); return work_done; } static int nicvf_poll(struct napi_struct *napi, int budget) { u64 cq_head; int work_done = 0; struct net_device *netdev = napi->dev; struct nicvf *nic = netdev_priv(netdev); struct nicvf_cq_poll *cq; cq = container_of(napi, struct nicvf_cq_poll, napi); work_done = nicvf_cq_intr_handler(netdev, cq->cq_idx, napi, budget); if (work_done < budget) { /* Slow packet rate, exit polling */ napi_complete_done(napi, work_done); /* Re-enable interrupts */ cq_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq->cq_idx); nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->cq_idx); nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_HEAD, cq->cq_idx, cq_head); nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->cq_idx); } return work_done; } /* Qset error interrupt handler * * As of now only CQ errors are handled */ static void nicvf_handle_qs_err(unsigned long data) { struct nicvf *nic = (struct nicvf *)data; struct queue_set *qs = nic->qs; int qidx; u64 status; netif_tx_disable(nic->netdev); /* Check if it is CQ err */ for (qidx = 0; qidx < qs->cq_cnt; qidx++) { status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, qidx); if (!(status & CQ_ERR_MASK)) continue; /* Process already queued CQEs and reconfig CQ */ nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx); nicvf_sq_disable(nic, qidx); nicvf_cq_intr_handler(nic->netdev, qidx, NULL, 0); nicvf_cmp_queue_config(nic, qs, qidx, true); nicvf_sq_free_used_descs(nic->netdev, &qs->sq[qidx], qidx); nicvf_sq_enable(nic, &qs->sq[qidx], qidx); nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx); } netif_tx_start_all_queues(nic->netdev); /* Re-enable Qset error interrupt */ nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0); } static void nicvf_dump_intr_status(struct nicvf *nic) { netif_info(nic, intr, nic->netdev, "interrupt status 0x%llx\n", nicvf_reg_read(nic, NIC_VF_INT)); } static irqreturn_t nicvf_misc_intr_handler(int irq, void *nicvf_irq) { struct nicvf *nic = (struct nicvf *)nicvf_irq; u64 intr; nicvf_dump_intr_status(nic); intr = nicvf_reg_read(nic, NIC_VF_INT); /* Check for spurious interrupt */ if (!(intr & NICVF_INTR_MBOX_MASK)) return IRQ_HANDLED; nicvf_handle_mbx_intr(nic); return IRQ_HANDLED; } static irqreturn_t nicvf_intr_handler(int irq, void *cq_irq) { struct nicvf_cq_poll *cq_poll = (struct nicvf_cq_poll *)cq_irq; struct nicvf *nic = cq_poll->nicvf; int qidx = cq_poll->cq_idx; nicvf_dump_intr_status(nic); /* Disable interrupts */ nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx); /* Schedule NAPI */ napi_schedule_irqoff(&cq_poll->napi); /* Clear interrupt */ nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx); return IRQ_HANDLED; } static irqreturn_t nicvf_rbdr_intr_handler(int irq, void *nicvf_irq) { struct nicvf *nic = (struct nicvf *)nicvf_irq; u8 qidx; nicvf_dump_intr_status(nic); /* Disable RBDR interrupt and schedule softirq */ for (qidx = 0; qidx < nic->qs->rbdr_cnt; qidx++) { if (!nicvf_is_intr_enabled(nic, NICVF_INTR_RBDR, qidx)) continue; nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx); tasklet_hi_schedule(&nic->rbdr_task); /* Clear interrupt */ nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx); } return IRQ_HANDLED; } static irqreturn_t nicvf_qs_err_intr_handler(int irq, void *nicvf_irq) { struct nicvf *nic = (struct nicvf *)nicvf_irq; nicvf_dump_intr_status(nic); /* Disable Qset err interrupt and schedule softirq */ nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0); tasklet_hi_schedule(&nic->qs_err_task); nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0); return IRQ_HANDLED; } static void nicvf_set_irq_affinity(struct nicvf *nic) { int vec, cpu; for (vec = 0; vec < nic->num_vec; vec++) { if (!nic->irq_allocated[vec]) continue; if (!zalloc_cpumask_var(&nic->affinity_mask[vec], GFP_KERNEL)) return; /* CQ interrupts */ if (vec < NICVF_INTR_ID_SQ) /* Leave CPU0 for RBDR and other interrupts */ cpu = nicvf_netdev_qidx(nic, vec) + 1; else cpu = 0; cpumask_set_cpu(cpumask_local_spread(cpu, nic->node), nic->affinity_mask[vec]); irq_set_affinity_hint(pci_irq_vector(nic->pdev, vec), nic->affinity_mask[vec]); } } static int nicvf_register_interrupts(struct nicvf *nic) { int irq, ret = 0; for_each_cq_irq(irq) sprintf(nic->irq_name[irq], "%s-rxtx-%d", nic->pnicvf->netdev->name, nicvf_netdev_qidx(nic, irq)); for_each_sq_irq(irq) sprintf(nic->irq_name[irq], "%s-sq-%d", nic->pnicvf->netdev->name, nicvf_netdev_qidx(nic, irq - NICVF_INTR_ID_SQ)); for_each_rbdr_irq(irq) sprintf(nic->irq_name[irq], "%s-rbdr-%d", nic->pnicvf->netdev->name, nic->sqs_mode ? (nic->sqs_id + 1) : 0); /* Register CQ interrupts */ for (irq = 0; irq < nic->qs->cq_cnt; irq++) { ret = request_irq(pci_irq_vector(nic->pdev, irq), nicvf_intr_handler, 0, nic->irq_name[irq], nic->napi[irq]); if (ret) goto err; nic->irq_allocated[irq] = true; } /* Register RBDR interrupt */ for (irq = NICVF_INTR_ID_RBDR; irq < (NICVF_INTR_ID_RBDR + nic->qs->rbdr_cnt); irq++) { ret = request_irq(pci_irq_vector(nic->pdev, irq), nicvf_rbdr_intr_handler, 0, nic->irq_name[irq], nic); if (ret) goto err; nic->irq_allocated[irq] = true; } /* Register QS error interrupt */ sprintf(nic->irq_name[NICVF_INTR_ID_QS_ERR], "%s-qset-err-%d", nic->pnicvf->netdev->name, nic->sqs_mode ? (nic->sqs_id + 1) : 0); irq = NICVF_INTR_ID_QS_ERR; ret = request_irq(pci_irq_vector(nic->pdev, irq), nicvf_qs_err_intr_handler, 0, nic->irq_name[irq], nic); if (ret) goto err; nic->irq_allocated[irq] = true; /* Set IRQ affinities */ nicvf_set_irq_affinity(nic); err: if (ret) netdev_err(nic->netdev, "request_irq failed, vector %d\n", irq); return ret; } static void nicvf_unregister_interrupts(struct nicvf *nic) { struct pci_dev *pdev = nic->pdev; int irq; /* Free registered interrupts */ for (irq = 0; irq < nic->num_vec; irq++) { if (!nic->irq_allocated[irq]) continue; irq_set_affinity_hint(pci_irq_vector(pdev, irq), NULL); free_cpumask_var(nic->affinity_mask[irq]); if (irq < NICVF_INTR_ID_SQ) free_irq(pci_irq_vector(pdev, irq), nic->napi[irq]); else free_irq(pci_irq_vector(pdev, irq), nic); nic->irq_allocated[irq] = false; } /* Disable MSI-X */ pci_free_irq_vectors(pdev); nic->num_vec = 0; } /* Initialize MSIX vectors and register MISC interrupt. * Send READY message to PF to check if its alive */ static int nicvf_register_misc_interrupt(struct nicvf *nic) { int ret = 0; int irq = NICVF_INTR_ID_MISC; /* Return if mailbox interrupt is already registered */ if (nic->pdev->msix_enabled) return 0; /* Enable MSI-X */ nic->num_vec = pci_msix_vec_count(nic->pdev); ret = pci_alloc_irq_vectors(nic->pdev, nic->num_vec, nic->num_vec, PCI_IRQ_MSIX); if (ret < 0) { netdev_err(nic->netdev, "Req for #%d msix vectors failed\n", nic->num_vec); return ret; } sprintf(nic->irq_name[irq], "%s Mbox", "NICVF"); /* Register Misc interrupt */ ret = request_irq(pci_irq_vector(nic->pdev, irq), nicvf_misc_intr_handler, 0, nic->irq_name[irq], nic); if (ret) return ret; nic->irq_allocated[irq] = true; /* Enable mailbox interrupt */ nicvf_enable_intr(nic, NICVF_INTR_MBOX, 0); /* Check if VF is able to communicate with PF */ if (!nicvf_check_pf_ready(nic)) { nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0); nicvf_unregister_interrupts(nic); return -EIO; } return 0; } static netdev_tx_t nicvf_xmit(struct sk_buff *skb, struct net_device *netdev) { struct nicvf *nic = netdev_priv(netdev); int qid = skb_get_queue_mapping(skb); struct netdev_queue *txq = netdev_get_tx_queue(netdev, qid); struct nicvf *snic; struct snd_queue *sq; int tmp; /* Check for minimum packet length */ if (skb->len <= ETH_HLEN) { dev_kfree_skb(skb); return NETDEV_TX_OK; } /* In XDP case, initial HW tx queues are used for XDP, * but stack's queue mapping starts at '0', so skip the * Tx queues attached to Rx queues for XDP. */ if (nic->xdp_prog) qid += nic->xdp_tx_queues; snic = nic; /* Get secondary Qset's SQ structure */ if (qid >= MAX_SND_QUEUES_PER_QS) { tmp = qid / MAX_SND_QUEUES_PER_QS; snic = (struct nicvf *)nic->snicvf[tmp - 1]; if (!snic) { netdev_warn(nic->netdev, "Secondary Qset#%d's ptr not initialized\n", tmp - 1); dev_kfree_skb(skb); return NETDEV_TX_OK; } qid = qid % MAX_SND_QUEUES_PER_QS; } sq = &snic->qs->sq[qid]; if (!netif_tx_queue_stopped(txq) && !nicvf_sq_append_skb(snic, sq, skb, qid)) { netif_tx_stop_queue(txq); /* Barrier, so that stop_queue visible to other cpus */ smp_mb(); /* Check again, incase another cpu freed descriptors */ if (atomic_read(&sq->free_cnt) > MIN_SQ_DESC_PER_PKT_XMIT) { netif_tx_wake_queue(txq); } else { this_cpu_inc(nic->drv_stats->txq_stop); netif_warn(nic, tx_err, netdev, "Transmit ring full, stopping SQ%d\n", qid); } return NETDEV_TX_BUSY; } return NETDEV_TX_OK; } static inline void nicvf_free_cq_poll(struct nicvf *nic) { struct nicvf_cq_poll *cq_poll; int qidx; for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) { cq_poll = nic->napi[qidx]; if (!cq_poll) continue; nic->napi[qidx] = NULL; kfree(cq_poll); } } int nicvf_stop(struct net_device *netdev) { int irq, qidx; struct nicvf *nic = netdev_priv(netdev); struct queue_set *qs = nic->qs; struct nicvf_cq_poll *cq_poll = NULL; union nic_mbx mbx = {}; mbx.msg.msg = NIC_MBOX_MSG_SHUTDOWN; nicvf_send_msg_to_pf(nic, &mbx); netif_carrier_off(netdev); netif_tx_stop_all_queues(nic->netdev); nic->link_up = false; /* Teardown secondary qsets first */ if (!nic->sqs_mode) { for (qidx = 0; qidx < nic->sqs_count; qidx++) { if (!nic->snicvf[qidx]) continue; nicvf_stop(nic->snicvf[qidx]->netdev); nic->snicvf[qidx] = NULL; } } /* Disable RBDR & QS error interrupts */ for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) { nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx); nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx); } nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0); nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0); /* Wait for pending IRQ handlers to finish */ for (irq = 0; irq < nic->num_vec; irq++) synchronize_irq(pci_irq_vector(nic->pdev, irq)); tasklet_kill(&nic->rbdr_task); tasklet_kill(&nic->qs_err_task); if (nic->rb_work_scheduled) cancel_delayed_work_sync(&nic->rbdr_work); for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) { cq_poll = nic->napi[qidx]; if (!cq_poll) continue; napi_synchronize(&cq_poll->napi); /* CQ intr is enabled while napi_complete, * so disable it now */ nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx); nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx); napi_disable(&cq_poll->napi); netif_napi_del(&cq_poll->napi); } netif_tx_disable(netdev); for (qidx = 0; qidx < netdev->num_tx_queues; qidx++) netdev_tx_reset_queue(netdev_get_tx_queue(netdev, qidx)); /* Free resources */ nicvf_config_data_transfer(nic, false); /* Disable HW Qset */ nicvf_qset_config(nic, false); /* disable mailbox interrupt */ nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0); nicvf_unregister_interrupts(nic); nicvf_free_cq_poll(nic); /* Free any pending SKB saved to receive timestamp */ if (nic->ptp_skb) { dev_kfree_skb_any(nic->ptp_skb); nic->ptp_skb = NULL; } /* Clear multiqset info */ nic->pnicvf = nic; return 0; } static int nicvf_config_hw_rx_tstamp(struct nicvf *nic, bool enable) { union nic_mbx mbx = {}; mbx.ptp.msg = NIC_MBOX_MSG_PTP_CFG; mbx.ptp.enable = enable; return nicvf_send_msg_to_pf(nic, &mbx); } static int nicvf_update_hw_max_frs(struct nicvf *nic, int mtu) { union nic_mbx mbx = {}; mbx.frs.msg = NIC_MBOX_MSG_SET_MAX_FRS; mbx.frs.max_frs = mtu; mbx.frs.vf_id = nic->vf_id; return nicvf_send_msg_to_pf(nic, &mbx); } int nicvf_open(struct net_device *netdev) { int cpu, err, qidx; struct nicvf *nic = netdev_priv(netdev); struct queue_set *qs = nic->qs; struct nicvf_cq_poll *cq_poll = NULL; netif_carrier_off(netdev); err = nicvf_register_misc_interrupt(nic); if (err) return err; /* Register NAPI handler for processing CQEs */ for (qidx = 0; qidx < qs->cq_cnt; qidx++) { cq_poll = kzalloc(sizeof(*cq_poll), GFP_KERNEL); if (!cq_poll) { err = -ENOMEM; goto napi_del; } cq_poll->cq_idx = qidx; cq_poll->nicvf = nic; netif_napi_add(netdev, &cq_poll->napi, nicvf_poll, NAPI_POLL_WEIGHT); napi_enable(&cq_poll->napi); nic->napi[qidx] = cq_poll; } /* Check if we got MAC address from PF or else generate a radom MAC */ if (!nic->sqs_mode && is_zero_ether_addr(netdev->dev_addr)) { eth_hw_addr_random(netdev); nicvf_hw_set_mac_addr(nic, netdev); } if (nic->set_mac_pending) { nic->set_mac_pending = false; nicvf_hw_set_mac_addr(nic, netdev); } /* Init tasklet for handling Qset err interrupt */ tasklet_init(&nic->qs_err_task, nicvf_handle_qs_err, (unsigned long)nic); /* Init RBDR tasklet which will refill RBDR */ tasklet_init(&nic->rbdr_task, nicvf_rbdr_task, (unsigned long)nic); INIT_DELAYED_WORK(&nic->rbdr_work, nicvf_rbdr_work); /* Configure CPI alorithm */ nic->cpi_alg = cpi_alg; if (!nic->sqs_mode) nicvf_config_cpi(nic); nicvf_request_sqs(nic); if (nic->sqs_mode) nicvf_get_primary_vf_struct(nic); /* Configure PTP timestamp */ if (nic->ptp_clock) nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp); atomic_set(&nic->tx_ptp_skbs, 0); nic->ptp_skb = NULL; /* Configure receive side scaling and MTU */ if (!nic->sqs_mode) { nicvf_rss_init(nic); err = nicvf_update_hw_max_frs(nic, netdev->mtu); if (err) goto cleanup; /* Clear percpu stats */ for_each_possible_cpu(cpu) memset(per_cpu_ptr(nic->drv_stats, cpu), 0, sizeof(struct nicvf_drv_stats)); } err = nicvf_register_interrupts(nic); if (err) goto cleanup; /* Initialize the queues */ err = nicvf_init_resources(nic); if (err) goto cleanup; /* Make sure queue initialization is written */ wmb(); nicvf_reg_write(nic, NIC_VF_INT, -1); /* Enable Qset err interrupt */ nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0); /* Enable completion queue interrupt */ for (qidx = 0; qidx < qs->cq_cnt; qidx++) nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx); /* Enable RBDR threshold interrupt */ for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) nicvf_enable_intr(nic, NICVF_INTR_RBDR, qidx); /* Send VF config done msg to PF */ nicvf_send_cfg_done(nic); return 0; cleanup: nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0); nicvf_unregister_interrupts(nic); tasklet_kill(&nic->qs_err_task); tasklet_kill(&nic->rbdr_task); napi_del: for (qidx = 0; qidx < qs->cq_cnt; qidx++) { cq_poll = nic->napi[qidx]; if (!cq_poll) continue; napi_disable(&cq_poll->napi); netif_napi_del(&cq_poll->napi); } nicvf_free_cq_poll(nic); return err; } static int nicvf_change_mtu(struct net_device *netdev, int new_mtu) { struct nicvf *nic = netdev_priv(netdev); int orig_mtu = netdev->mtu; /* For now just support only the usual MTU sized frames, * plus some headroom for VLAN, QinQ. */ if (nic->xdp_prog && new_mtu > MAX_XDP_MTU) { netdev_warn(netdev, "Jumbo frames not yet supported with XDP, current MTU %d.\n", netdev->mtu); return -EINVAL; } netdev->mtu = new_mtu; if (!netif_running(netdev)) return 0; if (nicvf_update_hw_max_frs(nic, new_mtu)) { netdev->mtu = orig_mtu; return -EINVAL; } return 0; } static int nicvf_set_mac_address(struct net_device *netdev, void *p) { struct sockaddr *addr = p; struct nicvf *nic = netdev_priv(netdev); if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); if (nic->pdev->msix_enabled) { if (nicvf_hw_set_mac_addr(nic, netdev)) return -EBUSY; } else { nic->set_mac_pending = true; } return 0; } void nicvf_update_lmac_stats(struct nicvf *nic) { int stat = 0; union nic_mbx mbx = {}; if (!netif_running(nic->netdev)) return; mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS; mbx.bgx_stats.vf_id = nic->vf_id; /* Rx stats */ mbx.bgx_stats.rx = 1; while (stat < BGX_RX_STATS_COUNT) { mbx.bgx_stats.idx = stat; if (nicvf_send_msg_to_pf(nic, &mbx)) return; stat++; } stat = 0; /* Tx stats */ mbx.bgx_stats.rx = 0; while (stat < BGX_TX_STATS_COUNT) { mbx.bgx_stats.idx = stat; if (nicvf_send_msg_to_pf(nic, &mbx)) return; stat++; } } void nicvf_update_stats(struct nicvf *nic) { int qidx, cpu; u64 tmp_stats = 0; struct nicvf_hw_stats *stats = &nic->hw_stats; struct nicvf_drv_stats *drv_stats; struct queue_set *qs = nic->qs; #define GET_RX_STATS(reg) \ nicvf_reg_read(nic, NIC_VNIC_RX_STAT_0_13 | (reg << 3)) #define GET_TX_STATS(reg) \ nicvf_reg_read(nic, NIC_VNIC_TX_STAT_0_4 | (reg << 3)) stats->rx_bytes = GET_RX_STATS(RX_OCTS); stats->rx_ucast_frames = GET_RX_STATS(RX_UCAST); stats->rx_bcast_frames = GET_RX_STATS(RX_BCAST); stats->rx_mcast_frames = GET_RX_STATS(RX_MCAST); stats->rx_fcs_errors = GET_RX_STATS(RX_FCS); stats->rx_l2_errors = GET_RX_STATS(RX_L2ERR); stats->rx_drop_red = GET_RX_STATS(RX_RED); stats->rx_drop_red_bytes = GET_RX_STATS(RX_RED_OCTS); stats->rx_drop_overrun = GET_RX_STATS(RX_ORUN); stats->rx_drop_overrun_bytes = GET_RX_STATS(RX_ORUN_OCTS); stats->rx_drop_bcast = GET_RX_STATS(RX_DRP_BCAST); stats->rx_drop_mcast = GET_RX_STATS(RX_DRP_MCAST); stats->rx_drop_l3_bcast = GET_RX_STATS(RX_DRP_L3BCAST); stats->rx_drop_l3_mcast = GET_RX_STATS(RX_DRP_L3MCAST); stats->tx_bytes = GET_TX_STATS(TX_OCTS); stats->tx_ucast_frames = GET_TX_STATS(TX_UCAST); stats->tx_bcast_frames = GET_TX_STATS(TX_BCAST); stats->tx_mcast_frames = GET_TX_STATS(TX_MCAST); stats->tx_drops = GET_TX_STATS(TX_DROP); /* On T88 pass 2.0, the dummy SQE added for TSO notification * via CQE has 'dont_send' set. Hence HW drops the pkt pointed * pointed by dummy SQE and results in tx_drops counter being * incremented. Subtracting it from tx_tso counter will give * exact tx_drops counter. */ if (nic->t88 && nic->hw_tso) { for_each_possible_cpu(cpu) { drv_stats = per_cpu_ptr(nic->drv_stats, cpu); tmp_stats += drv_stats->tx_tso; } stats->tx_drops = tmp_stats - stats->tx_drops; } stats->tx_frames = stats->tx_ucast_frames + stats->tx_bcast_frames + stats->tx_mcast_frames; stats->rx_frames = stats->rx_ucast_frames + stats->rx_bcast_frames + stats->rx_mcast_frames; stats->rx_drops = stats->rx_drop_red + stats->rx_drop_overrun; /* Update RQ and SQ stats */ for (qidx = 0; qidx < qs->rq_cnt; qidx++) nicvf_update_rq_stats(nic, qidx); for (qidx = 0; qidx < qs->sq_cnt; qidx++) nicvf_update_sq_stats(nic, qidx); } static void nicvf_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct nicvf *nic = netdev_priv(netdev); struct nicvf_hw_stats *hw_stats = &nic->hw_stats; nicvf_update_stats(nic); stats->rx_bytes = hw_stats->rx_bytes; stats->rx_packets = hw_stats->rx_frames; stats->rx_dropped = hw_stats->rx_drops; stats->multicast = hw_stats->rx_mcast_frames; stats->tx_bytes = hw_stats->tx_bytes; stats->tx_packets = hw_stats->tx_frames; stats->tx_dropped = hw_stats->tx_drops; } static void nicvf_tx_timeout(struct net_device *dev) { struct nicvf *nic = netdev_priv(dev); netif_warn(nic, tx_err, dev, "Transmit timed out, resetting\n"); this_cpu_inc(nic->drv_stats->tx_timeout); schedule_work(&nic->reset_task); } static void nicvf_reset_task(struct work_struct *work) { struct nicvf *nic; nic = container_of(work, struct nicvf, reset_task); if (!netif_running(nic->netdev)) return; nicvf_stop(nic->netdev); nicvf_open(nic->netdev); netif_trans_update(nic->netdev); } static int nicvf_config_loopback(struct nicvf *nic, netdev_features_t features) { union nic_mbx mbx = {}; mbx.lbk.msg = NIC_MBOX_MSG_LOOPBACK; mbx.lbk.vf_id = nic->vf_id; mbx.lbk.enable = (features & NETIF_F_LOOPBACK) != 0; return nicvf_send_msg_to_pf(nic, &mbx); } static netdev_features_t nicvf_fix_features(struct net_device *netdev, netdev_features_t features) { struct nicvf *nic = netdev_priv(netdev); if ((features & NETIF_F_LOOPBACK) && netif_running(netdev) && !nic->loopback_supported) features &= ~NETIF_F_LOOPBACK; return features; } static int nicvf_set_features(struct net_device *netdev, netdev_features_t features) { struct nicvf *nic = netdev_priv(netdev); netdev_features_t changed = features ^ netdev->features; if (changed & NETIF_F_HW_VLAN_CTAG_RX) nicvf_config_vlan_stripping(nic, features); if ((changed & NETIF_F_LOOPBACK) && netif_running(netdev)) return nicvf_config_loopback(nic, features); return 0; } static void nicvf_set_xdp_queues(struct nicvf *nic, bool bpf_attached) { u8 cq_count, txq_count; /* Set XDP Tx queue count same as Rx queue count */ if (!bpf_attached) nic->xdp_tx_queues = 0; else nic->xdp_tx_queues = nic->rx_queues; /* If queue count > MAX_CMP_QUEUES_PER_QS, then additional qsets * needs to be allocated, check how many. */ txq_count = nic->xdp_tx_queues + nic->tx_queues; cq_count = max(nic->rx_queues, txq_count); if (cq_count > MAX_CMP_QUEUES_PER_QS) { nic->sqs_count = roundup(cq_count, MAX_CMP_QUEUES_PER_QS); nic->sqs_count = (nic->sqs_count / MAX_CMP_QUEUES_PER_QS) - 1; } else { nic->sqs_count = 0; } /* Set primary Qset's resources */ nic->qs->rq_cnt = min_t(u8, nic->rx_queues, MAX_RCV_QUEUES_PER_QS); nic->qs->sq_cnt = min_t(u8, txq_count, MAX_SND_QUEUES_PER_QS); nic->qs->cq_cnt = max_t(u8, nic->qs->rq_cnt, nic->qs->sq_cnt); /* Update stack */ nicvf_set_real_num_queues(nic->netdev, nic->tx_queues, nic->rx_queues); } static int nicvf_xdp_setup(struct nicvf *nic, struct bpf_prog *prog) { struct net_device *dev = nic->netdev; bool if_up = netif_running(nic->netdev); struct bpf_prog *old_prog; bool bpf_attached = false; int ret = 0; /* For now just support only the usual MTU sized frames, * plus some headroom for VLAN, QinQ. */ if (prog && dev->mtu > MAX_XDP_MTU) { netdev_warn(dev, "Jumbo frames not yet supported with XDP, current MTU %d.\n", dev->mtu); return -EOPNOTSUPP; } /* ALL SQs attached to CQs i.e same as RQs, are treated as * XDP Tx queues and more Tx queues are allocated for * network stack to send pkts out. * * No of Tx queues are either same as Rx queues or whatever * is left in max no of queues possible. */ if ((nic->rx_queues + nic->tx_queues) > nic->max_queues) { netdev_warn(dev, "Failed to attach BPF prog, RXQs + TXQs > Max %d\n", nic->max_queues); return -ENOMEM; } if (if_up) nicvf_stop(nic->netdev); old_prog = xchg(&nic->xdp_prog, prog); /* Detach old prog, if any */ if (old_prog) bpf_prog_put(old_prog); if (nic->xdp_prog) { /* Attach BPF program */ nic->xdp_prog = bpf_prog_add(nic->xdp_prog, nic->rx_queues - 1); if (!IS_ERR(nic->xdp_prog)) { bpf_attached = true; } else { ret = PTR_ERR(nic->xdp_prog); nic->xdp_prog = NULL; } } /* Calculate Tx queues needed for XDP and network stack */ nicvf_set_xdp_queues(nic, bpf_attached); if (if_up) { /* Reinitialize interface, clean slate */ nicvf_open(nic->netdev); netif_trans_update(nic->netdev); } return ret; } static int nicvf_xdp(struct net_device *netdev, struct netdev_bpf *xdp) { struct nicvf *nic = netdev_priv(netdev); /* To avoid checks while retrieving buffer address from CQE_RX, * do not support XDP for T88 pass1.x silicons which are anyway * not in use widely. */ if (pass1_silicon(nic->pdev)) return -EOPNOTSUPP; switch (xdp->command) { case XDP_SETUP_PROG: return nicvf_xdp_setup(nic, xdp->prog); case XDP_QUERY_PROG: xdp->prog_id = nic->xdp_prog ? nic->xdp_prog->aux->id : 0; return 0; default: return -EINVAL; } } static int nicvf_config_hwtstamp(struct net_device *netdev, struct ifreq *ifr) { struct hwtstamp_config config; struct nicvf *nic = netdev_priv(netdev); if (!nic->ptp_clock) return -ENODEV; if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) return -EFAULT; /* reserved for future extensions */ if (config.flags) return -EINVAL; switch (config.tx_type) { case HWTSTAMP_TX_OFF: case HWTSTAMP_TX_ON: break; default: return -ERANGE; } switch (config.rx_filter) { case HWTSTAMP_FILTER_NONE: nic->hw_rx_tstamp = false; break; case HWTSTAMP_FILTER_ALL: case HWTSTAMP_FILTER_SOME: case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: nic->hw_rx_tstamp = true; config.rx_filter = HWTSTAMP_FILTER_ALL; break; default: return -ERANGE; } if (netif_running(netdev)) nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp); if (copy_to_user(ifr->ifr_data, &config, sizeof(config))) return -EFAULT; return 0; } static int nicvf_ioctl(struct net_device *netdev, struct ifreq *req, int cmd) { switch (cmd) { case SIOCSHWTSTAMP: return nicvf_config_hwtstamp(netdev, req); default: return -EOPNOTSUPP; } } static void __nicvf_set_rx_mode_task(u8 mode, struct xcast_addr_list *mc_addrs, struct nicvf *nic) { union nic_mbx mbx = {}; int idx; /* From the inside of VM code flow we have only 128 bits memory * available to send message to host's PF, so send all mc addrs * one by one, starting from flush command in case if kernel * requests to configure specific MAC filtering */ /* flush DMAC filters and reset RX mode */ mbx.xcast.msg = NIC_MBOX_MSG_RESET_XCAST; if (nicvf_send_msg_to_pf(nic, &mbx) < 0) goto free_mc; if (mode & BGX_XCAST_MCAST_FILTER) { /* once enabling filtering, we need to signal to PF to add * its' own LMAC to the filter to accept packets for it. */ mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST; mbx.xcast.data.mac = 0; if (nicvf_send_msg_to_pf(nic, &mbx) < 0) goto free_mc; } /* check if we have any specific MACs to be added to PF DMAC filter */ if (mc_addrs) { /* now go through kernel list of MACs and add them one by one */ for (idx = 0; idx < mc_addrs->count; idx++) { mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST; mbx.xcast.data.mac = mc_addrs->mc[idx]; if (nicvf_send_msg_to_pf(nic, &mbx) < 0) goto free_mc; } } /* and finally set rx mode for PF accordingly */ mbx.xcast.msg = NIC_MBOX_MSG_SET_XCAST; mbx.xcast.data.mode = mode; nicvf_send_msg_to_pf(nic, &mbx); free_mc: kfree(mc_addrs); } static void nicvf_set_rx_mode_task(struct work_struct *work_arg) { struct nicvf_work *vf_work = container_of(work_arg, struct nicvf_work, work.work); struct nicvf *nic = container_of(vf_work, struct nicvf, rx_mode_work); u8 mode; struct xcast_addr_list *mc; if (!vf_work) return; /* Save message data locally to prevent them from * being overwritten by next ndo_set_rx_mode call(). */ spin_lock_bh(&nic->rx_mode_wq_lock); mode = vf_work->mode; mc = vf_work->mc; vf_work->mc = NULL; spin_unlock_bh(&nic->rx_mode_wq_lock); __nicvf_set_rx_mode_task(mode, mc, nic); } static void nicvf_set_rx_mode(struct net_device *netdev) { struct nicvf *nic = netdev_priv(netdev); struct netdev_hw_addr *ha; struct xcast_addr_list *mc_list = NULL; u8 mode = 0; if (netdev->flags & IFF_PROMISC) { mode = BGX_XCAST_BCAST_ACCEPT | BGX_XCAST_MCAST_ACCEPT; } else { if (netdev->flags & IFF_BROADCAST) mode |= BGX_XCAST_BCAST_ACCEPT; if (netdev->flags & IFF_ALLMULTI) { mode |= BGX_XCAST_MCAST_ACCEPT; } else if (netdev->flags & IFF_MULTICAST) { mode |= BGX_XCAST_MCAST_FILTER; /* here we need to copy mc addrs */ if (netdev_mc_count(netdev)) { mc_list = kmalloc(offsetof(typeof(*mc_list), mc[netdev_mc_count(netdev)]), GFP_ATOMIC); if (unlikely(!mc_list)) return; mc_list->count = 0; netdev_hw_addr_list_for_each(ha, &netdev->mc) { mc_list->mc[mc_list->count] = ether_addr_to_u64(ha->addr); mc_list->count++; } } } } spin_lock(&nic->rx_mode_wq_lock); kfree(nic->rx_mode_work.mc); nic->rx_mode_work.mc = mc_list; nic->rx_mode_work.mode = mode; queue_delayed_work(nicvf_rx_mode_wq, &nic->rx_mode_work.work, 0); spin_unlock(&nic->rx_mode_wq_lock); } static const struct net_device_ops nicvf_netdev_ops = { .ndo_open = nicvf_open, .ndo_stop = nicvf_stop, .ndo_start_xmit = nicvf_xmit, .ndo_change_mtu = nicvf_change_mtu, .ndo_set_mac_address = nicvf_set_mac_address, .ndo_get_stats64 = nicvf_get_stats64, .ndo_tx_timeout = nicvf_tx_timeout, .ndo_fix_features = nicvf_fix_features, .ndo_set_features = nicvf_set_features, .ndo_bpf = nicvf_xdp, .ndo_do_ioctl = nicvf_ioctl, .ndo_set_rx_mode = nicvf_set_rx_mode, }; static int nicvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct device *dev = &pdev->dev; struct net_device *netdev; struct nicvf *nic; int err, qcount; u16 sdevid; struct cavium_ptp *ptp_clock; ptp_clock = cavium_ptp_get(); if (IS_ERR(ptp_clock)) { if (PTR_ERR(ptp_clock) == -ENODEV) /* In virtualized environment we proceed without ptp */ ptp_clock = NULL; else return PTR_ERR(ptp_clock); } err = pci_enable_device(pdev); if (err) { dev_err(dev, "Failed to enable PCI device\n"); return err; } err = pci_request_regions(pdev, DRV_NAME); if (err) { dev_err(dev, "PCI request regions failed 0x%x\n", err); goto err_disable_device; } err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48)); if (err) { dev_err(dev, "Unable to get usable DMA configuration\n"); goto err_release_regions; } err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48)); if (err) { dev_err(dev, "unable to get 48-bit DMA for consistent allocations\n"); goto err_release_regions; } qcount = netif_get_num_default_rss_queues(); /* Restrict multiqset support only for host bound VFs */ if (pdev->is_virtfn) { /* Set max number of queues per VF */ qcount = min_t(int, num_online_cpus(), (MAX_SQS_PER_VF + 1) * MAX_CMP_QUEUES_PER_QS); } netdev = alloc_etherdev_mqs(sizeof(struct nicvf), qcount, qcount); if (!netdev) { err = -ENOMEM; goto err_release_regions; } pci_set_drvdata(pdev, netdev); SET_NETDEV_DEV(netdev, &pdev->dev); nic = netdev_priv(netdev); nic->netdev = netdev; nic->pdev = pdev; nic->pnicvf = nic; nic->max_queues = qcount; /* If no of CPUs are too low, there won't be any queues left * for XDP_TX, hence double it. */ if (!nic->t88) nic->max_queues *= 2; nic->ptp_clock = ptp_clock; /* MAP VF's configuration registers */ nic->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0); if (!nic->reg_base) { dev_err(dev, "Cannot map config register space, aborting\n"); err = -ENOMEM; goto err_free_netdev; } nic->drv_stats = netdev_alloc_pcpu_stats(struct nicvf_drv_stats); if (!nic->drv_stats) { err = -ENOMEM; goto err_free_netdev; } err = nicvf_set_qset_resources(nic); if (err) goto err_free_netdev; /* Check if PF is alive and get MAC address for this VF */ err = nicvf_register_misc_interrupt(nic); if (err) goto err_free_netdev; nicvf_send_vf_struct(nic); if (!pass1_silicon(nic->pdev)) nic->hw_tso = true; /* Get iommu domain for iova to physical addr conversion */ nic->iommu_domain = iommu_get_domain_for_dev(dev); pci_read_config_word(nic->pdev, PCI_SUBSYSTEM_ID, &sdevid); if (sdevid == 0xA134) nic->t88 = true; /* Check if this VF is in QS only mode */ if (nic->sqs_mode) return 0; err = nicvf_set_real_num_queues(netdev, nic->tx_queues, nic->rx_queues); if (err) goto err_unregister_interrupts; netdev->hw_features = (NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO | NETIF_F_GRO | NETIF_F_TSO6 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_HW_VLAN_CTAG_RX); netdev->hw_features |= NETIF_F_RXHASH; netdev->features |= netdev->hw_features; netdev->hw_features |= NETIF_F_LOOPBACK; netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO6; netdev->netdev_ops = &nicvf_netdev_ops; netdev->watchdog_timeo = NICVF_TX_TIMEOUT; /* MTU range: 64 - 9200 */ netdev->min_mtu = NIC_HW_MIN_FRS; netdev->max_mtu = NIC_HW_MAX_FRS; INIT_WORK(&nic->reset_task, nicvf_reset_task); INIT_DELAYED_WORK(&nic->rx_mode_work.work, nicvf_set_rx_mode_task); spin_lock_init(&nic->rx_mode_wq_lock); err = register_netdev(netdev); if (err) { dev_err(dev, "Failed to register netdevice\n"); goto err_unregister_interrupts; } nic->msg_enable = debug; nicvf_set_ethtool_ops(netdev); return 0; err_unregister_interrupts: nicvf_unregister_interrupts(nic); err_free_netdev: pci_set_drvdata(pdev, NULL); if (nic->drv_stats) free_percpu(nic->drv_stats); free_netdev(netdev); err_release_regions: pci_release_regions(pdev); err_disable_device: pci_disable_device(pdev); return err; } static void nicvf_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct nicvf *nic; struct net_device *pnetdev; if (!netdev) return; nic = netdev_priv(netdev); pnetdev = nic->pnicvf->netdev; cancel_delayed_work_sync(&nic->rx_mode_work.work); /* Check if this Qset is assigned to different VF. * If yes, clean primary and all secondary Qsets. */ if (pnetdev && (pnetdev->reg_state == NETREG_REGISTERED)) unregister_netdev(pnetdev); nicvf_unregister_interrupts(nic); pci_set_drvdata(pdev, NULL); if (nic->drv_stats) free_percpu(nic->drv_stats); cavium_ptp_put(nic->ptp_clock); free_netdev(netdev); pci_release_regions(pdev); pci_disable_device(pdev); } static void nicvf_shutdown(struct pci_dev *pdev) { nicvf_remove(pdev); } static struct pci_driver nicvf_driver = { .name = DRV_NAME, .id_table = nicvf_id_table, .probe = nicvf_probe, .remove = nicvf_remove, .shutdown = nicvf_shutdown, }; static int __init nicvf_init_module(void) { pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION); nicvf_rx_mode_wq = alloc_ordered_workqueue("nicvf_generic", WQ_MEM_RECLAIM); return pci_register_driver(&nicvf_driver); } static void __exit nicvf_cleanup_module(void) { if (nicvf_rx_mode_wq) { destroy_workqueue(nicvf_rx_mode_wq); nicvf_rx_mode_wq = NULL; } pci_unregister_driver(&nicvf_driver); } module_init(nicvf_init_module); module_exit(nicvf_cleanup_module);