/* * Copyright (c) 2011, 2012, Qualcomm Atheros Communications Inc. * Copyright (c) 2014, I2SE GmbH * * Permission to use, copy, modify, and/or distribute this software * for any purpose with or without fee is hereby granted, provided * that the above copyright notice and this permission notice appear * in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL * THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, * NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* This module implements the Qualcomm Atheros SPI protocol for * kernel-based SPI device; it is essentially an Ethernet-to-SPI * serial converter; */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "qca_7k.h" #include "qca_7k_common.h" #include "qca_debug.h" #include "qca_spi.h" #define MAX_DMA_BURST_LEN 5000 /* Modules parameters */ #define QCASPI_CLK_SPEED_MIN 1000000 #define QCASPI_CLK_SPEED_MAX 16000000 #define QCASPI_CLK_SPEED 8000000 static int qcaspi_clkspeed; module_param(qcaspi_clkspeed, int, 0); MODULE_PARM_DESC(qcaspi_clkspeed, "SPI bus clock speed (Hz). Use 1000000-16000000."); #define QCASPI_BURST_LEN_MIN 1 #define QCASPI_BURST_LEN_MAX MAX_DMA_BURST_LEN static int qcaspi_burst_len = MAX_DMA_BURST_LEN; module_param(qcaspi_burst_len, int, 0); MODULE_PARM_DESC(qcaspi_burst_len, "Number of data bytes per burst. Use 1-5000."); #define QCASPI_PLUGGABLE_MIN 0 #define QCASPI_PLUGGABLE_MAX 1 static int qcaspi_pluggable = QCASPI_PLUGGABLE_MIN; module_param(qcaspi_pluggable, int, 0); MODULE_PARM_DESC(qcaspi_pluggable, "Pluggable SPI connection (yes/no)."); #define QCASPI_TX_TIMEOUT (1 * HZ) #define QCASPI_QCA7K_REBOOT_TIME_MS 1000 static void start_spi_intr_handling(struct qcaspi *qca, u16 *intr_cause) { *intr_cause = 0; qcaspi_write_register(qca, SPI_REG_INTR_ENABLE, 0); qcaspi_read_register(qca, SPI_REG_INTR_CAUSE, intr_cause); netdev_dbg(qca->net_dev, "interrupts: 0x%04x\n", *intr_cause); } static void end_spi_intr_handling(struct qcaspi *qca, u16 intr_cause) { u16 intr_enable = (SPI_INT_CPU_ON | SPI_INT_PKT_AVLBL | SPI_INT_RDBUF_ERR | SPI_INT_WRBUF_ERR); qcaspi_write_register(qca, SPI_REG_INTR_CAUSE, intr_cause); qcaspi_write_register(qca, SPI_REG_INTR_ENABLE, intr_enable); netdev_dbg(qca->net_dev, "acking int: 0x%04x\n", intr_cause); } static u32 qcaspi_write_burst(struct qcaspi *qca, u8 *src, u32 len) { __be16 cmd; struct spi_message msg; struct spi_transfer transfer[2]; int ret; memset(&transfer, 0, sizeof(transfer)); spi_message_init(&msg); cmd = cpu_to_be16(QCA7K_SPI_WRITE | QCA7K_SPI_EXTERNAL); transfer[0].tx_buf = &cmd; transfer[0].len = QCASPI_CMD_LEN; transfer[1].tx_buf = src; transfer[1].len = len; spi_message_add_tail(&transfer[0], &msg); spi_message_add_tail(&transfer[1], &msg); ret = spi_sync(qca->spi_dev, &msg); if (ret || (msg.actual_length != QCASPI_CMD_LEN + len)) { qcaspi_spi_error(qca); return 0; } return len; } static u32 qcaspi_write_legacy(struct qcaspi *qca, u8 *src, u32 len) { struct spi_message msg; struct spi_transfer transfer; int ret; memset(&transfer, 0, sizeof(transfer)); spi_message_init(&msg); transfer.tx_buf = src; transfer.len = len; spi_message_add_tail(&transfer, &msg); ret = spi_sync(qca->spi_dev, &msg); if (ret || (msg.actual_length != len)) { qcaspi_spi_error(qca); return 0; } return len; } static u32 qcaspi_read_burst(struct qcaspi *qca, u8 *dst, u32 len) { struct spi_message msg; __be16 cmd; struct spi_transfer transfer[2]; int ret; memset(&transfer, 0, sizeof(transfer)); spi_message_init(&msg); cmd = cpu_to_be16(QCA7K_SPI_READ | QCA7K_SPI_EXTERNAL); transfer[0].tx_buf = &cmd; transfer[0].len = QCASPI_CMD_LEN; transfer[1].rx_buf = dst; transfer[1].len = len; spi_message_add_tail(&transfer[0], &msg); spi_message_add_tail(&transfer[1], &msg); ret = spi_sync(qca->spi_dev, &msg); if (ret || (msg.actual_length != QCASPI_CMD_LEN + len)) { qcaspi_spi_error(qca); return 0; } return len; } static u32 qcaspi_read_legacy(struct qcaspi *qca, u8 *dst, u32 len) { struct spi_message msg; struct spi_transfer transfer; int ret; memset(&transfer, 0, sizeof(transfer)); spi_message_init(&msg); transfer.rx_buf = dst; transfer.len = len; spi_message_add_tail(&transfer, &msg); ret = spi_sync(qca->spi_dev, &msg); if (ret || (msg.actual_length != len)) { qcaspi_spi_error(qca); return 0; } return len; } static int qcaspi_tx_cmd(struct qcaspi *qca, u16 cmd) { __be16 tx_data; struct spi_message msg; struct spi_transfer transfer; int ret; memset(&transfer, 0, sizeof(transfer)); spi_message_init(&msg); tx_data = cpu_to_be16(cmd); transfer.len = sizeof(cmd); transfer.tx_buf = &tx_data; spi_message_add_tail(&transfer, &msg); ret = spi_sync(qca->spi_dev, &msg); if (!ret) ret = msg.status; if (ret) qcaspi_spi_error(qca); return ret; } static int qcaspi_tx_frame(struct qcaspi *qca, struct sk_buff *skb) { u32 count; u32 written; u32 offset; u32 len; len = skb->len; qcaspi_write_register(qca, SPI_REG_BFR_SIZE, len); if (qca->legacy_mode) qcaspi_tx_cmd(qca, QCA7K_SPI_WRITE | QCA7K_SPI_EXTERNAL); offset = 0; while (len) { count = len; if (count > qca->burst_len) count = qca->burst_len; if (qca->legacy_mode) { written = qcaspi_write_legacy(qca, skb->data + offset, count); } else { written = qcaspi_write_burst(qca, skb->data + offset, count); } if (written != count) return -1; offset += count; len -= count; } return 0; } static int qcaspi_transmit(struct qcaspi *qca) { struct net_device_stats *n_stats = &qca->net_dev->stats; u16 available = 0; u32 pkt_len; u16 new_head; u16 packets = 0; if (qca->txr.skb[qca->txr.head] == NULL) return 0; qcaspi_read_register(qca, SPI_REG_WRBUF_SPC_AVA, &available); while (qca->txr.skb[qca->txr.head]) { pkt_len = qca->txr.skb[qca->txr.head]->len + QCASPI_HW_PKT_LEN; if (available < pkt_len) { if (packets == 0) qca->stats.write_buf_miss++; break; } if (qcaspi_tx_frame(qca, qca->txr.skb[qca->txr.head]) == -1) { qca->stats.write_err++; return -1; } packets++; n_stats->tx_packets++; n_stats->tx_bytes += qca->txr.skb[qca->txr.head]->len; available -= pkt_len; /* remove the skb from the queue */ /* XXX After inconsistent lock states netif_tx_lock() * has been replaced by netif_tx_lock_bh() and so on. */ netif_tx_lock_bh(qca->net_dev); dev_kfree_skb(qca->txr.skb[qca->txr.head]); qca->txr.skb[qca->txr.head] = NULL; qca->txr.size -= pkt_len; new_head = qca->txr.head + 1; if (new_head >= qca->txr.count) new_head = 0; qca->txr.head = new_head; if (netif_queue_stopped(qca->net_dev)) netif_wake_queue(qca->net_dev); netif_tx_unlock_bh(qca->net_dev); } return 0; } static int qcaspi_receive(struct qcaspi *qca) { struct net_device *net_dev = qca->net_dev; struct net_device_stats *n_stats = &net_dev->stats; u16 available = 0; u32 bytes_read; u8 *cp; /* Allocate rx SKB if we don't have one available. */ if (!qca->rx_skb) { qca->rx_skb = netdev_alloc_skb_ip_align(net_dev, net_dev->mtu + VLAN_ETH_HLEN); if (!qca->rx_skb) { netdev_dbg(net_dev, "out of RX resources\n"); qca->stats.out_of_mem++; return -1; } } /* Read the packet size. */ qcaspi_read_register(qca, SPI_REG_RDBUF_BYTE_AVA, &available); netdev_dbg(net_dev, "qcaspi_receive: SPI_REG_RDBUF_BYTE_AVA: Value: %08x\n", available); if (available == 0) { netdev_dbg(net_dev, "qcaspi_receive called without any data being available!\n"); return -1; } qcaspi_write_register(qca, SPI_REG_BFR_SIZE, available); if (qca->legacy_mode) qcaspi_tx_cmd(qca, QCA7K_SPI_READ | QCA7K_SPI_EXTERNAL); while (available) { u32 count = available; if (count > qca->burst_len) count = qca->burst_len; if (qca->legacy_mode) { bytes_read = qcaspi_read_legacy(qca, qca->rx_buffer, count); } else { bytes_read = qcaspi_read_burst(qca, qca->rx_buffer, count); } netdev_dbg(net_dev, "available: %d, byte read: %d\n", available, bytes_read); if (bytes_read) { available -= bytes_read; } else { qca->stats.read_err++; return -1; } cp = qca->rx_buffer; while ((bytes_read--) && (qca->rx_skb)) { s32 retcode; retcode = qcafrm_fsm_decode(&qca->frm_handle, qca->rx_skb->data, skb_tailroom(qca->rx_skb), *cp); cp++; switch (retcode) { case QCAFRM_GATHER: case QCAFRM_NOHEAD: break; case QCAFRM_NOTAIL: netdev_dbg(net_dev, "no RX tail\n"); n_stats->rx_errors++; n_stats->rx_dropped++; break; case QCAFRM_INVLEN: netdev_dbg(net_dev, "invalid RX length\n"); n_stats->rx_errors++; n_stats->rx_dropped++; break; default: qca->rx_skb->dev = qca->net_dev; n_stats->rx_packets++; n_stats->rx_bytes += retcode; skb_put(qca->rx_skb, retcode); qca->rx_skb->protocol = eth_type_trans( qca->rx_skb, qca->rx_skb->dev); skb_checksum_none_assert(qca->rx_skb); netif_rx_ni(qca->rx_skb); qca->rx_skb = netdev_alloc_skb_ip_align(net_dev, net_dev->mtu + VLAN_ETH_HLEN); if (!qca->rx_skb) { netdev_dbg(net_dev, "out of RX resources\n"); n_stats->rx_errors++; qca->stats.out_of_mem++; break; } } } } return 0; } /* Check that tx ring stores only so much bytes * that fit into the internal QCA buffer. */ static int qcaspi_tx_ring_has_space(struct tx_ring *txr) { if (txr->skb[txr->tail]) return 0; return (txr->size + QCAFRM_MAX_LEN < QCASPI_HW_BUF_LEN) ? 1 : 0; } /* Flush the tx ring. This function is only safe to * call from the qcaspi_spi_thread. */ static void qcaspi_flush_tx_ring(struct qcaspi *qca) { int i; /* XXX After inconsistent lock states netif_tx_lock() * has been replaced by netif_tx_lock_bh() and so on. */ netif_tx_lock_bh(qca->net_dev); for (i = 0; i < TX_RING_MAX_LEN; i++) { if (qca->txr.skb[i]) { dev_kfree_skb(qca->txr.skb[i]); qca->txr.skb[i] = NULL; qca->net_dev->stats.tx_dropped++; } } qca->txr.tail = 0; qca->txr.head = 0; qca->txr.size = 0; netif_tx_unlock_bh(qca->net_dev); } static void qcaspi_qca7k_sync(struct qcaspi *qca, int event) { u16 signature = 0; u16 spi_config; u16 wrbuf_space = 0; if (event == QCASPI_EVENT_CPUON) { /* Read signature twice, if not valid * go back to unknown state. */ qcaspi_read_register(qca, SPI_REG_SIGNATURE, &signature); qcaspi_read_register(qca, SPI_REG_SIGNATURE, &signature); if (signature != QCASPI_GOOD_SIGNATURE) { qca->sync = QCASPI_SYNC_UNKNOWN; netdev_dbg(qca->net_dev, "sync: got CPU on, but signature was invalid, restart\n"); } else { /* ensure that the WRBUF is empty */ qcaspi_read_register(qca, SPI_REG_WRBUF_SPC_AVA, &wrbuf_space); if (wrbuf_space != QCASPI_HW_BUF_LEN) { netdev_dbg(qca->net_dev, "sync: got CPU on, but wrbuf not empty. reset!\n"); qca->sync = QCASPI_SYNC_UNKNOWN; } else { netdev_dbg(qca->net_dev, "sync: got CPU on, now in sync\n"); qca->sync = QCASPI_SYNC_READY; return; } } } switch (qca->sync) { case QCASPI_SYNC_READY: /* Read signature, if not valid go to unknown state. */ qcaspi_read_register(qca, SPI_REG_SIGNATURE, &signature); if (signature != QCASPI_GOOD_SIGNATURE) { qca->sync = QCASPI_SYNC_UNKNOWN; netdev_dbg(qca->net_dev, "sync: bad signature, restart\n"); /* don't reset right away */ return; } break; case QCASPI_SYNC_UNKNOWN: /* Read signature, if not valid stay in unknown state */ qcaspi_read_register(qca, SPI_REG_SIGNATURE, &signature); if (signature != QCASPI_GOOD_SIGNATURE) { netdev_dbg(qca->net_dev, "sync: could not read signature to reset device, retry.\n"); return; } /* TODO: use GPIO to reset QCA7000 in legacy mode*/ netdev_dbg(qca->net_dev, "sync: resetting device.\n"); qcaspi_read_register(qca, SPI_REG_SPI_CONFIG, &spi_config); spi_config |= QCASPI_SLAVE_RESET_BIT; qcaspi_write_register(qca, SPI_REG_SPI_CONFIG, spi_config); qca->sync = QCASPI_SYNC_RESET; qca->stats.trig_reset++; qca->reset_count = 0; break; case QCASPI_SYNC_RESET: qca->reset_count++; netdev_dbg(qca->net_dev, "sync: waiting for CPU on, count %u.\n", qca->reset_count); if (qca->reset_count >= QCASPI_RESET_TIMEOUT) { /* reset did not seem to take place, try again */ qca->sync = QCASPI_SYNC_UNKNOWN; qca->stats.reset_timeout++; netdev_dbg(qca->net_dev, "sync: reset timeout, restarting process.\n"); } break; } } static int qcaspi_spi_thread(void *data) { struct qcaspi *qca = data; u16 intr_cause = 0; netdev_info(qca->net_dev, "SPI thread created\n"); while (!kthread_should_stop()) { set_current_state(TASK_INTERRUPTIBLE); if ((qca->intr_req == qca->intr_svc) && (qca->txr.skb[qca->txr.head] == NULL) && (qca->sync == QCASPI_SYNC_READY)) schedule(); set_current_state(TASK_RUNNING); netdev_dbg(qca->net_dev, "have work to do. int: %d, tx_skb: %p\n", qca->intr_req - qca->intr_svc, qca->txr.skb[qca->txr.head]); qcaspi_qca7k_sync(qca, QCASPI_EVENT_UPDATE); if (qca->sync != QCASPI_SYNC_READY) { netdev_dbg(qca->net_dev, "sync: not ready %u, turn off carrier and flush\n", (unsigned int)qca->sync); netif_stop_queue(qca->net_dev); netif_carrier_off(qca->net_dev); qcaspi_flush_tx_ring(qca); msleep(QCASPI_QCA7K_REBOOT_TIME_MS); } if (qca->intr_svc != qca->intr_req) { qca->intr_svc = qca->intr_req; start_spi_intr_handling(qca, &intr_cause); if (intr_cause & SPI_INT_CPU_ON) { qcaspi_qca7k_sync(qca, QCASPI_EVENT_CPUON); /* not synced. */ if (qca->sync != QCASPI_SYNC_READY) continue; qca->stats.device_reset++; netif_wake_queue(qca->net_dev); netif_carrier_on(qca->net_dev); } if (intr_cause & SPI_INT_RDBUF_ERR) { /* restart sync */ netdev_dbg(qca->net_dev, "===> rdbuf error!\n"); qca->stats.read_buf_err++; qca->sync = QCASPI_SYNC_UNKNOWN; continue; } if (intr_cause & SPI_INT_WRBUF_ERR) { /* restart sync */ netdev_dbg(qca->net_dev, "===> wrbuf error!\n"); qca->stats.write_buf_err++; qca->sync = QCASPI_SYNC_UNKNOWN; continue; } /* can only handle other interrupts * if sync has occurred */ if (qca->sync == QCASPI_SYNC_READY) { if (intr_cause & SPI_INT_PKT_AVLBL) qcaspi_receive(qca); } end_spi_intr_handling(qca, intr_cause); } if (qca->sync == QCASPI_SYNC_READY) qcaspi_transmit(qca); } set_current_state(TASK_RUNNING); netdev_info(qca->net_dev, "SPI thread exit\n"); return 0; } static irqreturn_t qcaspi_intr_handler(int irq, void *data) { struct qcaspi *qca = data; qca->intr_req++; if (qca->spi_thread && qca->spi_thread->state != TASK_RUNNING) wake_up_process(qca->spi_thread); return IRQ_HANDLED; } static int qcaspi_netdev_open(struct net_device *dev) { struct qcaspi *qca = netdev_priv(dev); int ret = 0; if (!qca) return -EINVAL; qca->intr_req = 1; qca->intr_svc = 0; qca->sync = QCASPI_SYNC_UNKNOWN; qcafrm_fsm_init_spi(&qca->frm_handle); qca->spi_thread = kthread_run((void *)qcaspi_spi_thread, qca, "%s", dev->name); if (IS_ERR(qca->spi_thread)) { netdev_err(dev, "%s: unable to start kernel thread.\n", QCASPI_DRV_NAME); return PTR_ERR(qca->spi_thread); } ret = request_irq(qca->spi_dev->irq, qcaspi_intr_handler, 0, dev->name, qca); if (ret) { netdev_err(dev, "%s: unable to get IRQ %d (irqval=%d).\n", QCASPI_DRV_NAME, qca->spi_dev->irq, ret); kthread_stop(qca->spi_thread); return ret; } /* SPI thread takes care of TX queue */ return 0; } static int qcaspi_netdev_close(struct net_device *dev) { struct qcaspi *qca = netdev_priv(dev); netif_stop_queue(dev); qcaspi_write_register(qca, SPI_REG_INTR_ENABLE, 0); free_irq(qca->spi_dev->irq, qca); kthread_stop(qca->spi_thread); qca->spi_thread = NULL; qcaspi_flush_tx_ring(qca); return 0; } static netdev_tx_t qcaspi_netdev_xmit(struct sk_buff *skb, struct net_device *dev) { u32 frame_len; u8 *ptmp; struct qcaspi *qca = netdev_priv(dev); u16 new_tail; struct sk_buff *tskb; u8 pad_len = 0; if (skb->len < QCAFRM_MIN_LEN) pad_len = QCAFRM_MIN_LEN - skb->len; if (qca->txr.skb[qca->txr.tail]) { netdev_warn(qca->net_dev, "queue was unexpectedly full!\n"); netif_stop_queue(qca->net_dev); qca->stats.ring_full++; return NETDEV_TX_BUSY; } if ((skb_headroom(skb) < QCAFRM_HEADER_LEN) || (skb_tailroom(skb) < QCAFRM_FOOTER_LEN + pad_len)) { tskb = skb_copy_expand(skb, QCAFRM_HEADER_LEN, QCAFRM_FOOTER_LEN + pad_len, GFP_ATOMIC); if (!tskb) { qca->stats.out_of_mem++; return NETDEV_TX_BUSY; } dev_kfree_skb(skb); skb = tskb; } frame_len = skb->len + pad_len; ptmp = skb_push(skb, QCAFRM_HEADER_LEN); qcafrm_create_header(ptmp, frame_len); if (pad_len) { ptmp = skb_put_zero(skb, pad_len); } ptmp = skb_put(skb, QCAFRM_FOOTER_LEN); qcafrm_create_footer(ptmp); netdev_dbg(qca->net_dev, "Tx-ing packet: Size: 0x%08x\n", skb->len); qca->txr.size += skb->len + QCASPI_HW_PKT_LEN; new_tail = qca->txr.tail + 1; if (new_tail >= qca->txr.count) new_tail = 0; qca->txr.skb[qca->txr.tail] = skb; qca->txr.tail = new_tail; if (!qcaspi_tx_ring_has_space(&qca->txr)) { netif_stop_queue(qca->net_dev); qca->stats.ring_full++; } netif_trans_update(dev); if (qca->spi_thread && qca->spi_thread->state != TASK_RUNNING) wake_up_process(qca->spi_thread); return NETDEV_TX_OK; } static void qcaspi_netdev_tx_timeout(struct net_device *dev) { struct qcaspi *qca = netdev_priv(dev); netdev_info(qca->net_dev, "Transmit timeout at %ld, latency %ld\n", jiffies, jiffies - dev_trans_start(dev)); qca->net_dev->stats.tx_errors++; /* Trigger tx queue flush and QCA7000 reset */ qca->sync = QCASPI_SYNC_UNKNOWN; if (qca->spi_thread) wake_up_process(qca->spi_thread); } static int qcaspi_netdev_init(struct net_device *dev) { struct qcaspi *qca = netdev_priv(dev); dev->mtu = QCAFRM_MAX_MTU; dev->type = ARPHRD_ETHER; qca->clkspeed = qcaspi_clkspeed; qca->burst_len = qcaspi_burst_len; qca->spi_thread = NULL; qca->buffer_size = (dev->mtu + VLAN_ETH_HLEN + QCAFRM_HEADER_LEN + QCAFRM_FOOTER_LEN + 4) * 4; memset(&qca->stats, 0, sizeof(struct qcaspi_stats)); qca->rx_buffer = kmalloc(qca->buffer_size, GFP_KERNEL); if (!qca->rx_buffer) return -ENOBUFS; qca->rx_skb = netdev_alloc_skb_ip_align(dev, qca->net_dev->mtu + VLAN_ETH_HLEN); if (!qca->rx_skb) { kfree(qca->rx_buffer); netdev_info(qca->net_dev, "Failed to allocate RX sk_buff.\n"); return -ENOBUFS; } return 0; } static void qcaspi_netdev_uninit(struct net_device *dev) { struct qcaspi *qca = netdev_priv(dev); kfree(qca->rx_buffer); qca->buffer_size = 0; if (qca->rx_skb) dev_kfree_skb(qca->rx_skb); } static const struct net_device_ops qcaspi_netdev_ops = { .ndo_init = qcaspi_netdev_init, .ndo_uninit = qcaspi_netdev_uninit, .ndo_open = qcaspi_netdev_open, .ndo_stop = qcaspi_netdev_close, .ndo_start_xmit = qcaspi_netdev_xmit, .ndo_set_mac_address = eth_mac_addr, .ndo_tx_timeout = qcaspi_netdev_tx_timeout, .ndo_validate_addr = eth_validate_addr, }; static void qcaspi_netdev_setup(struct net_device *dev) { struct qcaspi *qca = NULL; dev->netdev_ops = &qcaspi_netdev_ops; qcaspi_set_ethtool_ops(dev); dev->watchdog_timeo = QCASPI_TX_TIMEOUT; dev->priv_flags &= ~IFF_TX_SKB_SHARING; dev->tx_queue_len = 100; /* MTU range: 46 - 1500 */ dev->min_mtu = QCAFRM_MIN_MTU; dev->max_mtu = QCAFRM_MAX_MTU; qca = netdev_priv(dev); memset(qca, 0, sizeof(struct qcaspi)); memset(&qca->txr, 0, sizeof(qca->txr)); qca->txr.count = TX_RING_MAX_LEN; } static const struct of_device_id qca_spi_of_match[] = { { .compatible = "qca,qca7000" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, qca_spi_of_match); static int qca_spi_probe(struct spi_device *spi) { struct qcaspi *qca = NULL; struct net_device *qcaspi_devs = NULL; u8 legacy_mode = 0; u16 signature; const char *mac; if (!spi->dev.of_node) { dev_err(&spi->dev, "Missing device tree\n"); return -EINVAL; } legacy_mode = of_property_read_bool(spi->dev.of_node, "qca,legacy-mode"); if (qcaspi_clkspeed == 0) { if (spi->max_speed_hz) qcaspi_clkspeed = spi->max_speed_hz; else qcaspi_clkspeed = QCASPI_CLK_SPEED; } if ((qcaspi_clkspeed < QCASPI_CLK_SPEED_MIN) || (qcaspi_clkspeed > QCASPI_CLK_SPEED_MAX)) { dev_err(&spi->dev, "Invalid clkspeed: %d\n", qcaspi_clkspeed); return -EINVAL; } if ((qcaspi_burst_len < QCASPI_BURST_LEN_MIN) || (qcaspi_burst_len > QCASPI_BURST_LEN_MAX)) { dev_err(&spi->dev, "Invalid burst len: %d\n", qcaspi_burst_len); return -EINVAL; } if ((qcaspi_pluggable < QCASPI_PLUGGABLE_MIN) || (qcaspi_pluggable > QCASPI_PLUGGABLE_MAX)) { dev_err(&spi->dev, "Invalid pluggable: %d\n", qcaspi_pluggable); return -EINVAL; } dev_info(&spi->dev, "ver=%s, clkspeed=%d, burst_len=%d, pluggable=%d\n", QCASPI_DRV_VERSION, qcaspi_clkspeed, qcaspi_burst_len, qcaspi_pluggable); spi->mode = SPI_MODE_3; spi->max_speed_hz = qcaspi_clkspeed; if (spi_setup(spi) < 0) { dev_err(&spi->dev, "Unable to setup SPI device\n"); return -EFAULT; } qcaspi_devs = alloc_etherdev(sizeof(struct qcaspi)); if (!qcaspi_devs) return -ENOMEM; qcaspi_netdev_setup(qcaspi_devs); SET_NETDEV_DEV(qcaspi_devs, &spi->dev); qca = netdev_priv(qcaspi_devs); if (!qca) { free_netdev(qcaspi_devs); dev_err(&spi->dev, "Fail to retrieve private structure\n"); return -ENOMEM; } qca->net_dev = qcaspi_devs; qca->spi_dev = spi; qca->legacy_mode = legacy_mode; spi_set_drvdata(spi, qcaspi_devs); mac = of_get_mac_address(spi->dev.of_node); if (mac) ether_addr_copy(qca->net_dev->dev_addr, mac); if (!is_valid_ether_addr(qca->net_dev->dev_addr)) { eth_hw_addr_random(qca->net_dev); dev_info(&spi->dev, "Using random MAC address: %pM\n", qca->net_dev->dev_addr); } netif_carrier_off(qca->net_dev); if (!qcaspi_pluggable) { qcaspi_read_register(qca, SPI_REG_SIGNATURE, &signature); qcaspi_read_register(qca, SPI_REG_SIGNATURE, &signature); if (signature != QCASPI_GOOD_SIGNATURE) { dev_err(&spi->dev, "Invalid signature (0x%04X)\n", signature); free_netdev(qcaspi_devs); return -EFAULT; } } if (register_netdev(qcaspi_devs)) { dev_err(&spi->dev, "Unable to register net device %s\n", qcaspi_devs->name); free_netdev(qcaspi_devs); return -EFAULT; } qcaspi_init_device_debugfs(qca); return 0; } static int qca_spi_remove(struct spi_device *spi) { struct net_device *qcaspi_devs = spi_get_drvdata(spi); struct qcaspi *qca = netdev_priv(qcaspi_devs); qcaspi_remove_device_debugfs(qca); unregister_netdev(qcaspi_devs); free_netdev(qcaspi_devs); return 0; } static const struct spi_device_id qca_spi_id[] = { { "qca7000", 0 }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(spi, qca_spi_id); static struct spi_driver qca_spi_driver = { .driver = { .name = QCASPI_DRV_NAME, .of_match_table = qca_spi_of_match, }, .id_table = qca_spi_id, .probe = qca_spi_probe, .remove = qca_spi_remove, }; module_spi_driver(qca_spi_driver); MODULE_DESCRIPTION("Qualcomm Atheros QCA7000 SPI Driver"); MODULE_AUTHOR("Qualcomm Atheros Communications"); MODULE_AUTHOR("Stefan Wahren "); MODULE_LICENSE("Dual BSD/GPL"); MODULE_VERSION(QCASPI_DRV_VERSION);