// SPDX-License-Identifier: GPL-2.0 /* niu.c: Neptune ethernet driver. * * Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net) */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "niu.h" #define DRV_MODULE_NAME "niu" #define DRV_MODULE_VERSION "1.1" #define DRV_MODULE_RELDATE "Apr 22, 2010" static char version[] = DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; MODULE_AUTHOR("David S. Miller (davem@davemloft.net)"); MODULE_DESCRIPTION("NIU ethernet driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_MODULE_VERSION); #ifndef readq static u64 readq(void __iomem *reg) { return ((u64) readl(reg)) | (((u64) readl(reg + 4UL)) << 32); } static void writeq(u64 val, void __iomem *reg) { writel(val & 0xffffffff, reg); writel(val >> 32, reg + 0x4UL); } #endif static const struct pci_device_id niu_pci_tbl[] = { {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)}, {} }; MODULE_DEVICE_TABLE(pci, niu_pci_tbl); #define NIU_TX_TIMEOUT (5 * HZ) #define nr64(reg) readq(np->regs + (reg)) #define nw64(reg, val) writeq((val), np->regs + (reg)) #define nr64_mac(reg) readq(np->mac_regs + (reg)) #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg)) #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg)) #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg)) #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg)) #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg)) #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg)) #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg)) #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) static int niu_debug; static int debug = -1; module_param(debug, int, 0); MODULE_PARM_DESC(debug, "NIU debug level"); #define niu_lock_parent(np, flags) \ spin_lock_irqsave(&np->parent->lock, flags) #define niu_unlock_parent(np, flags) \ spin_unlock_irqrestore(&np->parent->lock, flags) static int serdes_init_10g_serdes(struct niu *np); static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg, u64 bits, int limit, int delay) { while (--limit >= 0) { u64 val = nr64_mac(reg); if (!(val & bits)) break; udelay(delay); } if (limit < 0) return -ENODEV; return 0; } static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg, u64 bits, int limit, int delay, const char *reg_name) { int err; nw64_mac(reg, bits); err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay); if (err) netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n", (unsigned long long)bits, reg_name, (unsigned long long)nr64_mac(reg)); return err; } #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \ ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \ __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \ }) static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg, u64 bits, int limit, int delay) { while (--limit >= 0) { u64 val = nr64_ipp(reg); if (!(val & bits)) break; udelay(delay); } if (limit < 0) return -ENODEV; return 0; } static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg, u64 bits, int limit, int delay, const char *reg_name) { int err; u64 val; val = nr64_ipp(reg); val |= bits; nw64_ipp(reg, val); err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay); if (err) netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n", (unsigned long long)bits, reg_name, (unsigned long long)nr64_ipp(reg)); return err; } #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \ ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \ __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \ }) static int __niu_wait_bits_clear(struct niu *np, unsigned long reg, u64 bits, int limit, int delay) { while (--limit >= 0) { u64 val = nr64(reg); if (!(val & bits)) break; udelay(delay); } if (limit < 0) return -ENODEV; return 0; } #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \ ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \ __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \ }) static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg, u64 bits, int limit, int delay, const char *reg_name) { int err; nw64(reg, bits); err = __niu_wait_bits_clear(np, reg, bits, limit, delay); if (err) netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n", (unsigned long long)bits, reg_name, (unsigned long long)nr64(reg)); return err; } #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \ ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \ __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \ }) static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on) { u64 val = (u64) lp->timer; if (on) val |= LDG_IMGMT_ARM; nw64(LDG_IMGMT(lp->ldg_num), val); } static int niu_ldn_irq_enable(struct niu *np, int ldn, int on) { unsigned long mask_reg, bits; u64 val; if (ldn < 0 || ldn > LDN_MAX) return -EINVAL; if (ldn < 64) { mask_reg = LD_IM0(ldn); bits = LD_IM0_MASK; } else { mask_reg = LD_IM1(ldn - 64); bits = LD_IM1_MASK; } val = nr64(mask_reg); if (on) val &= ~bits; else val |= bits; nw64(mask_reg, val); return 0; } static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on) { struct niu_parent *parent = np->parent; int i; for (i = 0; i <= LDN_MAX; i++) { int err; if (parent->ldg_map[i] != lp->ldg_num) continue; err = niu_ldn_irq_enable(np, i, on); if (err) return err; } return 0; } static int niu_enable_interrupts(struct niu *np, int on) { int i; for (i = 0; i < np->num_ldg; i++) { struct niu_ldg *lp = &np->ldg[i]; int err; err = niu_enable_ldn_in_ldg(np, lp, on); if (err) return err; } for (i = 0; i < np->num_ldg; i++) niu_ldg_rearm(np, &np->ldg[i], on); return 0; } static u32 phy_encode(u32 type, int port) { return type << (port * 2); } static u32 phy_decode(u32 val, int port) { return (val >> (port * 2)) & PORT_TYPE_MASK; } static int mdio_wait(struct niu *np) { int limit = 1000; u64 val; while (--limit > 0) { val = nr64(MIF_FRAME_OUTPUT); if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1) return val & MIF_FRAME_OUTPUT_DATA; udelay(10); } return -ENODEV; } static int mdio_read(struct niu *np, int port, int dev, int reg) { int err; nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg)); err = mdio_wait(np); if (err < 0) return err; nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev)); return mdio_wait(np); } static int mdio_write(struct niu *np, int port, int dev, int reg, int data) { int err; nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg)); err = mdio_wait(np); if (err < 0) return err; nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data)); err = mdio_wait(np); if (err < 0) return err; return 0; } static int mii_read(struct niu *np, int port, int reg) { nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg)); return mdio_wait(np); } static int mii_write(struct niu *np, int port, int reg, int data) { int err; nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data)); err = mdio_wait(np); if (err < 0) return err; return 0; } static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val) { int err; err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR, ESR2_TI_PLL_TX_CFG_L(channel), val & 0xffff); if (!err) err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR, ESR2_TI_PLL_TX_CFG_H(channel), val >> 16); return err; } static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val) { int err; err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR, ESR2_TI_PLL_RX_CFG_L(channel), val & 0xffff); if (!err) err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR, ESR2_TI_PLL_RX_CFG_H(channel), val >> 16); return err; } /* Mode is always 10G fiber. */ static int serdes_init_niu_10g_fiber(struct niu *np) { struct niu_link_config *lp = &np->link_config; u32 tx_cfg, rx_cfg; unsigned long i; tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV); rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT | PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH | PLL_RX_CFG_EQ_LP_ADAPTIVE); if (lp->loopback_mode == LOOPBACK_PHY) { u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS; mdio_write(np, np->port, NIU_ESR2_DEV_ADDR, ESR2_TI_PLL_TEST_CFG_L, test_cfg); tx_cfg |= PLL_TX_CFG_ENTEST; rx_cfg |= PLL_RX_CFG_ENTEST; } /* Initialize all 4 lanes of the SERDES. */ for (i = 0; i < 4; i++) { int err = esr2_set_tx_cfg(np, i, tx_cfg); if (err) return err; } for (i = 0; i < 4; i++) { int err = esr2_set_rx_cfg(np, i, rx_cfg); if (err) return err; } return 0; } static int serdes_init_niu_1g_serdes(struct niu *np) { struct niu_link_config *lp = &np->link_config; u16 pll_cfg, pll_sts; int max_retry = 100; u64 uninitialized_var(sig), mask, val; u32 tx_cfg, rx_cfg; unsigned long i; int err; tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV | PLL_TX_CFG_RATE_HALF); rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT | PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH | PLL_RX_CFG_RATE_HALF); if (np->port == 0) rx_cfg |= PLL_RX_CFG_EQ_LP_ADAPTIVE; if (lp->loopback_mode == LOOPBACK_PHY) { u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS; mdio_write(np, np->port, NIU_ESR2_DEV_ADDR, ESR2_TI_PLL_TEST_CFG_L, test_cfg); tx_cfg |= PLL_TX_CFG_ENTEST; rx_cfg |= PLL_RX_CFG_ENTEST; } /* Initialize PLL for 1G */ pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_8X); err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR, ESR2_TI_PLL_CFG_L, pll_cfg); if (err) { netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n", np->port, __func__); return err; } pll_sts = PLL_CFG_ENPLL; err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR, ESR2_TI_PLL_STS_L, pll_sts); if (err) { netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n", np->port, __func__); return err; } udelay(200); /* Initialize all 4 lanes of the SERDES. */ for (i = 0; i < 4; i++) { err = esr2_set_tx_cfg(np, i, tx_cfg); if (err) return err; } for (i = 0; i < 4; i++) { err = esr2_set_rx_cfg(np, i, rx_cfg); if (err) return err; } switch (np->port) { case 0: val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0); mask = val; break; case 1: val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1); mask = val; break; default: return -EINVAL; } while (max_retry--) { sig = nr64(ESR_INT_SIGNALS); if ((sig & mask) == val) break; mdelay(500); } if ((sig & mask) != val) { netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n", np->port, (int)(sig & mask), (int)val); return -ENODEV; } return 0; } static int serdes_init_niu_10g_serdes(struct niu *np) { struct niu_link_config *lp = &np->link_config; u32 tx_cfg, rx_cfg, pll_cfg, pll_sts; int max_retry = 100; u64 uninitialized_var(sig), mask, val; unsigned long i; int err; tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV); rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT | PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH | PLL_RX_CFG_EQ_LP_ADAPTIVE); if (lp->loopback_mode == LOOPBACK_PHY) { u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS; mdio_write(np, np->port, NIU_ESR2_DEV_ADDR, ESR2_TI_PLL_TEST_CFG_L, test_cfg); tx_cfg |= PLL_TX_CFG_ENTEST; rx_cfg |= PLL_RX_CFG_ENTEST; } /* Initialize PLL for 10G */ pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_10X); err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR, ESR2_TI_PLL_CFG_L, pll_cfg & 0xffff); if (err) { netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n", np->port, __func__); return err; } pll_sts = PLL_CFG_ENPLL; err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR, ESR2_TI_PLL_STS_L, pll_sts & 0xffff); if (err) { netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n", np->port, __func__); return err; } udelay(200); /* Initialize all 4 lanes of the SERDES. */ for (i = 0; i < 4; i++) { err = esr2_set_tx_cfg(np, i, tx_cfg); if (err) return err; } for (i = 0; i < 4; i++) { err = esr2_set_rx_cfg(np, i, rx_cfg); if (err) return err; } /* check if serdes is ready */ switch (np->port) { case 0: mask = ESR_INT_SIGNALS_P0_BITS; val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0 | ESR_INT_XSRDY_P0 | ESR_INT_XDP_P0_CH3 | ESR_INT_XDP_P0_CH2 | ESR_INT_XDP_P0_CH1 | ESR_INT_XDP_P0_CH0); break; case 1: mask = ESR_INT_SIGNALS_P1_BITS; val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1 | ESR_INT_XSRDY_P1 | ESR_INT_XDP_P1_CH3 | ESR_INT_XDP_P1_CH2 | ESR_INT_XDP_P1_CH1 | ESR_INT_XDP_P1_CH0); break; default: return -EINVAL; } while (max_retry--) { sig = nr64(ESR_INT_SIGNALS); if ((sig & mask) == val) break; mdelay(500); } if ((sig & mask) != val) { pr_info("NIU Port %u signal bits [%08x] are not [%08x] for 10G...trying 1G\n", np->port, (int)(sig & mask), (int)val); /* 10G failed, try initializing at 1G */ err = serdes_init_niu_1g_serdes(np); if (!err) { np->flags &= ~NIU_FLAGS_10G; np->mac_xcvr = MAC_XCVR_PCS; } else { netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n", np->port); return -ENODEV; } } return 0; } static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val) { int err; err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan)); if (err >= 0) { *val = (err & 0xffff); err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_H(chan)); if (err >= 0) *val |= ((err & 0xffff) << 16); err = 0; } return err; } static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val) { int err; err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_GLUE_CTRL0_L(chan)); if (err >= 0) { *val = (err & 0xffff); err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_GLUE_CTRL0_H(chan)); if (err >= 0) { *val |= ((err & 0xffff) << 16); err = 0; } } return err; } static int esr_read_reset(struct niu *np, u32 *val) { int err; err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_RESET_CTRL_L); if (err >= 0) { *val = (err & 0xffff); err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_RESET_CTRL_H); if (err >= 0) { *val |= ((err & 0xffff) << 16); err = 0; } } return err; } static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val) { int err; err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan), val & 0xffff); if (!err) err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_H(chan), (val >> 16)); return err; } static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val) { int err; err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR, ESR_GLUE_CTRL0_L(chan), val & 0xffff); if (!err) err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR, ESR_GLUE_CTRL0_H(chan), (val >> 16)); return err; } static int esr_reset(struct niu *np) { u32 uninitialized_var(reset); int err; err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_RESET_CTRL_L, 0x0000); if (err) return err; err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_RESET_CTRL_H, 0xffff); if (err) return err; udelay(200); err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_RESET_CTRL_L, 0xffff); if (err) return err; udelay(200); err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_RESET_CTRL_H, 0x0000); if (err) return err; udelay(200); err = esr_read_reset(np, &reset); if (err) return err; if (reset != 0) { netdev_err(np->dev, "Port %u ESR_RESET did not clear [%08x]\n", np->port, reset); return -ENODEV; } return 0; } static int serdes_init_10g(struct niu *np) { struct niu_link_config *lp = &np->link_config; unsigned long ctrl_reg, test_cfg_reg, i; u64 ctrl_val, test_cfg_val, sig, mask, val; int err; switch (np->port) { case 0: ctrl_reg = ENET_SERDES_0_CTRL_CFG; test_cfg_reg = ENET_SERDES_0_TEST_CFG; break; case 1: ctrl_reg = ENET_SERDES_1_CTRL_CFG; test_cfg_reg = ENET_SERDES_1_TEST_CFG; break; default: return -EINVAL; } ctrl_val = (ENET_SERDES_CTRL_SDET_0 | ENET_SERDES_CTRL_SDET_1 | ENET_SERDES_CTRL_SDET_2 | ENET_SERDES_CTRL_SDET_3 | (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) | (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) | (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) | (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) | (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) | (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) | (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) | (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT)); test_cfg_val = 0; if (lp->loopback_mode == LOOPBACK_PHY) { test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK << ENET_SERDES_TEST_MD_0_SHIFT) | (ENET_TEST_MD_PAD_LOOPBACK << ENET_SERDES_TEST_MD_1_SHIFT) | (ENET_TEST_MD_PAD_LOOPBACK << ENET_SERDES_TEST_MD_2_SHIFT) | (ENET_TEST_MD_PAD_LOOPBACK << ENET_SERDES_TEST_MD_3_SHIFT)); } nw64(ctrl_reg, ctrl_val); nw64(test_cfg_reg, test_cfg_val); /* Initialize all 4 lanes of the SERDES. */ for (i = 0; i < 4; i++) { u32 rxtx_ctrl, glue0; err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl); if (err) return err; err = esr_read_glue0(np, i, &glue0); if (err) return err; rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO); rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH | (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT)); glue0 &= ~(ESR_GLUE_CTRL0_SRATE | ESR_GLUE_CTRL0_THCNT | ESR_GLUE_CTRL0_BLTIME); glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB | (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) | (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) | (BLTIME_300_CYCLES << ESR_GLUE_CTRL0_BLTIME_SHIFT)); err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl); if (err) return err; err = esr_write_glue0(np, i, glue0); if (err) return err; } err = esr_reset(np); if (err) return err; sig = nr64(ESR_INT_SIGNALS); switch (np->port) { case 0: mask = ESR_INT_SIGNALS_P0_BITS; val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0 | ESR_INT_XSRDY_P0 | ESR_INT_XDP_P0_CH3 | ESR_INT_XDP_P0_CH2 | ESR_INT_XDP_P0_CH1 | ESR_INT_XDP_P0_CH0); break; case 1: mask = ESR_INT_SIGNALS_P1_BITS; val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1 | ESR_INT_XSRDY_P1 | ESR_INT_XDP_P1_CH3 | ESR_INT_XDP_P1_CH2 | ESR_INT_XDP_P1_CH1 | ESR_INT_XDP_P1_CH0); break; default: return -EINVAL; } if ((sig & mask) != val) { if (np->flags & NIU_FLAGS_HOTPLUG_PHY) { np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT; return 0; } netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n", np->port, (int)(sig & mask), (int)val); return -ENODEV; } if (np->flags & NIU_FLAGS_HOTPLUG_PHY) np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT; return 0; } static int serdes_init_1g(struct niu *np) { u64 val; val = nr64(ENET_SERDES_1_PLL_CFG); val &= ~ENET_SERDES_PLL_FBDIV2; switch (np->port) { case 0: val |= ENET_SERDES_PLL_HRATE0; break; case 1: val |= ENET_SERDES_PLL_HRATE1; break; case 2: val |= ENET_SERDES_PLL_HRATE2; break; case 3: val |= ENET_SERDES_PLL_HRATE3; break; default: return -EINVAL; } nw64(ENET_SERDES_1_PLL_CFG, val); return 0; } static int serdes_init_1g_serdes(struct niu *np) { struct niu_link_config *lp = &np->link_config; unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i; u64 ctrl_val, test_cfg_val, sig, mask, val; int err; u64 reset_val, val_rd; val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 | ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 | ENET_SERDES_PLL_FBDIV0; switch (np->port) { case 0: reset_val = ENET_SERDES_RESET_0; ctrl_reg = ENET_SERDES_0_CTRL_CFG; test_cfg_reg = ENET_SERDES_0_TEST_CFG; pll_cfg = ENET_SERDES_0_PLL_CFG; break; case 1: reset_val = ENET_SERDES_RESET_1; ctrl_reg = ENET_SERDES_1_CTRL_CFG; test_cfg_reg = ENET_SERDES_1_TEST_CFG; pll_cfg = ENET_SERDES_1_PLL_CFG; break; default: return -EINVAL; } ctrl_val = (ENET_SERDES_CTRL_SDET_0 | ENET_SERDES_CTRL_SDET_1 | ENET_SERDES_CTRL_SDET_2 | ENET_SERDES_CTRL_SDET_3 | (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) | (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) | (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) | (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) | (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) | (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) | (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) | (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT)); test_cfg_val = 0; if (lp->loopback_mode == LOOPBACK_PHY) { test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK << ENET_SERDES_TEST_MD_0_SHIFT) | (ENET_TEST_MD_PAD_LOOPBACK << ENET_SERDES_TEST_MD_1_SHIFT) | (ENET_TEST_MD_PAD_LOOPBACK << ENET_SERDES_TEST_MD_2_SHIFT) | (ENET_TEST_MD_PAD_LOOPBACK << ENET_SERDES_TEST_MD_3_SHIFT)); } nw64(ENET_SERDES_RESET, reset_val); mdelay(20); val_rd = nr64(ENET_SERDES_RESET); val_rd &= ~reset_val; nw64(pll_cfg, val); nw64(ctrl_reg, ctrl_val); nw64(test_cfg_reg, test_cfg_val); nw64(ENET_SERDES_RESET, val_rd); mdelay(2000); /* Initialize all 4 lanes of the SERDES. */ for (i = 0; i < 4; i++) { u32 rxtx_ctrl, glue0; err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl); if (err) return err; err = esr_read_glue0(np, i, &glue0); if (err) return err; rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO); rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH | (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT)); glue0 &= ~(ESR_GLUE_CTRL0_SRATE | ESR_GLUE_CTRL0_THCNT | ESR_GLUE_CTRL0_BLTIME); glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB | (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) | (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) | (BLTIME_300_CYCLES << ESR_GLUE_CTRL0_BLTIME_SHIFT)); err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl); if (err) return err; err = esr_write_glue0(np, i, glue0); if (err) return err; } sig = nr64(ESR_INT_SIGNALS); switch (np->port) { case 0: val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0); mask = val; break; case 1: val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1); mask = val; break; default: return -EINVAL; } if ((sig & mask) != val) { netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n", np->port, (int)(sig & mask), (int)val); return -ENODEV; } return 0; } static int link_status_1g_serdes(struct niu *np, int *link_up_p) { struct niu_link_config *lp = &np->link_config; int link_up; u64 val; u16 current_speed; unsigned long flags; u8 current_duplex; link_up = 0; current_speed = SPEED_INVALID; current_duplex = DUPLEX_INVALID; spin_lock_irqsave(&np->lock, flags); val = nr64_pcs(PCS_MII_STAT); if (val & PCS_MII_STAT_LINK_STATUS) { link_up = 1; current_speed = SPEED_1000; current_duplex = DUPLEX_FULL; } lp->active_speed = current_speed; lp->active_duplex = current_duplex; spin_unlock_irqrestore(&np->lock, flags); *link_up_p = link_up; return 0; } static int link_status_10g_serdes(struct niu *np, int *link_up_p) { unsigned long flags; struct niu_link_config *lp = &np->link_config; int link_up = 0; int link_ok = 1; u64 val, val2; u16 current_speed; u8 current_duplex; if (!(np->flags & NIU_FLAGS_10G)) return link_status_1g_serdes(np, link_up_p); current_speed = SPEED_INVALID; current_duplex = DUPLEX_INVALID; spin_lock_irqsave(&np->lock, flags); val = nr64_xpcs(XPCS_STATUS(0)); val2 = nr64_mac(XMAC_INTER2); if (val2 & 0x01000000) link_ok = 0; if ((val & 0x1000ULL) && link_ok) { link_up = 1; current_speed = SPEED_10000; current_duplex = DUPLEX_FULL; } lp->active_speed = current_speed; lp->active_duplex = current_duplex; spin_unlock_irqrestore(&np->lock, flags); *link_up_p = link_up; return 0; } static int link_status_mii(struct niu *np, int *link_up_p) { struct niu_link_config *lp = &np->link_config; int err; int bmsr, advert, ctrl1000, stat1000, lpa, bmcr, estatus; int supported, advertising, active_speed, active_duplex; err = mii_read(np, np->phy_addr, MII_BMCR); if (unlikely(err < 0)) return err; bmcr = err; err = mii_read(np, np->phy_addr, MII_BMSR); if (unlikely(err < 0)) return err; bmsr = err; err = mii_read(np, np->phy_addr, MII_ADVERTISE); if (unlikely(err < 0)) return err; advert = err; err = mii_read(np, np->phy_addr, MII_LPA); if (unlikely(err < 0)) return err; lpa = err; if (likely(bmsr & BMSR_ESTATEN)) { err = mii_read(np, np->phy_addr, MII_ESTATUS); if (unlikely(err < 0)) return err; estatus = err; err = mii_read(np, np->phy_addr, MII_CTRL1000); if (unlikely(err < 0)) return err; ctrl1000 = err; err = mii_read(np, np->phy_addr, MII_STAT1000); if (unlikely(err < 0)) return err; stat1000 = err; } else estatus = ctrl1000 = stat1000 = 0; supported = 0; if (bmsr & BMSR_ANEGCAPABLE) supported |= SUPPORTED_Autoneg; if (bmsr & BMSR_10HALF) supported |= SUPPORTED_10baseT_Half; if (bmsr & BMSR_10FULL) supported |= SUPPORTED_10baseT_Full; if (bmsr & BMSR_100HALF) supported |= SUPPORTED_100baseT_Half; if (bmsr & BMSR_100FULL) supported |= SUPPORTED_100baseT_Full; if (estatus & ESTATUS_1000_THALF) supported |= SUPPORTED_1000baseT_Half; if (estatus & ESTATUS_1000_TFULL) supported |= SUPPORTED_1000baseT_Full; lp->supported = supported; advertising = mii_adv_to_ethtool_adv_t(advert); advertising |= mii_ctrl1000_to_ethtool_adv_t(ctrl1000); if (bmcr & BMCR_ANENABLE) { int neg, neg1000; lp->active_autoneg = 1; advertising |= ADVERTISED_Autoneg; neg = advert & lpa; neg1000 = (ctrl1000 << 2) & stat1000; if (neg1000 & (LPA_1000FULL | LPA_1000HALF)) active_speed = SPEED_1000; else if (neg & LPA_100) active_speed = SPEED_100; else if (neg & (LPA_10HALF | LPA_10FULL)) active_speed = SPEED_10; else active_speed = SPEED_INVALID; if ((neg1000 & LPA_1000FULL) || (neg & LPA_DUPLEX)) active_duplex = DUPLEX_FULL; else if (active_speed != SPEED_INVALID) active_duplex = DUPLEX_HALF; else active_duplex = DUPLEX_INVALID; } else { lp->active_autoneg = 0; if ((bmcr & BMCR_SPEED1000) && !(bmcr & BMCR_SPEED100)) active_speed = SPEED_1000; else if (bmcr & BMCR_SPEED100) active_speed = SPEED_100; else active_speed = SPEED_10; if (bmcr & BMCR_FULLDPLX) active_duplex = DUPLEX_FULL; else active_duplex = DUPLEX_HALF; } lp->active_advertising = advertising; lp->active_speed = active_speed; lp->active_duplex = active_duplex; *link_up_p = !!(bmsr & BMSR_LSTATUS); return 0; } static int link_status_1g_rgmii(struct niu *np, int *link_up_p) { struct niu_link_config *lp = &np->link_config; u16 current_speed, bmsr; unsigned long flags; u8 current_duplex; int err, link_up; link_up = 0; current_speed = SPEED_INVALID; current_duplex = DUPLEX_INVALID; spin_lock_irqsave(&np->lock, flags); err = -EINVAL; err = mii_read(np, np->phy_addr, MII_BMSR); if (err < 0) goto out; bmsr = err; if (bmsr & BMSR_LSTATUS) { link_up = 1; current_speed = SPEED_1000; current_duplex = DUPLEX_FULL; } lp->active_speed = current_speed; lp->active_duplex = current_duplex; err = 0; out: spin_unlock_irqrestore(&np->lock, flags); *link_up_p = link_up; return err; } static int link_status_1g(struct niu *np, int *link_up_p) { struct niu_link_config *lp = &np->link_config; unsigned long flags; int err; spin_lock_irqsave(&np->lock, flags); err = link_status_mii(np, link_up_p); lp->supported |= SUPPORTED_TP; lp->active_advertising |= ADVERTISED_TP; spin_unlock_irqrestore(&np->lock, flags); return err; } static int bcm8704_reset(struct niu *np) { int err, limit; err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR, MII_BMCR); if (err < 0 || err == 0xffff) return err; err |= BMCR_RESET; err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR, MII_BMCR, err); if (err) return err; limit = 1000; while (--limit >= 0) { err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR, MII_BMCR); if (err < 0) return err; if (!(err & BMCR_RESET)) break; } if (limit < 0) { netdev_err(np->dev, "Port %u PHY will not reset (bmcr=%04x)\n", np->port, (err & 0xffff)); return -ENODEV; } return 0; } /* When written, certain PHY registers need to be read back twice * in order for the bits to settle properly. */ static int bcm8704_user_dev3_readback(struct niu *np, int reg) { int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg); if (err < 0) return err; err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg); if (err < 0) return err; return 0; } static int bcm8706_init_user_dev3(struct niu *np) { int err; err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, BCM8704_USER_OPT_DIGITAL_CTRL); if (err < 0) return err; err &= ~USER_ODIG_CTRL_GPIOS; err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT); err |= USER_ODIG_CTRL_RESV2; err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, BCM8704_USER_OPT_DIGITAL_CTRL, err); if (err) return err; mdelay(1000); return 0; } static int bcm8704_init_user_dev3(struct niu *np) { int err; err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL, (USER_CONTROL_OPTXRST_LVL | USER_CONTROL_OPBIASFLT_LVL | USER_CONTROL_OBTMPFLT_LVL | USER_CONTROL_OPPRFLT_LVL | USER_CONTROL_OPTXFLT_LVL | USER_CONTROL_OPRXLOS_LVL | USER_CONTROL_OPRXFLT_LVL | USER_CONTROL_OPTXON_LVL | (0x3f << USER_CONTROL_RES1_SHIFT))); if (err) return err; err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL, (USER_PMD_TX_CTL_XFP_CLKEN | (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) | (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) | USER_PMD_TX_CTL_TSCK_LPWREN)); if (err) return err; err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL); if (err) return err; err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL); if (err) return err; err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, BCM8704_USER_OPT_DIGITAL_CTRL); if (err < 0) return err; err &= ~USER_ODIG_CTRL_GPIOS; err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT); err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, BCM8704_USER_OPT_DIGITAL_CTRL, err); if (err) return err; mdelay(1000); return 0; } static int mrvl88x2011_act_led(struct niu *np, int val) { int err; err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR, MRVL88X2011_LED_8_TO_11_CTL); if (err < 0) return err; err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK); err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val); return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR, MRVL88X2011_LED_8_TO_11_CTL, err); } static int mrvl88x2011_led_blink_rate(struct niu *np, int rate) { int err; err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR, MRVL88X2011_LED_BLINK_CTL); if (err >= 0) { err &= ~MRVL88X2011_LED_BLKRATE_MASK; err |= (rate << 4); err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR, MRVL88X2011_LED_BLINK_CTL, err); } return err; } static int xcvr_init_10g_mrvl88x2011(struct niu *np) { int err; /* Set LED functions */ err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS); if (err) return err; /* led activity */ err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF); if (err) return err; err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR, MRVL88X2011_GENERAL_CTL); if (err < 0) return err; err |= MRVL88X2011_ENA_XFPREFCLK; err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR, MRVL88X2011_GENERAL_CTL, err); if (err < 0) return err; err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR, MRVL88X2011_PMA_PMD_CTL_1); if (err < 0) return err; if (np->link_config.loopback_mode == LOOPBACK_MAC) err |= MRVL88X2011_LOOPBACK; else err &= ~MRVL88X2011_LOOPBACK; err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR, MRVL88X2011_PMA_PMD_CTL_1, err); if (err < 0) return err; /* Enable PMD */ return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR, MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX); } static int xcvr_diag_bcm870x(struct niu *np) { u16 analog_stat0, tx_alarm_status; int err = 0; #if 1 err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR, MII_STAT1000); if (err < 0) return err; pr_info("Port %u PMA_PMD(MII_STAT1000) [%04x]\n", np->port, err); err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20); if (err < 0) return err; pr_info("Port %u USER_DEV3(0x20) [%04x]\n", np->port, err); err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR, MII_NWAYTEST); if (err < 0) return err; pr_info("Port %u PHYXS(MII_NWAYTEST) [%04x]\n", np->port, err); #endif /* XXX dig this out it might not be so useful XXX */ err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, BCM8704_USER_ANALOG_STATUS0); if (err < 0) return err; err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, BCM8704_USER_ANALOG_STATUS0); if (err < 0) return err; analog_stat0 = err; err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, BCM8704_USER_TX_ALARM_STATUS); if (err < 0) return err; err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, BCM8704_USER_TX_ALARM_STATUS); if (err < 0) return err; tx_alarm_status = err; if (analog_stat0 != 0x03fc) { if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) { pr_info("Port %u cable not connected or bad cable\n", np->port); } else if (analog_stat0 == 0x639c) { pr_info("Port %u optical module is bad or missing\n", np->port); } } return 0; } static int xcvr_10g_set_lb_bcm870x(struct niu *np) { struct niu_link_config *lp = &np->link_config; int err; err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR, MII_BMCR); if (err < 0) return err; err &= ~BMCR_LOOPBACK; if (lp->loopback_mode == LOOPBACK_MAC) err |= BMCR_LOOPBACK; err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR, MII_BMCR, err); if (err) return err; return 0; } static int xcvr_init_10g_bcm8706(struct niu *np) { int err = 0; u64 val; if ((np->flags & NIU_FLAGS_HOTPLUG_PHY) && (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) == 0) return err; val = nr64_mac(XMAC_CONFIG); val &= ~XMAC_CONFIG_LED_POLARITY; val |= XMAC_CONFIG_FORCE_LED_ON; nw64_mac(XMAC_CONFIG, val); val = nr64(MIF_CONFIG); val |= MIF_CONFIG_INDIRECT_MODE; nw64(MIF_CONFIG, val); err = bcm8704_reset(np); if (err) return err; err = xcvr_10g_set_lb_bcm870x(np); if (err) return err; err = bcm8706_init_user_dev3(np); if (err) return err; err = xcvr_diag_bcm870x(np); if (err) return err; return 0; } static int xcvr_init_10g_bcm8704(struct niu *np) { int err; err = bcm8704_reset(np); if (err) return err; err = bcm8704_init_user_dev3(np); if (err) return err; err = xcvr_10g_set_lb_bcm870x(np); if (err) return err; err = xcvr_diag_bcm870x(np); if (err) return err; return 0; } static int xcvr_init_10g(struct niu *np) { int phy_id, err; u64 val; val = nr64_mac(XMAC_CONFIG); val &= ~XMAC_CONFIG_LED_POLARITY; val |= XMAC_CONFIG_FORCE_LED_ON; nw64_mac(XMAC_CONFIG, val); /* XXX shared resource, lock parent XXX */ val = nr64(MIF_CONFIG); val |= MIF_CONFIG_INDIRECT_MODE; nw64(MIF_CONFIG, val); phy_id = phy_decode(np->parent->port_phy, np->port); phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port]; /* handle different phy types */ switch (phy_id & NIU_PHY_ID_MASK) { case NIU_PHY_ID_MRVL88X2011: err = xcvr_init_10g_mrvl88x2011(np); break; default: /* bcom 8704 */ err = xcvr_init_10g_bcm8704(np); break; } return err; } static int mii_reset(struct niu *np) { int limit, err; err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET); if (err) return err; limit = 1000; while (--limit >= 0) { udelay(500); err = mii_read(np, np->phy_addr, MII_BMCR); if (err < 0) return err; if (!(err & BMCR_RESET)) break; } if (limit < 0) { netdev_err(np->dev, "Port %u MII would not reset, bmcr[%04x]\n", np->port, err); return -ENODEV; } return 0; } static int xcvr_init_1g_rgmii(struct niu *np) { int err; u64 val; u16 bmcr, bmsr, estat; val = nr64(MIF_CONFIG); val &= ~MIF_CONFIG_INDIRECT_MODE; nw64(MIF_CONFIG, val); err = mii_reset(np); if (err) return err; err = mii_read(np, np->phy_addr, MII_BMSR); if (err < 0) return err; bmsr = err; estat = 0; if (bmsr & BMSR_ESTATEN) { err = mii_read(np, np->phy_addr, MII_ESTATUS); if (err < 0) return err; estat = err; } bmcr = 0; err = mii_write(np, np->phy_addr, MII_BMCR, bmcr); if (err) return err; if (bmsr & BMSR_ESTATEN) { u16 ctrl1000 = 0; if (estat & ESTATUS_1000_TFULL) ctrl1000 |= ADVERTISE_1000FULL; err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000); if (err) return err; } bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX); err = mii_write(np, np->phy_addr, MII_BMCR, bmcr); if (err) return err; err = mii_read(np, np->phy_addr, MII_BMCR); if (err < 0) return err; bmcr = mii_read(np, np->phy_addr, MII_BMCR); err = mii_read(np, np->phy_addr, MII_BMSR); if (err < 0) return err; return 0; } static int mii_init_common(struct niu *np) { struct niu_link_config *lp = &np->link_config; u16 bmcr, bmsr, adv, estat; int err; err = mii_reset(np); if (err) return err; err = mii_read(np, np->phy_addr, MII_BMSR); if (err < 0) return err; bmsr = err; estat = 0; if (bmsr & BMSR_ESTATEN) { err = mii_read(np, np->phy_addr, MII_ESTATUS); if (err < 0) return err; estat = err; } bmcr = 0; err = mii_write(np, np->phy_addr, MII_BMCR, bmcr); if (err) return err; if (lp->loopback_mode == LOOPBACK_MAC) { bmcr |= BMCR_LOOPBACK; if (lp->active_speed == SPEED_1000) bmcr |= BMCR_SPEED1000; if (lp->active_duplex == DUPLEX_FULL) bmcr |= BMCR_FULLDPLX; } if (lp->loopback_mode == LOOPBACK_PHY) { u16 aux; aux = (BCM5464R_AUX_CTL_EXT_LB | BCM5464R_AUX_CTL_WRITE_1); err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux); if (err) return err; } if (lp->autoneg) { u16 ctrl1000; adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP; if ((bmsr & BMSR_10HALF) && (lp->advertising & ADVERTISED_10baseT_Half)) adv |= ADVERTISE_10HALF; if ((bmsr & BMSR_10FULL) && (lp->advertising & ADVERTISED_10baseT_Full)) adv |= ADVERTISE_10FULL; if ((bmsr & BMSR_100HALF) && (lp->advertising & ADVERTISED_100baseT_Half)) adv |= ADVERTISE_100HALF; if ((bmsr & BMSR_100FULL) && (lp->advertising & ADVERTISED_100baseT_Full)) adv |= ADVERTISE_100FULL; err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv); if (err) return err; if (likely(bmsr & BMSR_ESTATEN)) { ctrl1000 = 0; if ((estat & ESTATUS_1000_THALF) && (lp->advertising & ADVERTISED_1000baseT_Half)) ctrl1000 |= ADVERTISE_1000HALF; if ((estat & ESTATUS_1000_TFULL) && (lp->advertising & ADVERTISED_1000baseT_Full)) ctrl1000 |= ADVERTISE_1000FULL; err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000); if (err) return err; } bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); } else { /* !lp->autoneg */ int fulldpx; if (lp->duplex == DUPLEX_FULL) { bmcr |= BMCR_FULLDPLX; fulldpx = 1; } else if (lp->duplex == DUPLEX_HALF) fulldpx = 0; else return -EINVAL; if (lp->speed == SPEED_1000) { /* if X-full requested while not supported, or X-half requested while not supported... */ if ((fulldpx && !(estat & ESTATUS_1000_TFULL)) || (!fulldpx && !(estat & ESTATUS_1000_THALF))) return -EINVAL; bmcr |= BMCR_SPEED1000; } else if (lp->speed == SPEED_100) { if ((fulldpx && !(bmsr & BMSR_100FULL)) || (!fulldpx && !(bmsr & BMSR_100HALF))) return -EINVAL; bmcr |= BMCR_SPEED100; } else if (lp->speed == SPEED_10) { if ((fulldpx && !(bmsr & BMSR_10FULL)) || (!fulldpx && !(bmsr & BMSR_10HALF))) return -EINVAL; } else return -EINVAL; } err = mii_write(np, np->phy_addr, MII_BMCR, bmcr); if (err) return err; #if 0 err = mii_read(np, np->phy_addr, MII_BMCR); if (err < 0) return err; bmcr = err; err = mii_read(np, np->phy_addr, MII_BMSR); if (err < 0) return err; bmsr = err; pr_info("Port %u after MII init bmcr[%04x] bmsr[%04x]\n", np->port, bmcr, bmsr); #endif return 0; } static int xcvr_init_1g(struct niu *np) { u64 val; /* XXX shared resource, lock parent XXX */ val = nr64(MIF_CONFIG); val &= ~MIF_CONFIG_INDIRECT_MODE; nw64(MIF_CONFIG, val); return mii_init_common(np); } static int niu_xcvr_init(struct niu *np) { const struct niu_phy_ops *ops = np->phy_ops; int err; err = 0; if (ops->xcvr_init) err = ops->xcvr_init(np); return err; } static int niu_serdes_init(struct niu *np) { const struct niu_phy_ops *ops = np->phy_ops; int err; err = 0; if (ops->serdes_init) err = ops->serdes_init(np); return err; } static void niu_init_xif(struct niu *); static void niu_handle_led(struct niu *, int status); static int niu_link_status_common(struct niu *np, int link_up) { struct niu_link_config *lp = &np->link_config; struct net_device *dev = np->dev; unsigned long flags; if (!netif_carrier_ok(dev) && link_up) { netif_info(np, link, dev, "Link is up at %s, %s duplex\n", lp->active_speed == SPEED_10000 ? "10Gb/sec" : lp->active_speed == SPEED_1000 ? "1Gb/sec" : lp->active_speed == SPEED_100 ? "100Mbit/sec" : "10Mbit/sec", lp->active_duplex == DUPLEX_FULL ? "full" : "half"); spin_lock_irqsave(&np->lock, flags); niu_init_xif(np); niu_handle_led(np, 1); spin_unlock_irqrestore(&np->lock, flags); netif_carrier_on(dev); } else if (netif_carrier_ok(dev) && !link_up) { netif_warn(np, link, dev, "Link is down\n"); spin_lock_irqsave(&np->lock, flags); niu_handle_led(np, 0); spin_unlock_irqrestore(&np->lock, flags); netif_carrier_off(dev); } return 0; } static int link_status_10g_mrvl(struct niu *np, int *link_up_p) { int err, link_up, pma_status, pcs_status; link_up = 0; err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR, MRVL88X2011_10G_PMD_STATUS_2); if (err < 0) goto out; /* Check PMA/PMD Register: 1.0001.2 == 1 */ err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR, MRVL88X2011_PMA_PMD_STATUS_1); if (err < 0) goto out; pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0); /* Check PMC Register : 3.0001.2 == 1: read twice */ err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR, MRVL88X2011_PMA_PMD_STATUS_1); if (err < 0) goto out; err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR, MRVL88X2011_PMA_PMD_STATUS_1); if (err < 0) goto out; pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0); /* Check XGXS Register : 4.0018.[0-3,12] */ err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR, MRVL88X2011_10G_XGXS_LANE_STAT); if (err < 0) goto out; if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 | PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 | PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC | 0x800)) link_up = (pma_status && pcs_status) ? 1 : 0; np->link_config.active_speed = SPEED_10000; np->link_config.active_duplex = DUPLEX_FULL; err = 0; out: mrvl88x2011_act_led(np, (link_up ? MRVL88X2011_LED_CTL_PCS_ACT : MRVL88X2011_LED_CTL_OFF)); *link_up_p = link_up; return err; } static int link_status_10g_bcm8706(struct niu *np, int *link_up_p) { int err, link_up; link_up = 0; err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR, BCM8704_PMD_RCV_SIGDET); if (err < 0 || err == 0xffff) goto out; if (!(err & PMD_RCV_SIGDET_GLOBAL)) { err = 0; goto out; } err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR, BCM8704_PCS_10G_R_STATUS); if (err < 0) goto out; if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) { err = 0; goto out; } err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR, BCM8704_PHYXS_XGXS_LANE_STAT); if (err < 0) goto out; if (err != (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_MAGIC | PHYXS_XGXS_LANE_STAT_PATTEST | PHYXS_XGXS_LANE_STAT_LANE3 | PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 | PHYXS_XGXS_LANE_STAT_LANE0)) { err = 0; np->link_config.active_speed = SPEED_INVALID; np->link_config.active_duplex = DUPLEX_INVALID; goto out; } link_up = 1; np->link_config.active_speed = SPEED_10000; np->link_config.active_duplex = DUPLEX_FULL; err = 0; out: *link_up_p = link_up; return err; } static int link_status_10g_bcom(struct niu *np, int *link_up_p) { int err, link_up; link_up = 0; err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR, BCM8704_PMD_RCV_SIGDET); if (err < 0) goto out; if (!(err & PMD_RCV_SIGDET_GLOBAL)) { err = 0; goto out; } err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR, BCM8704_PCS_10G_R_STATUS); if (err < 0) goto out; if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) { err = 0; goto out; } err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR, BCM8704_PHYXS_XGXS_LANE_STAT); if (err < 0) goto out; if (err != (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_MAGIC | PHYXS_XGXS_LANE_STAT_LANE3 | PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 | PHYXS_XGXS_LANE_STAT_LANE0)) { err = 0; goto out; } link_up = 1; np->link_config.active_speed = SPEED_10000; np->link_config.active_duplex = DUPLEX_FULL; err = 0; out: *link_up_p = link_up; return err; } static int link_status_10g(struct niu *np, int *link_up_p) { unsigned long flags; int err = -EINVAL; spin_lock_irqsave(&np->lock, flags); if (np->link_config.loopback_mode == LOOPBACK_DISABLED) { int phy_id; phy_id = phy_decode(np->parent->port_phy, np->port); phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port]; /* handle different phy types */ switch (phy_id & NIU_PHY_ID_MASK) { case NIU_PHY_ID_MRVL88X2011: err = link_status_10g_mrvl(np, link_up_p); break; default: /* bcom 8704 */ err = link_status_10g_bcom(np, link_up_p); break; } } spin_unlock_irqrestore(&np->lock, flags); return err; } static int niu_10g_phy_present(struct niu *np) { u64 sig, mask, val; sig = nr64(ESR_INT_SIGNALS); switch (np->port) { case 0: mask = ESR_INT_SIGNALS_P0_BITS; val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0 | ESR_INT_XSRDY_P0 | ESR_INT_XDP_P0_CH3 | ESR_INT_XDP_P0_CH2 | ESR_INT_XDP_P0_CH1 | ESR_INT_XDP_P0_CH0); break; case 1: mask = ESR_INT_SIGNALS_P1_BITS; val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1 | ESR_INT_XSRDY_P1 | ESR_INT_XDP_P1_CH3 | ESR_INT_XDP_P1_CH2 | ESR_INT_XDP_P1_CH1 | ESR_INT_XDP_P1_CH0); break; default: return 0; } if ((sig & mask) != val) return 0; return 1; } static int link_status_10g_hotplug(struct niu *np, int *link_up_p) { unsigned long flags; int err = 0; int phy_present; int phy_present_prev; spin_lock_irqsave(&np->lock, flags); if (np->link_config.loopback_mode == LOOPBACK_DISABLED) { phy_present_prev = (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) ? 1 : 0; phy_present = niu_10g_phy_present(np); if (phy_present != phy_present_prev) { /* state change */ if (phy_present) { /* A NEM was just plugged in */ np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT; if (np->phy_ops->xcvr_init) err = np->phy_ops->xcvr_init(np); if (err) { err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR, MII_BMCR); if (err == 0xffff) { /* No mdio, back-to-back XAUI */ goto out; } /* debounce */ np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT; } } else { np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT; *link_up_p = 0; netif_warn(np, link, np->dev, "Hotplug PHY Removed\n"); } } out: if (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) { err = link_status_10g_bcm8706(np, link_up_p); if (err == 0xffff) { /* No mdio, back-to-back XAUI: it is C10NEM */ *link_up_p = 1; np->link_config.active_speed = SPEED_10000; np->link_config.active_duplex = DUPLEX_FULL; } } } spin_unlock_irqrestore(&np->lock, flags); return 0; } static int niu_link_status(struct niu *np, int *link_up_p) { const struct niu_phy_ops *ops = np->phy_ops; int err; err = 0; if (ops->link_status) err = ops->link_status(np, link_up_p); return err; } static void niu_timer(struct timer_list *t) { struct niu *np = from_timer(np, t, timer); unsigned long off; int err, link_up; err = niu_link_status(np, &link_up); if (!err) niu_link_status_common(np, link_up); if (netif_carrier_ok(np->dev)) off = 5 * HZ; else off = 1 * HZ; np->timer.expires = jiffies + off; add_timer(&np->timer); } static const struct niu_phy_ops phy_ops_10g_serdes = { .serdes_init = serdes_init_10g_serdes, .link_status = link_status_10g_serdes, }; static const struct niu_phy_ops phy_ops_10g_serdes_niu = { .serdes_init = serdes_init_niu_10g_serdes, .link_status = link_status_10g_serdes, }; static const struct niu_phy_ops phy_ops_1g_serdes_niu = { .serdes_init = serdes_init_niu_1g_serdes, .link_status = link_status_1g_serdes, }; static const struct niu_phy_ops phy_ops_1g_rgmii = { .xcvr_init = xcvr_init_1g_rgmii, .link_status = link_status_1g_rgmii, }; static const struct niu_phy_ops phy_ops_10g_fiber_niu = { .serdes_init = serdes_init_niu_10g_fiber, .xcvr_init = xcvr_init_10g, .link_status = link_status_10g, }; static const struct niu_phy_ops phy_ops_10g_fiber = { .serdes_init = serdes_init_10g, .xcvr_init = xcvr_init_10g, .link_status = link_status_10g, }; static const struct niu_phy_ops phy_ops_10g_fiber_hotplug = { .serdes_init = serdes_init_10g, .xcvr_init = xcvr_init_10g_bcm8706, .link_status = link_status_10g_hotplug, }; static const struct niu_phy_ops phy_ops_niu_10g_hotplug = { .serdes_init = serdes_init_niu_10g_fiber, .xcvr_init = xcvr_init_10g_bcm8706, .link_status = link_status_10g_hotplug, }; static const struct niu_phy_ops phy_ops_10g_copper = { .serdes_init = serdes_init_10g, .link_status = link_status_10g, /* XXX */ }; static const struct niu_phy_ops phy_ops_1g_fiber = { .serdes_init = serdes_init_1g, .xcvr_init = xcvr_init_1g, .link_status = link_status_1g, }; static const struct niu_phy_ops phy_ops_1g_copper = { .xcvr_init = xcvr_init_1g, .link_status = link_status_1g, }; struct niu_phy_template { const struct niu_phy_ops *ops; u32 phy_addr_base; }; static const struct niu_phy_template phy_template_niu_10g_fiber = { .ops = &phy_ops_10g_fiber_niu, .phy_addr_base = 16, }; static const struct niu_phy_template phy_template_niu_10g_serdes = { .ops = &phy_ops_10g_serdes_niu, .phy_addr_base = 0, }; static const struct niu_phy_template phy_template_niu_1g_serdes = { .ops = &phy_ops_1g_serdes_niu, .phy_addr_base = 0, }; static const struct niu_phy_template phy_template_10g_fiber = { .ops = &phy_ops_10g_fiber, .phy_addr_base = 8, }; static const struct niu_phy_template phy_template_10g_fiber_hotplug = { .ops = &phy_ops_10g_fiber_hotplug, .phy_addr_base = 8, }; static const struct niu_phy_template phy_template_niu_10g_hotplug = { .ops = &phy_ops_niu_10g_hotplug, .phy_addr_base = 8, }; static const struct niu_phy_template phy_template_10g_copper = { .ops = &phy_ops_10g_copper, .phy_addr_base = 10, }; static const struct niu_phy_template phy_template_1g_fiber = { .ops = &phy_ops_1g_fiber, .phy_addr_base = 0, }; static const struct niu_phy_template phy_template_1g_copper = { .ops = &phy_ops_1g_copper, .phy_addr_base = 0, }; static const struct niu_phy_template phy_template_1g_rgmii = { .ops = &phy_ops_1g_rgmii, .phy_addr_base = 0, }; static const struct niu_phy_template phy_template_10g_serdes = { .ops = &phy_ops_10g_serdes, .phy_addr_base = 0, }; static int niu_atca_port_num[4] = { 0, 0, 11, 10 }; static int serdes_init_10g_serdes(struct niu *np) { struct niu_link_config *lp = &np->link_config; unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i; u64 ctrl_val, test_cfg_val, sig, mask, val; switch (np->port) { case 0: ctrl_reg = ENET_SERDES_0_CTRL_CFG; test_cfg_reg = ENET_SERDES_0_TEST_CFG; pll_cfg = ENET_SERDES_0_PLL_CFG; break; case 1: ctrl_reg = ENET_SERDES_1_CTRL_CFG; test_cfg_reg = ENET_SERDES_1_TEST_CFG; pll_cfg = ENET_SERDES_1_PLL_CFG; break; default: return -EINVAL; } ctrl_val = (ENET_SERDES_CTRL_SDET_0 | ENET_SERDES_CTRL_SDET_1 | ENET_SERDES_CTRL_SDET_2 | ENET_SERDES_CTRL_SDET_3 | (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) | (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) | (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) | (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) | (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) | (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) | (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) | (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT)); test_cfg_val = 0; if (lp->loopback_mode == LOOPBACK_PHY) { test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK << ENET_SERDES_TEST_MD_0_SHIFT) | (ENET_TEST_MD_PAD_LOOPBACK << ENET_SERDES_TEST_MD_1_SHIFT) | (ENET_TEST_MD_PAD_LOOPBACK << ENET_SERDES_TEST_MD_2_SHIFT) | (ENET_TEST_MD_PAD_LOOPBACK << ENET_SERDES_TEST_MD_3_SHIFT)); } esr_reset(np); nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2); nw64(ctrl_reg, ctrl_val); nw64(test_cfg_reg, test_cfg_val); /* Initialize all 4 lanes of the SERDES. */ for (i = 0; i < 4; i++) { u32 rxtx_ctrl, glue0; int err; err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl); if (err) return err; err = esr_read_glue0(np, i, &glue0); if (err) return err; rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO); rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH | (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT)); glue0 &= ~(ESR_GLUE_CTRL0_SRATE | ESR_GLUE_CTRL0_THCNT | ESR_GLUE_CTRL0_BLTIME); glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB | (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) | (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) | (BLTIME_300_CYCLES << ESR_GLUE_CTRL0_BLTIME_SHIFT)); err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl); if (err) return err; err = esr_write_glue0(np, i, glue0); if (err) return err; } sig = nr64(ESR_INT_SIGNALS); switch (np->port) { case 0: mask = ESR_INT_SIGNALS_P0_BITS; val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0 | ESR_INT_XSRDY_P0 | ESR_INT_XDP_P0_CH3 | ESR_INT_XDP_P0_CH2 | ESR_INT_XDP_P0_CH1 | ESR_INT_XDP_P0_CH0); break; case 1: mask = ESR_INT_SIGNALS_P1_BITS; val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1 | ESR_INT_XSRDY_P1 | ESR_INT_XDP_P1_CH3 | ESR_INT_XDP_P1_CH2 | ESR_INT_XDP_P1_CH1 | ESR_INT_XDP_P1_CH0); break; default: return -EINVAL; } if ((sig & mask) != val) { int err; err = serdes_init_1g_serdes(np); if (!err) { np->flags &= ~NIU_FLAGS_10G; np->mac_xcvr = MAC_XCVR_PCS; } else { netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n", np->port); return -ENODEV; } } return 0; } static int niu_determine_phy_disposition(struct niu *np) { struct niu_parent *parent = np->parent; u8 plat_type = parent->plat_type; const struct niu_phy_template *tp; u32 phy_addr_off = 0; if (plat_type == PLAT_TYPE_NIU) { switch (np->flags & (NIU_FLAGS_10G | NIU_FLAGS_FIBER | NIU_FLAGS_XCVR_SERDES)) { case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES: /* 10G Serdes */ tp = &phy_template_niu_10g_serdes; break; case NIU_FLAGS_XCVR_SERDES: /* 1G Serdes */ tp = &phy_template_niu_1g_serdes; break; case NIU_FLAGS_10G | NIU_FLAGS_FIBER: /* 10G Fiber */ default: if (np->flags & NIU_FLAGS_HOTPLUG_PHY) { tp = &phy_template_niu_10g_hotplug; if (np->port == 0) phy_addr_off = 8; if (np->port == 1) phy_addr_off = 12; } else { tp = &phy_template_niu_10g_fiber; phy_addr_off += np->port; } break; } } else { switch (np->flags & (NIU_FLAGS_10G | NIU_FLAGS_FIBER | NIU_FLAGS_XCVR_SERDES)) { case 0: /* 1G copper */ tp = &phy_template_1g_copper; if (plat_type == PLAT_TYPE_VF_P0) phy_addr_off = 10; else if (plat_type == PLAT_TYPE_VF_P1) phy_addr_off = 26; phy_addr_off += (np->port ^ 0x3); break; case NIU_FLAGS_10G: /* 10G copper */ tp = &phy_template_10g_copper; break; case NIU_FLAGS_FIBER: /* 1G fiber */ tp = &phy_template_1g_fiber; break; case NIU_FLAGS_10G | NIU_FLAGS_FIBER: /* 10G fiber */ tp = &phy_template_10g_fiber; if (plat_type == PLAT_TYPE_VF_P0 || plat_type == PLAT_TYPE_VF_P1) phy_addr_off = 8; phy_addr_off += np->port; if (np->flags & NIU_FLAGS_HOTPLUG_PHY) { tp = &phy_template_10g_fiber_hotplug; if (np->port == 0) phy_addr_off = 8; if (np->port == 1) phy_addr_off = 12; } break; case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES: case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER: case NIU_FLAGS_XCVR_SERDES: switch(np->port) { case 0: case 1: tp = &phy_template_10g_serdes; break; case 2: case 3: tp = &phy_template_1g_rgmii; break; default: return -EINVAL; } phy_addr_off = niu_atca_port_num[np->port]; break; default: return -EINVAL; } } np->phy_ops = tp->ops; np->phy_addr = tp->phy_addr_base + phy_addr_off; return 0; } static int niu_init_link(struct niu *np) { struct niu_parent *parent = np->parent; int err, ignore; if (parent->plat_type == PLAT_TYPE_NIU) { err = niu_xcvr_init(np); if (err) return err; msleep(200); } err = niu_serdes_init(np); if (err && !(np->flags & NIU_FLAGS_HOTPLUG_PHY)) return err; msleep(200); err = niu_xcvr_init(np); if (!err || (np->flags & NIU_FLAGS_HOTPLUG_PHY)) niu_link_status(np, &ignore); return 0; } static void niu_set_primary_mac(struct niu *np, unsigned char *addr) { u16 reg0 = addr[4] << 8 | addr[5]; u16 reg1 = addr[2] << 8 | addr[3]; u16 reg2 = addr[0] << 8 | addr[1]; if (np->flags & NIU_FLAGS_XMAC) { nw64_mac(XMAC_ADDR0, reg0); nw64_mac(XMAC_ADDR1, reg1); nw64_mac(XMAC_ADDR2, reg2); } else { nw64_mac(BMAC_ADDR0, reg0); nw64_mac(BMAC_ADDR1, reg1); nw64_mac(BMAC_ADDR2, reg2); } } static int niu_num_alt_addr(struct niu *np) { if (np->flags & NIU_FLAGS_XMAC) return XMAC_NUM_ALT_ADDR; else return BMAC_NUM_ALT_ADDR; } static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr) { u16 reg0 = addr[4] << 8 | addr[5]; u16 reg1 = addr[2] << 8 | addr[3]; u16 reg2 = addr[0] << 8 | addr[1]; if (index >= niu_num_alt_addr(np)) return -EINVAL; if (np->flags & NIU_FLAGS_XMAC) { nw64_mac(XMAC_ALT_ADDR0(index), reg0); nw64_mac(XMAC_ALT_ADDR1(index), reg1); nw64_mac(XMAC_ALT_ADDR2(index), reg2); } else { nw64_mac(BMAC_ALT_ADDR0(index), reg0); nw64_mac(BMAC_ALT_ADDR1(index), reg1); nw64_mac(BMAC_ALT_ADDR2(index), reg2); } return 0; } static int niu_enable_alt_mac(struct niu *np, int index, int on) { unsigned long reg; u64 val, mask; if (index >= niu_num_alt_addr(np)) return -EINVAL; if (np->flags & NIU_FLAGS_XMAC) { reg = XMAC_ADDR_CMPEN; mask = 1 << index; } else { reg = BMAC_ADDR_CMPEN; mask = 1 << (index + 1); } val = nr64_mac(reg); if (on) val |= mask; else val &= ~mask; nw64_mac(reg, val); return 0; } static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg, int num, int mac_pref) { u64 val = nr64_mac(reg); val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR); val |= num; if (mac_pref) val |= HOST_INFO_MPR; nw64_mac(reg, val); } static int __set_rdc_table_num(struct niu *np, int xmac_index, int bmac_index, int rdc_table_num, int mac_pref) { unsigned long reg; if (rdc_table_num & ~HOST_INFO_MACRDCTBLN) return -EINVAL; if (np->flags & NIU_FLAGS_XMAC) reg = XMAC_HOST_INFO(xmac_index); else reg = BMAC_HOST_INFO(bmac_index); __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref); return 0; } static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num, int mac_pref) { return __set_rdc_table_num(np, 17, 0, table_num, mac_pref); } static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num, int mac_pref) { return __set_rdc_table_num(np, 16, 8, table_num, mac_pref); } static int niu_set_alt_mac_rdc_table(struct niu *np, int idx, int table_num, int mac_pref) { if (idx >= niu_num_alt_addr(np)) return -EINVAL; return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref); } static u64 vlan_entry_set_parity(u64 reg_val) { u64 port01_mask; u64 port23_mask; port01_mask = 0x00ff; port23_mask = 0xff00; if (hweight64(reg_val & port01_mask) & 1) reg_val |= ENET_VLAN_TBL_PARITY0; else reg_val &= ~ENET_VLAN_TBL_PARITY0; if (hweight64(reg_val & port23_mask) & 1) reg_val |= ENET_VLAN_TBL_PARITY1; else reg_val &= ~ENET_VLAN_TBL_PARITY1; return reg_val; } static void vlan_tbl_write(struct niu *np, unsigned long index, int port, int vpr, int rdc_table) { u64 reg_val = nr64(ENET_VLAN_TBL(index)); reg_val &= ~((ENET_VLAN_TBL_VPR | ENET_VLAN_TBL_VLANRDCTBLN) << ENET_VLAN_TBL_SHIFT(port)); if (vpr) reg_val |= (ENET_VLAN_TBL_VPR << ENET_VLAN_TBL_SHIFT(port)); reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port)); reg_val = vlan_entry_set_parity(reg_val); nw64(ENET_VLAN_TBL(index), reg_val); } static void vlan_tbl_clear(struct niu *np) { int i; for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) nw64(ENET_VLAN_TBL(i), 0); } static int tcam_wait_bit(struct niu *np, u64 bit) { int limit = 1000; while (--limit > 0) { if (nr64(TCAM_CTL) & bit) break; udelay(1); } if (limit <= 0) return -ENODEV; return 0; } static int tcam_flush(struct niu *np, int index) { nw64(TCAM_KEY_0, 0x00); nw64(TCAM_KEY_MASK_0, 0xff); nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index)); return tcam_wait_bit(np, TCAM_CTL_STAT); } #if 0 static int tcam_read(struct niu *np, int index, u64 *key, u64 *mask) { int err; nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index)); err = tcam_wait_bit(np, TCAM_CTL_STAT); if (!err) { key[0] = nr64(TCAM_KEY_0); key[1] = nr64(TCAM_KEY_1); key[2] = nr64(TCAM_KEY_2); key[3] = nr64(TCAM_KEY_3); mask[0] = nr64(TCAM_KEY_MASK_0); mask[1] = nr64(TCAM_KEY_MASK_1); mask[2] = nr64(TCAM_KEY_MASK_2); mask[3] = nr64(TCAM_KEY_MASK_3); } return err; } #endif static int tcam_write(struct niu *np, int index, u64 *key, u64 *mask) { nw64(TCAM_KEY_0, key[0]); nw64(TCAM_KEY_1, key[1]); nw64(TCAM_KEY_2, key[2]); nw64(TCAM_KEY_3, key[3]); nw64(TCAM_KEY_MASK_0, mask[0]); nw64(TCAM_KEY_MASK_1, mask[1]); nw64(TCAM_KEY_MASK_2, mask[2]); nw64(TCAM_KEY_MASK_3, mask[3]); nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index)); return tcam_wait_bit(np, TCAM_CTL_STAT); } #if 0 static int tcam_assoc_read(struct niu *np, int index, u64 *data) { int err; nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index)); err = tcam_wait_bit(np, TCAM_CTL_STAT); if (!err) *data = nr64(TCAM_KEY_1); return err; } #endif static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data) { nw64(TCAM_KEY_1, assoc_data); nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index)); return tcam_wait_bit(np, TCAM_CTL_STAT); } static void tcam_enable(struct niu *np, int on) { u64 val = nr64(FFLP_CFG_1); if (on) val &= ~FFLP_CFG_1_TCAM_DIS; else val |= FFLP_CFG_1_TCAM_DIS; nw64(FFLP_CFG_1, val); } static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio) { u64 val = nr64(FFLP_CFG_1); val &= ~(FFLP_CFG_1_FFLPINITDONE | FFLP_CFG_1_CAMLAT | FFLP_CFG_1_CAMRATIO); val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT); val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT); nw64(FFLP_CFG_1, val); val = nr64(FFLP_CFG_1); val |= FFLP_CFG_1_FFLPINITDONE; nw64(FFLP_CFG_1, val); } static int tcam_user_eth_class_enable(struct niu *np, unsigned long class, int on) { unsigned long reg; u64 val; if (class < CLASS_CODE_ETHERTYPE1 || class > CLASS_CODE_ETHERTYPE2) return -EINVAL; reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1); val = nr64(reg); if (on) val |= L2_CLS_VLD; else val &= ~L2_CLS_VLD; nw64(reg, val); return 0; } #if 0 static int tcam_user_eth_class_set(struct niu *np, unsigned long class, u64 ether_type) { unsigned long reg; u64 val; if (class < CLASS_CODE_ETHERTYPE1 || class > CLASS_CODE_ETHERTYPE2 || (ether_type & ~(u64)0xffff) != 0) return -EINVAL; reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1); val = nr64(reg); val &= ~L2_CLS_ETYPE; val |= (ether_type << L2_CLS_ETYPE_SHIFT); nw64(reg, val); return 0; } #endif static int tcam_user_ip_class_enable(struct niu *np, unsigned long class, int on) { unsigned long reg; u64 val; if (class < CLASS_CODE_USER_PROG1 || class > CLASS_CODE_USER_PROG4) return -EINVAL; reg = L3_CLS(class - CLASS_CODE_USER_PROG1); val = nr64(reg); if (on) val |= L3_CLS_VALID; else val &= ~L3_CLS_VALID; nw64(reg, val); return 0; } static int tcam_user_ip_class_set(struct niu *np, unsigned long class, int ipv6, u64 protocol_id, u64 tos_mask, u64 tos_val) { unsigned long reg; u64 val; if (class < CLASS_CODE_USER_PROG1 || class > CLASS_CODE_USER_PROG4 || (protocol_id & ~(u64)0xff) != 0 || (tos_mask & ~(u64)0xff) != 0 || (tos_val & ~(u64)0xff) != 0) return -EINVAL; reg = L3_CLS(class - CLASS_CODE_USER_PROG1); val = nr64(reg); val &= ~(L3_CLS_IPVER | L3_CLS_PID | L3_CLS_TOSMASK | L3_CLS_TOS); if (ipv6) val |= L3_CLS_IPVER; val |= (protocol_id << L3_CLS_PID_SHIFT); val |= (tos_mask << L3_CLS_TOSMASK_SHIFT); val |= (tos_val << L3_CLS_TOS_SHIFT); nw64(reg, val); return 0; } static int tcam_early_init(struct niu *np) { unsigned long i; int err; tcam_enable(np, 0); tcam_set_lat_and_ratio(np, DEFAULT_TCAM_LATENCY, DEFAULT_TCAM_ACCESS_RATIO); for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) { err = tcam_user_eth_class_enable(np, i, 0); if (err) return err; } for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) { err = tcam_user_ip_class_enable(np, i, 0); if (err) return err; } return 0; } static int tcam_flush_all(struct niu *np) { unsigned long i; for (i = 0; i < np->parent->tcam_num_entries; i++) { int err = tcam_flush(np, i); if (err) return err; } return 0; } static u64 hash_addr_regval(unsigned long index, unsigned long num_entries) { return (u64)index | (num_entries == 1 ? HASH_TBL_ADDR_AUTOINC : 0); } #if 0 static int hash_read(struct niu *np, unsigned long partition, unsigned long index, unsigned long num_entries, u64 *data) { u64 val = hash_addr_regval(index, num_entries); unsigned long i; if (partition >= FCRAM_NUM_PARTITIONS || index + num_entries > FCRAM_SIZE) return -EINVAL; nw64(HASH_TBL_ADDR(partition), val); for (i = 0; i < num_entries; i++) data[i] = nr64(HASH_TBL_DATA(partition)); return 0; } #endif static int hash_write(struct niu *np, unsigned long partition, unsigned long index, unsigned long num_entries, u64 *data) { u64 val = hash_addr_regval(index, num_entries); unsigned long i; if (partition >= FCRAM_NUM_PARTITIONS || index + (num_entries * 8) > FCRAM_SIZE) return -EINVAL; nw64(HASH_TBL_ADDR(partition), val); for (i = 0; i < num_entries; i++) nw64(HASH_TBL_DATA(partition), data[i]); return 0; } static void fflp_reset(struct niu *np) { u64 val; nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST); udelay(10); nw64(FFLP_CFG_1, 0); val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE; nw64(FFLP_CFG_1, val); } static void fflp_set_timings(struct niu *np) { u64 val = nr64(FFLP_CFG_1); val &= ~FFLP_CFG_1_FFLPINITDONE; val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT); nw64(FFLP_CFG_1, val); val = nr64(FFLP_CFG_1); val |= FFLP_CFG_1_FFLPINITDONE; nw64(FFLP_CFG_1, val); val = nr64(FCRAM_REF_TMR); val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN); val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT); val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT); nw64(FCRAM_REF_TMR, val); } static int fflp_set_partition(struct niu *np, u64 partition, u64 mask, u64 base, int enable) { unsigned long reg; u64 val; if (partition >= FCRAM_NUM_PARTITIONS || (mask & ~(u64)0x1f) != 0 || (base & ~(u64)0x1f) != 0) return -EINVAL; reg = FLW_PRT_SEL(partition); val = nr64(reg); val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE); val |= (mask << FLW_PRT_SEL_MASK_SHIFT); val |= (base << FLW_PRT_SEL_BASE_SHIFT); if (enable) val |= FLW_PRT_SEL_EXT; nw64(reg, val); return 0; } static int fflp_disable_all_partitions(struct niu *np) { unsigned long i; for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) { int err = fflp_set_partition(np, 0, 0, 0, 0); if (err) return err; } return 0; } static void fflp_llcsnap_enable(struct niu *np, int on) { u64 val = nr64(FFLP_CFG_1); if (on) val |= FFLP_CFG_1_LLCSNAP; else val &= ~FFLP_CFG_1_LLCSNAP; nw64(FFLP_CFG_1, val); } static void fflp_errors_enable(struct niu *np, int on) { u64 val = nr64(FFLP_CFG_1); if (on) val &= ~FFLP_CFG_1_ERRORDIS; else val |= FFLP_CFG_1_ERRORDIS; nw64(FFLP_CFG_1, val); } static int fflp_hash_clear(struct niu *np) { struct fcram_hash_ipv4 ent; unsigned long i; /* IPV4 hash entry with valid bit clear, rest is don't care. */ memset(&ent, 0, sizeof(ent)); ent.header = HASH_HEADER_EXT; for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) { int err = hash_write(np, 0, i, 1, (u64 *) &ent); if (err) return err; } return 0; } static int fflp_early_init(struct niu *np) { struct niu_parent *parent; unsigned long flags; int err; niu_lock_parent(np, flags); parent = np->parent; err = 0; if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) { if (np->parent->plat_type != PLAT_TYPE_NIU) { fflp_reset(np); fflp_set_timings(np); err = fflp_disable_all_partitions(np); if (err) { netif_printk(np, probe, KERN_DEBUG, np->dev, "fflp_disable_all_partitions failed, err=%d\n", err); goto out; } } err = tcam_early_init(np); if (err) { netif_printk(np, probe, KERN_DEBUG, np->dev, "tcam_early_init failed, err=%d\n", err); goto out; } fflp_llcsnap_enable(np, 1); fflp_errors_enable(np, 0); nw64(H1POLY, 0); nw64(H2POLY, 0); err = tcam_flush_all(np); if (err) { netif_printk(np, probe, KERN_DEBUG, np->dev, "tcam_flush_all failed, err=%d\n", err); goto out; } if (np->parent->plat_type != PLAT_TYPE_NIU) { err = fflp_hash_clear(np); if (err) { netif_printk(np, probe, KERN_DEBUG, np->dev, "fflp_hash_clear failed, err=%d\n", err); goto out; } } vlan_tbl_clear(np); parent->flags |= PARENT_FLGS_CLS_HWINIT; } out: niu_unlock_parent(np, flags); return err; } static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key) { if (class_code < CLASS_CODE_USER_PROG1 || class_code > CLASS_CODE_SCTP_IPV6) return -EINVAL; nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key); return 0; } static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key) { if (class_code < CLASS_CODE_USER_PROG1 || class_code > CLASS_CODE_SCTP_IPV6) return -EINVAL; nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key); return 0; } /* Entries for the ports are interleaved in the TCAM */ static u16 tcam_get_index(struct niu *np, u16 idx) { /* One entry reserved for IP fragment rule */ if (idx >= (np->clas.tcam_sz - 1)) idx = 0; return np->clas.tcam_top + ((idx+1) * np->parent->num_ports); } static u16 tcam_get_size(struct niu *np) { /* One entry reserved for IP fragment rule */ return np->clas.tcam_sz - 1; } static u16 tcam_get_valid_entry_cnt(struct niu *np) { /* One entry reserved for IP fragment rule */ return np->clas.tcam_valid_entries - 1; } static void niu_rx_skb_append(struct sk_buff *skb, struct page *page, u32 offset, u32 size, u32 truesize) { skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, page, offset, size); skb->len += size; skb->data_len += size; skb->truesize += truesize; } static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a) { a >>= PAGE_SHIFT; a ^= (a >> ilog2(MAX_RBR_RING_SIZE)); return a & (MAX_RBR_RING_SIZE - 1); } static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr, struct page ***link) { unsigned int h = niu_hash_rxaddr(rp, addr); struct page *p, **pp; addr &= PAGE_MASK; pp = &rp->rxhash[h]; for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) { if (p->index == addr) { *link = pp; goto found; } } BUG(); found: return p; } static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base) { unsigned int h = niu_hash_rxaddr(rp, base); page->index = base; page->mapping = (struct address_space *) rp->rxhash[h]; rp->rxhash[h] = page; } static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp, gfp_t mask, int start_index) { struct page *page; u64 addr; int i; page = alloc_page(mask); if (!page) return -ENOMEM; addr = np->ops->map_page(np->device, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); if (!addr) { __free_page(page); return -ENOMEM; } niu_hash_page(rp, page, addr); if (rp->rbr_blocks_per_page > 1) page_ref_add(page, rp->rbr_blocks_per_page - 1); for (i = 0; i < rp->rbr_blocks_per_page; i++) { __le32 *rbr = &rp->rbr[start_index + i]; *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT); addr += rp->rbr_block_size; } return 0; } static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask) { int index = rp->rbr_index; rp->rbr_pending++; if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) { int err = niu_rbr_add_page(np, rp, mask, index); if (unlikely(err)) { rp->rbr_pending--; return; } rp->rbr_index += rp->rbr_blocks_per_page; BUG_ON(rp->rbr_index > rp->rbr_table_size); if (rp->rbr_index == rp->rbr_table_size) rp->rbr_index = 0; if (rp->rbr_pending >= rp->rbr_kick_thresh) { nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending); rp->rbr_pending = 0; } } } static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp) { unsigned int index = rp->rcr_index; int num_rcr = 0; rp->rx_dropped++; while (1) { struct page *page, **link; u64 addr, val; u32 rcr_size; num_rcr++; val = le64_to_cpup(&rp->rcr[index]); addr = (val & RCR_ENTRY_PKT_BUF_ADDR) << RCR_ENTRY_PKT_BUF_ADDR_SHIFT; page = niu_find_rxpage(rp, addr, &link); rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >> RCR_ENTRY_PKTBUFSZ_SHIFT]; if ((page->index + PAGE_SIZE) - rcr_size == addr) { *link = (struct page *) page->mapping; np->ops->unmap_page(np->device, page->index, PAGE_SIZE, DMA_FROM_DEVICE); page->index = 0; page->mapping = NULL; __free_page(page); rp->rbr_refill_pending++; } index = NEXT_RCR(rp, index); if (!(val & RCR_ENTRY_MULTI)) break; } rp->rcr_index = index; return num_rcr; } static int niu_process_rx_pkt(struct napi_struct *napi, struct niu *np, struct rx_ring_info *rp) { unsigned int index = rp->rcr_index; struct rx_pkt_hdr1 *rh; struct sk_buff *skb; int len, num_rcr; skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE); if (unlikely(!skb)) return niu_rx_pkt_ignore(np, rp); num_rcr = 0; while (1) { struct page *page, **link; u32 rcr_size, append_size; u64 addr, val, off; num_rcr++; val = le64_to_cpup(&rp->rcr[index]); len = (val & RCR_ENTRY_L2_LEN) >> RCR_ENTRY_L2_LEN_SHIFT; append_size = len + ETH_HLEN + ETH_FCS_LEN; addr = (val & RCR_ENTRY_PKT_BUF_ADDR) << RCR_ENTRY_PKT_BUF_ADDR_SHIFT; page = niu_find_rxpage(rp, addr, &link); rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >> RCR_ENTRY_PKTBUFSZ_SHIFT]; off = addr & ~PAGE_MASK; if (num_rcr == 1) { int ptype; ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT); if ((ptype == RCR_PKT_TYPE_TCP || ptype == RCR_PKT_TYPE_UDP) && !(val & (RCR_ENTRY_NOPORT | RCR_ENTRY_ERROR))) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb_checksum_none_assert(skb); } else if (!(val & RCR_ENTRY_MULTI)) append_size = append_size - skb->len; niu_rx_skb_append(skb, page, off, append_size, rcr_size); if ((page->index + rp->rbr_block_size) - rcr_size == addr) { *link = (struct page *) page->mapping; np->ops->unmap_page(np->device, page->index, PAGE_SIZE, DMA_FROM_DEVICE); page->index = 0; page->mapping = NULL; rp->rbr_refill_pending++; } else get_page(page); index = NEXT_RCR(rp, index); if (!(val & RCR_ENTRY_MULTI)) break; } rp->rcr_index = index; len += sizeof(*rh); len = min_t(int, len, sizeof(*rh) + VLAN_ETH_HLEN); __pskb_pull_tail(skb, len); rh = (struct rx_pkt_hdr1 *) skb->data; if (np->dev->features & NETIF_F_RXHASH) skb_set_hash(skb, ((u32)rh->hashval2_0 << 24 | (u32)rh->hashval2_1 << 16 | (u32)rh->hashval1_1 << 8 | (u32)rh->hashval1_2 << 0), PKT_HASH_TYPE_L3); skb_pull(skb, sizeof(*rh)); rp->rx_packets++; rp->rx_bytes += skb->len; skb->protocol = eth_type_trans(skb, np->dev); skb_record_rx_queue(skb, rp->rx_channel); napi_gro_receive(napi, skb); return num_rcr; } static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask) { int blocks_per_page = rp->rbr_blocks_per_page; int err, index = rp->rbr_index; err = 0; while (index < (rp->rbr_table_size - blocks_per_page)) { err = niu_rbr_add_page(np, rp, mask, index); if (unlikely(err)) break; index += blocks_per_page; } rp->rbr_index = index; return err; } static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp) { int i; for (i = 0; i < MAX_RBR_RING_SIZE; i++) { struct page *page; page = rp->rxhash[i]; while (page) { struct page *next = (struct page *) page->mapping; u64 base = page->index; np->ops->unmap_page(np->device, base, PAGE_SIZE, DMA_FROM_DEVICE); page->index = 0; page->mapping = NULL; __free_page(page); page = next; } } for (i = 0; i < rp->rbr_table_size; i++) rp->rbr[i] = cpu_to_le32(0); rp->rbr_index = 0; } static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx) { struct tx_buff_info *tb = &rp->tx_buffs[idx]; struct sk_buff *skb = tb->skb; struct tx_pkt_hdr *tp; u64 tx_flags; int i, len; tp = (struct tx_pkt_hdr *) skb->data; tx_flags = le64_to_cpup(&tp->flags); rp->tx_packets++; rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) - ((tx_flags & TXHDR_PAD) / 2)); len = skb_headlen(skb); np->ops->unmap_single(np->device, tb->mapping, len, DMA_TO_DEVICE); if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK) rp->mark_pending--; tb->skb = NULL; do { idx = NEXT_TX(rp, idx); len -= MAX_TX_DESC_LEN; } while (len > 0); for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { tb = &rp->tx_buffs[idx]; BUG_ON(tb->skb != NULL); np->ops->unmap_page(np->device, tb->mapping, skb_frag_size(&skb_shinfo(skb)->frags[i]), DMA_TO_DEVICE); idx = NEXT_TX(rp, idx); } dev_kfree_skb(skb); return idx; } #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4) static void niu_tx_work(struct niu *np, struct tx_ring_info *rp) { struct netdev_queue *txq; u16 pkt_cnt, tmp; int cons, index; u64 cs; index = (rp - np->tx_rings); txq = netdev_get_tx_queue(np->dev, index); cs = rp->tx_cs; if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK)))) goto out; tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT; pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) & (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT); rp->last_pkt_cnt = tmp; cons = rp->cons; netif_printk(np, tx_done, KERN_DEBUG, np->dev, "%s() pkt_cnt[%u] cons[%d]\n", __func__, pkt_cnt, cons); while (pkt_cnt--) cons = release_tx_packet(np, rp, cons); rp->cons = cons; smp_mb(); out: if (unlikely(netif_tx_queue_stopped(txq) && (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) { __netif_tx_lock(txq, smp_processor_id()); if (netif_tx_queue_stopped(txq) && (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))) netif_tx_wake_queue(txq); __netif_tx_unlock(txq); } } static inline void niu_sync_rx_discard_stats(struct niu *np, struct rx_ring_info *rp, const int limit) { /* This elaborate scheme is needed for reading the RX discard * counters, as they are only 16-bit and can overflow quickly, * and because the overflow indication bit is not usable as * the counter value does not wrap, but remains at max value * 0xFFFF. * * In theory and in practice counters can be lost in between * reading nr64() and clearing the counter nw64(). For this * reason, the number of counter clearings nw64() is * limited/reduced though the limit parameter. */ int rx_channel = rp->rx_channel; u32 misc, wred; /* RXMISC (Receive Miscellaneous Discard Count), covers the * following discard events: IPP (Input Port Process), * FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive * Block Ring) prefetch buffer is empty. */ misc = nr64(RXMISC(rx_channel)); if (unlikely((misc & RXMISC_COUNT) > limit)) { nw64(RXMISC(rx_channel), 0); rp->rx_errors += misc & RXMISC_COUNT; if (unlikely(misc & RXMISC_OFLOW)) dev_err(np->device, "rx-%d: Counter overflow RXMISC discard\n", rx_channel); netif_printk(np, rx_err, KERN_DEBUG, np->dev, "rx-%d: MISC drop=%u over=%u\n", rx_channel, misc, misc-limit); } /* WRED (Weighted Random Early Discard) by hardware */ wred = nr64(RED_DIS_CNT(rx_channel)); if (unlikely((wred & RED_DIS_CNT_COUNT) > limit)) { nw64(RED_DIS_CNT(rx_channel), 0); rp->rx_dropped += wred & RED_DIS_CNT_COUNT; if (unlikely(wred & RED_DIS_CNT_OFLOW)) dev_err(np->device, "rx-%d: Counter overflow WRED discard\n", rx_channel); netif_printk(np, rx_err, KERN_DEBUG, np->dev, "rx-%d: WRED drop=%u over=%u\n", rx_channel, wred, wred-limit); } } static int niu_rx_work(struct napi_struct *napi, struct niu *np, struct rx_ring_info *rp, int budget) { int qlen, rcr_done = 0, work_done = 0; struct rxdma_mailbox *mbox = rp->mbox; u64 stat; #if 1 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel)); qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN; #else stat = le64_to_cpup(&mbox->rx_dma_ctl_stat); qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN); #endif mbox->rx_dma_ctl_stat = 0; mbox->rcrstat_a = 0; netif_printk(np, rx_status, KERN_DEBUG, np->dev, "%s(chan[%d]), stat[%llx] qlen=%d\n", __func__, rp->rx_channel, (unsigned long long)stat, qlen); rcr_done = work_done = 0; qlen = min(qlen, budget); while (work_done < qlen) { rcr_done += niu_process_rx_pkt(napi, np, rp); work_done++; } if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) { unsigned int i; for (i = 0; i < rp->rbr_refill_pending; i++) niu_rbr_refill(np, rp, GFP_ATOMIC); rp->rbr_refill_pending = 0; } stat = (RX_DMA_CTL_STAT_MEX | ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) | ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT)); nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat); /* Only sync discards stats when qlen indicate potential for drops */ if (qlen > 10) niu_sync_rx_discard_stats(np, rp, 0x7FFF); return work_done; } static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget) { u64 v0 = lp->v0; u32 tx_vec = (v0 >> 32); u32 rx_vec = (v0 & 0xffffffff); int i, work_done = 0; netif_printk(np, intr, KERN_DEBUG, np->dev, "%s() v0[%016llx]\n", __func__, (unsigned long long)v0); for (i = 0; i < np->num_tx_rings; i++) { struct tx_ring_info *rp = &np->tx_rings[i]; if (tx_vec & (1 << rp->tx_channel)) niu_tx_work(np, rp); nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0); } for (i = 0; i < np->num_rx_rings; i++) { struct rx_ring_info *rp = &np->rx_rings[i]; if (rx_vec & (1 << rp->rx_channel)) { int this_work_done; this_work_done = niu_rx_work(&lp->napi, np, rp, budget); budget -= this_work_done; work_done += this_work_done; } nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0); } return work_done; } static int niu_poll(struct napi_struct *napi, int budget) { struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi); struct niu *np = lp->np; int work_done; work_done = niu_poll_core(np, lp, budget); if (work_done < budget) { napi_complete_done(napi, work_done); niu_ldg_rearm(np, lp, 1); } return work_done; } static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp, u64 stat) { netdev_err(np->dev, "RX channel %u errors ( ", rp->rx_channel); if (stat & RX_DMA_CTL_STAT_RBR_TMOUT) pr_cont("RBR_TMOUT "); if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR) pr_cont("RSP_CNT "); if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS) pr_cont("BYTE_EN_BUS "); if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR) pr_cont("RSP_DAT "); if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR) pr_cont("RCR_ACK "); if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR) pr_cont("RCR_SHA_PAR "); if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR) pr_cont("RBR_PRE_PAR "); if (stat & RX_DMA_CTL_STAT_CONFIG_ERR) pr_cont("CONFIG "); if (stat & RX_DMA_CTL_STAT_RCRINCON) pr_cont("RCRINCON "); if (stat & RX_DMA_CTL_STAT_RCRFULL) pr_cont("RCRFULL "); if (stat & RX_DMA_CTL_STAT_RBRFULL) pr_cont("RBRFULL "); if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE) pr_cont("RBRLOGPAGE "); if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE) pr_cont("CFIGLOGPAGE "); if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR) pr_cont("DC_FIDO "); pr_cont(")\n"); } static int niu_rx_error(struct niu *np, struct rx_ring_info *rp) { u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel)); int err = 0; if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL | RX_DMA_CTL_STAT_PORT_FATAL)) err = -EINVAL; if (err) { netdev_err(np->dev, "RX channel %u error, stat[%llx]\n", rp->rx_channel, (unsigned long long) stat); niu_log_rxchan_errors(np, rp, stat); } nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat & RX_DMA_CTL_WRITE_CLEAR_ERRS); return err; } static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp, u64 cs) { netdev_err(np->dev, "TX channel %u errors ( ", rp->tx_channel); if (cs & TX_CS_MBOX_ERR) pr_cont("MBOX "); if (cs & TX_CS_PKT_SIZE_ERR) pr_cont("PKT_SIZE "); if (cs & TX_CS_TX_RING_OFLOW) pr_cont("TX_RING_OFLOW "); if (cs & TX_CS_PREF_BUF_PAR_ERR) pr_cont("PREF_BUF_PAR "); if (cs & TX_CS_NACK_PREF) pr_cont("NACK_PREF "); if (cs & TX_CS_NACK_PKT_RD) pr_cont("NACK_PKT_RD "); if (cs & TX_CS_CONF_PART_ERR) pr_cont("CONF_PART "); if (cs & TX_CS_PKT_PRT_ERR) pr_cont("PKT_PTR "); pr_cont(")\n"); } static int niu_tx_error(struct niu *np, struct tx_ring_info *rp) { u64 cs, logh, logl; cs = nr64(TX_CS(rp->tx_channel)); logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel)); logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel)); netdev_err(np->dev, "TX channel %u error, cs[%llx] logh[%llx] logl[%llx]\n", rp->tx_channel, (unsigned long long)cs, (unsigned long long)logh, (unsigned long long)logl); niu_log_txchan_errors(np, rp, cs); return -ENODEV; } static int niu_mif_interrupt(struct niu *np) { u64 mif_status = nr64(MIF_STATUS); int phy_mdint = 0; if (np->flags & NIU_FLAGS_XMAC) { u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS); if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT) phy_mdint = 1; } netdev_err(np->dev, "MIF interrupt, stat[%llx] phy_mdint(%d)\n", (unsigned long long)mif_status, phy_mdint); return -ENODEV; } static void niu_xmac_interrupt(struct niu *np) { struct niu_xmac_stats *mp = &np->mac_stats.xmac; u64 val; val = nr64_mac(XTXMAC_STATUS); if (val & XTXMAC_STATUS_FRAME_CNT_EXP) mp->tx_frames += TXMAC_FRM_CNT_COUNT; if (val & XTXMAC_STATUS_BYTE_CNT_EXP) mp->tx_bytes += TXMAC_BYTE_CNT_COUNT; if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR) mp->tx_fifo_errors++; if (val & XTXMAC_STATUS_TXMAC_OFLOW) mp->tx_overflow_errors++; if (val & XTXMAC_STATUS_MAX_PSIZE_ERR) mp->tx_max_pkt_size_errors++; if (val & XTXMAC_STATUS_TXMAC_UFLOW) mp->tx_underflow_errors++; val = nr64_mac(XRXMAC_STATUS); if (val & XRXMAC_STATUS_LCL_FLT_STATUS) mp->rx_local_faults++; if (val & XRXMAC_STATUS_RFLT_DET) mp->rx_remote_faults++; if (val & XRXMAC_STATUS_LFLT_CNT_EXP) mp->rx_link_faults += LINK_FAULT_CNT_COUNT; if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP) mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT; if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP) mp->rx_frags += RXMAC_FRAG_CNT_COUNT; if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP) mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT; if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP) mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT; if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP) mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT; if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP) mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT; if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP) mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT; if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP) mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT; if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP) mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT; if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP) mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT; if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP) mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT; if (val & XRXMAC_STATUS_RXOCTET_CNT_EXP) mp->rx_octets += RXMAC_BT_CNT_COUNT; if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP) mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT; if (val & XRXMAC_STATUS_LENERR_CNT_EXP) mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT; if (val & XRXMAC_STATUS_CRCERR_CNT_EXP) mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT; if (val & XRXMAC_STATUS_RXUFLOW) mp->rx_underflows++; if (val & XRXMAC_STATUS_RXOFLOW) mp->rx_overflows++; val = nr64_mac(XMAC_FC_STAT); if (val & XMAC_FC_STAT_TX_MAC_NPAUSE) mp->pause_off_state++; if (val & XMAC_FC_STAT_TX_MAC_PAUSE) mp->pause_on_state++; if (val & XMAC_FC_STAT_RX_MAC_RPAUSE) mp->pause_received++; } static void niu_bmac_interrupt(struct niu *np) { struct niu_bmac_stats *mp = &np->mac_stats.bmac; u64 val; val = nr64_mac(BTXMAC_STATUS); if (val & BTXMAC_STATUS_UNDERRUN) mp->tx_underflow_errors++; if (val & BTXMAC_STATUS_MAX_PKT_ERR) mp->tx_max_pkt_size_errors++; if (val & BTXMAC_STATUS_BYTE_CNT_EXP) mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT; if (val & BTXMAC_STATUS_FRAME_CNT_EXP) mp->tx_frames += BTXMAC_FRM_CNT_COUNT; val = nr64_mac(BRXMAC_STATUS); if (val & BRXMAC_STATUS_OVERFLOW) mp->rx_overflows++; if (val & BRXMAC_STATUS_FRAME_CNT_EXP) mp->rx_frames += BRXMAC_FRAME_CNT_COUNT; if (val & BRXMAC_STATUS_ALIGN_ERR_EXP) mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT; if (val & BRXMAC_STATUS_CRC_ERR_EXP) mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT; if (val & BRXMAC_STATUS_LEN_ERR_EXP) mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT; val = nr64_mac(BMAC_CTRL_STATUS); if (val & BMAC_CTRL_STATUS_NOPAUSE) mp->pause_off_state++; if (val & BMAC_CTRL_STATUS_PAUSE) mp->pause_on_state++; if (val & BMAC_CTRL_STATUS_PAUSE_RECV) mp->pause_received++; } static int niu_mac_interrupt(struct niu *np) { if (np->flags & NIU_FLAGS_XMAC) niu_xmac_interrupt(np); else niu_bmac_interrupt(np); return 0; } static void niu_log_device_error(struct niu *np, u64 stat) { netdev_err(np->dev, "Core device errors ( "); if (stat & SYS_ERR_MASK_META2) pr_cont("META2 "); if (stat & SYS_ERR_MASK_META1) pr_cont("META1 "); if (stat & SYS_ERR_MASK_PEU) pr_cont("PEU "); if (stat & SYS_ERR_MASK_TXC) pr_cont("TXC "); if (stat & SYS_ERR_MASK_RDMC) pr_cont("RDMC "); if (stat & SYS_ERR_MASK_TDMC) pr_cont("TDMC "); if (stat & SYS_ERR_MASK_ZCP) pr_cont("ZCP "); if (stat & SYS_ERR_MASK_FFLP) pr_cont("FFLP "); if (stat & SYS_ERR_MASK_IPP) pr_cont("IPP "); if (stat & SYS_ERR_MASK_MAC) pr_cont("MAC "); if (stat & SYS_ERR_MASK_SMX) pr_cont("SMX "); pr_cont(")\n"); } static int niu_device_error(struct niu *np) { u64 stat = nr64(SYS_ERR_STAT); netdev_err(np->dev, "Core device error, stat[%llx]\n", (unsigned long long)stat); niu_log_device_error(np, stat); return -ENODEV; } static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp, u64 v0, u64 v1, u64 v2) { int i, err = 0; lp->v0 = v0; lp->v1 = v1; lp->v2 = v2; if (v1 & 0x00000000ffffffffULL) { u32 rx_vec = (v1 & 0xffffffff); for (i = 0; i < np->num_rx_rings; i++) { struct rx_ring_info *rp = &np->rx_rings[i]; if (rx_vec & (1 << rp->rx_channel)) { int r = niu_rx_error(np, rp); if (r) { err = r; } else { if (!v0) nw64(RX_DMA_CTL_STAT(rp->rx_channel), RX_DMA_CTL_STAT_MEX); } } } } if (v1 & 0x7fffffff00000000ULL) { u32 tx_vec = (v1 >> 32) & 0x7fffffff; for (i = 0; i < np->num_tx_rings; i++) { struct tx_ring_info *rp = &np->tx_rings[i]; if (tx_vec & (1 << rp->tx_channel)) { int r = niu_tx_error(np, rp); if (r) err = r; } } } if ((v0 | v1) & 0x8000000000000000ULL) { int r = niu_mif_interrupt(np); if (r) err = r; } if (v2) { if (v2 & 0x01ef) { int r = niu_mac_interrupt(np); if (r) err = r; } if (v2 & 0x0210) { int r = niu_device_error(np); if (r) err = r; } } if (err) niu_enable_interrupts(np, 0); return err; } static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp, int ldn) { struct rxdma_mailbox *mbox = rp->mbox; u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat); stat_write = (RX_DMA_CTL_STAT_RCRTHRES | RX_DMA_CTL_STAT_RCRTO); nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write); netif_printk(np, intr, KERN_DEBUG, np->dev, "%s() stat[%llx]\n", __func__, (unsigned long long)stat); } static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp, int ldn) { rp->tx_cs = nr64(TX_CS(rp->tx_channel)); netif_printk(np, intr, KERN_DEBUG, np->dev, "%s() cs[%llx]\n", __func__, (unsigned long long)rp->tx_cs); } static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0) { struct niu_parent *parent = np->parent; u32 rx_vec, tx_vec; int i; tx_vec = (v0 >> 32); rx_vec = (v0 & 0xffffffff); for (i = 0; i < np->num_rx_rings; i++) { struct rx_ring_info *rp = &np->rx_rings[i]; int ldn = LDN_RXDMA(rp->rx_channel); if (parent->ldg_map[ldn] != ldg) continue; nw64(LD_IM0(ldn), LD_IM0_MASK); if (rx_vec & (1 << rp->rx_channel)) niu_rxchan_intr(np, rp, ldn); } for (i = 0; i < np->num_tx_rings; i++) { struct tx_ring_info *rp = &np->tx_rings[i]; int ldn = LDN_TXDMA(rp->tx_channel); if (parent->ldg_map[ldn] != ldg) continue; nw64(LD_IM0(ldn), LD_IM0_MASK); if (tx_vec & (1 << rp->tx_channel)) niu_txchan_intr(np, rp, ldn); } } static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp, u64 v0, u64 v1, u64 v2) { if (likely(napi_schedule_prep(&lp->napi))) { lp->v0 = v0; lp->v1 = v1; lp->v2 = v2; __niu_fastpath_interrupt(np, lp->ldg_num, v0); __napi_schedule(&lp->napi); } } static irqreturn_t niu_interrupt(int irq, void *dev_id) { struct niu_ldg *lp = dev_id; struct niu *np = lp->np; int ldg = lp->ldg_num; unsigned long flags; u64 v0, v1, v2; if (netif_msg_intr(np)) printk(KERN_DEBUG KBUILD_MODNAME ": " "%s() ldg[%p](%d)", __func__, lp, ldg); spin_lock_irqsave(&np->lock, flags); v0 = nr64(LDSV0(ldg)); v1 = nr64(LDSV1(ldg)); v2 = nr64(LDSV2(ldg)); if (netif_msg_intr(np)) pr_cont(" v0[%llx] v1[%llx] v2[%llx]\n", (unsigned long long) v0, (unsigned long long) v1, (unsigned long long) v2); if (unlikely(!v0 && !v1 && !v2)) { spin_unlock_irqrestore(&np->lock, flags); return IRQ_NONE; } if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) { int err = niu_slowpath_interrupt(np, lp, v0, v1, v2); if (err) goto out; } if (likely(v0 & ~((u64)1 << LDN_MIF))) niu_schedule_napi(np, lp, v0, v1, v2); else niu_ldg_rearm(np, lp, 1); out: spin_unlock_irqrestore(&np->lock, flags); return IRQ_HANDLED; } static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp) { if (rp->mbox) { np->ops->free_coherent(np->device, sizeof(struct rxdma_mailbox), rp->mbox, rp->mbox_dma); rp->mbox = NULL; } if (rp->rcr) { np->ops->free_coherent(np->device, MAX_RCR_RING_SIZE * sizeof(__le64), rp->rcr, rp->rcr_dma); rp->rcr = NULL; rp->rcr_table_size = 0; rp->rcr_index = 0; } if (rp->rbr) { niu_rbr_free(np, rp); np->ops->free_coherent(np->device, MAX_RBR_RING_SIZE * sizeof(__le32), rp->rbr, rp->rbr_dma); rp->rbr = NULL; rp->rbr_table_size = 0; rp->rbr_index = 0; } kfree(rp->rxhash); rp->rxhash = NULL; } static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp) { if (rp->mbox) { np->ops->free_coherent(np->device, sizeof(struct txdma_mailbox), rp->mbox, rp->mbox_dma); rp->mbox = NULL; } if (rp->descr) { int i; for (i = 0; i < MAX_TX_RING_SIZE; i++) { if (rp->tx_buffs[i].skb) (void) release_tx_packet(np, rp, i); } np->ops->free_coherent(np->device, MAX_TX_RING_SIZE * sizeof(__le64), rp->descr, rp->descr_dma); rp->descr = NULL; rp->pending = 0; rp->prod = 0; rp->cons = 0; rp->wrap_bit = 0; } } static void niu_free_channels(struct niu *np) { int i; if (np->rx_rings) { for (i = 0; i < np->num_rx_rings; i++) { struct rx_ring_info *rp = &np->rx_rings[i]; niu_free_rx_ring_info(np, rp); } kfree(np->rx_rings); np->rx_rings = NULL; np->num_rx_rings = 0; } if (np->tx_rings) { for (i = 0; i < np->num_tx_rings; i++) { struct tx_ring_info *rp = &np->tx_rings[i]; niu_free_tx_ring_info(np, rp); } kfree(np->tx_rings); np->tx_rings = NULL; np->num_tx_rings = 0; } } static int niu_alloc_rx_ring_info(struct niu *np, struct rx_ring_info *rp) { BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64); rp->rxhash = kcalloc(MAX_RBR_RING_SIZE, sizeof(struct page *), GFP_KERNEL); if (!rp->rxhash) return -ENOMEM; rp->mbox = np->ops->alloc_coherent(np->device, sizeof(struct rxdma_mailbox), &rp->mbox_dma, GFP_KERNEL); if (!rp->mbox) return -ENOMEM; if ((unsigned long)rp->mbox & (64UL - 1)) { netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA mailbox %p\n", rp->mbox); return -EINVAL; } rp->rcr = np->ops->alloc_coherent(np->device, MAX_RCR_RING_SIZE * sizeof(__le64), &rp->rcr_dma, GFP_KERNEL); if (!rp->rcr) return -ENOMEM; if ((unsigned long)rp->rcr & (64UL - 1)) { netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RCR table %p\n", rp->rcr); return -EINVAL; } rp->rcr_table_size = MAX_RCR_RING_SIZE; rp->rcr_index = 0; rp->rbr = np->ops->alloc_coherent(np->device, MAX_RBR_RING_SIZE * sizeof(__le32), &rp->rbr_dma, GFP_KERNEL); if (!rp->rbr) return -ENOMEM; if ((unsigned long)rp->rbr & (64UL - 1)) { netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RBR table %p\n", rp->rbr); return -EINVAL; } rp->rbr_table_size = MAX_RBR_RING_SIZE; rp->rbr_index = 0; rp->rbr_pending = 0; return 0; } static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp) { int mtu = np->dev->mtu; /* These values are recommended by the HW designers for fair * utilization of DRR amongst the rings. */ rp->max_burst = mtu + 32; if (rp->max_burst > 4096) rp->max_burst = 4096; } static int niu_alloc_tx_ring_info(struct niu *np, struct tx_ring_info *rp) { BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64); rp->mbox = np->ops->alloc_coherent(np->device, sizeof(struct txdma_mailbox), &rp->mbox_dma, GFP_KERNEL); if (!rp->mbox) return -ENOMEM; if ((unsigned long)rp->mbox & (64UL - 1)) { netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA mailbox %p\n", rp->mbox); return -EINVAL; } rp->descr = np->ops->alloc_coherent(np->device, MAX_TX_RING_SIZE * sizeof(__le64), &rp->descr_dma, GFP_KERNEL); if (!rp->descr) return -ENOMEM; if ((unsigned long)rp->descr & (64UL - 1)) { netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA descr table %p\n", rp->descr); return -EINVAL; } rp->pending = MAX_TX_RING_SIZE; rp->prod = 0; rp->cons = 0; rp->wrap_bit = 0; /* XXX make these configurable... XXX */ rp->mark_freq = rp->pending / 4; niu_set_max_burst(np, rp); return 0; } static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp) { u16 bss; bss = min(PAGE_SHIFT, 15); rp->rbr_block_size = 1 << bss; rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss); rp->rbr_sizes[0] = 256; rp->rbr_sizes[1] = 1024; if (np->dev->mtu > ETH_DATA_LEN) { switch (PAGE_SIZE) { case 4 * 1024: rp->rbr_sizes[2] = 4096; break; default: rp->rbr_sizes[2] = 8192; break; } } else { rp->rbr_sizes[2] = 2048; } rp->rbr_sizes[3] = rp->rbr_block_size; } static int niu_alloc_channels(struct niu *np) { struct niu_parent *parent = np->parent; int first_rx_channel, first_tx_channel; int num_rx_rings, num_tx_rings; struct rx_ring_info *rx_rings; struct tx_ring_info *tx_rings; int i, port, err; port = np->port; first_rx_channel = first_tx_channel = 0; for (i = 0; i < port; i++) { first_rx_channel += parent->rxchan_per_port[i]; first_tx_channel += parent->txchan_per_port[i]; } num_rx_rings = parent->rxchan_per_port[port]; num_tx_rings = parent->txchan_per_port[port]; rx_rings = kcalloc(num_rx_rings, sizeof(struct rx_ring_info), GFP_KERNEL); err = -ENOMEM; if (!rx_rings) goto out_err; np->num_rx_rings = num_rx_rings; smp_wmb(); np->rx_rings = rx_rings; netif_set_real_num_rx_queues(np->dev, num_rx_rings); for (i = 0; i < np->num_rx_rings; i++) { struct rx_ring_info *rp = &np->rx_rings[i]; rp->np = np; rp->rx_channel = first_rx_channel + i; err = niu_alloc_rx_ring_info(np, rp); if (err) goto out_err; niu_size_rbr(np, rp); /* XXX better defaults, configurable, etc... XXX */ rp->nonsyn_window = 64; rp->nonsyn_threshold = rp->rcr_table_size - 64; rp->syn_window = 64; rp->syn_threshold = rp->rcr_table_size - 64; rp->rcr_pkt_threshold = 16; rp->rcr_timeout = 8; rp->rbr_kick_thresh = RBR_REFILL_MIN; if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page) rp->rbr_kick_thresh = rp->rbr_blocks_per_page; err = niu_rbr_fill(np, rp, GFP_KERNEL); if (err) goto out_err; } tx_rings = kcalloc(num_tx_rings, sizeof(struct tx_ring_info), GFP_KERNEL); err = -ENOMEM; if (!tx_rings) goto out_err; np->num_tx_rings = num_tx_rings; smp_wmb(); np->tx_rings = tx_rings; netif_set_real_num_tx_queues(np->dev, num_tx_rings); for (i = 0; i < np->num_tx_rings; i++) { struct tx_ring_info *rp = &np->tx_rings[i]; rp->np = np; rp->tx_channel = first_tx_channel + i; err = niu_alloc_tx_ring_info(np, rp); if (err) goto out_err; } return 0; out_err: niu_free_channels(np); return err; } static int niu_tx_cs_sng_poll(struct niu *np, int channel) { int limit = 1000; while (--limit > 0) { u64 val = nr64(TX_CS(channel)); if (val & TX_CS_SNG_STATE) return 0; } return -ENODEV; } static int niu_tx_channel_stop(struct niu *np, int channel) { u64 val = nr64(TX_CS(channel)); val |= TX_CS_STOP_N_GO; nw64(TX_CS(channel), val); return niu_tx_cs_sng_poll(np, channel); } static int niu_tx_cs_reset_poll(struct niu *np, int channel) { int limit = 1000; while (--limit > 0) { u64 val = nr64(TX_CS(channel)); if (!(val & TX_CS_RST)) return 0; } return -ENODEV; } static int niu_tx_channel_reset(struct niu *np, int channel) { u64 val = nr64(TX_CS(channel)); int err; val |= TX_CS_RST; nw64(TX_CS(channel), val); err = niu_tx_cs_reset_poll(np, channel); if (!err) nw64(TX_RING_KICK(channel), 0); return err; } static int niu_tx_channel_lpage_init(struct niu *np, int channel) { u64 val; nw64(TX_LOG_MASK1(channel), 0); nw64(TX_LOG_VAL1(channel), 0); nw64(TX_LOG_MASK2(channel), 0); nw64(TX_LOG_VAL2(channel), 0); nw64(TX_LOG_PAGE_RELO1(channel), 0); nw64(TX_LOG_PAGE_RELO2(channel), 0); nw64(TX_LOG_PAGE_HDL(channel), 0); val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT; val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1); nw64(TX_LOG_PAGE_VLD(channel), val); /* XXX TXDMA 32bit mode? XXX */ return 0; } static void niu_txc_enable_port(struct niu *np, int on) { unsigned long flags; u64 val, mask; niu_lock_parent(np, flags); val = nr64(TXC_CONTROL); mask = (u64)1 << np->port; if (on) { val |= TXC_CONTROL_ENABLE | mask; } else { val &= ~mask; if ((val & ~TXC_CONTROL_ENABLE) == 0) val &= ~TXC_CONTROL_ENABLE; } nw64(TXC_CONTROL, val); niu_unlock_parent(np, flags); } static void niu_txc_set_imask(struct niu *np, u64 imask) { unsigned long flags; u64 val; niu_lock_parent(np, flags); val = nr64(TXC_INT_MASK); val &= ~TXC_INT_MASK_VAL(np->port); val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port)); niu_unlock_parent(np, flags); } static void niu_txc_port_dma_enable(struct niu *np, int on) { u64 val = 0; if (on) { int i; for (i = 0; i < np->num_tx_rings; i++) val |= (1 << np->tx_rings[i].tx_channel); } nw64(TXC_PORT_DMA(np->port), val); } static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp) { int err, channel = rp->tx_channel; u64 val, ring_len; err = niu_tx_channel_stop(np, channel); if (err) return err; err = niu_tx_channel_reset(np, channel); if (err) return err; err = niu_tx_channel_lpage_init(np, channel); if (err) return err; nw64(TXC_DMA_MAX(channel), rp->max_burst); nw64(TX_ENT_MSK(channel), 0); if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE | TX_RNG_CFIG_STADDR)) { netdev_err(np->dev, "TX ring channel %d DMA addr (%llx) is not aligned\n", channel, (unsigned long long)rp->descr_dma); return -EINVAL; } /* The length field in TX_RNG_CFIG is measured in 64-byte * blocks. rp->pending is the number of TX descriptors in * our ring, 8 bytes each, thus we divide by 8 bytes more * to get the proper value the chip wants. */ ring_len = (rp->pending / 8); val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) | rp->descr_dma); nw64(TX_RNG_CFIG(channel), val); if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) || ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) { netdev_err(np->dev, "TX ring channel %d MBOX addr (%llx) has invalid bits\n", channel, (unsigned long long)rp->mbox_dma); return -EINVAL; } nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32); nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR); nw64(TX_CS(channel), 0); rp->last_pkt_cnt = 0; return 0; } static void niu_init_rdc_groups(struct niu *np) { struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port]; int i, first_table_num = tp->first_table_num; for (i = 0; i < tp->num_tables; i++) { struct rdc_table *tbl = &tp->tables[i]; int this_table = first_table_num + i; int slot; for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) nw64(RDC_TBL(this_table, slot), tbl->rxdma_channel[slot]); } nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]); } static void niu_init_drr_weight(struct niu *np) { int type = phy_decode(np->parent->port_phy, np->port); u64 val; switch (type) { case PORT_TYPE_10G: val = PT_DRR_WEIGHT_DEFAULT_10G; break; case PORT_TYPE_1G: default: val = PT_DRR_WEIGHT_DEFAULT_1G; break; } nw64(PT_DRR_WT(np->port), val); } static int niu_init_hostinfo(struct niu *np) { struct niu_parent *parent = np->parent; struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port]; int i, err, num_alt = niu_num_alt_addr(np); int first_rdc_table = tp->first_table_num; err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1); if (err) return err; err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1); if (err) return err; for (i = 0; i < num_alt; i++) { err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1); if (err) return err; } return 0; } static int niu_rx_channel_reset(struct niu *np, int channel) { return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel), RXDMA_CFIG1_RST, 1000, 10, "RXDMA_CFIG1"); } static int niu_rx_channel_lpage_init(struct niu *np, int channel) { u64 val; nw64(RX_LOG_MASK1(channel), 0); nw64(RX_LOG_VAL1(channel), 0); nw64(RX_LOG_MASK2(channel), 0); nw64(RX_LOG_VAL2(channel), 0); nw64(RX_LOG_PAGE_RELO1(channel), 0); nw64(RX_LOG_PAGE_RELO2(channel), 0); nw64(RX_LOG_PAGE_HDL(channel), 0); val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT; val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1); nw64(RX_LOG_PAGE_VLD(channel), val); return 0; } static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp) { u64 val; val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) | ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) | ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) | ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT)); nw64(RDC_RED_PARA(rp->rx_channel), val); } static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret) { u64 val = 0; *ret = 0; switch (rp->rbr_block_size) { case 4 * 1024: val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT); break; case 8 * 1024: val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT); break; case 16 * 1024: val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT); break; case 32 * 1024: val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT); break; default: return -EINVAL; } val |= RBR_CFIG_B_VLD2; switch (rp->rbr_sizes[2]) { case 2 * 1024: val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT); break; case 4 * 1024: val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT); break; case 8 * 1024: val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT); break; case 16 * 1024: val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT); break; default: return -EINVAL; } val |= RBR_CFIG_B_VLD1; switch (rp->rbr_sizes[1]) { case 1 * 1024: val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT); break; case 2 * 1024: val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT); break; case 4 * 1024: val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT); break; case 8 * 1024: val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT); break; default: return -EINVAL; } val |= RBR_CFIG_B_VLD0; switch (rp->rbr_sizes[0]) { case 256: val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT); break; case 512: val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT); break; case 1 * 1024: val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT); break; case 2 * 1024: val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT); break; default: return -EINVAL; } *ret = val; return 0; } static int niu_enable_rx_channel(struct niu *np, int channel, int on) { u64 val = nr64(RXDMA_CFIG1(channel)); int limit; if (on) val |= RXDMA_CFIG1_EN; else val &= ~RXDMA_CFIG1_EN; nw64(RXDMA_CFIG1(channel), val); limit = 1000; while (--limit > 0) { if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST) break; udelay(10); } if (limit <= 0) return -ENODEV; return 0; } static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp) { int err, channel = rp->rx_channel; u64 val; err = niu_rx_channel_reset(np, channel); if (err) return err; err = niu_rx_channel_lpage_init(np, channel); if (err) return err; niu_rx_channel_wred_init(np, rp); nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY); nw64(RX_DMA_CTL_STAT(channel), (RX_DMA_CTL_STAT_MEX | RX_DMA_CTL_STAT_RCRTHRES | RX_DMA_CTL_STAT_RCRTO | RX_DMA_CTL_STAT_RBR_EMPTY)); nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32); nw64(RXDMA_CFIG2(channel), ((rp->mbox_dma & RXDMA_CFIG2_MBADDR_L) | RXDMA_CFIG2_FULL_HDR)); nw64(RBR_CFIG_A(channel), ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) | (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR))); err = niu_compute_rbr_cfig_b(rp, &val); if (err) return err; nw64(RBR_CFIG_B(channel), val); nw64(RCRCFIG_A(channel), ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) | (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR))); nw64(RCRCFIG_B(channel), ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) | RCRCFIG_B_ENTOUT | ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT)); err = niu_enable_rx_channel(np, channel, 1); if (err) return err; nw64(RBR_KICK(channel), rp->rbr_index); val = nr64(RX_DMA_CTL_STAT(channel)); val |= RX_DMA_CTL_STAT_RBR_EMPTY; nw64(RX_DMA_CTL_STAT(channel), val); return 0; } static int niu_init_rx_channels(struct niu *np) { unsigned long flags; u64 seed = jiffies_64; int err, i; niu_lock_parent(np, flags); nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider); nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL)); niu_unlock_parent(np, flags); /* XXX RXDMA 32bit mode? XXX */ niu_init_rdc_groups(np); niu_init_drr_weight(np); err = niu_init_hostinfo(np); if (err) return err; for (i = 0; i < np->num_rx_rings; i++) { struct rx_ring_info *rp = &np->rx_rings[i]; err = niu_init_one_rx_channel(np, rp); if (err) return err; } return 0; } static int niu_set_ip_frag_rule(struct niu *np) { struct niu_parent *parent = np->parent; struct niu_classifier *cp = &np->clas; struct niu_tcam_entry *tp; int index, err; index = cp->tcam_top; tp = &parent->tcam[index]; /* Note that the noport bit is the same in both ipv4 and * ipv6 format TCAM entries. */ memset(tp, 0, sizeof(*tp)); tp->key[1] = TCAM_V4KEY1_NOPORT; tp->key_mask[1] = TCAM_V4KEY1_NOPORT; tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET | ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT)); err = tcam_write(np, index, tp->key, tp->key_mask); if (err) return err; err = tcam_assoc_write(np, index, tp->assoc_data); if (err) return err; tp->valid = 1; cp->tcam_valid_entries++; return 0; } static int niu_init_classifier_hw(struct niu *np) { struct niu_parent *parent = np->parent; struct niu_classifier *cp = &np->clas; int i, err; nw64(H1POLY, cp->h1_init); nw64(H2POLY, cp->h2_init); err = niu_init_hostinfo(np); if (err) return err; for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) { struct niu_vlan_rdc *vp = &cp->vlan_mappings[i]; vlan_tbl_write(np, i, np->port, vp->vlan_pref, vp->rdc_num); } for (i = 0; i < cp->num_alt_mac_mappings; i++) { struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i]; err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num, ap->rdc_num, ap->mac_pref); if (err) return err; } for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) { int index = i - CLASS_CODE_USER_PROG1; err = niu_set_tcam_key(np, i, parent->tcam_key[index]); if (err) return err; err = niu_set_flow_key(np, i, parent->flow_key[index]); if (err) return err; } err = niu_set_ip_frag_rule(np); if (err) return err; tcam_enable(np, 1); return 0; } static int niu_zcp_write(struct niu *np, int index, u64 *data) { nw64(ZCP_RAM_DATA0, data[0]); nw64(ZCP_RAM_DATA1, data[1]); nw64(ZCP_RAM_DATA2, data[2]); nw64(ZCP_RAM_DATA3, data[3]); nw64(ZCP_RAM_DATA4, data[4]); nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL); nw64(ZCP_RAM_ACC, (ZCP_RAM_ACC_WRITE | (0 << ZCP_RAM_ACC_ZFCID_SHIFT) | (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT))); return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY, 1000, 100); } static int niu_zcp_read(struct niu *np, int index, u64 *data) { int err; err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY, 1000, 100); if (err) { netdev_err(np->dev, "ZCP read busy won't clear, ZCP_RAM_ACC[%llx]\n", (unsigned long long)nr64(ZCP_RAM_ACC)); return err; } nw64(ZCP_RAM_ACC, (ZCP_RAM_ACC_READ | (0 << ZCP_RAM_ACC_ZFCID_SHIFT) | (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT))); err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY, 1000, 100); if (err) { netdev_err(np->dev, "ZCP read busy2 won't clear, ZCP_RAM_ACC[%llx]\n", (unsigned long long)nr64(ZCP_RAM_ACC)); return err; } data[0] = nr64(ZCP_RAM_DATA0); data[1] = nr64(ZCP_RAM_DATA1); data[2] = nr64(ZCP_RAM_DATA2); data[3] = nr64(ZCP_RAM_DATA3); data[4] = nr64(ZCP_RAM_DATA4); return 0; } static void niu_zcp_cfifo_reset(struct niu *np) { u64 val = nr64(RESET_CFIFO); val |= RESET_CFIFO_RST(np->port); nw64(RESET_CFIFO, val); udelay(10); val &= ~RESET_CFIFO_RST(np->port); nw64(RESET_CFIFO, val); } static int niu_init_zcp(struct niu *np) { u64 data[5], rbuf[5]; int i, max, err; if (np->parent->plat_type != PLAT_TYPE_NIU) { if (np->port == 0 || np->port == 1) max = ATLAS_P0_P1_CFIFO_ENTRIES; else max = ATLAS_P2_P3_CFIFO_ENTRIES; } else max = NIU_CFIFO_ENTRIES; data[0] = 0; data[1] = 0; data[2] = 0; data[3] = 0; data[4] = 0; for (i = 0; i < max; i++) { err = niu_zcp_write(np, i, data); if (err) return err; err = niu_zcp_read(np, i, rbuf); if (err) return err; } niu_zcp_cfifo_reset(np); nw64(CFIFO_ECC(np->port), 0); nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL); (void) nr64(ZCP_INT_STAT); nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL); return 0; } static void niu_ipp_write(struct niu *np, int index, u64 *data) { u64 val = nr64_ipp(IPP_CFIG); nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W); nw64_ipp(IPP_DFIFO_WR_PTR, index); nw64_ipp(IPP_DFIFO_WR0, data[0]); nw64_ipp(IPP_DFIFO_WR1, data[1]); nw64_ipp(IPP_DFIFO_WR2, data[2]); nw64_ipp(IPP_DFIFO_WR3, data[3]); nw64_ipp(IPP_DFIFO_WR4, data[4]); nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W); } static void niu_ipp_read(struct niu *np, int index, u64 *data) { nw64_ipp(IPP_DFIFO_RD_PTR, index); data[0] = nr64_ipp(IPP_DFIFO_RD0); data[1] = nr64_ipp(IPP_DFIFO_RD1); data[2] = nr64_ipp(IPP_DFIFO_RD2); data[3] = nr64_ipp(IPP_DFIFO_RD3); data[4] = nr64_ipp(IPP_DFIFO_RD4); } static int niu_ipp_reset(struct niu *np) { return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST, 1000, 100, "IPP_CFIG"); } static int niu_init_ipp(struct niu *np) { u64 data[5], rbuf[5], val; int i, max, err; if (np->parent->plat_type != PLAT_TYPE_NIU) { if (np->port == 0 || np->port == 1) max = ATLAS_P0_P1_DFIFO_ENTRIES; else max = ATLAS_P2_P3_DFIFO_ENTRIES; } else max = NIU_DFIFO_ENTRIES; data[0] = 0; data[1] = 0; data[2] = 0; data[3] = 0; data[4] = 0; for (i = 0; i < max; i++) { niu_ipp_write(np, i, data); niu_ipp_read(np, i, rbuf); } (void) nr64_ipp(IPP_INT_STAT); (void) nr64_ipp(IPP_INT_STAT); err = niu_ipp_reset(np); if (err) return err; (void) nr64_ipp(IPP_PKT_DIS); (void) nr64_ipp(IPP_BAD_CS_CNT); (void) nr64_ipp(IPP_ECC); (void) nr64_ipp(IPP_INT_STAT); nw64_ipp(IPP_MSK, ~IPP_MSK_ALL); val = nr64_ipp(IPP_CFIG); val &= ~IPP_CFIG_IP_MAX_PKT; val |= (IPP_CFIG_IPP_ENABLE | IPP_CFIG_DFIFO_ECC_EN | IPP_CFIG_DROP_BAD_CRC | IPP_CFIG_CKSUM_EN | (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT)); nw64_ipp(IPP_CFIG, val); return 0; } static void niu_handle_led(struct niu *np, int status) { u64 val; val = nr64_mac(XMAC_CONFIG); if ((np->flags & NIU_FLAGS_10G) != 0 && (np->flags & NIU_FLAGS_FIBER) != 0) { if (status) { val |= XMAC_CONFIG_LED_POLARITY; val &= ~XMAC_CONFIG_FORCE_LED_ON; } else { val |= XMAC_CONFIG_FORCE_LED_ON; val &= ~XMAC_CONFIG_LED_POLARITY; } } nw64_mac(XMAC_CONFIG, val); } static void niu_init_xif_xmac(struct niu *np) { struct niu_link_config *lp = &np->link_config; u64 val; if (np->flags & NIU_FLAGS_XCVR_SERDES) { val = nr64(MIF_CONFIG); val |= MIF_CONFIG_ATCA_GE; nw64(MIF_CONFIG, val); } val = nr64_mac(XMAC_CONFIG); val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC; val |= XMAC_CONFIG_TX_OUTPUT_EN; if (lp->loopback_mode == LOOPBACK_MAC) { val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC; val |= XMAC_CONFIG_LOOPBACK; } else { val &= ~XMAC_CONFIG_LOOPBACK; } if (np->flags & NIU_FLAGS_10G) { val &= ~XMAC_CONFIG_LFS_DISABLE; } else { val |= XMAC_CONFIG_LFS_DISABLE; if (!(np->flags & NIU_FLAGS_FIBER) && !(np->flags & NIU_FLAGS_XCVR_SERDES)) val |= XMAC_CONFIG_1G_PCS_BYPASS; else val &= ~XMAC_CONFIG_1G_PCS_BYPASS; } val &= ~XMAC_CONFIG_10G_XPCS_BYPASS; if (lp->active_speed == SPEED_100) val |= XMAC_CONFIG_SEL_CLK_25MHZ; else val &= ~XMAC_CONFIG_SEL_CLK_25MHZ; nw64_mac(XMAC_CONFIG, val); val = nr64_mac(XMAC_CONFIG); val &= ~XMAC_CONFIG_MODE_MASK; if (np->flags & NIU_FLAGS_10G) { val |= XMAC_CONFIG_MODE_XGMII; } else { if (lp->active_speed == SPEED_1000) val |= XMAC_CONFIG_MODE_GMII; else val |= XMAC_CONFIG_MODE_MII; } nw64_mac(XMAC_CONFIG, val); } static void niu_init_xif_bmac(struct niu *np) { struct niu_link_config *lp = &np->link_config; u64 val; val = BMAC_XIF_CONFIG_TX_OUTPUT_EN; if (lp->loopback_mode == LOOPBACK_MAC) val |= BMAC_XIF_CONFIG_MII_LOOPBACK; else val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK; if (lp->active_speed == SPEED_1000) val |= BMAC_XIF_CONFIG_GMII_MODE; else val &= ~BMAC_XIF_CONFIG_GMII_MODE; val &= ~(BMAC_XIF_CONFIG_LINK_LED | BMAC_XIF_CONFIG_LED_POLARITY); if (!(np->flags & NIU_FLAGS_10G) && !(np->flags & NIU_FLAGS_FIBER) && lp->active_speed == SPEED_100) val |= BMAC_XIF_CONFIG_25MHZ_CLOCK; else val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK; nw64_mac(BMAC_XIF_CONFIG, val); } static void niu_init_xif(struct niu *np) { if (np->flags & NIU_FLAGS_XMAC) niu_init_xif_xmac(np); else niu_init_xif_bmac(np); } static void niu_pcs_mii_reset(struct niu *np) { int limit = 1000; u64 val = nr64_pcs(PCS_MII_CTL); val |= PCS_MII_CTL_RST; nw64_pcs(PCS_MII_CTL, val); while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) { udelay(100); val = nr64_pcs(PCS_MII_CTL); } } static void niu_xpcs_reset(struct niu *np) { int limit = 1000; u64 val = nr64_xpcs(XPCS_CONTROL1); val |= XPCS_CONTROL1_RESET; nw64_xpcs(XPCS_CONTROL1, val); while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) { udelay(100); val = nr64_xpcs(XPCS_CONTROL1); } } static int niu_init_pcs(struct niu *np) { struct niu_link_config *lp = &np->link_config; u64 val; switch (np->flags & (NIU_FLAGS_10G | NIU_FLAGS_FIBER | NIU_FLAGS_XCVR_SERDES)) { case NIU_FLAGS_FIBER: /* 1G fiber */ nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE); nw64_pcs(PCS_DPATH_MODE, 0); niu_pcs_mii_reset(np); break; case NIU_FLAGS_10G: case NIU_FLAGS_10G | NIU_FLAGS_FIBER: case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES: /* 10G SERDES */ if (!(np->flags & NIU_FLAGS_XMAC)) return -EINVAL; /* 10G copper or fiber */ val = nr64_mac(XMAC_CONFIG); val &= ~XMAC_CONFIG_10G_XPCS_BYPASS; nw64_mac(XMAC_CONFIG, val); niu_xpcs_reset(np); val = nr64_xpcs(XPCS_CONTROL1); if (lp->loopback_mode == LOOPBACK_PHY) val |= XPCS_CONTROL1_LOOPBACK; else val &= ~XPCS_CONTROL1_LOOPBACK; nw64_xpcs(XPCS_CONTROL1, val); nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0); (void) nr64_xpcs(XPCS_SYMERR_CNT01); (void) nr64_xpcs(XPCS_SYMERR_CNT23); break; case NIU_FLAGS_XCVR_SERDES: /* 1G SERDES */ niu_pcs_mii_reset(np); nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE); nw64_pcs(PCS_DPATH_MODE, 0); break; case 0: /* 1G copper */ case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER: /* 1G RGMII FIBER */ nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII); niu_pcs_mii_reset(np); break; default: return -EINVAL; } return 0; } static int niu_reset_tx_xmac(struct niu *np) { return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST, (XTXMAC_SW_RST_REG_RS | XTXMAC_SW_RST_SOFT_RST), 1000, 100, "XTXMAC_SW_RST"); } static int niu_reset_tx_bmac(struct niu *np) { int limit; nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET); limit = 1000; while (--limit >= 0) { if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET)) break; udelay(100); } if (limit < 0) { dev_err(np->device, "Port %u TX BMAC would not reset, BTXMAC_SW_RST[%llx]\n", np->port, (unsigned long long) nr64_mac(BTXMAC_SW_RST)); return -ENODEV; } return 0; } static int niu_reset_tx_mac(struct niu *np) { if (np->flags & NIU_FLAGS_XMAC) return niu_reset_tx_xmac(np); else return niu_reset_tx_bmac(np); } static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max) { u64 val; val = nr64_mac(XMAC_MIN); val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE | XMAC_MIN_RX_MIN_PKT_SIZE); val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT); val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT); nw64_mac(XMAC_MIN, val); nw64_mac(XMAC_MAX, max); nw64_mac(XTXMAC_STAT_MSK, ~(u64)0); val = nr64_mac(XMAC_IPG); if (np->flags & NIU_FLAGS_10G) { val &= ~XMAC_IPG_IPG_XGMII; val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT); } else { val &= ~XMAC_IPG_IPG_MII_GMII; val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT); } nw64_mac(XMAC_IPG, val); val = nr64_mac(XMAC_CONFIG); val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC | XMAC_CONFIG_STRETCH_MODE | XMAC_CONFIG_VAR_MIN_IPG_EN | XMAC_CONFIG_TX_ENABLE); nw64_mac(XMAC_CONFIG, val); nw64_mac(TXMAC_FRM_CNT, 0); nw64_mac(TXMAC_BYTE_CNT, 0); } static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max) { u64 val; nw64_mac(BMAC_MIN_FRAME, min); nw64_mac(BMAC_MAX_FRAME, max); nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0); nw64_mac(BMAC_CTRL_TYPE, 0x8808); nw64_mac(BMAC_PREAMBLE_SIZE, 7); val = nr64_mac(BTXMAC_CONFIG); val &= ~(BTXMAC_CONFIG_FCS_DISABLE | BTXMAC_CONFIG_ENABLE); nw64_mac(BTXMAC_CONFIG, val); } static void niu_init_tx_mac(struct niu *np) { u64 min, max; min = 64; if (np->dev->mtu > ETH_DATA_LEN) max = 9216; else max = 1522; /* The XMAC_MIN register only accepts values for TX min which * have the low 3 bits cleared. */ BUG_ON(min & 0x7); if (np->flags & NIU_FLAGS_XMAC) niu_init_tx_xmac(np, min, max); else niu_init_tx_bmac(np, min, max); } static int niu_reset_rx_xmac(struct niu *np) { int limit; nw64_mac(XRXMAC_SW_RST, XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST); limit = 1000; while (--limit >= 0) { if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST))) break; udelay(100); } if (limit < 0) { dev_err(np->device, "Port %u RX XMAC would not reset, XRXMAC_SW_RST[%llx]\n", np->port, (unsigned long long) nr64_mac(XRXMAC_SW_RST)); return -ENODEV; } return 0; } static int niu_reset_rx_bmac(struct niu *np) { int limit; nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET); limit = 1000; while (--limit >= 0) { if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET)) break; udelay(100); } if (limit < 0) { dev_err(np->device, "Port %u RX BMAC would not reset, BRXMAC_SW_RST[%llx]\n", np->port, (unsigned long long) nr64_mac(BRXMAC_SW_RST)); return -ENODEV; } return 0; } static int niu_reset_rx_mac(struct niu *np) { if (np->flags & NIU_FLAGS_XMAC) return niu_reset_rx_xmac(np); else return niu_reset_rx_bmac(np); } static void niu_init_rx_xmac(struct niu *np) { struct niu_parent *parent = np->parent; struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port]; int first_rdc_table = tp->first_table_num; unsigned long i; u64 val; nw64_mac(XMAC_ADD_FILT0, 0); nw64_mac(XMAC_ADD_FILT1, 0); nw64_mac(XMAC_ADD_FILT2, 0); nw64_mac(XMAC_ADD_FILT12_MASK, 0); nw64_mac(XMAC_ADD_FILT00_MASK, 0); for (i = 0; i < MAC_NUM_HASH; i++) nw64_mac(XMAC_HASH_TBL(i), 0); nw64_mac(XRXMAC_STAT_MSK, ~(u64)0); niu_set_primary_mac_rdc_table(np, first_rdc_table, 1); niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1); val = nr64_mac(XMAC_CONFIG); val &= ~(XMAC_CONFIG_RX_MAC_ENABLE | XMAC_CONFIG_PROMISCUOUS | XMAC_CONFIG_PROMISC_GROUP | XMAC_CONFIG_ERR_CHK_DIS | XMAC_CONFIG_RX_CRC_CHK_DIS | XMAC_CONFIG_RESERVED_MULTICAST | XMAC_CONFIG_RX_CODEV_CHK_DIS | XMAC_CONFIG_ADDR_FILTER_EN | XMAC_CONFIG_RCV_PAUSE_ENABLE | XMAC_CONFIG_STRIP_CRC | XMAC_CONFIG_PASS_FLOW_CTRL | XMAC_CONFIG_MAC2IPP_PKT_CNT_EN); val |= (XMAC_CONFIG_HASH_FILTER_EN); nw64_mac(XMAC_CONFIG, val); nw64_mac(RXMAC_BT_CNT, 0); nw64_mac(RXMAC_BC_FRM_CNT, 0); nw64_mac(RXMAC_MC_FRM_CNT, 0); nw64_mac(RXMAC_FRAG_CNT, 0); nw64_mac(RXMAC_HIST_CNT1, 0); nw64_mac(RXMAC_HIST_CNT2, 0); nw64_mac(RXMAC_HIST_CNT3, 0); nw64_mac(RXMAC_HIST_CNT4, 0); nw64_mac(RXMAC_HIST_CNT5, 0); nw64_mac(RXMAC_HIST_CNT6, 0); nw64_mac(RXMAC_HIST_CNT7, 0); nw64_mac(RXMAC_MPSZER_CNT, 0); nw64_mac(RXMAC_CRC_ER_CNT, 0); nw64_mac(RXMAC_CD_VIO_CNT, 0); nw64_mac(LINK_FAULT_CNT, 0); } static void niu_init_rx_bmac(struct niu *np) { struct niu_parent *parent = np->parent; struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port]; int first_rdc_table = tp->first_table_num; unsigned long i; u64 val; nw64_mac(BMAC_ADD_FILT0, 0); nw64_mac(BMAC_ADD_FILT1, 0); nw64_mac(BMAC_ADD_FILT2, 0); nw64_mac(BMAC_ADD_FILT12_MASK, 0); nw64_mac(BMAC_ADD_FILT00_MASK, 0); for (i = 0; i < MAC_NUM_HASH; i++) nw64_mac(BMAC_HASH_TBL(i), 0); niu_set_primary_mac_rdc_table(np, first_rdc_table, 1); niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1); nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0); val = nr64_mac(BRXMAC_CONFIG); val &= ~(BRXMAC_CONFIG_ENABLE | BRXMAC_CONFIG_STRIP_PAD | BRXMAC_CONFIG_STRIP_FCS | BRXMAC_CONFIG_PROMISC | BRXMAC_CONFIG_PROMISC_GRP | BRXMAC_CONFIG_ADDR_FILT_EN | BRXMAC_CONFIG_DISCARD_DIS); val |= (BRXMAC_CONFIG_HASH_FILT_EN); nw64_mac(BRXMAC_CONFIG, val); val = nr64_mac(BMAC_ADDR_CMPEN); val |= BMAC_ADDR_CMPEN_EN0; nw64_mac(BMAC_ADDR_CMPEN, val); } static void niu_init_rx_mac(struct niu *np) { niu_set_primary_mac(np, np->dev->dev_addr); if (np->flags & NIU_FLAGS_XMAC) niu_init_rx_xmac(np); else niu_init_rx_bmac(np); } static void niu_enable_tx_xmac(struct niu *np, int on) { u64 val = nr64_mac(XMAC_CONFIG); if (on) val |= XMAC_CONFIG_TX_ENABLE; else val &= ~XMAC_CONFIG_TX_ENABLE; nw64_mac(XMAC_CONFIG, val); } static void niu_enable_tx_bmac(struct niu *np, int on) { u64 val = nr64_mac(BTXMAC_CONFIG); if (on) val |= BTXMAC_CONFIG_ENABLE; else val &= ~BTXMAC_CONFIG_ENABLE; nw64_mac(BTXMAC_CONFIG, val); } static void niu_enable_tx_mac(struct niu *np, int on) { if (np->flags & NIU_FLAGS_XMAC) niu_enable_tx_xmac(np, on); else niu_enable_tx_bmac(np, on); } static void niu_enable_rx_xmac(struct niu *np, int on) { u64 val = nr64_mac(XMAC_CONFIG); val &= ~(XMAC_CONFIG_HASH_FILTER_EN | XMAC_CONFIG_PROMISCUOUS); if (np->flags & NIU_FLAGS_MCAST) val |= XMAC_CONFIG_HASH_FILTER_EN; if (np->flags & NIU_FLAGS_PROMISC) val |= XMAC_CONFIG_PROMISCUOUS; if (on) val |= XMAC_CONFIG_RX_MAC_ENABLE; else val &= ~XMAC_CONFIG_RX_MAC_ENABLE; nw64_mac(XMAC_CONFIG, val); } static void niu_enable_rx_bmac(struct niu *np, int on) { u64 val = nr64_mac(BRXMAC_CONFIG); val &= ~(BRXMAC_CONFIG_HASH_FILT_EN | BRXMAC_CONFIG_PROMISC); if (np->flags & NIU_FLAGS_MCAST) val |= BRXMAC_CONFIG_HASH_FILT_EN; if (np->flags & NIU_FLAGS_PROMISC) val |= BRXMAC_CONFIG_PROMISC; if (on) val |= BRXMAC_CONFIG_ENABLE; else val &= ~BRXMAC_CONFIG_ENABLE; nw64_mac(BRXMAC_CONFIG, val); } static void niu_enable_rx_mac(struct niu *np, int on) { if (np->flags & NIU_FLAGS_XMAC) niu_enable_rx_xmac(np, on); else niu_enable_rx_bmac(np, on); } static int niu_init_mac(struct niu *np) { int err; niu_init_xif(np); err = niu_init_pcs(np); if (err) return err; err = niu_reset_tx_mac(np); if (err) return err; niu_init_tx_mac(np); err = niu_reset_rx_mac(np); if (err) return err; niu_init_rx_mac(np); /* This looks hookey but the RX MAC reset we just did will * undo some of the state we setup in niu_init_tx_mac() so we * have to call it again. In particular, the RX MAC reset will * set the XMAC_MAX register back to it's default value. */ niu_init_tx_mac(np); niu_enable_tx_mac(np, 1); niu_enable_rx_mac(np, 1); return 0; } static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp) { (void) niu_tx_channel_stop(np, rp->tx_channel); } static void niu_stop_tx_channels(struct niu *np) { int i; for (i = 0; i < np->num_tx_rings; i++) { struct tx_ring_info *rp = &np->tx_rings[i]; niu_stop_one_tx_channel(np, rp); } } static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp) { (void) niu_tx_channel_reset(np, rp->tx_channel); } static void niu_reset_tx_channels(struct niu *np) { int i; for (i = 0; i < np->num_tx_rings; i++) { struct tx_ring_info *rp = &np->tx_rings[i]; niu_reset_one_tx_channel(np, rp); } } static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp) { (void) niu_enable_rx_channel(np, rp->rx_channel, 0); } static void niu_stop_rx_channels(struct niu *np) { int i; for (i = 0; i < np->num_rx_rings; i++) { struct rx_ring_info *rp = &np->rx_rings[i]; niu_stop_one_rx_channel(np, rp); } } static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp) { int channel = rp->rx_channel; (void) niu_rx_channel_reset(np, channel); nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL); nw64(RX_DMA_CTL_STAT(channel), 0); (void) niu_enable_rx_channel(np, channel, 0); } static void niu_reset_rx_channels(struct niu *np) { int i; for (i = 0; i < np->num_rx_rings; i++) { struct rx_ring_info *rp = &np->rx_rings[i]; niu_reset_one_rx_channel(np, rp); } } static void niu_disable_ipp(struct niu *np) { u64 rd, wr, val; int limit; rd = nr64_ipp(IPP_DFIFO_RD_PTR); wr = nr64_ipp(IPP_DFIFO_WR_PTR); limit = 100; while (--limit >= 0 && (rd != wr)) { rd = nr64_ipp(IPP_DFIFO_RD_PTR); wr = nr64_ipp(IPP_DFIFO_WR_PTR); } if (limit < 0 && (rd != 0 && wr != 1)) { netdev_err(np->dev, "IPP would not quiesce, rd_ptr[%llx] wr_ptr[%llx]\n", (unsigned long long)nr64_ipp(IPP_DFIFO_RD_PTR), (unsigned long long)nr64_ipp(IPP_DFIFO_WR_PTR)); } val = nr64_ipp(IPP_CFIG); val &= ~(IPP_CFIG_IPP_ENABLE | IPP_CFIG_DFIFO_ECC_EN | IPP_CFIG_DROP_BAD_CRC | IPP_CFIG_CKSUM_EN); nw64_ipp(IPP_CFIG, val); (void) niu_ipp_reset(np); } static int niu_init_hw(struct niu *np) { int i, err; netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TXC\n"); niu_txc_enable_port(np, 1); niu_txc_port_dma_enable(np, 1); niu_txc_set_imask(np, 0); netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TX channels\n"); for (i = 0; i < np->num_tx_rings; i++) { struct tx_ring_info *rp = &np->tx_rings[i]; err = niu_init_one_tx_channel(np, rp); if (err) return err; } netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize RX channels\n"); err = niu_init_rx_channels(np); if (err) goto out_uninit_tx_channels; netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize classifier\n"); err = niu_init_classifier_hw(np); if (err) goto out_uninit_rx_channels; netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize ZCP\n"); err = niu_init_zcp(np); if (err) goto out_uninit_rx_channels; netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize IPP\n"); err = niu_init_ipp(np); if (err) goto out_uninit_rx_channels; netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize MAC\n"); err = niu_init_mac(np); if (err) goto out_uninit_ipp; return 0; out_uninit_ipp: netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit IPP\n"); niu_disable_ipp(np); out_uninit_rx_channels: netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit RX channels\n"); niu_stop_rx_channels(np); niu_reset_rx_channels(np); out_uninit_tx_channels: netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit TX channels\n"); niu_stop_tx_channels(np); niu_reset_tx_channels(np); return err; } static void niu_stop_hw(struct niu *np) { netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable interrupts\n"); niu_enable_interrupts(np, 0); netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable RX MAC\n"); niu_enable_rx_mac(np, 0); netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable IPP\n"); niu_disable_ipp(np); netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop TX channels\n"); niu_stop_tx_channels(np); netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop RX channels\n"); niu_stop_rx_channels(np); netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset TX channels\n"); niu_reset_tx_channels(np); netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset RX channels\n"); niu_reset_rx_channels(np); } static void niu_set_irq_name(struct niu *np) { int port = np->port; int i, j = 1; sprintf(np->irq_name[0], "%s:MAC", np->dev->name); if (port == 0) { sprintf(np->irq_name[1], "%s:MIF", np->dev->name); sprintf(np->irq_name[2], "%s:SYSERR", np->dev->name); j = 3; } for (i = 0; i < np->num_ldg - j; i++) { if (i < np->num_rx_rings) sprintf(np->irq_name[i+j], "%s-rx-%d", np->dev->name, i); else if (i < np->num_tx_rings + np->num_rx_rings) sprintf(np->irq_name[i+j], "%s-tx-%d", np->dev->name, i - np->num_rx_rings); } } static int niu_request_irq(struct niu *np) { int i, j, err; niu_set_irq_name(np); err = 0; for (i = 0; i < np->num_ldg; i++) { struct niu_ldg *lp = &np->ldg[i]; err = request_irq(lp->irq, niu_interrupt, IRQF_SHARED, np->irq_name[i], lp); if (err) goto out_free_irqs; } return 0; out_free_irqs: for (j = 0; j < i; j++) { struct niu_ldg *lp = &np->ldg[j]; free_irq(lp->irq, lp); } return err; } static void niu_free_irq(struct niu *np) { int i; for (i = 0; i < np->num_ldg; i++) { struct niu_ldg *lp = &np->ldg[i]; free_irq(lp->irq, lp); } } static void niu_enable_napi(struct niu *np) { int i; for (i = 0; i < np->num_ldg; i++) napi_enable(&np->ldg[i].napi); } static void niu_disable_napi(struct niu *np) { int i; for (i = 0; i < np->num_ldg; i++) napi_disable(&np->ldg[i].napi); } static int niu_open(struct net_device *dev) { struct niu *np = netdev_priv(dev); int err; netif_carrier_off(dev); err = niu_alloc_channels(np); if (err) goto out_err; err = niu_enable_interrupts(np, 0); if (err) goto out_free_channels; err = niu_request_irq(np); if (err) goto out_free_channels; niu_enable_napi(np); spin_lock_irq(&np->lock); err = niu_init_hw(np); if (!err) { timer_setup(&np->timer, niu_timer, 0); np->timer.expires = jiffies + HZ; err = niu_enable_interrupts(np, 1); if (err) niu_stop_hw(np); } spin_unlock_irq(&np->lock); if (err) { niu_disable_napi(np); goto out_free_irq; } netif_tx_start_all_queues(dev); if (np->link_config.loopback_mode != LOOPBACK_DISABLED) netif_carrier_on(dev); add_timer(&np->timer); return 0; out_free_irq: niu_free_irq(np); out_free_channels: niu_free_channels(np); out_err: return err; } static void niu_full_shutdown(struct niu *np, struct net_device *dev) { cancel_work_sync(&np->reset_task); niu_disable_napi(np); netif_tx_stop_all_queues(dev); del_timer_sync(&np->timer); spin_lock_irq(&np->lock); niu_stop_hw(np); spin_unlock_irq(&np->lock); } static int niu_close(struct net_device *dev) { struct niu *np = netdev_priv(dev); niu_full_shutdown(np, dev); niu_free_irq(np); niu_free_channels(np); niu_handle_led(np, 0); return 0; } static void niu_sync_xmac_stats(struct niu *np) { struct niu_xmac_stats *mp = &np->mac_stats.xmac; mp->tx_frames += nr64_mac(TXMAC_FRM_CNT); mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT); mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT); mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT); mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT); mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT); mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT); mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1); mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2); mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3); mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4); mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5); mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6); mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7); mp->rx_octets += nr64_mac(RXMAC_BT_CNT); mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT); mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT); mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT); } static void niu_sync_bmac_stats(struct niu *np) { struct niu_bmac_stats *mp = &np->mac_stats.bmac; mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT); mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT); mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT); mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT); mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT); mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT); } static void niu_sync_mac_stats(struct niu *np) { if (np->flags & NIU_FLAGS_XMAC) niu_sync_xmac_stats(np); else niu_sync_bmac_stats(np); } static void niu_get_rx_stats(struct niu *np, struct rtnl_link_stats64 *stats) { u64 pkts, dropped, errors, bytes; struct rx_ring_info *rx_rings; int i; pkts = dropped = errors = bytes = 0; rx_rings = READ_ONCE(np->rx_rings); if (!rx_rings) goto no_rings; for (i = 0; i < np->num_rx_rings; i++) { struct rx_ring_info *rp = &rx_rings[i]; niu_sync_rx_discard_stats(np, rp, 0); pkts += rp->rx_packets; bytes += rp->rx_bytes; dropped += rp->rx_dropped; errors += rp->rx_errors; } no_rings: stats->rx_packets = pkts; stats->rx_bytes = bytes; stats->rx_dropped = dropped; stats->rx_errors = errors; } static void niu_get_tx_stats(struct niu *np, struct rtnl_link_stats64 *stats) { u64 pkts, errors, bytes; struct tx_ring_info *tx_rings; int i; pkts = errors = bytes = 0; tx_rings = READ_ONCE(np->tx_rings); if (!tx_rings) goto no_rings; for (i = 0; i < np->num_tx_rings; i++) { struct tx_ring_info *rp = &tx_rings[i]; pkts += rp->tx_packets; bytes += rp->tx_bytes; errors += rp->tx_errors; } no_rings: stats->tx_packets = pkts; stats->tx_bytes = bytes; stats->tx_errors = errors; } static void niu_get_stats(struct net_device *dev, struct rtnl_link_stats64 *stats) { struct niu *np = netdev_priv(dev); if (netif_running(dev)) { niu_get_rx_stats(np, stats); niu_get_tx_stats(np, stats); } } static void niu_load_hash_xmac(struct niu *np, u16 *hash) { int i; for (i = 0; i < 16; i++) nw64_mac(XMAC_HASH_TBL(i), hash[i]); } static void niu_load_hash_bmac(struct niu *np, u16 *hash) { int i; for (i = 0; i < 16; i++) nw64_mac(BMAC_HASH_TBL(i), hash[i]); } static void niu_load_hash(struct niu *np, u16 *hash) { if (np->flags & NIU_FLAGS_XMAC) niu_load_hash_xmac(np, hash); else niu_load_hash_bmac(np, hash); } static void niu_set_rx_mode(struct net_device *dev) { struct niu *np = netdev_priv(dev); int i, alt_cnt, err; struct netdev_hw_addr *ha; unsigned long flags; u16 hash[16] = { 0, }; spin_lock_irqsave(&np->lock, flags); niu_enable_rx_mac(np, 0); np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC); if (dev->flags & IFF_PROMISC) np->flags |= NIU_FLAGS_PROMISC; if ((dev->flags & IFF_ALLMULTI) || (!netdev_mc_empty(dev))) np->flags |= NIU_FLAGS_MCAST; alt_cnt = netdev_uc_count(dev); if (alt_cnt > niu_num_alt_addr(np)) { alt_cnt = 0; np->flags |= NIU_FLAGS_PROMISC; } if (alt_cnt) { int index = 0; netdev_for_each_uc_addr(ha, dev) { err = niu_set_alt_mac(np, index, ha->addr); if (err) netdev_warn(dev, "Error %d adding alt mac %d\n", err, index); err = niu_enable_alt_mac(np, index, 1); if (err) netdev_warn(dev, "Error %d enabling alt mac %d\n", err, index); index++; } } else { int alt_start; if (np->flags & NIU_FLAGS_XMAC) alt_start = 0; else alt_start = 1; for (i = alt_start; i < niu_num_alt_addr(np); i++) { err = niu_enable_alt_mac(np, i, 0); if (err) netdev_warn(dev, "Error %d disabling alt mac %d\n", err, i); } } if (dev->flags & IFF_ALLMULTI) { for (i = 0; i < 16; i++) hash[i] = 0xffff; } else if (!netdev_mc_empty(dev)) { netdev_for_each_mc_addr(ha, dev) { u32 crc = ether_crc_le(ETH_ALEN, ha->addr); crc >>= 24; hash[crc >> 4] |= (1 << (15 - (crc & 0xf))); } } if (np->flags & NIU_FLAGS_MCAST) niu_load_hash(np, hash); niu_enable_rx_mac(np, 1); spin_unlock_irqrestore(&np->lock, flags); } static int niu_set_mac_addr(struct net_device *dev, void *p) { struct niu *np = netdev_priv(dev); struct sockaddr *addr = p; unsigned long flags; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); if (!netif_running(dev)) return 0; spin_lock_irqsave(&np->lock, flags); niu_enable_rx_mac(np, 0); niu_set_primary_mac(np, dev->dev_addr); niu_enable_rx_mac(np, 1); spin_unlock_irqrestore(&np->lock, flags); return 0; } static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { return -EOPNOTSUPP; } static void niu_netif_stop(struct niu *np) { netif_trans_update(np->dev); /* prevent tx timeout */ niu_disable_napi(np); netif_tx_disable(np->dev); } static void niu_netif_start(struct niu *np) { /* NOTE: unconditional netif_wake_queue is only appropriate * so long as all callers are assured to have free tx slots * (such as after niu_init_hw). */ netif_tx_wake_all_queues(np->dev); niu_enable_napi(np); niu_enable_interrupts(np, 1); } static void niu_reset_buffers(struct niu *np) { int i, j, k, err; if (np->rx_rings) { for (i = 0; i < np->num_rx_rings; i++) { struct rx_ring_info *rp = &np->rx_rings[i]; for (j = 0, k = 0; j < MAX_RBR_RING_SIZE; j++) { struct page *page; page = rp->rxhash[j]; while (page) { struct page *next = (struct page *) page->mapping; u64 base = page->index; base = base >> RBR_DESCR_ADDR_SHIFT; rp->rbr[k++] = cpu_to_le32(base); page = next; } } for (; k < MAX_RBR_RING_SIZE; k++) { err = niu_rbr_add_page(np, rp, GFP_ATOMIC, k); if (unlikely(err)) break; } rp->rbr_index = rp->rbr_table_size - 1; rp->rcr_index = 0; rp->rbr_pending = 0; rp->rbr_refill_pending = 0; } } if (np->tx_rings) { for (i = 0; i < np->num_tx_rings; i++) { struct tx_ring_info *rp = &np->tx_rings[i]; for (j = 0; j < MAX_TX_RING_SIZE; j++) { if (rp->tx_buffs[j].skb) (void) release_tx_packet(np, rp, j); } rp->pending = MAX_TX_RING_SIZE; rp->prod = 0; rp->cons = 0; rp->wrap_bit = 0; } } } static void niu_reset_task(struct work_struct *work) { struct niu *np = container_of(work, struct niu, reset_task); unsigned long flags; int err; spin_lock_irqsave(&np->lock, flags); if (!netif_running(np->dev)) { spin_unlock_irqrestore(&np->lock, flags); return; } spin_unlock_irqrestore(&np->lock, flags); del_timer_sync(&np->timer); niu_netif_stop(np); spin_lock_irqsave(&np->lock, flags); niu_stop_hw(np); spin_unlock_irqrestore(&np->lock, flags); niu_reset_buffers(np); spin_lock_irqsave(&np->lock, flags); err = niu_init_hw(np); if (!err) { np->timer.expires = jiffies + HZ; add_timer(&np->timer); niu_netif_start(np); } spin_unlock_irqrestore(&np->lock, flags); } static void niu_tx_timeout(struct net_device *dev) { struct niu *np = netdev_priv(dev); dev_err(np->device, "%s: Transmit timed out, resetting\n", dev->name); schedule_work(&np->reset_task); } static void niu_set_txd(struct tx_ring_info *rp, int index, u64 mapping, u64 len, u64 mark, u64 n_frags) { __le64 *desc = &rp->descr[index]; *desc = cpu_to_le64(mark | (n_frags << TX_DESC_NUM_PTR_SHIFT) | (len << TX_DESC_TR_LEN_SHIFT) | (mapping & TX_DESC_SAD)); } static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr, u64 pad_bytes, u64 len) { u16 eth_proto, eth_proto_inner; u64 csum_bits, l3off, ihl, ret; u8 ip_proto; int ipv6; eth_proto = be16_to_cpu(ehdr->h_proto); eth_proto_inner = eth_proto; if (eth_proto == ETH_P_8021Q) { struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr; __be16 val = vp->h_vlan_encapsulated_proto; eth_proto_inner = be16_to_cpu(val); } ipv6 = ihl = 0; switch (skb->protocol) { case cpu_to_be16(ETH_P_IP): ip_proto = ip_hdr(skb)->protocol; ihl = ip_hdr(skb)->ihl; break; case cpu_to_be16(ETH_P_IPV6): ip_proto = ipv6_hdr(skb)->nexthdr; ihl = (40 >> 2); ipv6 = 1; break; default: ip_proto = ihl = 0; break; } csum_bits = TXHDR_CSUM_NONE; if (skb->ip_summed == CHECKSUM_PARTIAL) { u64 start, stuff; csum_bits = (ip_proto == IPPROTO_TCP ? TXHDR_CSUM_TCP : (ip_proto == IPPROTO_UDP ? TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP)); start = skb_checksum_start_offset(skb) - (pad_bytes + sizeof(struct tx_pkt_hdr)); stuff = start + skb->csum_offset; csum_bits |= (start / 2) << TXHDR_L4START_SHIFT; csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT; } l3off = skb_network_offset(skb) - (pad_bytes + sizeof(struct tx_pkt_hdr)); ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) | (len << TXHDR_LEN_SHIFT) | ((l3off / 2) << TXHDR_L3START_SHIFT) | (ihl << TXHDR_IHL_SHIFT) | ((eth_proto_inner < ETH_P_802_3_MIN) ? TXHDR_LLC : 0) | ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) | (ipv6 ? TXHDR_IP_VER : 0) | csum_bits); return ret; } static netdev_tx_t niu_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct niu *np = netdev_priv(dev); unsigned long align, headroom; struct netdev_queue *txq; struct tx_ring_info *rp; struct tx_pkt_hdr *tp; unsigned int len, nfg; struct ethhdr *ehdr; int prod, i, tlen; u64 mapping, mrk; i = skb_get_queue_mapping(skb); rp = &np->tx_rings[i]; txq = netdev_get_tx_queue(dev, i); if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) { netif_tx_stop_queue(txq); dev_err(np->device, "%s: BUG! Tx ring full when queue awake!\n", dev->name); rp->tx_errors++; return NETDEV_TX_BUSY; } if (eth_skb_pad(skb)) goto out; len = sizeof(struct tx_pkt_hdr) + 15; if (skb_headroom(skb) < len) { struct sk_buff *skb_new; skb_new = skb_realloc_headroom(skb, len); if (!skb_new) goto out_drop; kfree_skb(skb); skb = skb_new; } else skb_orphan(skb); align = ((unsigned long) skb->data & (16 - 1)); headroom = align + sizeof(struct tx_pkt_hdr); ehdr = (struct ethhdr *) skb->data; tp = skb_push(skb, headroom); len = skb->len - sizeof(struct tx_pkt_hdr); tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len)); tp->resv = 0; len = skb_headlen(skb); mapping = np->ops->map_single(np->device, skb->data, len, DMA_TO_DEVICE); prod = rp->prod; rp->tx_buffs[prod].skb = skb; rp->tx_buffs[prod].mapping = mapping; mrk = TX_DESC_SOP; if (++rp->mark_counter == rp->mark_freq) { rp->mark_counter = 0; mrk |= TX_DESC_MARK; rp->mark_pending++; } tlen = len; nfg = skb_shinfo(skb)->nr_frags; while (tlen > 0) { tlen -= MAX_TX_DESC_LEN; nfg++; } while (len > 0) { unsigned int this_len = len; if (this_len > MAX_TX_DESC_LEN) this_len = MAX_TX_DESC_LEN; niu_set_txd(rp, prod, mapping, this_len, mrk, nfg); mrk = nfg = 0; prod = NEXT_TX(rp, prod); mapping += this_len; len -= this_len; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; len = skb_frag_size(frag); mapping = np->ops->map_page(np->device, skb_frag_page(frag), frag->page_offset, len, DMA_TO_DEVICE); rp->tx_buffs[prod].skb = NULL; rp->tx_buffs[prod].mapping = mapping; niu_set_txd(rp, prod, mapping, len, 0, 0); prod = NEXT_TX(rp, prod); } if (prod < rp->prod) rp->wrap_bit ^= TX_RING_KICK_WRAP; rp->prod = prod; nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3)); if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) { netif_tx_stop_queue(txq); if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)) netif_tx_wake_queue(txq); } out: return NETDEV_TX_OK; out_drop: rp->tx_errors++; kfree_skb(skb); goto out; } static int niu_change_mtu(struct net_device *dev, int new_mtu) { struct niu *np = netdev_priv(dev); int err, orig_jumbo, new_jumbo; orig_jumbo = (dev->mtu > ETH_DATA_LEN); new_jumbo = (new_mtu > ETH_DATA_LEN); dev->mtu = new_mtu; if (!netif_running(dev) || (orig_jumbo == new_jumbo)) return 0; niu_full_shutdown(np, dev); niu_free_channels(np); niu_enable_napi(np); err = niu_alloc_channels(np); if (err) return err; spin_lock_irq(&np->lock); err = niu_init_hw(np); if (!err) { timer_setup(&np->timer, niu_timer, 0); np->timer.expires = jiffies + HZ; err = niu_enable_interrupts(np, 1); if (err) niu_stop_hw(np); } spin_unlock_irq(&np->lock); if (!err) { netif_tx_start_all_queues(dev); if (np->link_config.loopback_mode != LOOPBACK_DISABLED) netif_carrier_on(dev); add_timer(&np->timer); } return err; } static void niu_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct niu *np = netdev_priv(dev); struct niu_vpd *vpd = &np->vpd; strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version)); snprintf(info->fw_version, sizeof(info->fw_version), "%d.%d", vpd->fcode_major, vpd->fcode_minor); if (np->parent->plat_type != PLAT_TYPE_NIU) strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info)); } static int niu_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct niu *np = netdev_priv(dev); struct niu_link_config *lp; lp = &np->link_config; memset(cmd, 0, sizeof(*cmd)); cmd->base.phy_address = np->phy_addr; ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, lp->supported); ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, lp->active_advertising); cmd->base.autoneg = lp->active_autoneg; cmd->base.speed = lp->active_speed; cmd->base.duplex = lp->active_duplex; cmd->base.port = (np->flags & NIU_FLAGS_FIBER) ? PORT_FIBRE : PORT_TP; return 0; } static int niu_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd) { struct niu *np = netdev_priv(dev); struct niu_link_config *lp = &np->link_config; ethtool_convert_link_mode_to_legacy_u32(&lp->advertising, cmd->link_modes.advertising); lp->speed = cmd->base.speed; lp->duplex = cmd->base.duplex; lp->autoneg = cmd->base.autoneg; return niu_init_link(np); } static u32 niu_get_msglevel(struct net_device *dev) { struct niu *np = netdev_priv(dev); return np->msg_enable; } static void niu_set_msglevel(struct net_device *dev, u32 value) { struct niu *np = netdev_priv(dev); np->msg_enable = value; } static int niu_nway_reset(struct net_device *dev) { struct niu *np = netdev_priv(dev); if (np->link_config.autoneg) return niu_init_link(np); return 0; } static int niu_get_eeprom_len(struct net_device *dev) { struct niu *np = netdev_priv(dev); return np->eeprom_len; } static int niu_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) { struct niu *np = netdev_priv(dev); u32 offset, len, val; offset = eeprom->offset; len = eeprom->len; if (offset + len < offset) return -EINVAL; if (offset >= np->eeprom_len) return -EINVAL; if (offset + len > np->eeprom_len) len = eeprom->len = np->eeprom_len - offset; if (offset & 3) { u32 b_offset, b_count; b_offset = offset & 3; b_count = 4 - b_offset; if (b_count > len) b_count = len; val = nr64(ESPC_NCR((offset - b_offset) / 4)); memcpy(data, ((char *)&val) + b_offset, b_count); data += b_count; len -= b_count; offset += b_count; } while (len >= 4) { val = nr64(ESPC_NCR(offset / 4)); memcpy(data, &val, 4); data += 4; len -= 4; offset += 4; } if (len) { val = nr64(ESPC_NCR(offset / 4)); memcpy(data, &val, len); } return 0; } static void niu_ethflow_to_l3proto(int flow_type, u8 *pid) { switch (flow_type) { case TCP_V4_FLOW: case TCP_V6_FLOW: *pid = IPPROTO_TCP; break; case UDP_V4_FLOW: case UDP_V6_FLOW: *pid = IPPROTO_UDP; break; case SCTP_V4_FLOW: case SCTP_V6_FLOW: *pid = IPPROTO_SCTP; break; case AH_V4_FLOW: case AH_V6_FLOW: *pid = IPPROTO_AH; break; case ESP_V4_FLOW: case ESP_V6_FLOW: *pid = IPPROTO_ESP; break; default: *pid = 0; break; } } static int niu_class_to_ethflow(u64 class, int *flow_type) { switch (class) { case CLASS_CODE_TCP_IPV4: *flow_type = TCP_V4_FLOW; break; case CLASS_CODE_UDP_IPV4: *flow_type = UDP_V4_FLOW; break; case CLASS_CODE_AH_ESP_IPV4: *flow_type = AH_V4_FLOW; break; case CLASS_CODE_SCTP_IPV4: *flow_type = SCTP_V4_FLOW; break; case CLASS_CODE_TCP_IPV6: *flow_type = TCP_V6_FLOW; break; case CLASS_CODE_UDP_IPV6: *flow_type = UDP_V6_FLOW; break; case CLASS_CODE_AH_ESP_IPV6: *flow_type = AH_V6_FLOW; break; case CLASS_CODE_SCTP_IPV6: *flow_type = SCTP_V6_FLOW; break; case CLASS_CODE_USER_PROG1: case CLASS_CODE_USER_PROG2: case CLASS_CODE_USER_PROG3: case CLASS_CODE_USER_PROG4: *flow_type = IP_USER_FLOW; break; default: return -EINVAL; } return 0; } static int niu_ethflow_to_class(int flow_type, u64 *class) { switch (flow_type) { case TCP_V4_FLOW: *class = CLASS_CODE_TCP_IPV4; break; case UDP_V4_FLOW: *class = CLASS_CODE_UDP_IPV4; break; case AH_ESP_V4_FLOW: case AH_V4_FLOW: case ESP_V4_FLOW: *class = CLASS_CODE_AH_ESP_IPV4; break; case SCTP_V4_FLOW: *class = CLASS_CODE_SCTP_IPV4; break; case TCP_V6_FLOW: *class = CLASS_CODE_TCP_IPV6; break; case UDP_V6_FLOW: *class = CLASS_CODE_UDP_IPV6; break; case AH_ESP_V6_FLOW: case AH_V6_FLOW: case ESP_V6_FLOW: *class = CLASS_CODE_AH_ESP_IPV6; break; case SCTP_V6_FLOW: *class = CLASS_CODE_SCTP_IPV6; break; default: return 0; } return 1; } static u64 niu_flowkey_to_ethflow(u64 flow_key) { u64 ethflow = 0; if (flow_key & FLOW_KEY_L2DA) ethflow |= RXH_L2DA; if (flow_key & FLOW_KEY_VLAN) ethflow |= RXH_VLAN; if (flow_key & FLOW_KEY_IPSA) ethflow |= RXH_IP_SRC; if (flow_key & FLOW_KEY_IPDA) ethflow |= RXH_IP_DST; if (flow_key & FLOW_KEY_PROTO) ethflow |= RXH_L3_PROTO; if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT)) ethflow |= RXH_L4_B_0_1; if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT)) ethflow |= RXH_L4_B_2_3; return ethflow; } static int niu_ethflow_to_flowkey(u64 ethflow, u64 *flow_key) { u64 key = 0; if (ethflow & RXH_L2DA) key |= FLOW_KEY_L2DA; if (ethflow & RXH_VLAN) key |= FLOW_KEY_VLAN; if (ethflow & RXH_IP_SRC) key |= FLOW_KEY_IPSA; if (ethflow & RXH_IP_DST) key |= FLOW_KEY_IPDA; if (ethflow & RXH_L3_PROTO) key |= FLOW_KEY_PROTO; if (ethflow & RXH_L4_B_0_1) key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT); if (ethflow & RXH_L4_B_2_3) key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT); *flow_key = key; return 1; } static int niu_get_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc) { u64 class; nfc->data = 0; if (!niu_ethflow_to_class(nfc->flow_type, &class)) return -EINVAL; if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] & TCAM_KEY_DISC) nfc->data = RXH_DISCARD; else nfc->data = niu_flowkey_to_ethflow(np->parent->flow_key[class - CLASS_CODE_USER_PROG1]); return 0; } static void niu_get_ip4fs_from_tcam_key(struct niu_tcam_entry *tp, struct ethtool_rx_flow_spec *fsp) { u32 tmp; u16 prt; tmp = (tp->key[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT; fsp->h_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp); tmp = (tp->key[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT; fsp->h_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp); tmp = (tp->key_mask[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT; fsp->m_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp); tmp = (tp->key_mask[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT; fsp->m_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp); fsp->h_u.tcp_ip4_spec.tos = (tp->key[2] & TCAM_V4KEY2_TOS) >> TCAM_V4KEY2_TOS_SHIFT; fsp->m_u.tcp_ip4_spec.tos = (tp->key_mask[2] & TCAM_V4KEY2_TOS) >> TCAM_V4KEY2_TOS_SHIFT; switch (fsp->flow_type) { case TCP_V4_FLOW: case UDP_V4_FLOW: case SCTP_V4_FLOW: prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >> TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16; fsp->h_u.tcp_ip4_spec.psrc = cpu_to_be16(prt); prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >> TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff; fsp->h_u.tcp_ip4_spec.pdst = cpu_to_be16(prt); prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >> TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16; fsp->m_u.tcp_ip4_spec.psrc = cpu_to_be16(prt); prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >> TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff; fsp->m_u.tcp_ip4_spec.pdst = cpu_to_be16(prt); break; case AH_V4_FLOW: case ESP_V4_FLOW: tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >> TCAM_V4KEY2_PORT_SPI_SHIFT; fsp->h_u.ah_ip4_spec.spi = cpu_to_be32(tmp); tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >> TCAM_V4KEY2_PORT_SPI_SHIFT; fsp->m_u.ah_ip4_spec.spi = cpu_to_be32(tmp); break; case IP_USER_FLOW: tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >> TCAM_V4KEY2_PORT_SPI_SHIFT; fsp->h_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp); tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >> TCAM_V4KEY2_PORT_SPI_SHIFT; fsp->m_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp); fsp->h_u.usr_ip4_spec.proto = (tp->key[2] & TCAM_V4KEY2_PROTO) >> TCAM_V4KEY2_PROTO_SHIFT; fsp->m_u.usr_ip4_spec.proto = (tp->key_mask[2] & TCAM_V4KEY2_PROTO) >> TCAM_V4KEY2_PROTO_SHIFT; fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4; break; default: break; } } static int niu_get_ethtool_tcam_entry(struct niu *np, struct ethtool_rxnfc *nfc) { struct niu_parent *parent = np->parent; struct niu_tcam_entry *tp; struct ethtool_rx_flow_spec *fsp = &nfc->fs; u16 idx; u64 class; int ret = 0; idx = tcam_get_index(np, (u16)nfc->fs.location); tp = &parent->tcam[idx]; if (!tp->valid) { netdev_info(np->dev, "niu%d: entry [%d] invalid for idx[%d]\n", parent->index, (u16)nfc->fs.location, idx); return -EINVAL; } /* fill the flow spec entry */ class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >> TCAM_V4KEY0_CLASS_CODE_SHIFT; ret = niu_class_to_ethflow(class, &fsp->flow_type); if (ret < 0) { netdev_info(np->dev, "niu%d: niu_class_to_ethflow failed\n", parent->index); goto out; } if (fsp->flow_type == AH_V4_FLOW || fsp->flow_type == AH_V6_FLOW) { u32 proto = (tp->key[2] & TCAM_V4KEY2_PROTO) >> TCAM_V4KEY2_PROTO_SHIFT; if (proto == IPPROTO_ESP) { if (fsp->flow_type == AH_V4_FLOW) fsp->flow_type = ESP_V4_FLOW; else fsp->flow_type = ESP_V6_FLOW; } } switch (fsp->flow_type) { case TCP_V4_FLOW: case UDP_V4_FLOW: case SCTP_V4_FLOW: case AH_V4_FLOW: case ESP_V4_FLOW: niu_get_ip4fs_from_tcam_key(tp, fsp); break; case TCP_V6_FLOW: case UDP_V6_FLOW: case SCTP_V6_FLOW: case AH_V6_FLOW: case ESP_V6_FLOW: /* Not yet implemented */ ret = -EINVAL; break; case IP_USER_FLOW: niu_get_ip4fs_from_tcam_key(tp, fsp); break; default: ret = -EINVAL; break; } if (ret < 0) goto out; if (tp->assoc_data & TCAM_ASSOCDATA_DISC) fsp->ring_cookie = RX_CLS_FLOW_DISC; else fsp->ring_cookie = (tp->assoc_data & TCAM_ASSOCDATA_OFFSET) >> TCAM_ASSOCDATA_OFFSET_SHIFT; /* put the tcam size here */ nfc->data = tcam_get_size(np); out: return ret; } static int niu_get_ethtool_tcam_all(struct niu *np, struct ethtool_rxnfc *nfc, u32 *rule_locs) { struct niu_parent *parent = np->parent; struct niu_tcam_entry *tp; int i, idx, cnt; unsigned long flags; int ret = 0; /* put the tcam size here */ nfc->data = tcam_get_size(np); niu_lock_parent(np, flags); for (cnt = 0, i = 0; i < nfc->data; i++) { idx = tcam_get_index(np, i); tp = &parent->tcam[idx]; if (!tp->valid) continue; if (cnt == nfc->rule_cnt) { ret = -EMSGSIZE; break; } rule_locs[cnt] = i; cnt++; } niu_unlock_parent(np, flags); nfc->rule_cnt = cnt; return ret; } static int niu_get_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd, u32 *rule_locs) { struct niu *np = netdev_priv(dev); int ret = 0; switch (cmd->cmd) { case ETHTOOL_GRXFH: ret = niu_get_hash_opts(np, cmd); break; case ETHTOOL_GRXRINGS: cmd->data = np->num_rx_rings; break; case ETHTOOL_GRXCLSRLCNT: cmd->rule_cnt = tcam_get_valid_entry_cnt(np); break; case ETHTOOL_GRXCLSRULE: ret = niu_get_ethtool_tcam_entry(np, cmd); break; case ETHTOOL_GRXCLSRLALL: ret = niu_get_ethtool_tcam_all(np, cmd, rule_locs); break; default: ret = -EINVAL; break; } return ret; } static int niu_set_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc) { u64 class; u64 flow_key = 0; unsigned long flags; if (!niu_ethflow_to_class(nfc->flow_type, &class)) return -EINVAL; if (class < CLASS_CODE_USER_PROG1 || class > CLASS_CODE_SCTP_IPV6) return -EINVAL; if (nfc->data & RXH_DISCARD) { niu_lock_parent(np, flags); flow_key = np->parent->tcam_key[class - CLASS_CODE_USER_PROG1]; flow_key |= TCAM_KEY_DISC; nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key); np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key; niu_unlock_parent(np, flags); return 0; } else { /* Discard was set before, but is not set now */ if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] & TCAM_KEY_DISC) { niu_lock_parent(np, flags); flow_key = np->parent->tcam_key[class - CLASS_CODE_USER_PROG1]; flow_key &= ~TCAM_KEY_DISC; nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key); np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key; niu_unlock_parent(np, flags); } } if (!niu_ethflow_to_flowkey(nfc->data, &flow_key)) return -EINVAL; niu_lock_parent(np, flags); nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1), flow_key); np->parent->flow_key[class - CLASS_CODE_USER_PROG1] = flow_key; niu_unlock_parent(np, flags); return 0; } static void niu_get_tcamkey_from_ip4fs(struct ethtool_rx_flow_spec *fsp, struct niu_tcam_entry *tp, int l2_rdc_tab, u64 class) { u8 pid = 0; u32 sip, dip, sipm, dipm, spi, spim; u16 sport, dport, spm, dpm; sip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4src); sipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4src); dip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4dst); dipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4dst); tp->key[0] = class << TCAM_V4KEY0_CLASS_CODE_SHIFT; tp->key_mask[0] = TCAM_V4KEY0_CLASS_CODE; tp->key[1] = (u64)l2_rdc_tab << TCAM_V4KEY1_L2RDCNUM_SHIFT; tp->key_mask[1] = TCAM_V4KEY1_L2RDCNUM; tp->key[3] = (u64)sip << TCAM_V4KEY3_SADDR_SHIFT; tp->key[3] |= dip; tp->key_mask[3] = (u64)sipm << TCAM_V4KEY3_SADDR_SHIFT; tp->key_mask[3] |= dipm; tp->key[2] |= ((u64)fsp->h_u.tcp_ip4_spec.tos << TCAM_V4KEY2_TOS_SHIFT); tp->key_mask[2] |= ((u64)fsp->m_u.tcp_ip4_spec.tos << TCAM_V4KEY2_TOS_SHIFT); switch (fsp->flow_type) { case TCP_V4_FLOW: case UDP_V4_FLOW: case SCTP_V4_FLOW: sport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.psrc); spm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.psrc); dport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.pdst); dpm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.pdst); tp->key[2] |= (((u64)sport << 16) | dport); tp->key_mask[2] |= (((u64)spm << 16) | dpm); niu_ethflow_to_l3proto(fsp->flow_type, &pid); break; case AH_V4_FLOW: case ESP_V4_FLOW: spi = be32_to_cpu(fsp->h_u.ah_ip4_spec.spi); spim = be32_to_cpu(fsp->m_u.ah_ip4_spec.spi); tp->key[2] |= spi; tp->key_mask[2] |= spim; niu_ethflow_to_l3proto(fsp->flow_type, &pid); break; case IP_USER_FLOW: spi = be32_to_cpu(fsp->h_u.usr_ip4_spec.l4_4_bytes); spim = be32_to_cpu(fsp->m_u.usr_ip4_spec.l4_4_bytes); tp->key[2] |= spi; tp->key_mask[2] |= spim; pid = fsp->h_u.usr_ip4_spec.proto; break; default: break; } tp->key[2] |= ((u64)pid << TCAM_V4KEY2_PROTO_SHIFT); if (pid) { tp->key_mask[2] |= TCAM_V4KEY2_PROTO; } } static int niu_add_ethtool_tcam_entry(struct niu *np, struct ethtool_rxnfc *nfc) { struct niu_parent *parent = np->parent; struct niu_tcam_entry *tp; struct ethtool_rx_flow_spec *fsp = &nfc->fs; struct niu_rdc_tables *rdc_table = &parent->rdc_group_cfg[np->port]; int l2_rdc_table = rdc_table->first_table_num; u16 idx; u64 class; unsigned long flags; int err, ret; ret = 0; idx = nfc->fs.location; if (idx >= tcam_get_size(np)) return -EINVAL; if (fsp->flow_type == IP_USER_FLOW) { int i; int add_usr_cls = 0; struct ethtool_usrip4_spec *uspec = &fsp->h_u.usr_ip4_spec; struct ethtool_usrip4_spec *umask = &fsp->m_u.usr_ip4_spec; if (uspec->ip_ver != ETH_RX_NFC_IP4) return -EINVAL; niu_lock_parent(np, flags); for (i = 0; i < NIU_L3_PROG_CLS; i++) { if (parent->l3_cls[i]) { if (uspec->proto == parent->l3_cls_pid[i]) { class = parent->l3_cls[i]; parent->l3_cls_refcnt[i]++; add_usr_cls = 1; break; } } else { /* Program new user IP class */ switch (i) { case 0: class = CLASS_CODE_USER_PROG1; break; case 1: class = CLASS_CODE_USER_PROG2; break; case 2: class = CLASS_CODE_USER_PROG3; break; case 3: class = CLASS_CODE_USER_PROG4; break; default: break; } ret = tcam_user_ip_class_set(np, class, 0, uspec->proto, uspec->tos, umask->tos); if (ret) goto out; ret = tcam_user_ip_class_enable(np, class, 1); if (ret) goto out; parent->l3_cls[i] = class; parent->l3_cls_pid[i] = uspec->proto; parent->l3_cls_refcnt[i]++; add_usr_cls = 1; break; } } if (!add_usr_cls) { netdev_info(np->dev, "niu%d: %s(): Could not find/insert class for pid %d\n", parent->index, __func__, uspec->proto); ret = -EINVAL; goto out; } niu_unlock_parent(np, flags); } else { if (!niu_ethflow_to_class(fsp->flow_type, &class)) { return -EINVAL; } } niu_lock_parent(np, flags); idx = tcam_get_index(np, idx); tp = &parent->tcam[idx]; memset(tp, 0, sizeof(*tp)); /* fill in the tcam key and mask */ switch (fsp->flow_type) { case TCP_V4_FLOW: case UDP_V4_FLOW: case SCTP_V4_FLOW: case AH_V4_FLOW: case ESP_V4_FLOW: niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class); break; case TCP_V6_FLOW: case UDP_V6_FLOW: case SCTP_V6_FLOW: case AH_V6_FLOW: case ESP_V6_FLOW: /* Not yet implemented */ netdev_info(np->dev, "niu%d: In %s(): flow %d for IPv6 not implemented\n", parent->index, __func__, fsp->flow_type); ret = -EINVAL; goto out; case IP_USER_FLOW: niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class); break; default: netdev_info(np->dev, "niu%d: In %s(): Unknown flow type %d\n", parent->index, __func__, fsp->flow_type); ret = -EINVAL; goto out; } /* fill in the assoc data */ if (fsp->ring_cookie == RX_CLS_FLOW_DISC) { tp->assoc_data = TCAM_ASSOCDATA_DISC; } else { if (fsp->ring_cookie >= np->num_rx_rings) { netdev_info(np->dev, "niu%d: In %s(): Invalid RX ring %lld\n", parent->index, __func__, (long long)fsp->ring_cookie); ret = -EINVAL; goto out; } tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET | (fsp->ring_cookie << TCAM_ASSOCDATA_OFFSET_SHIFT)); } err = tcam_write(np, idx, tp->key, tp->key_mask); if (err) { ret = -EINVAL; goto out; } err = tcam_assoc_write(np, idx, tp->assoc_data); if (err) { ret = -EINVAL; goto out; } /* validate the entry */ tp->valid = 1; np->clas.tcam_valid_entries++; out: niu_unlock_parent(np, flags); return ret; } static int niu_del_ethtool_tcam_entry(struct niu *np, u32 loc) { struct niu_parent *parent = np->parent; struct niu_tcam_entry *tp; u16 idx; unsigned long flags; u64 class; int ret = 0; if (loc >= tcam_get_size(np)) return -EINVAL; niu_lock_parent(np, flags); idx = tcam_get_index(np, loc); tp = &parent->tcam[idx]; /* if the entry is of a user defined class, then update*/ class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >> TCAM_V4KEY0_CLASS_CODE_SHIFT; if (class >= CLASS_CODE_USER_PROG1 && class <= CLASS_CODE_USER_PROG4) { int i; for (i = 0; i < NIU_L3_PROG_CLS; i++) { if (parent->l3_cls[i] == class) { parent->l3_cls_refcnt[i]--; if (!parent->l3_cls_refcnt[i]) { /* disable class */ ret = tcam_user_ip_class_enable(np, class, 0); if (ret) goto out; parent->l3_cls[i] = 0; parent->l3_cls_pid[i] = 0; } break; } } if (i == NIU_L3_PROG_CLS) { netdev_info(np->dev, "niu%d: In %s(): Usr class 0x%llx not found\n", parent->index, __func__, (unsigned long long)class); ret = -EINVAL; goto out; } } ret = tcam_flush(np, idx); if (ret) goto out; /* invalidate the entry */ tp->valid = 0; np->clas.tcam_valid_entries--; out: niu_unlock_parent(np, flags); return ret; } static int niu_set_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd) { struct niu *np = netdev_priv(dev); int ret = 0; switch (cmd->cmd) { case ETHTOOL_SRXFH: ret = niu_set_hash_opts(np, cmd); break; case ETHTOOL_SRXCLSRLINS: ret = niu_add_ethtool_tcam_entry(np, cmd); break; case ETHTOOL_SRXCLSRLDEL: ret = niu_del_ethtool_tcam_entry(np, cmd->fs.location); break; default: ret = -EINVAL; break; } return ret; } static const struct { const char string[ETH_GSTRING_LEN]; } niu_xmac_stat_keys[] = { { "tx_frames" }, { "tx_bytes" }, { "tx_fifo_errors" }, { "tx_overflow_errors" }, { "tx_max_pkt_size_errors" }, { "tx_underflow_errors" }, { "rx_local_faults" }, { "rx_remote_faults" }, { "rx_link_faults" }, { "rx_align_errors" }, { "rx_frags" }, { "rx_mcasts" }, { "rx_bcasts" }, { "rx_hist_cnt1" }, { "rx_hist_cnt2" }, { "rx_hist_cnt3" }, { "rx_hist_cnt4" }, { "rx_hist_cnt5" }, { "rx_hist_cnt6" }, { "rx_hist_cnt7" }, { "rx_octets" }, { "rx_code_violations" }, { "rx_len_errors" }, { "rx_crc_errors" }, { "rx_underflows" }, { "rx_overflows" }, { "pause_off_state" }, { "pause_on_state" }, { "pause_received" }, }; #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys) static const struct { const char string[ETH_GSTRING_LEN]; } niu_bmac_stat_keys[] = { { "tx_underflow_errors" }, { "tx_max_pkt_size_errors" }, { "tx_bytes" }, { "tx_frames" }, { "rx_overflows" }, { "rx_frames" }, { "rx_align_errors" }, { "rx_crc_errors" }, { "rx_len_errors" }, { "pause_off_state" }, { "pause_on_state" }, { "pause_received" }, }; #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys) static const struct { const char string[ETH_GSTRING_LEN]; } niu_rxchan_stat_keys[] = { { "rx_channel" }, { "rx_packets" }, { "rx_bytes" }, { "rx_dropped" }, { "rx_errors" }, }; #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys) static const struct { const char string[ETH_GSTRING_LEN]; } niu_txchan_stat_keys[] = { { "tx_channel" }, { "tx_packets" }, { "tx_bytes" }, { "tx_errors" }, }; #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys) static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data) { struct niu *np = netdev_priv(dev); int i; if (stringset != ETH_SS_STATS) return; if (np->flags & NIU_FLAGS_XMAC) { memcpy(data, niu_xmac_stat_keys, sizeof(niu_xmac_stat_keys)); data += sizeof(niu_xmac_stat_keys); } else { memcpy(data, niu_bmac_stat_keys, sizeof(niu_bmac_stat_keys)); data += sizeof(niu_bmac_stat_keys); } for (i = 0; i < np->num_rx_rings; i++) { memcpy(data, niu_rxchan_stat_keys, sizeof(niu_rxchan_stat_keys)); data += sizeof(niu_rxchan_stat_keys); } for (i = 0; i < np->num_tx_rings; i++) { memcpy(data, niu_txchan_stat_keys, sizeof(niu_txchan_stat_keys)); data += sizeof(niu_txchan_stat_keys); } } static int niu_get_sset_count(struct net_device *dev, int stringset) { struct niu *np = netdev_priv(dev); if (stringset != ETH_SS_STATS) return -EINVAL; return (np->flags & NIU_FLAGS_XMAC ? NUM_XMAC_STAT_KEYS : NUM_BMAC_STAT_KEYS) + (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) + (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS); } static void niu_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct niu *np = netdev_priv(dev); int i; niu_sync_mac_stats(np); if (np->flags & NIU_FLAGS_XMAC) { memcpy(data, &np->mac_stats.xmac, sizeof(struct niu_xmac_stats)); data += (sizeof(struct niu_xmac_stats) / sizeof(u64)); } else { memcpy(data, &np->mac_stats.bmac, sizeof(struct niu_bmac_stats)); data += (sizeof(struct niu_bmac_stats) / sizeof(u64)); } for (i = 0; i < np->num_rx_rings; i++) { struct rx_ring_info *rp = &np->rx_rings[i]; niu_sync_rx_discard_stats(np, rp, 0); data[0] = rp->rx_channel; data[1] = rp->rx_packets; data[2] = rp->rx_bytes; data[3] = rp->rx_dropped; data[4] = rp->rx_errors; data += 5; } for (i = 0; i < np->num_tx_rings; i++) { struct tx_ring_info *rp = &np->tx_rings[i]; data[0] = rp->tx_channel; data[1] = rp->tx_packets; data[2] = rp->tx_bytes; data[3] = rp->tx_errors; data += 4; } } static u64 niu_led_state_save(struct niu *np) { if (np->flags & NIU_FLAGS_XMAC) return nr64_mac(XMAC_CONFIG); else return nr64_mac(BMAC_XIF_CONFIG); } static void niu_led_state_restore(struct niu *np, u64 val) { if (np->flags & NIU_FLAGS_XMAC) nw64_mac(XMAC_CONFIG, val); else nw64_mac(BMAC_XIF_CONFIG, val); } static void niu_force_led(struct niu *np, int on) { u64 val, reg, bit; if (np->flags & NIU_FLAGS_XMAC) { reg = XMAC_CONFIG; bit = XMAC_CONFIG_FORCE_LED_ON; } else { reg = BMAC_XIF_CONFIG; bit = BMAC_XIF_CONFIG_LINK_LED; } val = nr64_mac(reg); if (on) val |= bit; else val &= ~bit; nw64_mac(reg, val); } static int niu_set_phys_id(struct net_device *dev, enum ethtool_phys_id_state state) { struct niu *np = netdev_priv(dev); if (!netif_running(dev)) return -EAGAIN; switch (state) { case ETHTOOL_ID_ACTIVE: np->orig_led_state = niu_led_state_save(np); return 1; /* cycle on/off once per second */ case ETHTOOL_ID_ON: niu_force_led(np, 1); break; case ETHTOOL_ID_OFF: niu_force_led(np, 0); break; case ETHTOOL_ID_INACTIVE: niu_led_state_restore(np, np->orig_led_state); } return 0; } static const struct ethtool_ops niu_ethtool_ops = { .get_drvinfo = niu_get_drvinfo, .get_link = ethtool_op_get_link, .get_msglevel = niu_get_msglevel, .set_msglevel = niu_set_msglevel, .nway_reset = niu_nway_reset, .get_eeprom_len = niu_get_eeprom_len, .get_eeprom = niu_get_eeprom, .get_strings = niu_get_strings, .get_sset_count = niu_get_sset_count, .get_ethtool_stats = niu_get_ethtool_stats, .set_phys_id = niu_set_phys_id, .get_rxnfc = niu_get_nfc, .set_rxnfc = niu_set_nfc, .get_link_ksettings = niu_get_link_ksettings, .set_link_ksettings = niu_set_link_ksettings, }; static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent, int ldg, int ldn) { if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) return -EINVAL; if (ldn < 0 || ldn > LDN_MAX) return -EINVAL; parent->ldg_map[ldn] = ldg; if (np->parent->plat_type == PLAT_TYPE_NIU) { /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by * the firmware, and we're not supposed to change them. * Validate the mapping, because if it's wrong we probably * won't get any interrupts and that's painful to debug. */ if (nr64(LDG_NUM(ldn)) != ldg) { dev_err(np->device, "Port %u, mis-matched LDG assignment for ldn %d, should be %d is %llu\n", np->port, ldn, ldg, (unsigned long long) nr64(LDG_NUM(ldn))); return -EINVAL; } } else nw64(LDG_NUM(ldn), ldg); return 0; } static int niu_set_ldg_timer_res(struct niu *np, int res) { if (res < 0 || res > LDG_TIMER_RES_VAL) return -EINVAL; nw64(LDG_TIMER_RES, res); return 0; } static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector) { if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) || (func < 0 || func > 3) || (vector < 0 || vector > 0x1f)) return -EINVAL; nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector); return 0; } static int niu_pci_eeprom_read(struct niu *np, u32 addr) { u64 frame, frame_base = (ESPC_PIO_STAT_READ_START | (addr << ESPC_PIO_STAT_ADDR_SHIFT)); int limit; if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT)) return -EINVAL; frame = frame_base; nw64(ESPC_PIO_STAT, frame); limit = 64; do { udelay(5); frame = nr64(ESPC_PIO_STAT); if (frame & ESPC_PIO_STAT_READ_END) break; } while (limit--); if (!(frame & ESPC_PIO_STAT_READ_END)) { dev_err(np->device, "EEPROM read timeout frame[%llx]\n", (unsigned long long) frame); return -ENODEV; } frame = frame_base; nw64(ESPC_PIO_STAT, frame); limit = 64; do { udelay(5); frame = nr64(ESPC_PIO_STAT); if (frame & ESPC_PIO_STAT_READ_END) break; } while (limit--); if (!(frame & ESPC_PIO_STAT_READ_END)) { dev_err(np->device, "EEPROM read timeout frame[%llx]\n", (unsigned long long) frame); return -ENODEV; } frame = nr64(ESPC_PIO_STAT); return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT; } static int niu_pci_eeprom_read16(struct niu *np, u32 off) { int err = niu_pci_eeprom_read(np, off); u16 val; if (err < 0) return err; val = (err << 8); err = niu_pci_eeprom_read(np, off + 1); if (err < 0) return err; val |= (err & 0xff); return val; } static int niu_pci_eeprom_read16_swp(struct niu *np, u32 off) { int err = niu_pci_eeprom_read(np, off); u16 val; if (err < 0) return err; val = (err & 0xff); err = niu_pci_eeprom_read(np, off + 1); if (err < 0) return err; val |= (err & 0xff) << 8; return val; } static int niu_pci_vpd_get_propname(struct niu *np, u32 off, char *namebuf, int namebuf_len) { int i; for (i = 0; i < namebuf_len; i++) { int err = niu_pci_eeprom_read(np, off + i); if (err < 0) return err; *namebuf++ = err; if (!err) break; } if (i >= namebuf_len) return -EINVAL; return i + 1; } static void niu_vpd_parse_version(struct niu *np) { struct niu_vpd *vpd = &np->vpd; int len = strlen(vpd->version) + 1; const char *s = vpd->version; int i; for (i = 0; i < len - 5; i++) { if (!strncmp(s + i, "FCode ", 6)) break; } if (i >= len - 5) return; s += i + 5; sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor); netif_printk(np, probe, KERN_DEBUG, np->dev, "VPD_SCAN: FCODE major(%d) minor(%d)\n", vpd->fcode_major, vpd->fcode_minor); if (vpd->fcode_major > NIU_VPD_MIN_MAJOR || (vpd->fcode_major == NIU_VPD_MIN_MAJOR && vpd->fcode_minor >= NIU_VPD_MIN_MINOR)) np->flags |= NIU_FLAGS_VPD_VALID; } /* ESPC_PIO_EN_ENABLE must be set */ static int niu_pci_vpd_scan_props(struct niu *np, u32 start, u32 end) { unsigned int found_mask = 0; #define FOUND_MASK_MODEL 0x00000001 #define FOUND_MASK_BMODEL 0x00000002 #define FOUND_MASK_VERS 0x00000004 #define FOUND_MASK_MAC 0x00000008 #define FOUND_MASK_NMAC 0x00000010 #define FOUND_MASK_PHY 0x00000020 #define FOUND_MASK_ALL 0x0000003f netif_printk(np, probe, KERN_DEBUG, np->dev, "VPD_SCAN: start[%x] end[%x]\n", start, end); while (start < end) { int len, err, prop_len; char namebuf[64]; u8 *prop_buf; int max_len; if (found_mask == FOUND_MASK_ALL) { niu_vpd_parse_version(np); return 1; } err = niu_pci_eeprom_read(np, start + 2); if (err < 0) return err; len = err; start += 3; prop_len = niu_pci_eeprom_read(np, start + 4); if (prop_len < 0) return prop_len; err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64); if (err < 0) return err; prop_buf = NULL; max_len = 0; if (!strcmp(namebuf, "model")) { prop_buf = np->vpd.model; max_len = NIU_VPD_MODEL_MAX; found_mask |= FOUND_MASK_MODEL; } else if (!strcmp(namebuf, "board-model")) { prop_buf = np->vpd.board_model; max_len = NIU_VPD_BD_MODEL_MAX; found_mask |= FOUND_MASK_BMODEL; } else if (!strcmp(namebuf, "version")) { prop_buf = np->vpd.version; max_len = NIU_VPD_VERSION_MAX; found_mask |= FOUND_MASK_VERS; } else if (!strcmp(namebuf, "local-mac-address")) { prop_buf = np->vpd.local_mac; max_len = ETH_ALEN; found_mask |= FOUND_MASK_MAC; } else if (!strcmp(namebuf, "num-mac-addresses")) { prop_buf = &np->vpd.mac_num; max_len = 1; found_mask |= FOUND_MASK_NMAC; } else if (!strcmp(namebuf, "phy-type")) { prop_buf = np->vpd.phy_type; max_len = NIU_VPD_PHY_TYPE_MAX; found_mask |= FOUND_MASK_PHY; } if (max_len && prop_len > max_len) { dev_err(np->device, "Property '%s' length (%d) is too long\n", namebuf, prop_len); return -EINVAL; } if (prop_buf) { u32 off = start + 5 + err; int i; netif_printk(np, probe, KERN_DEBUG, np->dev, "VPD_SCAN: Reading in property [%s] len[%d]\n", namebuf, prop_len); for (i = 0; i < prop_len; i++) { err = niu_pci_eeprom_read(np, off + i); if (err < 0) return err; *prop_buf++ = err; } } start += len; } return 0; } /* ESPC_PIO_EN_ENABLE must be set */ static int niu_pci_vpd_fetch(struct niu *np, u32 start) { u32 offset; int err; err = niu_pci_eeprom_read16_swp(np, start + 1); if (err < 0) return err; offset = err + 3; while (start + offset < ESPC_EEPROM_SIZE) { u32 here = start + offset; u32 end; err = niu_pci_eeprom_read(np, here); if (err < 0) return err; if (err != 0x90) return -EINVAL; err = niu_pci_eeprom_read16_swp(np, here + 1); if (err < 0) return err; here = start + offset + 3; end = start + offset + err; offset += err; err = niu_pci_vpd_scan_props(np, here, end); if (err < 0) return err; /* ret == 1 is not an error */ if (err == 1) return 0; } return 0; } /* ESPC_PIO_EN_ENABLE must be set */ static u32 niu_pci_vpd_offset(struct niu *np) { u32 start = 0, end = ESPC_EEPROM_SIZE, ret; int err; while (start < end) { ret = start; /* ROM header signature? */ err = niu_pci_eeprom_read16(np, start + 0); if (err != 0x55aa) return 0; /* Apply offset to PCI data structure. */ err = niu_pci_eeprom_read16(np, start + 23); if (err < 0) return 0; start += err; /* Check for "PCIR" signature. */ err = niu_pci_eeprom_read16(np, start + 0); if (err != 0x5043) return 0; err = niu_pci_eeprom_read16(np, start + 2); if (err != 0x4952) return 0; /* Check for OBP image type. */ err = niu_pci_eeprom_read(np, start + 20); if (err < 0) return 0; if (err != 0x01) { err = niu_pci_eeprom_read(np, ret + 2); if (err < 0) return 0; start = ret + (err * 512); continue; } err = niu_pci_eeprom_read16_swp(np, start + 8); if (err < 0) return err; ret += err; err = niu_pci_eeprom_read(np, ret + 0); if (err != 0x82) return 0; return ret; } return 0; } static int niu_phy_type_prop_decode(struct niu *np, const char *phy_prop) { if (!strcmp(phy_prop, "mif")) { /* 1G copper, MII */ np->flags &= ~(NIU_FLAGS_FIBER | NIU_FLAGS_10G); np->mac_xcvr = MAC_XCVR_MII; } else if (!strcmp(phy_prop, "xgf")) { /* 10G fiber, XPCS */ np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER); np->mac_xcvr = MAC_XCVR_XPCS; } else if (!strcmp(phy_prop, "pcs")) { /* 1G fiber, PCS */ np->flags &= ~NIU_FLAGS_10G; np->flags |= NIU_FLAGS_FIBER; np->mac_xcvr = MAC_XCVR_PCS; } else if (!strcmp(phy_prop, "xgc")) { /* 10G copper, XPCS */ np->flags |= NIU_FLAGS_10G; np->flags &= ~NIU_FLAGS_FIBER; np->mac_xcvr = MAC_XCVR_XPCS; } else if (!strcmp(phy_prop, "xgsd") || !strcmp(phy_prop, "gsd")) { /* 10G Serdes or 1G Serdes, default to 10G */ np->flags |= NIU_FLAGS_10G; np->flags &= ~NIU_FLAGS_FIBER; np->flags |= NIU_FLAGS_XCVR_SERDES; np->mac_xcvr = MAC_XCVR_XPCS; } else { return -EINVAL; } return 0; } static int niu_pci_vpd_get_nports(struct niu *np) { int ports = 0; if ((!strcmp(np->vpd.model, NIU_QGC_LP_MDL_STR)) || (!strcmp(np->vpd.model, NIU_QGC_PEM_MDL_STR)) || (!strcmp(np->vpd.model, NIU_MARAMBA_MDL_STR)) || (!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) || (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR))) { ports = 4; } else if ((!strcmp(np->vpd.model, NIU_2XGF_LP_MDL_STR)) || (!strcmp(np->vpd.model, NIU_2XGF_PEM_MDL_STR)) || (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) || (!strcmp(np->vpd.model, NIU_2XGF_MRVL_MDL_STR))) { ports = 2; } return ports; } static void niu_pci_vpd_validate(struct niu *np) { struct net_device *dev = np->dev; struct niu_vpd *vpd = &np->vpd; u8 val8; if (!is_valid_ether_addr(&vpd->local_mac[0])) { dev_err(np->device, "VPD MAC invalid, falling back to SPROM\n"); np->flags &= ~NIU_FLAGS_VPD_VALID; return; } if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) || !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) { np->flags |= NIU_FLAGS_10G; np->flags &= ~NIU_FLAGS_FIBER; np->flags |= NIU_FLAGS_XCVR_SERDES; np->mac_xcvr = MAC_XCVR_PCS; if (np->port > 1) { np->flags |= NIU_FLAGS_FIBER; np->flags &= ~NIU_FLAGS_10G; } if (np->flags & NIU_FLAGS_10G) np->mac_xcvr = MAC_XCVR_XPCS; } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) { np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER | NIU_FLAGS_HOTPLUG_PHY); } else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) { dev_err(np->device, "Illegal phy string [%s]\n", np->vpd.phy_type); dev_err(np->device, "Falling back to SPROM\n"); np->flags &= ~NIU_FLAGS_VPD_VALID; return; } memcpy(dev->dev_addr, vpd->local_mac, ETH_ALEN); val8 = dev->dev_addr[5]; dev->dev_addr[5] += np->port; if (dev->dev_addr[5] < val8) dev->dev_addr[4]++; } static int niu_pci_probe_sprom(struct niu *np) { struct net_device *dev = np->dev; int len, i; u64 val, sum; u8 val8; val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ); val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT; len = val / 4; np->eeprom_len = len; netif_printk(np, probe, KERN_DEBUG, np->dev, "SPROM: Image size %llu\n", (unsigned long long)val); sum = 0; for (i = 0; i < len; i++) { val = nr64(ESPC_NCR(i)); sum += (val >> 0) & 0xff; sum += (val >> 8) & 0xff; sum += (val >> 16) & 0xff; sum += (val >> 24) & 0xff; } netif_printk(np, probe, KERN_DEBUG, np->dev, "SPROM: Checksum %x\n", (int)(sum & 0xff)); if ((sum & 0xff) != 0xab) { dev_err(np->device, "Bad SPROM checksum (%x, should be 0xab)\n", (int)(sum & 0xff)); return -EINVAL; } val = nr64(ESPC_PHY_TYPE); switch (np->port) { case 0: val8 = (val & ESPC_PHY_TYPE_PORT0) >> ESPC_PHY_TYPE_PORT0_SHIFT; break; case 1: val8 = (val & ESPC_PHY_TYPE_PORT1) >> ESPC_PHY_TYPE_PORT1_SHIFT; break; case 2: val8 = (val & ESPC_PHY_TYPE_PORT2) >> ESPC_PHY_TYPE_PORT2_SHIFT; break; case 3: val8 = (val & ESPC_PHY_TYPE_PORT3) >> ESPC_PHY_TYPE_PORT3_SHIFT; break; default: dev_err(np->device, "Bogus port number %u\n", np->port); return -EINVAL; } netif_printk(np, probe, KERN_DEBUG, np->dev, "SPROM: PHY type %x\n", val8); switch (val8) { case ESPC_PHY_TYPE_1G_COPPER: /* 1G copper, MII */ np->flags &= ~(NIU_FLAGS_FIBER | NIU_FLAGS_10G); np->mac_xcvr = MAC_XCVR_MII; break; case ESPC_PHY_TYPE_1G_FIBER: /* 1G fiber, PCS */ np->flags &= ~NIU_FLAGS_10G; np->flags |= NIU_FLAGS_FIBER; np->mac_xcvr = MAC_XCVR_PCS; break; case ESPC_PHY_TYPE_10G_COPPER: /* 10G copper, XPCS */ np->flags |= NIU_FLAGS_10G; np->flags &= ~NIU_FLAGS_FIBER; np->mac_xcvr = MAC_XCVR_XPCS; break; case ESPC_PHY_TYPE_10G_FIBER: /* 10G fiber, XPCS */ np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER); np->mac_xcvr = MAC_XCVR_XPCS; break; default: dev_err(np->device, "Bogus SPROM phy type %u\n", val8); return -EINVAL; } val = nr64(ESPC_MAC_ADDR0); netif_printk(np, probe, KERN_DEBUG, np->dev, "SPROM: MAC_ADDR0[%08llx]\n", (unsigned long long)val); dev->dev_addr[0] = (val >> 0) & 0xff; dev->dev_addr[1] = (val >> 8) & 0xff; dev->dev_addr[2] = (val >> 16) & 0xff; dev->dev_addr[3] = (val >> 24) & 0xff; val = nr64(ESPC_MAC_ADDR1); netif_printk(np, probe, KERN_DEBUG, np->dev, "SPROM: MAC_ADDR1[%08llx]\n", (unsigned long long)val); dev->dev_addr[4] = (val >> 0) & 0xff; dev->dev_addr[5] = (val >> 8) & 0xff; if (!is_valid_ether_addr(&dev->dev_addr[0])) { dev_err(np->device, "SPROM MAC address invalid [ %pM ]\n", dev->dev_addr); return -EINVAL; } val8 = dev->dev_addr[5]; dev->dev_addr[5] += np->port; if (dev->dev_addr[5] < val8) dev->dev_addr[4]++; val = nr64(ESPC_MOD_STR_LEN); netif_printk(np, probe, KERN_DEBUG, np->dev, "SPROM: MOD_STR_LEN[%llu]\n", (unsigned long long)val); if (val >= 8 * 4) return -EINVAL; for (i = 0; i < val; i += 4) { u64 tmp = nr64(ESPC_NCR(5 + (i / 4))); np->vpd.model[i + 3] = (tmp >> 0) & 0xff; np->vpd.model[i + 2] = (tmp >> 8) & 0xff; np->vpd.model[i + 1] = (tmp >> 16) & 0xff; np->vpd.model[i + 0] = (tmp >> 24) & 0xff; } np->vpd.model[val] = '\0'; val = nr64(ESPC_BD_MOD_STR_LEN); netif_printk(np, probe, KERN_DEBUG, np->dev, "SPROM: BD_MOD_STR_LEN[%llu]\n", (unsigned long long)val); if (val >= 4 * 4) return -EINVAL; for (i = 0; i < val; i += 4) { u64 tmp = nr64(ESPC_NCR(14 + (i / 4))); np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff; np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff; np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff; np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff; } np->vpd.board_model[val] = '\0'; np->vpd.mac_num = nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL; netif_printk(np, probe, KERN_DEBUG, np->dev, "SPROM: NUM_PORTS_MACS[%d]\n", np->vpd.mac_num); return 0; } static int niu_get_and_validate_port(struct niu *np) { struct niu_parent *parent = np->parent; if (np->port <= 1) np->flags |= NIU_FLAGS_XMAC; if (!parent->num_ports) { if (parent->plat_type == PLAT_TYPE_NIU) { parent->num_ports = 2; } else { parent->num_ports = niu_pci_vpd_get_nports(np); if (!parent->num_ports) { /* Fall back to SPROM as last resort. * This will fail on most cards. */ parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL; /* All of the current probing methods fail on * Maramba on-board parts. */ if (!parent->num_ports) parent->num_ports = 4; } } } if (np->port >= parent->num_ports) return -ENODEV; return 0; } static int phy_record(struct niu_parent *parent, struct phy_probe_info *p, int dev_id_1, int dev_id_2, u8 phy_port, int type) { u32 id = (dev_id_1 << 16) | dev_id_2; u8 idx; if (dev_id_1 < 0 || dev_id_2 < 0) return 0; if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) { /* Because of the NIU_PHY_ID_MASK being applied, the 8704 * test covers the 8706 as well. */ if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) && ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011)) return 0; } else { if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R) return 0; } pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n", parent->index, id, type == PHY_TYPE_PMA_PMD ? "PMA/PMD" : type == PHY_TYPE_PCS ? "PCS" : "MII", phy_port); if (p->cur[type] >= NIU_MAX_PORTS) { pr_err("Too many PHY ports\n"); return -EINVAL; } idx = p->cur[type]; p->phy_id[type][idx] = id; p->phy_port[type][idx] = phy_port; p->cur[type] = idx + 1; return 0; } static int port_has_10g(struct phy_probe_info *p, int port) { int i; for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) { if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port) return 1; } for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) { if (p->phy_port[PHY_TYPE_PCS][i] == port) return 1; } return 0; } static int count_10g_ports(struct phy_probe_info *p, int *lowest) { int port, cnt; cnt = 0; *lowest = 32; for (port = 8; port < 32; port++) { if (port_has_10g(p, port)) { if (!cnt) *lowest = port; cnt++; } } return cnt; } static int count_1g_ports(struct phy_probe_info *p, int *lowest) { *lowest = 32; if (p->cur[PHY_TYPE_MII]) *lowest = p->phy_port[PHY_TYPE_MII][0]; return p->cur[PHY_TYPE_MII]; } static void niu_n2_divide_channels(struct niu_parent *parent) { int num_ports = parent->num_ports; int i; for (i = 0; i < num_ports; i++) { parent->rxchan_per_port[i] = (16 / num_ports); parent->txchan_per_port[i] = (16 / num_ports); pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n", parent->index, i, parent->rxchan_per_port[i], parent->txchan_per_port[i]); } } static void niu_divide_channels(struct niu_parent *parent, int num_10g, int num_1g) { int num_ports = parent->num_ports; int rx_chans_per_10g, rx_chans_per_1g; int tx_chans_per_10g, tx_chans_per_1g; int i, tot_rx, tot_tx; if (!num_10g || !num_1g) { rx_chans_per_10g = rx_chans_per_1g = (NIU_NUM_RXCHAN / num_ports); tx_chans_per_10g = tx_chans_per_1g = (NIU_NUM_TXCHAN / num_ports); } else { rx_chans_per_1g = NIU_NUM_RXCHAN / 8; rx_chans_per_10g = (NIU_NUM_RXCHAN - (rx_chans_per_1g * num_1g)) / num_10g; tx_chans_per_1g = NIU_NUM_TXCHAN / 6; tx_chans_per_10g = (NIU_NUM_TXCHAN - (tx_chans_per_1g * num_1g)) / num_10g; } tot_rx = tot_tx = 0; for (i = 0; i < num_ports; i++) { int type = phy_decode(parent->port_phy, i); if (type == PORT_TYPE_10G) { parent->rxchan_per_port[i] = rx_chans_per_10g; parent->txchan_per_port[i] = tx_chans_per_10g; } else { parent->rxchan_per_port[i] = rx_chans_per_1g; parent->txchan_per_port[i] = tx_chans_per_1g; } pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n", parent->index, i, parent->rxchan_per_port[i], parent->txchan_per_port[i]); tot_rx += parent->rxchan_per_port[i]; tot_tx += parent->txchan_per_port[i]; } if (tot_rx > NIU_NUM_RXCHAN) { pr_err("niu%d: Too many RX channels (%d), resetting to one per port\n", parent->index, tot_rx); for (i = 0; i < num_ports; i++) parent->rxchan_per_port[i] = 1; } if (tot_tx > NIU_NUM_TXCHAN) { pr_err("niu%d: Too many TX channels (%d), resetting to one per port\n", parent->index, tot_tx); for (i = 0; i < num_ports; i++) parent->txchan_per_port[i] = 1; } if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) { pr_warn("niu%d: Driver bug, wasted channels, RX[%d] TX[%d]\n", parent->index, tot_rx, tot_tx); } } static void niu_divide_rdc_groups(struct niu_parent *parent, int num_10g, int num_1g) { int i, num_ports = parent->num_ports; int rdc_group, rdc_groups_per_port; int rdc_channel_base; rdc_group = 0; rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports; rdc_channel_base = 0; for (i = 0; i < num_ports; i++) { struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i]; int grp, num_channels = parent->rxchan_per_port[i]; int this_channel_offset; tp->first_table_num = rdc_group; tp->num_tables = rdc_groups_per_port; this_channel_offset = 0; for (grp = 0; grp < tp->num_tables; grp++) { struct rdc_table *rt = &tp->tables[grp]; int slot; pr_info("niu%d: Port %d RDC tbl(%d) [ ", parent->index, i, tp->first_table_num + grp); for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) { rt->rxdma_channel[slot] = rdc_channel_base + this_channel_offset; pr_cont("%d ", rt->rxdma_channel[slot]); if (++this_channel_offset == num_channels) this_channel_offset = 0; } pr_cont("]\n"); } parent->rdc_default[i] = rdc_channel_base; rdc_channel_base += num_channels; rdc_group += rdc_groups_per_port; } } static int fill_phy_probe_info(struct niu *np, struct niu_parent *parent, struct phy_probe_info *info) { unsigned long flags; int port, err; memset(info, 0, sizeof(*info)); /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */ niu_lock_parent(np, flags); err = 0; for (port = 8; port < 32; port++) { int dev_id_1, dev_id_2; dev_id_1 = mdio_read(np, port, NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1); dev_id_2 = mdio_read(np, port, NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2); err = phy_record(parent, info, dev_id_1, dev_id_2, port, PHY_TYPE_PMA_PMD); if (err) break; dev_id_1 = mdio_read(np, port, NIU_PCS_DEV_ADDR, MII_PHYSID1); dev_id_2 = mdio_read(np, port, NIU_PCS_DEV_ADDR, MII_PHYSID2); err = phy_record(parent, info, dev_id_1, dev_id_2, port, PHY_TYPE_PCS); if (err) break; dev_id_1 = mii_read(np, port, MII_PHYSID1); dev_id_2 = mii_read(np, port, MII_PHYSID2); err = phy_record(parent, info, dev_id_1, dev_id_2, port, PHY_TYPE_MII); if (err) break; } niu_unlock_parent(np, flags); return err; } static int walk_phys(struct niu *np, struct niu_parent *parent) { struct phy_probe_info *info = &parent->phy_probe_info; int lowest_10g, lowest_1g; int num_10g, num_1g; u32 val; int err; num_10g = num_1g = 0; if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) || !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) { num_10g = 0; num_1g = 2; parent->plat_type = PLAT_TYPE_ATCA_CP3220; parent->num_ports = 4; val = (phy_encode(PORT_TYPE_1G, 0) | phy_encode(PORT_TYPE_1G, 1) | phy_encode(PORT_TYPE_1G, 2) | phy_encode(PORT_TYPE_1G, 3)); } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) { num_10g = 2; num_1g = 0; parent->num_ports = 2; val = (phy_encode(PORT_TYPE_10G, 0) | phy_encode(PORT_TYPE_10G, 1)); } else if ((np->flags & NIU_FLAGS_XCVR_SERDES) && (parent->plat_type == PLAT_TYPE_NIU)) { /* this is the Monza case */ if (np->flags & NIU_FLAGS_10G) { val = (phy_encode(PORT_TYPE_10G, 0) | phy_encode(PORT_TYPE_10G, 1)); } else { val = (phy_encode(PORT_TYPE_1G, 0) | phy_encode(PORT_TYPE_1G, 1)); } } else { err = fill_phy_probe_info(np, parent, info); if (err) return err; num_10g = count_10g_ports(info, &lowest_10g); num_1g = count_1g_ports(info, &lowest_1g); switch ((num_10g << 4) | num_1g) { case 0x24: if (lowest_1g == 10) parent->plat_type = PLAT_TYPE_VF_P0; else if (lowest_1g == 26) parent->plat_type = PLAT_TYPE_VF_P1; else goto unknown_vg_1g_port; /* fallthru */ case 0x22: val = (phy_encode(PORT_TYPE_10G, 0) | phy_encode(PORT_TYPE_10G, 1) | phy_encode(PORT_TYPE_1G, 2) | phy_encode(PORT_TYPE_1G, 3)); break; case 0x20: val = (phy_encode(PORT_TYPE_10G, 0) | phy_encode(PORT_TYPE_10G, 1)); break; case 0x10: val = phy_encode(PORT_TYPE_10G, np->port); break; case 0x14: if (lowest_1g == 10) parent->plat_type = PLAT_TYPE_VF_P0; else if (lowest_1g == 26) parent->plat_type = PLAT_TYPE_VF_P1; else goto unknown_vg_1g_port; /* fallthru */ case 0x13: if ((lowest_10g & 0x7) == 0) val = (phy_encode(PORT_TYPE_10G, 0) | phy_encode(PORT_TYPE_1G, 1) | phy_encode(PORT_TYPE_1G, 2) | phy_encode(PORT_TYPE_1G, 3)); else val = (phy_encode(PORT_TYPE_1G, 0) | phy_encode(PORT_TYPE_10G, 1) | phy_encode(PORT_TYPE_1G, 2) | phy_encode(PORT_TYPE_1G, 3)); break; case 0x04: if (lowest_1g == 10) parent->plat_type = PLAT_TYPE_VF_P0; else if (lowest_1g == 26) parent->plat_type = PLAT_TYPE_VF_P1; else goto unknown_vg_1g_port; val = (phy_encode(PORT_TYPE_1G, 0) | phy_encode(PORT_TYPE_1G, 1) | phy_encode(PORT_TYPE_1G, 2) | phy_encode(PORT_TYPE_1G, 3)); break; default: pr_err("Unsupported port config 10G[%d] 1G[%d]\n", num_10g, num_1g); return -EINVAL; } } parent->port_phy = val; if (parent->plat_type == PLAT_TYPE_NIU) niu_n2_divide_channels(parent); else niu_divide_channels(parent, num_10g, num_1g); niu_divide_rdc_groups(parent, num_10g, num_1g); return 0; unknown_vg_1g_port: pr_err("Cannot identify platform type, 1gport=%d\n", lowest_1g); return -EINVAL; } static int niu_probe_ports(struct niu *np) { struct niu_parent *parent = np->parent; int err, i; if (parent->port_phy == PORT_PHY_UNKNOWN) { err = walk_phys(np, parent); if (err) return err; niu_set_ldg_timer_res(np, 2); for (i = 0; i <= LDN_MAX; i++) niu_ldn_irq_enable(np, i, 0); } if (parent->port_phy == PORT_PHY_INVALID) return -EINVAL; return 0; } static int niu_classifier_swstate_init(struct niu *np) { struct niu_classifier *cp = &np->clas; cp->tcam_top = (u16) np->port; cp->tcam_sz = np->parent->tcam_num_entries / np->parent->num_ports; cp->h1_init = 0xffffffff; cp->h2_init = 0xffff; return fflp_early_init(np); } static void niu_link_config_init(struct niu *np) { struct niu_link_config *lp = &np->link_config; lp->advertising = (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | ADVERTISED_10000baseT_Full | ADVERTISED_Autoneg); lp->speed = lp->active_speed = SPEED_INVALID; lp->duplex = DUPLEX_FULL; lp->active_duplex = DUPLEX_INVALID; lp->autoneg = 1; #if 0 lp->loopback_mode = LOOPBACK_MAC; lp->active_speed = SPEED_10000; lp->active_duplex = DUPLEX_FULL; #else lp->loopback_mode = LOOPBACK_DISABLED; #endif } static int niu_init_mac_ipp_pcs_base(struct niu *np) { switch (np->port) { case 0: np->mac_regs = np->regs + XMAC_PORT0_OFF; np->ipp_off = 0x00000; np->pcs_off = 0x04000; np->xpcs_off = 0x02000; break; case 1: np->mac_regs = np->regs + XMAC_PORT1_OFF; np->ipp_off = 0x08000; np->pcs_off = 0x0a000; np->xpcs_off = 0x08000; break; case 2: np->mac_regs = np->regs + BMAC_PORT2_OFF; np->ipp_off = 0x04000; np->pcs_off = 0x0e000; np->xpcs_off = ~0UL; break; case 3: np->mac_regs = np->regs + BMAC_PORT3_OFF; np->ipp_off = 0x0c000; np->pcs_off = 0x12000; np->xpcs_off = ~0UL; break; default: dev_err(np->device, "Port %u is invalid, cannot compute MAC block offset\n", np->port); return -EINVAL; } return 0; } static void niu_try_msix(struct niu *np, u8 *ldg_num_map) { struct msix_entry msi_vec[NIU_NUM_LDG]; struct niu_parent *parent = np->parent; struct pci_dev *pdev = np->pdev; int i, num_irqs; u8 first_ldg; first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port; for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++) ldg_num_map[i] = first_ldg + i; num_irqs = (parent->rxchan_per_port[np->port] + parent->txchan_per_port[np->port] + (np->port == 0 ? 3 : 1)); BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports)); for (i = 0; i < num_irqs; i++) { msi_vec[i].vector = 0; msi_vec[i].entry = i; } num_irqs = pci_enable_msix_range(pdev, msi_vec, 1, num_irqs); if (num_irqs < 0) { np->flags &= ~NIU_FLAGS_MSIX; return; } np->flags |= NIU_FLAGS_MSIX; for (i = 0; i < num_irqs; i++) np->ldg[i].irq = msi_vec[i].vector; np->num_ldg = num_irqs; } static int niu_n2_irq_init(struct niu *np, u8 *ldg_num_map) { #ifdef CONFIG_SPARC64 struct platform_device *op = np->op; const u32 *int_prop; int i; int_prop = of_get_property(op->dev.of_node, "interrupts", NULL); if (!int_prop) return -ENODEV; for (i = 0; i < op->archdata.num_irqs; i++) { ldg_num_map[i] = int_prop[i]; np->ldg[i].irq = op->archdata.irqs[i]; } np->num_ldg = op->archdata.num_irqs; return 0; #else return -EINVAL; #endif } static int niu_ldg_init(struct niu *np) { struct niu_parent *parent = np->parent; u8 ldg_num_map[NIU_NUM_LDG]; int first_chan, num_chan; int i, err, ldg_rotor; u8 port; np->num_ldg = 1; np->ldg[0].irq = np->dev->irq; if (parent->plat_type == PLAT_TYPE_NIU) { err = niu_n2_irq_init(np, ldg_num_map); if (err) return err; } else niu_try_msix(np, ldg_num_map); port = np->port; for (i = 0; i < np->num_ldg; i++) { struct niu_ldg *lp = &np->ldg[i]; netif_napi_add(np->dev, &lp->napi, niu_poll, 64); lp->np = np; lp->ldg_num = ldg_num_map[i]; lp->timer = 2; /* XXX */ /* On N2 NIU the firmware has setup the SID mappings so they go * to the correct values that will route the LDG to the proper * interrupt in the NCU interrupt table. */ if (np->parent->plat_type != PLAT_TYPE_NIU) { err = niu_set_ldg_sid(np, lp->ldg_num, port, i); if (err) return err; } } /* We adopt the LDG assignment ordering used by the N2 NIU * 'interrupt' properties because that simplifies a lot of * things. This ordering is: * * MAC * MIF (if port zero) * SYSERR (if port zero) * RX channels * TX channels */ ldg_rotor = 0; err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor], LDN_MAC(port)); if (err) return err; ldg_rotor++; if (ldg_rotor == np->num_ldg) ldg_rotor = 0; if (port == 0) { err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor], LDN_MIF); if (err) return err; ldg_rotor++; if (ldg_rotor == np->num_ldg) ldg_rotor = 0; err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor], LDN_DEVICE_ERROR); if (err) return err; ldg_rotor++; if (ldg_rotor == np->num_ldg) ldg_rotor = 0; } first_chan = 0; for (i = 0; i < port; i++) first_chan += parent->rxchan_per_port[i]; num_chan = parent->rxchan_per_port[port]; for (i = first_chan; i < (first_chan + num_chan); i++) { err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor], LDN_RXDMA(i)); if (err) return err; ldg_rotor++; if (ldg_rotor == np->num_ldg) ldg_rotor = 0; } first_chan = 0; for (i = 0; i < port; i++) first_chan += parent->txchan_per_port[i]; num_chan = parent->txchan_per_port[port]; for (i = first_chan; i < (first_chan + num_chan); i++) { err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor], LDN_TXDMA(i)); if (err) return err; ldg_rotor++; if (ldg_rotor == np->num_ldg) ldg_rotor = 0; } return 0; } static void niu_ldg_free(struct niu *np) { if (np->flags & NIU_FLAGS_MSIX) pci_disable_msix(np->pdev); } static int niu_get_of_props(struct niu *np) { #ifdef CONFIG_SPARC64 struct net_device *dev = np->dev; struct device_node *dp; const char *phy_type; const u8 *mac_addr; const char *model; int prop_len; if (np->parent->plat_type == PLAT_TYPE_NIU) dp = np->op->dev.of_node; else dp = pci_device_to_OF_node(np->pdev); phy_type = of_get_property(dp, "phy-type", &prop_len); if (!phy_type) { netdev_err(dev, "%pOF: OF node lacks phy-type property\n", dp); return -EINVAL; } if (!strcmp(phy_type, "none")) return -ENODEV; strcpy(np->vpd.phy_type, phy_type); if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) { netdev_err(dev, "%pOF: Illegal phy string [%s]\n", dp, np->vpd.phy_type); return -EINVAL; } mac_addr = of_get_property(dp, "local-mac-address", &prop_len); if (!mac_addr) { netdev_err(dev, "%pOF: OF node lacks local-mac-address property\n", dp); return -EINVAL; } if (prop_len != dev->addr_len) { netdev_err(dev, "%pOF: OF MAC address prop len (%d) is wrong\n", dp, prop_len); } memcpy(dev->dev_addr, mac_addr, dev->addr_len); if (!is_valid_ether_addr(&dev->dev_addr[0])) { netdev_err(dev, "%pOF: OF MAC address is invalid\n", dp); netdev_err(dev, "%pOF: [ %pM ]\n", dp, dev->dev_addr); return -EINVAL; } model = of_get_property(dp, "model", &prop_len); if (model) strcpy(np->vpd.model, model); if (of_find_property(dp, "hot-swappable-phy", &prop_len)) { np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER | NIU_FLAGS_HOTPLUG_PHY); } return 0; #else return -EINVAL; #endif } static int niu_get_invariants(struct niu *np) { int err, have_props; u32 offset; err = niu_get_of_props(np); if (err == -ENODEV) return err; have_props = !err; err = niu_init_mac_ipp_pcs_base(np); if (err) return err; if (have_props) { err = niu_get_and_validate_port(np); if (err) return err; } else { if (np->parent->plat_type == PLAT_TYPE_NIU) return -EINVAL; nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE); offset = niu_pci_vpd_offset(np); netif_printk(np, probe, KERN_DEBUG, np->dev, "%s() VPD offset [%08x]\n", __func__, offset); if (offset) { err = niu_pci_vpd_fetch(np, offset); if (err < 0) return err; } nw64(ESPC_PIO_EN, 0); if (np->flags & NIU_FLAGS_VPD_VALID) { niu_pci_vpd_validate(np); err = niu_get_and_validate_port(np); if (err) return err; } if (!(np->flags & NIU_FLAGS_VPD_VALID)) { err = niu_get_and_validate_port(np); if (err) return err; err = niu_pci_probe_sprom(np); if (err) return err; } } err = niu_probe_ports(np); if (err) return err; niu_ldg_init(np); niu_classifier_swstate_init(np); niu_link_config_init(np); err = niu_determine_phy_disposition(np); if (!err) err = niu_init_link(np); return err; } static LIST_HEAD(niu_parent_list); static DEFINE_MUTEX(niu_parent_lock); static int niu_parent_index; static ssize_t show_port_phy(struct device *dev, struct device_attribute *attr, char *buf) { struct platform_device *plat_dev = to_platform_device(dev); struct niu_parent *p = dev_get_platdata(&plat_dev->dev); u32 port_phy = p->port_phy; char *orig_buf = buf; int i; if (port_phy == PORT_PHY_UNKNOWN || port_phy == PORT_PHY_INVALID) return 0; for (i = 0; i < p->num_ports; i++) { const char *type_str; int type; type = phy_decode(port_phy, i); if (type == PORT_TYPE_10G) type_str = "10G"; else type_str = "1G"; buf += sprintf(buf, (i == 0) ? "%s" : " %s", type_str); } buf += sprintf(buf, "\n"); return buf - orig_buf; } static ssize_t show_plat_type(struct device *dev, struct device_attribute *attr, char *buf) { struct platform_device *plat_dev = to_platform_device(dev); struct niu_parent *p = dev_get_platdata(&plat_dev->dev); const char *type_str; switch (p->plat_type) { case PLAT_TYPE_ATLAS: type_str = "atlas"; break; case PLAT_TYPE_NIU: type_str = "niu"; break; case PLAT_TYPE_VF_P0: type_str = "vf_p0"; break; case PLAT_TYPE_VF_P1: type_str = "vf_p1"; break; default: type_str = "unknown"; break; } return sprintf(buf, "%s\n", type_str); } static ssize_t __show_chan_per_port(struct device *dev, struct device_attribute *attr, char *buf, int rx) { struct platform_device *plat_dev = to_platform_device(dev); struct niu_parent *p = dev_get_platdata(&plat_dev->dev); char *orig_buf = buf; u8 *arr; int i; arr = (rx ? p->rxchan_per_port : p->txchan_per_port); for (i = 0; i < p->num_ports; i++) { buf += sprintf(buf, (i == 0) ? "%d" : " %d", arr[i]); } buf += sprintf(buf, "\n"); return buf - orig_buf; } static ssize_t show_rxchan_per_port(struct device *dev, struct device_attribute *attr, char *buf) { return __show_chan_per_port(dev, attr, buf, 1); } static ssize_t show_txchan_per_port(struct device *dev, struct device_attribute *attr, char *buf) { return __show_chan_per_port(dev, attr, buf, 1); } static ssize_t show_num_ports(struct device *dev, struct device_attribute *attr, char *buf) { struct platform_device *plat_dev = to_platform_device(dev); struct niu_parent *p = dev_get_platdata(&plat_dev->dev); return sprintf(buf, "%d\n", p->num_ports); } static struct device_attribute niu_parent_attributes[] = { __ATTR(port_phy, 0444, show_port_phy, NULL), __ATTR(plat_type, 0444, show_plat_type, NULL), __ATTR(rxchan_per_port, 0444, show_rxchan_per_port, NULL), __ATTR(txchan_per_port, 0444, show_txchan_per_port, NULL), __ATTR(num_ports, 0444, show_num_ports, NULL), {} }; static struct niu_parent *niu_new_parent(struct niu *np, union niu_parent_id *id, u8 ptype) { struct platform_device *plat_dev; struct niu_parent *p; int i; plat_dev = platform_device_register_simple("niu-board", niu_parent_index, NULL, 0); if (IS_ERR(plat_dev)) return NULL; for (i = 0; niu_parent_attributes[i].attr.name; i++) { int err = device_create_file(&plat_dev->dev, &niu_parent_attributes[i]); if (err) goto fail_unregister; } p = kzalloc(sizeof(*p), GFP_KERNEL); if (!p) goto fail_unregister; p->index = niu_parent_index++; plat_dev->dev.platform_data = p; p->plat_dev = plat_dev; memcpy(&p->id, id, sizeof(*id)); p->plat_type = ptype; INIT_LIST_HEAD(&p->list); atomic_set(&p->refcnt, 0); list_add(&p->list, &niu_parent_list); spin_lock_init(&p->lock); p->rxdma_clock_divider = 7500; p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES; if (p->plat_type == PLAT_TYPE_NIU) p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES; for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) { int index = i - CLASS_CODE_USER_PROG1; p->tcam_key[index] = TCAM_KEY_TSEL; p->flow_key[index] = (FLOW_KEY_IPSA | FLOW_KEY_IPDA | FLOW_KEY_PROTO | (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT) | (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT)); } for (i = 0; i < LDN_MAX + 1; i++) p->ldg_map[i] = LDG_INVALID; return p; fail_unregister: platform_device_unregister(plat_dev); return NULL; } static struct niu_parent *niu_get_parent(struct niu *np, union niu_parent_id *id, u8 ptype) { struct niu_parent *p, *tmp; int port = np->port; mutex_lock(&niu_parent_lock); p = NULL; list_for_each_entry(tmp, &niu_parent_list, list) { if (!memcmp(id, &tmp->id, sizeof(*id))) { p = tmp; break; } } if (!p) p = niu_new_parent(np, id, ptype); if (p) { char port_name[8]; int err; sprintf(port_name, "port%d", port); err = sysfs_create_link(&p->plat_dev->dev.kobj, &np->device->kobj, port_name); if (!err) { p->ports[port] = np; atomic_inc(&p->refcnt); } } mutex_unlock(&niu_parent_lock); return p; } static void niu_put_parent(struct niu *np) { struct niu_parent *p = np->parent; u8 port = np->port; char port_name[8]; BUG_ON(!p || p->ports[port] != np); netif_printk(np, probe, KERN_DEBUG, np->dev, "%s() port[%u]\n", __func__, port); sprintf(port_name, "port%d", port); mutex_lock(&niu_parent_lock); sysfs_remove_link(&p->plat_dev->dev.kobj, port_name); p->ports[port] = NULL; np->parent = NULL; if (atomic_dec_and_test(&p->refcnt)) { list_del(&p->list); platform_device_unregister(p->plat_dev); } mutex_unlock(&niu_parent_lock); } static void *niu_pci_alloc_coherent(struct device *dev, size_t size, u64 *handle, gfp_t flag) { dma_addr_t dh; void *ret; ret = dma_alloc_coherent(dev, size, &dh, flag); if (ret) *handle = dh; return ret; } static void niu_pci_free_coherent(struct device *dev, size_t size, void *cpu_addr, u64 handle) { dma_free_coherent(dev, size, cpu_addr, handle); } static u64 niu_pci_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction) { return dma_map_page(dev, page, offset, size, direction); } static void niu_pci_unmap_page(struct device *dev, u64 dma_address, size_t size, enum dma_data_direction direction) { dma_unmap_page(dev, dma_address, size, direction); } static u64 niu_pci_map_single(struct device *dev, void *cpu_addr, size_t size, enum dma_data_direction direction) { return dma_map_single(dev, cpu_addr, size, direction); } static void niu_pci_unmap_single(struct device *dev, u64 dma_address, size_t size, enum dma_data_direction direction) { dma_unmap_single(dev, dma_address, size, direction); } static const struct niu_ops niu_pci_ops = { .alloc_coherent = niu_pci_alloc_coherent, .free_coherent = niu_pci_free_coherent, .map_page = niu_pci_map_page, .unmap_page = niu_pci_unmap_page, .map_single = niu_pci_map_single, .unmap_single = niu_pci_unmap_single, }; static void niu_driver_version(void) { static int niu_version_printed; if (niu_version_printed++ == 0) pr_info("%s", version); } static struct net_device *niu_alloc_and_init(struct device *gen_dev, struct pci_dev *pdev, struct platform_device *op, const struct niu_ops *ops, u8 port) { struct net_device *dev; struct niu *np; dev = alloc_etherdev_mq(sizeof(struct niu), NIU_NUM_TXCHAN); if (!dev) return NULL; SET_NETDEV_DEV(dev, gen_dev); np = netdev_priv(dev); np->dev = dev; np->pdev = pdev; np->op = op; np->device = gen_dev; np->ops = ops; np->msg_enable = niu_debug; spin_lock_init(&np->lock); INIT_WORK(&np->reset_task, niu_reset_task); np->port = port; return dev; } static const struct net_device_ops niu_netdev_ops = { .ndo_open = niu_open, .ndo_stop = niu_close, .ndo_start_xmit = niu_start_xmit, .ndo_get_stats64 = niu_get_stats, .ndo_set_rx_mode = niu_set_rx_mode, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = niu_set_mac_addr, .ndo_do_ioctl = niu_ioctl, .ndo_tx_timeout = niu_tx_timeout, .ndo_change_mtu = niu_change_mtu, }; static void niu_assign_netdev_ops(struct net_device *dev) { dev->netdev_ops = &niu_netdev_ops; dev->ethtool_ops = &niu_ethtool_ops; dev->watchdog_timeo = NIU_TX_TIMEOUT; } static void niu_device_announce(struct niu *np) { struct net_device *dev = np->dev; pr_info("%s: NIU Ethernet %pM\n", dev->name, dev->dev_addr); if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) { pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n", dev->name, (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"), (np->flags & NIU_FLAGS_10G ? "10G" : "1G"), (np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"), (np->mac_xcvr == MAC_XCVR_MII ? "MII" : (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")), np->vpd.phy_type); } else { pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n", dev->name, (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"), (np->flags & NIU_FLAGS_10G ? "10G" : "1G"), (np->flags & NIU_FLAGS_FIBER ? "FIBER" : (np->flags & NIU_FLAGS_XCVR_SERDES ? "SERDES" : "COPPER")), (np->mac_xcvr == MAC_XCVR_MII ? "MII" : (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")), np->vpd.phy_type); } } static void niu_set_basic_features(struct net_device *dev) { dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXHASH; dev->features |= dev->hw_features | NETIF_F_RXCSUM; } static int niu_pci_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { union niu_parent_id parent_id; struct net_device *dev; struct niu *np; int err; u64 dma_mask; niu_driver_version(); err = pci_enable_device(pdev); if (err) { dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); return err; } if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) || !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) { dev_err(&pdev->dev, "Cannot find proper PCI device base addresses, aborting\n"); err = -ENODEV; goto err_out_disable_pdev; } err = pci_request_regions(pdev, DRV_MODULE_NAME); if (err) { dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); goto err_out_disable_pdev; } if (!pci_is_pcie(pdev)) { dev_err(&pdev->dev, "Cannot find PCI Express capability, aborting\n"); err = -ENODEV; goto err_out_free_res; } dev = niu_alloc_and_init(&pdev->dev, pdev, NULL, &niu_pci_ops, PCI_FUNC(pdev->devfn)); if (!dev) { err = -ENOMEM; goto err_out_free_res; } np = netdev_priv(dev); memset(&parent_id, 0, sizeof(parent_id)); parent_id.pci.domain = pci_domain_nr(pdev->bus); parent_id.pci.bus = pdev->bus->number; parent_id.pci.device = PCI_SLOT(pdev->devfn); np->parent = niu_get_parent(np, &parent_id, PLAT_TYPE_ATLAS); if (!np->parent) { err = -ENOMEM; goto err_out_free_dev; } pcie_capability_clear_and_set_word(pdev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_NOSNOOP_EN, PCI_EXP_DEVCTL_CERE | PCI_EXP_DEVCTL_NFERE | PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE | PCI_EXP_DEVCTL_RELAX_EN); dma_mask = DMA_BIT_MASK(44); err = pci_set_dma_mask(pdev, dma_mask); if (!err) { dev->features |= NETIF_F_HIGHDMA; err = pci_set_consistent_dma_mask(pdev, dma_mask); if (err) { dev_err(&pdev->dev, "Unable to obtain 44 bit DMA for consistent allocations, aborting\n"); goto err_out_release_parent; } } if (err) { err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); goto err_out_release_parent; } } niu_set_basic_features(dev); dev->priv_flags |= IFF_UNICAST_FLT; np->regs = pci_ioremap_bar(pdev, 0); if (!np->regs) { dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); err = -ENOMEM; goto err_out_release_parent; } pci_set_master(pdev); pci_save_state(pdev); dev->irq = pdev->irq; /* MTU range: 68 - 9216 */ dev->min_mtu = ETH_MIN_MTU; dev->max_mtu = NIU_MAX_MTU; niu_assign_netdev_ops(dev); err = niu_get_invariants(np); if (err) { if (err != -ENODEV) dev_err(&pdev->dev, "Problem fetching invariants of chip, aborting\n"); goto err_out_iounmap; } err = register_netdev(dev); if (err) { dev_err(&pdev->dev, "Cannot register net device, aborting\n"); goto err_out_iounmap; } pci_set_drvdata(pdev, dev); niu_device_announce(np); return 0; err_out_iounmap: if (np->regs) { iounmap(np->regs); np->regs = NULL; } err_out_release_parent: niu_put_parent(np); err_out_free_dev: free_netdev(dev); err_out_free_res: pci_release_regions(pdev); err_out_disable_pdev: pci_disable_device(pdev); return err; } static void niu_pci_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); if (dev) { struct niu *np = netdev_priv(dev); unregister_netdev(dev); if (np->regs) { iounmap(np->regs); np->regs = NULL; } niu_ldg_free(np); niu_put_parent(np); free_netdev(dev); pci_release_regions(pdev); pci_disable_device(pdev); } } static int niu_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *dev = pci_get_drvdata(pdev); struct niu *np = netdev_priv(dev); unsigned long flags; if (!netif_running(dev)) return 0; flush_work(&np->reset_task); niu_netif_stop(np); del_timer_sync(&np->timer); spin_lock_irqsave(&np->lock, flags); niu_enable_interrupts(np, 0); spin_unlock_irqrestore(&np->lock, flags); netif_device_detach(dev); spin_lock_irqsave(&np->lock, flags); niu_stop_hw(np); spin_unlock_irqrestore(&np->lock, flags); pci_save_state(pdev); return 0; } static int niu_resume(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct niu *np = netdev_priv(dev); unsigned long flags; int err; if (!netif_running(dev)) return 0; pci_restore_state(pdev); netif_device_attach(dev); spin_lock_irqsave(&np->lock, flags); err = niu_init_hw(np); if (!err) { np->timer.expires = jiffies + HZ; add_timer(&np->timer); niu_netif_start(np); } spin_unlock_irqrestore(&np->lock, flags); return err; } static struct pci_driver niu_pci_driver = { .name = DRV_MODULE_NAME, .id_table = niu_pci_tbl, .probe = niu_pci_init_one, .remove = niu_pci_remove_one, .suspend = niu_suspend, .resume = niu_resume, }; #ifdef CONFIG_SPARC64 static void *niu_phys_alloc_coherent(struct device *dev, size_t size, u64 *dma_addr, gfp_t flag) { unsigned long order = get_order(size); unsigned long page = __get_free_pages(flag, order); if (page == 0UL) return NULL; memset((char *)page, 0, PAGE_SIZE << order); *dma_addr = __pa(page); return (void *) page; } static void niu_phys_free_coherent(struct device *dev, size_t size, void *cpu_addr, u64 handle) { unsigned long order = get_order(size); free_pages((unsigned long) cpu_addr, order); } static u64 niu_phys_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction) { return page_to_phys(page) + offset; } static void niu_phys_unmap_page(struct device *dev, u64 dma_address, size_t size, enum dma_data_direction direction) { /* Nothing to do. */ } static u64 niu_phys_map_single(struct device *dev, void *cpu_addr, size_t size, enum dma_data_direction direction) { return __pa(cpu_addr); } static void niu_phys_unmap_single(struct device *dev, u64 dma_address, size_t size, enum dma_data_direction direction) { /* Nothing to do. */ } static const struct niu_ops niu_phys_ops = { .alloc_coherent = niu_phys_alloc_coherent, .free_coherent = niu_phys_free_coherent, .map_page = niu_phys_map_page, .unmap_page = niu_phys_unmap_page, .map_single = niu_phys_map_single, .unmap_single = niu_phys_unmap_single, }; static int niu_of_probe(struct platform_device *op) { union niu_parent_id parent_id; struct net_device *dev; struct niu *np; const u32 *reg; int err; niu_driver_version(); reg = of_get_property(op->dev.of_node, "reg", NULL); if (!reg) { dev_err(&op->dev, "%pOF: No 'reg' property, aborting\n", op->dev.of_node); return -ENODEV; } dev = niu_alloc_and_init(&op->dev, NULL, op, &niu_phys_ops, reg[0] & 0x1); if (!dev) { err = -ENOMEM; goto err_out; } np = netdev_priv(dev); memset(&parent_id, 0, sizeof(parent_id)); parent_id.of = of_get_parent(op->dev.of_node); np->parent = niu_get_parent(np, &parent_id, PLAT_TYPE_NIU); if (!np->parent) { err = -ENOMEM; goto err_out_free_dev; } niu_set_basic_features(dev); np->regs = of_ioremap(&op->resource[1], 0, resource_size(&op->resource[1]), "niu regs"); if (!np->regs) { dev_err(&op->dev, "Cannot map device registers, aborting\n"); err = -ENOMEM; goto err_out_release_parent; } np->vir_regs_1 = of_ioremap(&op->resource[2], 0, resource_size(&op->resource[2]), "niu vregs-1"); if (!np->vir_regs_1) { dev_err(&op->dev, "Cannot map device vir registers 1, aborting\n"); err = -ENOMEM; goto err_out_iounmap; } np->vir_regs_2 = of_ioremap(&op->resource[3], 0, resource_size(&op->resource[3]), "niu vregs-2"); if (!np->vir_regs_2) { dev_err(&op->dev, "Cannot map device vir registers 2, aborting\n"); err = -ENOMEM; goto err_out_iounmap; } niu_assign_netdev_ops(dev); err = niu_get_invariants(np); if (err) { if (err != -ENODEV) dev_err(&op->dev, "Problem fetching invariants of chip, aborting\n"); goto err_out_iounmap; } err = register_netdev(dev); if (err) { dev_err(&op->dev, "Cannot register net device, aborting\n"); goto err_out_iounmap; } platform_set_drvdata(op, dev); niu_device_announce(np); return 0; err_out_iounmap: if (np->vir_regs_1) { of_iounmap(&op->resource[2], np->vir_regs_1, resource_size(&op->resource[2])); np->vir_regs_1 = NULL; } if (np->vir_regs_2) { of_iounmap(&op->resource[3], np->vir_regs_2, resource_size(&op->resource[3])); np->vir_regs_2 = NULL; } if (np->regs) { of_iounmap(&op->resource[1], np->regs, resource_size(&op->resource[1])); np->regs = NULL; } err_out_release_parent: niu_put_parent(np); err_out_free_dev: free_netdev(dev); err_out: return err; } static int niu_of_remove(struct platform_device *op) { struct net_device *dev = platform_get_drvdata(op); if (dev) { struct niu *np = netdev_priv(dev); unregister_netdev(dev); if (np->vir_regs_1) { of_iounmap(&op->resource[2], np->vir_regs_1, resource_size(&op->resource[2])); np->vir_regs_1 = NULL; } if (np->vir_regs_2) { of_iounmap(&op->resource[3], np->vir_regs_2, resource_size(&op->resource[3])); np->vir_regs_2 = NULL; } if (np->regs) { of_iounmap(&op->resource[1], np->regs, resource_size(&op->resource[1])); np->regs = NULL; } niu_ldg_free(np); niu_put_parent(np); free_netdev(dev); } return 0; } static const struct of_device_id niu_match[] = { { .name = "network", .compatible = "SUNW,niusl", }, {}, }; MODULE_DEVICE_TABLE(of, niu_match); static struct platform_driver niu_of_driver = { .driver = { .name = "niu", .of_match_table = niu_match, }, .probe = niu_of_probe, .remove = niu_of_remove, }; #endif /* CONFIG_SPARC64 */ static int __init niu_init(void) { int err = 0; BUILD_BUG_ON(PAGE_SIZE < 4 * 1024); niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT); #ifdef CONFIG_SPARC64 err = platform_driver_register(&niu_of_driver); #endif if (!err) { err = pci_register_driver(&niu_pci_driver); #ifdef CONFIG_SPARC64 if (err) platform_driver_unregister(&niu_of_driver); #endif } return err; } static void __exit niu_exit(void) { pci_unregister_driver(&niu_pci_driver); #ifdef CONFIG_SPARC64 platform_driver_unregister(&niu_of_driver); #endif } module_init(niu_init); module_exit(niu_exit);