/* * Generic PPP layer for Linux. * * Copyright 1999-2002 Paul Mackerras. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * The generic PPP layer handles the PPP network interfaces, the * /dev/ppp device, packet and VJ compression, and multilink. * It talks to PPP `channels' via the interface defined in * include/linux/ppp_channel.h. Channels provide the basic means for * sending and receiving PPP frames on some kind of communications * channel. * * Part of the code in this driver was inspired by the old async-only * PPP driver, written by Michael Callahan and Al Longyear, and * subsequently hacked by Paul Mackerras. * * ==FILEVERSION 20041108== */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PPP_VERSION "2.4.2" /* * Network protocols we support. */ #define NP_IP 0 /* Internet Protocol V4 */ #define NP_IPV6 1 /* Internet Protocol V6 */ #define NP_IPX 2 /* IPX protocol */ #define NP_AT 3 /* Appletalk protocol */ #define NP_MPLS_UC 4 /* MPLS unicast */ #define NP_MPLS_MC 5 /* MPLS multicast */ #define NUM_NP 6 /* Number of NPs. */ #define MPHDRLEN 6 /* multilink protocol header length */ #define MPHDRLEN_SSN 4 /* ditto with short sequence numbers */ #define PPP_PROTO_LEN 2 /* * An instance of /dev/ppp can be associated with either a ppp * interface unit or a ppp channel. In both cases, file->private_data * points to one of these. */ struct ppp_file { enum { INTERFACE=1, CHANNEL } kind; struct sk_buff_head xq; /* pppd transmit queue */ struct sk_buff_head rq; /* receive queue for pppd */ wait_queue_head_t rwait; /* for poll on reading /dev/ppp */ refcount_t refcnt; /* # refs (incl /dev/ppp attached) */ int hdrlen; /* space to leave for headers */ int index; /* interface unit / channel number */ int dead; /* unit/channel has been shut down */ }; #define PF_TO_X(pf, X) container_of(pf, X, file) #define PF_TO_PPP(pf) PF_TO_X(pf, struct ppp) #define PF_TO_CHANNEL(pf) PF_TO_X(pf, struct channel) /* * Data structure to hold primary network stats for which * we want to use 64 bit storage. Other network stats * are stored in dev->stats of the ppp strucute. */ struct ppp_link_stats { u64 rx_packets; u64 tx_packets; u64 rx_bytes; u64 tx_bytes; }; /* * Data structure describing one ppp unit. * A ppp unit corresponds to a ppp network interface device * and represents a multilink bundle. * It can have 0 or more ppp channels connected to it. */ struct ppp { struct ppp_file file; /* stuff for read/write/poll 0 */ struct file *owner; /* file that owns this unit 48 */ struct list_head channels; /* list of attached channels 4c */ int n_channels; /* how many channels are attached 54 */ spinlock_t rlock; /* lock for receive side 58 */ spinlock_t wlock; /* lock for transmit side 5c */ int __percpu *xmit_recursion; /* xmit recursion detect */ int mru; /* max receive unit 60 */ unsigned int flags; /* control bits 64 */ unsigned int xstate; /* transmit state bits 68 */ unsigned int rstate; /* receive state bits 6c */ int debug; /* debug flags 70 */ struct slcompress *vj; /* state for VJ header compression */ enum NPmode npmode[NUM_NP]; /* what to do with each net proto 78 */ struct sk_buff *xmit_pending; /* a packet ready to go out 88 */ struct compressor *xcomp; /* transmit packet compressor 8c */ void *xc_state; /* its internal state 90 */ struct compressor *rcomp; /* receive decompressor 94 */ void *rc_state; /* its internal state 98 */ unsigned long last_xmit; /* jiffies when last pkt sent 9c */ unsigned long last_recv; /* jiffies when last pkt rcvd a0 */ struct net_device *dev; /* network interface device a4 */ int closing; /* is device closing down? a8 */ #ifdef CONFIG_PPP_MULTILINK int nxchan; /* next channel to send something on */ u32 nxseq; /* next sequence number to send */ int mrru; /* MP: max reconst. receive unit */ u32 nextseq; /* MP: seq no of next packet */ u32 minseq; /* MP: min of most recent seqnos */ struct sk_buff_head mrq; /* MP: receive reconstruction queue */ #endif /* CONFIG_PPP_MULTILINK */ #ifdef CONFIG_PPP_FILTER struct bpf_prog *pass_filter; /* filter for packets to pass */ struct bpf_prog *active_filter; /* filter for pkts to reset idle */ #endif /* CONFIG_PPP_FILTER */ struct net *ppp_net; /* the net we belong to */ struct ppp_link_stats stats64; /* 64 bit network stats */ }; /* * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC, * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP, * SC_MUST_COMP * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR. * Bits in xstate: SC_COMP_RUN */ #define SC_FLAG_BITS (SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \ |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \ |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP) /* * Private data structure for each channel. * This includes the data structure used for multilink. */ struct channel { struct ppp_file file; /* stuff for read/write/poll */ struct list_head list; /* link in all/new_channels list */ struct ppp_channel *chan; /* public channel data structure */ struct rw_semaphore chan_sem; /* protects `chan' during chan ioctl */ spinlock_t downl; /* protects `chan', file.xq dequeue */ struct ppp *ppp; /* ppp unit we're connected to */ struct net *chan_net; /* the net channel belongs to */ struct list_head clist; /* link in list of channels per unit */ rwlock_t upl; /* protects `ppp' */ #ifdef CONFIG_PPP_MULTILINK u8 avail; /* flag used in multilink stuff */ u8 had_frag; /* >= 1 fragments have been sent */ u32 lastseq; /* MP: last sequence # received */ int speed; /* speed of the corresponding ppp channel*/ #endif /* CONFIG_PPP_MULTILINK */ }; struct ppp_config { struct file *file; s32 unit; bool ifname_is_set; }; /* * SMP locking issues: * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels * list and the ppp.n_channels field, you need to take both locks * before you modify them. * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock -> * channel.downl. */ static DEFINE_MUTEX(ppp_mutex); static atomic_t ppp_unit_count = ATOMIC_INIT(0); static atomic_t channel_count = ATOMIC_INIT(0); /* per-net private data for this module */ static unsigned int ppp_net_id __read_mostly; struct ppp_net { /* units to ppp mapping */ struct idr units_idr; /* * all_ppp_mutex protects the units_idr mapping. * It also ensures that finding a ppp unit in the units_idr * map and updating its file.refcnt field is atomic. */ struct mutex all_ppp_mutex; /* channels */ struct list_head all_channels; struct list_head new_channels; int last_channel_index; /* * all_channels_lock protects all_channels and * last_channel_index, and the atomicity of find * a channel and updating its file.refcnt field. */ spinlock_t all_channels_lock; }; /* Get the PPP protocol number from a skb */ #define PPP_PROTO(skb) get_unaligned_be16((skb)->data) /* We limit the length of ppp->file.rq to this (arbitrary) value */ #define PPP_MAX_RQLEN 32 /* * Maximum number of multilink fragments queued up. * This has to be large enough to cope with the maximum latency of * the slowest channel relative to the others. Strictly it should * depend on the number of channels and their characteristics. */ #define PPP_MP_MAX_QLEN 128 /* Multilink header bits. */ #define B 0x80 /* this fragment begins a packet */ #define E 0x40 /* this fragment ends a packet */ /* Compare multilink sequence numbers (assumed to be 32 bits wide) */ #define seq_before(a, b) ((s32)((a) - (b)) < 0) #define seq_after(a, b) ((s32)((a) - (b)) > 0) /* Prototypes. */ static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf, struct file *file, unsigned int cmd, unsigned long arg); static void ppp_xmit_process(struct ppp *ppp, struct sk_buff *skb); static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb); static void ppp_push(struct ppp *ppp); static void ppp_channel_push(struct channel *pch); static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch); static void ppp_receive_error(struct ppp *ppp); static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb); static struct sk_buff *ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb); #ifdef CONFIG_PPP_MULTILINK static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch); static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb); static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp); static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb); #endif /* CONFIG_PPP_MULTILINK */ static int ppp_set_compress(struct ppp *ppp, unsigned long arg); static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound); static void ppp_ccp_closed(struct ppp *ppp); static struct compressor *find_compressor(int type); static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st); static int ppp_create_interface(struct net *net, struct file *file, int *unit); static void init_ppp_file(struct ppp_file *pf, int kind); static void ppp_destroy_interface(struct ppp *ppp); static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit); static struct channel *ppp_find_channel(struct ppp_net *pn, int unit); static int ppp_connect_channel(struct channel *pch, int unit); static int ppp_disconnect_channel(struct channel *pch); static void ppp_destroy_channel(struct channel *pch); static int unit_get(struct idr *p, void *ptr, int min); static int unit_set(struct idr *p, void *ptr, int n); static void unit_put(struct idr *p, int n); static void *unit_find(struct idr *p, int n); static void ppp_setup(struct net_device *dev); static const struct net_device_ops ppp_netdev_ops; static struct class *ppp_class; /* per net-namespace data */ static inline struct ppp_net *ppp_pernet(struct net *net) { BUG_ON(!net); return net_generic(net, ppp_net_id); } /* Translates a PPP protocol number to a NP index (NP == network protocol) */ static inline int proto_to_npindex(int proto) { switch (proto) { case PPP_IP: return NP_IP; case PPP_IPV6: return NP_IPV6; case PPP_IPX: return NP_IPX; case PPP_AT: return NP_AT; case PPP_MPLS_UC: return NP_MPLS_UC; case PPP_MPLS_MC: return NP_MPLS_MC; } return -EINVAL; } /* Translates an NP index into a PPP protocol number */ static const int npindex_to_proto[NUM_NP] = { PPP_IP, PPP_IPV6, PPP_IPX, PPP_AT, PPP_MPLS_UC, PPP_MPLS_MC, }; /* Translates an ethertype into an NP index */ static inline int ethertype_to_npindex(int ethertype) { switch (ethertype) { case ETH_P_IP: return NP_IP; case ETH_P_IPV6: return NP_IPV6; case ETH_P_IPX: return NP_IPX; case ETH_P_PPPTALK: case ETH_P_ATALK: return NP_AT; case ETH_P_MPLS_UC: return NP_MPLS_UC; case ETH_P_MPLS_MC: return NP_MPLS_MC; } return -1; } /* Translates an NP index into an ethertype */ static const int npindex_to_ethertype[NUM_NP] = { ETH_P_IP, ETH_P_IPV6, ETH_P_IPX, ETH_P_PPPTALK, ETH_P_MPLS_UC, ETH_P_MPLS_MC, }; /* * Locking shorthand. */ #define ppp_xmit_lock(ppp) spin_lock_bh(&(ppp)->wlock) #define ppp_xmit_unlock(ppp) spin_unlock_bh(&(ppp)->wlock) #define ppp_recv_lock(ppp) spin_lock_bh(&(ppp)->rlock) #define ppp_recv_unlock(ppp) spin_unlock_bh(&(ppp)->rlock) #define ppp_lock(ppp) do { ppp_xmit_lock(ppp); \ ppp_recv_lock(ppp); } while (0) #define ppp_unlock(ppp) do { ppp_recv_unlock(ppp); \ ppp_xmit_unlock(ppp); } while (0) /* * /dev/ppp device routines. * The /dev/ppp device is used by pppd to control the ppp unit. * It supports the read, write, ioctl and poll functions. * Open instances of /dev/ppp can be in one of three states: * unattached, attached to a ppp unit, or attached to a ppp channel. */ static int ppp_open(struct inode *inode, struct file *file) { /* * This could (should?) be enforced by the permissions on /dev/ppp. */ if (!ns_capable(file->f_cred->user_ns, CAP_NET_ADMIN)) return -EPERM; return 0; } static int ppp_release(struct inode *unused, struct file *file) { struct ppp_file *pf = file->private_data; struct ppp *ppp; if (pf) { file->private_data = NULL; if (pf->kind == INTERFACE) { ppp = PF_TO_PPP(pf); rtnl_lock(); if (file == ppp->owner) unregister_netdevice(ppp->dev); rtnl_unlock(); } if (refcount_dec_and_test(&pf->refcnt)) { switch (pf->kind) { case INTERFACE: ppp_destroy_interface(PF_TO_PPP(pf)); break; case CHANNEL: ppp_destroy_channel(PF_TO_CHANNEL(pf)); break; } } } return 0; } static ssize_t ppp_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct ppp_file *pf = file->private_data; DECLARE_WAITQUEUE(wait, current); ssize_t ret; struct sk_buff *skb = NULL; struct iovec iov; struct iov_iter to; ret = count; if (!pf) return -ENXIO; add_wait_queue(&pf->rwait, &wait); for (;;) { set_current_state(TASK_INTERRUPTIBLE); skb = skb_dequeue(&pf->rq); if (skb) break; ret = 0; if (pf->dead) break; if (pf->kind == INTERFACE) { /* * Return 0 (EOF) on an interface that has no * channels connected, unless it is looping * network traffic (demand mode). */ struct ppp *ppp = PF_TO_PPP(pf); ppp_recv_lock(ppp); if (ppp->n_channels == 0 && (ppp->flags & SC_LOOP_TRAFFIC) == 0) { ppp_recv_unlock(ppp); break; } ppp_recv_unlock(ppp); } ret = -EAGAIN; if (file->f_flags & O_NONBLOCK) break; ret = -ERESTARTSYS; if (signal_pending(current)) break; schedule(); } set_current_state(TASK_RUNNING); remove_wait_queue(&pf->rwait, &wait); if (!skb) goto out; ret = -EOVERFLOW; if (skb->len > count) goto outf; ret = -EFAULT; iov.iov_base = buf; iov.iov_len = count; iov_iter_init(&to, READ, &iov, 1, count); if (skb_copy_datagram_iter(skb, 0, &to, skb->len)) goto outf; ret = skb->len; outf: kfree_skb(skb); out: return ret; } static ssize_t ppp_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct ppp_file *pf = file->private_data; struct sk_buff *skb; ssize_t ret; if (!pf) return -ENXIO; /* All PPP packets should start with the 2-byte protocol */ if (count < PPP_PROTO_LEN) return -EINVAL; ret = -ENOMEM; skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL); if (!skb) goto out; skb_reserve(skb, pf->hdrlen); ret = -EFAULT; if (copy_from_user(skb_put(skb, count), buf, count)) { kfree_skb(skb); goto out; } switch (pf->kind) { case INTERFACE: ppp_xmit_process(PF_TO_PPP(pf), skb); break; case CHANNEL: skb_queue_tail(&pf->xq, skb); ppp_channel_push(PF_TO_CHANNEL(pf)); break; } ret = count; out: return ret; } /* No kernel lock - fine */ static __poll_t ppp_poll(struct file *file, poll_table *wait) { struct ppp_file *pf = file->private_data; __poll_t mask; if (!pf) return 0; poll_wait(file, &pf->rwait, wait); mask = EPOLLOUT | EPOLLWRNORM; if (skb_peek(&pf->rq)) mask |= EPOLLIN | EPOLLRDNORM; if (pf->dead) mask |= EPOLLHUP; else if (pf->kind == INTERFACE) { /* see comment in ppp_read */ struct ppp *ppp = PF_TO_PPP(pf); ppp_recv_lock(ppp); if (ppp->n_channels == 0 && (ppp->flags & SC_LOOP_TRAFFIC) == 0) mask |= EPOLLIN | EPOLLRDNORM; ppp_recv_unlock(ppp); } return mask; } #ifdef CONFIG_PPP_FILTER static int get_filter(void __user *arg, struct sock_filter **p) { struct sock_fprog uprog; struct sock_filter *code = NULL; int len; if (copy_from_user(&uprog, arg, sizeof(uprog))) return -EFAULT; if (!uprog.len) { *p = NULL; return 0; } len = uprog.len * sizeof(struct sock_filter); code = memdup_user(uprog.filter, len); if (IS_ERR(code)) return PTR_ERR(code); *p = code; return uprog.len; } #endif /* CONFIG_PPP_FILTER */ static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct ppp_file *pf; struct ppp *ppp; int err = -EFAULT, val, val2, i; struct ppp_idle idle; struct npioctl npi; int unit, cflags; struct slcompress *vj; void __user *argp = (void __user *)arg; int __user *p = argp; mutex_lock(&ppp_mutex); pf = file->private_data; if (!pf) { err = ppp_unattached_ioctl(current->nsproxy->net_ns, pf, file, cmd, arg); goto out; } if (cmd == PPPIOCDETACH) { /* * PPPIOCDETACH is no longer supported as it was heavily broken, * and is only known to have been used by pppd older than * ppp-2.4.2 (released November 2003). */ pr_warn_once("%s (%d) used obsolete PPPIOCDETACH ioctl\n", current->comm, current->pid); err = -EINVAL; goto out; } if (pf->kind == CHANNEL) { struct channel *pch; struct ppp_channel *chan; pch = PF_TO_CHANNEL(pf); switch (cmd) { case PPPIOCCONNECT: if (get_user(unit, p)) break; err = ppp_connect_channel(pch, unit); break; case PPPIOCDISCONN: err = ppp_disconnect_channel(pch); break; default: down_read(&pch->chan_sem); chan = pch->chan; err = -ENOTTY; if (chan && chan->ops->ioctl) err = chan->ops->ioctl(chan, cmd, arg); up_read(&pch->chan_sem); } goto out; } if (pf->kind != INTERFACE) { /* can't happen */ pr_err("PPP: not interface or channel??\n"); err = -EINVAL; goto out; } ppp = PF_TO_PPP(pf); switch (cmd) { case PPPIOCSMRU: if (get_user(val, p)) break; ppp->mru = val; err = 0; break; case PPPIOCSFLAGS: if (get_user(val, p)) break; ppp_lock(ppp); cflags = ppp->flags & ~val; #ifdef CONFIG_PPP_MULTILINK if (!(ppp->flags & SC_MULTILINK) && (val & SC_MULTILINK)) ppp->nextseq = 0; #endif ppp->flags = val & SC_FLAG_BITS; ppp_unlock(ppp); if (cflags & SC_CCP_OPEN) ppp_ccp_closed(ppp); err = 0; break; case PPPIOCGFLAGS: val = ppp->flags | ppp->xstate | ppp->rstate; if (put_user(val, p)) break; err = 0; break; case PPPIOCSCOMPRESS: err = ppp_set_compress(ppp, arg); break; case PPPIOCGUNIT: if (put_user(ppp->file.index, p)) break; err = 0; break; case PPPIOCSDEBUG: if (get_user(val, p)) break; ppp->debug = val; err = 0; break; case PPPIOCGDEBUG: if (put_user(ppp->debug, p)) break; err = 0; break; case PPPIOCGIDLE: idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ; idle.recv_idle = (jiffies - ppp->last_recv) / HZ; if (copy_to_user(argp, &idle, sizeof(idle))) break; err = 0; break; case PPPIOCSMAXCID: if (get_user(val, p)) break; val2 = 15; if ((val >> 16) != 0) { val2 = val >> 16; val &= 0xffff; } vj = slhc_init(val2+1, val+1); if (IS_ERR(vj)) { err = PTR_ERR(vj); break; } ppp_lock(ppp); if (ppp->vj) slhc_free(ppp->vj); ppp->vj = vj; ppp_unlock(ppp); err = 0; break; case PPPIOCGNPMODE: case PPPIOCSNPMODE: if (copy_from_user(&npi, argp, sizeof(npi))) break; err = proto_to_npindex(npi.protocol); if (err < 0) break; i = err; if (cmd == PPPIOCGNPMODE) { err = -EFAULT; npi.mode = ppp->npmode[i]; if (copy_to_user(argp, &npi, sizeof(npi))) break; } else { ppp->npmode[i] = npi.mode; /* we may be able to transmit more packets now (??) */ netif_wake_queue(ppp->dev); } err = 0; break; #ifdef CONFIG_PPP_FILTER case PPPIOCSPASS: { struct sock_filter *code; err = get_filter(argp, &code); if (err >= 0) { struct bpf_prog *pass_filter = NULL; struct sock_fprog_kern fprog = { .len = err, .filter = code, }; err = 0; if (fprog.filter) err = bpf_prog_create(&pass_filter, &fprog); if (!err) { ppp_lock(ppp); if (ppp->pass_filter) bpf_prog_destroy(ppp->pass_filter); ppp->pass_filter = pass_filter; ppp_unlock(ppp); } kfree(code); } break; } case PPPIOCSACTIVE: { struct sock_filter *code; err = get_filter(argp, &code); if (err >= 0) { struct bpf_prog *active_filter = NULL; struct sock_fprog_kern fprog = { .len = err, .filter = code, }; err = 0; if (fprog.filter) err = bpf_prog_create(&active_filter, &fprog); if (!err) { ppp_lock(ppp); if (ppp->active_filter) bpf_prog_destroy(ppp->active_filter); ppp->active_filter = active_filter; ppp_unlock(ppp); } kfree(code); } break; } #endif /* CONFIG_PPP_FILTER */ #ifdef CONFIG_PPP_MULTILINK case PPPIOCSMRRU: if (get_user(val, p)) break; ppp_recv_lock(ppp); ppp->mrru = val; ppp_recv_unlock(ppp); err = 0; break; #endif /* CONFIG_PPP_MULTILINK */ default: err = -ENOTTY; } out: mutex_unlock(&ppp_mutex); return err; } static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf, struct file *file, unsigned int cmd, unsigned long arg) { int unit, err = -EFAULT; struct ppp *ppp; struct channel *chan; struct ppp_net *pn; int __user *p = (int __user *)arg; switch (cmd) { case PPPIOCNEWUNIT: /* Create a new ppp unit */ if (get_user(unit, p)) break; err = ppp_create_interface(net, file, &unit); if (err < 0) break; err = -EFAULT; if (put_user(unit, p)) break; err = 0; break; case PPPIOCATTACH: /* Attach to an existing ppp unit */ if (get_user(unit, p)) break; err = -ENXIO; pn = ppp_pernet(net); mutex_lock(&pn->all_ppp_mutex); ppp = ppp_find_unit(pn, unit); if (ppp) { refcount_inc(&ppp->file.refcnt); file->private_data = &ppp->file; err = 0; } mutex_unlock(&pn->all_ppp_mutex); break; case PPPIOCATTCHAN: if (get_user(unit, p)) break; err = -ENXIO; pn = ppp_pernet(net); spin_lock_bh(&pn->all_channels_lock); chan = ppp_find_channel(pn, unit); if (chan) { refcount_inc(&chan->file.refcnt); file->private_data = &chan->file; err = 0; } spin_unlock_bh(&pn->all_channels_lock); break; default: err = -ENOTTY; } return err; } static const struct file_operations ppp_device_fops = { .owner = THIS_MODULE, .read = ppp_read, .write = ppp_write, .poll = ppp_poll, .unlocked_ioctl = ppp_ioctl, .open = ppp_open, .release = ppp_release, .llseek = noop_llseek, }; static __net_init int ppp_init_net(struct net *net) { struct ppp_net *pn = net_generic(net, ppp_net_id); idr_init(&pn->units_idr); mutex_init(&pn->all_ppp_mutex); INIT_LIST_HEAD(&pn->all_channels); INIT_LIST_HEAD(&pn->new_channels); spin_lock_init(&pn->all_channels_lock); return 0; } static __net_exit void ppp_exit_net(struct net *net) { struct ppp_net *pn = net_generic(net, ppp_net_id); struct net_device *dev; struct net_device *aux; struct ppp *ppp; LIST_HEAD(list); int id; rtnl_lock(); for_each_netdev_safe(net, dev, aux) { if (dev->netdev_ops == &ppp_netdev_ops) unregister_netdevice_queue(dev, &list); } idr_for_each_entry(&pn->units_idr, ppp, id) /* Skip devices already unregistered by previous loop */ if (!net_eq(dev_net(ppp->dev), net)) unregister_netdevice_queue(ppp->dev, &list); unregister_netdevice_many(&list); rtnl_unlock(); mutex_destroy(&pn->all_ppp_mutex); idr_destroy(&pn->units_idr); WARN_ON_ONCE(!list_empty(&pn->all_channels)); WARN_ON_ONCE(!list_empty(&pn->new_channels)); } static struct pernet_operations ppp_net_ops = { .init = ppp_init_net, .exit = ppp_exit_net, .id = &ppp_net_id, .size = sizeof(struct ppp_net), }; static int ppp_unit_register(struct ppp *ppp, int unit, bool ifname_is_set) { struct ppp_net *pn = ppp_pernet(ppp->ppp_net); int ret; mutex_lock(&pn->all_ppp_mutex); if (unit < 0) { ret = unit_get(&pn->units_idr, ppp, 0); if (ret < 0) goto err; if (!ifname_is_set) { while (1) { snprintf(ppp->dev->name, IFNAMSIZ, "ppp%i", ret); if (!__dev_get_by_name(ppp->ppp_net, ppp->dev->name)) break; unit_put(&pn->units_idr, ret); ret = unit_get(&pn->units_idr, ppp, ret + 1); if (ret < 0) goto err; } } } else { /* Caller asked for a specific unit number. Fail with -EEXIST * if unavailable. For backward compatibility, return -EEXIST * too if idr allocation fails; this makes pppd retry without * requesting a specific unit number. */ if (unit_find(&pn->units_idr, unit)) { ret = -EEXIST; goto err; } ret = unit_set(&pn->units_idr, ppp, unit); if (ret < 0) { /* Rewrite error for backward compatibility */ ret = -EEXIST; goto err; } } ppp->file.index = ret; if (!ifname_is_set) snprintf(ppp->dev->name, IFNAMSIZ, "ppp%i", ppp->file.index); mutex_unlock(&pn->all_ppp_mutex); ret = register_netdevice(ppp->dev); if (ret < 0) goto err_unit; atomic_inc(&ppp_unit_count); return 0; err_unit: mutex_lock(&pn->all_ppp_mutex); unit_put(&pn->units_idr, ppp->file.index); err: mutex_unlock(&pn->all_ppp_mutex); return ret; } static int ppp_dev_configure(struct net *src_net, struct net_device *dev, const struct ppp_config *conf) { struct ppp *ppp = netdev_priv(dev); int indx; int err; int cpu; ppp->dev = dev; ppp->ppp_net = src_net; ppp->mru = PPP_MRU; ppp->owner = conf->file; init_ppp_file(&ppp->file, INTERFACE); ppp->file.hdrlen = PPP_HDRLEN - 2; /* don't count proto bytes */ for (indx = 0; indx < NUM_NP; ++indx) ppp->npmode[indx] = NPMODE_PASS; INIT_LIST_HEAD(&ppp->channels); spin_lock_init(&ppp->rlock); spin_lock_init(&ppp->wlock); ppp->xmit_recursion = alloc_percpu(int); if (!ppp->xmit_recursion) { err = -ENOMEM; goto err1; } for_each_possible_cpu(cpu) (*per_cpu_ptr(ppp->xmit_recursion, cpu)) = 0; #ifdef CONFIG_PPP_MULTILINK ppp->minseq = -1; skb_queue_head_init(&ppp->mrq); #endif /* CONFIG_PPP_MULTILINK */ #ifdef CONFIG_PPP_FILTER ppp->pass_filter = NULL; ppp->active_filter = NULL; #endif /* CONFIG_PPP_FILTER */ err = ppp_unit_register(ppp, conf->unit, conf->ifname_is_set); if (err < 0) goto err2; conf->file->private_data = &ppp->file; return 0; err2: free_percpu(ppp->xmit_recursion); err1: return err; } static const struct nla_policy ppp_nl_policy[IFLA_PPP_MAX + 1] = { [IFLA_PPP_DEV_FD] = { .type = NLA_S32 }, }; static int ppp_nl_validate(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { if (!data) return -EINVAL; if (!data[IFLA_PPP_DEV_FD]) return -EINVAL; if (nla_get_s32(data[IFLA_PPP_DEV_FD]) < 0) return -EBADF; return 0; } static int ppp_nl_newlink(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct ppp_config conf = { .unit = -1, .ifname_is_set = true, }; struct file *file; int err; file = fget(nla_get_s32(data[IFLA_PPP_DEV_FD])); if (!file) return -EBADF; /* rtnl_lock is already held here, but ppp_create_interface() locks * ppp_mutex before holding rtnl_lock. Using mutex_trylock() avoids * possible deadlock due to lock order inversion, at the cost of * pushing the problem back to userspace. */ if (!mutex_trylock(&ppp_mutex)) { err = -EBUSY; goto out; } if (file->f_op != &ppp_device_fops || file->private_data) { err = -EBADF; goto out_unlock; } conf.file = file; /* Don't use device name generated by the rtnetlink layer when ifname * isn't specified. Let ppp_dev_configure() set the device name using * the PPP unit identifer as suffix (i.e. ppp). This allows * userspace to infer the device name using to the PPPIOCGUNIT ioctl. */ if (!tb[IFLA_IFNAME] || !nla_len(tb[IFLA_IFNAME]) || !*(char *)nla_data(tb[IFLA_IFNAME])) conf.ifname_is_set = false; err = ppp_dev_configure(src_net, dev, &conf); out_unlock: mutex_unlock(&ppp_mutex); out: fput(file); return err; } static void ppp_nl_dellink(struct net_device *dev, struct list_head *head) { unregister_netdevice_queue(dev, head); } static size_t ppp_nl_get_size(const struct net_device *dev) { return 0; } static int ppp_nl_fill_info(struct sk_buff *skb, const struct net_device *dev) { return 0; } static struct net *ppp_nl_get_link_net(const struct net_device *dev) { struct ppp *ppp = netdev_priv(dev); return ppp->ppp_net; } static struct rtnl_link_ops ppp_link_ops __read_mostly = { .kind = "ppp", .maxtype = IFLA_PPP_MAX, .policy = ppp_nl_policy, .priv_size = sizeof(struct ppp), .setup = ppp_setup, .validate = ppp_nl_validate, .newlink = ppp_nl_newlink, .dellink = ppp_nl_dellink, .get_size = ppp_nl_get_size, .fill_info = ppp_nl_fill_info, .get_link_net = ppp_nl_get_link_net, }; #define PPP_MAJOR 108 /* Called at boot time if ppp is compiled into the kernel, or at module load time (from init_module) if compiled as a module. */ static int __init ppp_init(void) { int err; pr_info("PPP generic driver version " PPP_VERSION "\n"); err = register_pernet_device(&ppp_net_ops); if (err) { pr_err("failed to register PPP pernet device (%d)\n", err); goto out; } err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops); if (err) { pr_err("failed to register PPP device (%d)\n", err); goto out_net; } ppp_class = class_create(THIS_MODULE, "ppp"); if (IS_ERR(ppp_class)) { err = PTR_ERR(ppp_class); goto out_chrdev; } err = rtnl_link_register(&ppp_link_ops); if (err) { pr_err("failed to register rtnetlink PPP handler\n"); goto out_class; } /* not a big deal if we fail here :-) */ device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp"); return 0; out_class: class_destroy(ppp_class); out_chrdev: unregister_chrdev(PPP_MAJOR, "ppp"); out_net: unregister_pernet_device(&ppp_net_ops); out: return err; } /* * Network interface unit routines. */ static netdev_tx_t ppp_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ppp *ppp = netdev_priv(dev); int npi, proto; unsigned char *pp; npi = ethertype_to_npindex(ntohs(skb->protocol)); if (npi < 0) goto outf; /* Drop, accept or reject the packet */ switch (ppp->npmode[npi]) { case NPMODE_PASS: break; case NPMODE_QUEUE: /* it would be nice to have a way to tell the network system to queue this one up for later. */ goto outf; case NPMODE_DROP: case NPMODE_ERROR: goto outf; } /* Put the 2-byte PPP protocol number on the front, making sure there is room for the address and control fields. */ if (skb_cow_head(skb, PPP_HDRLEN)) goto outf; pp = skb_push(skb, 2); proto = npindex_to_proto[npi]; put_unaligned_be16(proto, pp); skb_scrub_packet(skb, !net_eq(ppp->ppp_net, dev_net(dev))); ppp_xmit_process(ppp, skb); return NETDEV_TX_OK; outf: kfree_skb(skb); ++dev->stats.tx_dropped; return NETDEV_TX_OK; } static int ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct ppp *ppp = netdev_priv(dev); int err = -EFAULT; void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data; struct ppp_stats stats; struct ppp_comp_stats cstats; char *vers; switch (cmd) { case SIOCGPPPSTATS: ppp_get_stats(ppp, &stats); if (copy_to_user(addr, &stats, sizeof(stats))) break; err = 0; break; case SIOCGPPPCSTATS: memset(&cstats, 0, sizeof(cstats)); if (ppp->xc_state) ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c); if (ppp->rc_state) ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d); if (copy_to_user(addr, &cstats, sizeof(cstats))) break; err = 0; break; case SIOCGPPPVER: vers = PPP_VERSION; if (copy_to_user(addr, vers, strlen(vers) + 1)) break; err = 0; break; default: err = -EINVAL; } return err; } static void ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64) { struct ppp *ppp = netdev_priv(dev); ppp_recv_lock(ppp); stats64->rx_packets = ppp->stats64.rx_packets; stats64->rx_bytes = ppp->stats64.rx_bytes; ppp_recv_unlock(ppp); ppp_xmit_lock(ppp); stats64->tx_packets = ppp->stats64.tx_packets; stats64->tx_bytes = ppp->stats64.tx_bytes; ppp_xmit_unlock(ppp); stats64->rx_errors = dev->stats.rx_errors; stats64->tx_errors = dev->stats.tx_errors; stats64->rx_dropped = dev->stats.rx_dropped; stats64->tx_dropped = dev->stats.tx_dropped; stats64->rx_length_errors = dev->stats.rx_length_errors; } static int ppp_dev_init(struct net_device *dev) { struct ppp *ppp; netdev_lockdep_set_classes(dev); ppp = netdev_priv(dev); /* Let the netdevice take a reference on the ppp file. This ensures * that ppp_destroy_interface() won't run before the device gets * unregistered. */ refcount_inc(&ppp->file.refcnt); return 0; } static void ppp_dev_uninit(struct net_device *dev) { struct ppp *ppp = netdev_priv(dev); struct ppp_net *pn = ppp_pernet(ppp->ppp_net); ppp_lock(ppp); ppp->closing = 1; ppp_unlock(ppp); mutex_lock(&pn->all_ppp_mutex); unit_put(&pn->units_idr, ppp->file.index); mutex_unlock(&pn->all_ppp_mutex); ppp->owner = NULL; ppp->file.dead = 1; wake_up_interruptible(&ppp->file.rwait); } static void ppp_dev_priv_destructor(struct net_device *dev) { struct ppp *ppp; ppp = netdev_priv(dev); if (refcount_dec_and_test(&ppp->file.refcnt)) ppp_destroy_interface(ppp); } static const struct net_device_ops ppp_netdev_ops = { .ndo_init = ppp_dev_init, .ndo_uninit = ppp_dev_uninit, .ndo_start_xmit = ppp_start_xmit, .ndo_do_ioctl = ppp_net_ioctl, .ndo_get_stats64 = ppp_get_stats64, }; static struct device_type ppp_type = { .name = "ppp", }; static void ppp_setup(struct net_device *dev) { dev->netdev_ops = &ppp_netdev_ops; SET_NETDEV_DEVTYPE(dev, &ppp_type); dev->features |= NETIF_F_LLTX; dev->hard_header_len = PPP_HDRLEN; dev->mtu = PPP_MRU; dev->addr_len = 0; dev->tx_queue_len = 3; dev->type = ARPHRD_PPP; dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST; dev->priv_destructor = ppp_dev_priv_destructor; netif_keep_dst(dev); } /* * Transmit-side routines. */ /* Called to do any work queued up on the transmit side that can now be done */ static void __ppp_xmit_process(struct ppp *ppp, struct sk_buff *skb) { ppp_xmit_lock(ppp); if (!ppp->closing) { ppp_push(ppp); if (skb) skb_queue_tail(&ppp->file.xq, skb); while (!ppp->xmit_pending && (skb = skb_dequeue(&ppp->file.xq))) ppp_send_frame(ppp, skb); /* If there's no work left to do, tell the core net code that we can accept some more. */ if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq)) netif_wake_queue(ppp->dev); else netif_stop_queue(ppp->dev); } else { kfree_skb(skb); } ppp_xmit_unlock(ppp); } static void ppp_xmit_process(struct ppp *ppp, struct sk_buff *skb) { local_bh_disable(); if (unlikely(*this_cpu_ptr(ppp->xmit_recursion))) goto err; (*this_cpu_ptr(ppp->xmit_recursion))++; __ppp_xmit_process(ppp, skb); (*this_cpu_ptr(ppp->xmit_recursion))--; local_bh_enable(); return; err: local_bh_enable(); kfree_skb(skb); if (net_ratelimit()) netdev_err(ppp->dev, "recursion detected\n"); } static inline struct sk_buff * pad_compress_skb(struct ppp *ppp, struct sk_buff *skb) { struct sk_buff *new_skb; int len; int new_skb_size = ppp->dev->mtu + ppp->xcomp->comp_extra + ppp->dev->hard_header_len; int compressor_skb_size = ppp->dev->mtu + ppp->xcomp->comp_extra + PPP_HDRLEN; new_skb = alloc_skb(new_skb_size, GFP_ATOMIC); if (!new_skb) { if (net_ratelimit()) netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n"); return NULL; } if (ppp->dev->hard_header_len > PPP_HDRLEN) skb_reserve(new_skb, ppp->dev->hard_header_len - PPP_HDRLEN); /* compressor still expects A/C bytes in hdr */ len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2, new_skb->data, skb->len + 2, compressor_skb_size); if (len > 0 && (ppp->flags & SC_CCP_UP)) { consume_skb(skb); skb = new_skb; skb_put(skb, len); skb_pull(skb, 2); /* pull off A/C bytes */ } else if (len == 0) { /* didn't compress, or CCP not up yet */ consume_skb(new_skb); new_skb = skb; } else { /* * (len < 0) * MPPE requires that we do not send unencrypted * frames. The compressor will return -1 if we * should drop the frame. We cannot simply test * the compress_proto because MPPE and MPPC share * the same number. */ if (net_ratelimit()) netdev_err(ppp->dev, "ppp: compressor dropped pkt\n"); kfree_skb(skb); consume_skb(new_skb); new_skb = NULL; } return new_skb; } /* * Compress and send a frame. * The caller should have locked the xmit path, * and xmit_pending should be 0. */ static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb) { int proto = PPP_PROTO(skb); struct sk_buff *new_skb; int len; unsigned char *cp; skb->dev = ppp->dev; if (proto < 0x8000) { #ifdef CONFIG_PPP_FILTER /* check if we should pass this packet */ /* the filter instructions are constructed assuming a four-byte PPP header on each packet */ *(u8 *)skb_push(skb, 2) = 1; if (ppp->pass_filter && BPF_PROG_RUN(ppp->pass_filter, skb) == 0) { if (ppp->debug & 1) netdev_printk(KERN_DEBUG, ppp->dev, "PPP: outbound frame " "not passed\n"); kfree_skb(skb); return; } /* if this packet passes the active filter, record the time */ if (!(ppp->active_filter && BPF_PROG_RUN(ppp->active_filter, skb) == 0)) ppp->last_xmit = jiffies; skb_pull(skb, 2); #else /* for data packets, record the time */ ppp->last_xmit = jiffies; #endif /* CONFIG_PPP_FILTER */ } ++ppp->stats64.tx_packets; ppp->stats64.tx_bytes += skb->len - PPP_PROTO_LEN; switch (proto) { case PPP_IP: if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0) break; /* try to do VJ TCP header compression */ new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2, GFP_ATOMIC); if (!new_skb) { netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n"); goto drop; } skb_reserve(new_skb, ppp->dev->hard_header_len - 2); cp = skb->data + 2; len = slhc_compress(ppp->vj, cp, skb->len - 2, new_skb->data + 2, &cp, !(ppp->flags & SC_NO_TCP_CCID)); if (cp == skb->data + 2) { /* didn't compress */ consume_skb(new_skb); } else { if (cp[0] & SL_TYPE_COMPRESSED_TCP) { proto = PPP_VJC_COMP; cp[0] &= ~SL_TYPE_COMPRESSED_TCP; } else { proto = PPP_VJC_UNCOMP; cp[0] = skb->data[2]; } consume_skb(skb); skb = new_skb; cp = skb_put(skb, len + 2); cp[0] = 0; cp[1] = proto; } break; case PPP_CCP: /* peek at outbound CCP frames */ ppp_ccp_peek(ppp, skb, 0); break; } /* try to do packet compression */ if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state && proto != PPP_LCP && proto != PPP_CCP) { if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) { if (net_ratelimit()) netdev_err(ppp->dev, "ppp: compression required but " "down - pkt dropped.\n"); goto drop; } skb = pad_compress_skb(ppp, skb); if (!skb) goto drop; } /* * If we are waiting for traffic (demand dialling), * queue it up for pppd to receive. */ if (ppp->flags & SC_LOOP_TRAFFIC) { if (ppp->file.rq.qlen > PPP_MAX_RQLEN) goto drop; skb_queue_tail(&ppp->file.rq, skb); wake_up_interruptible(&ppp->file.rwait); return; } ppp->xmit_pending = skb; ppp_push(ppp); return; drop: kfree_skb(skb); ++ppp->dev->stats.tx_errors; } /* * Try to send the frame in xmit_pending. * The caller should have the xmit path locked. */ static void ppp_push(struct ppp *ppp) { struct list_head *list; struct channel *pch; struct sk_buff *skb = ppp->xmit_pending; if (!skb) return; list = &ppp->channels; if (list_empty(list)) { /* nowhere to send the packet, just drop it */ ppp->xmit_pending = NULL; kfree_skb(skb); return; } if ((ppp->flags & SC_MULTILINK) == 0) { /* not doing multilink: send it down the first channel */ list = list->next; pch = list_entry(list, struct channel, clist); spin_lock(&pch->downl); if (pch->chan) { if (pch->chan->ops->start_xmit(pch->chan, skb)) ppp->xmit_pending = NULL; } else { /* channel got unregistered */ kfree_skb(skb); ppp->xmit_pending = NULL; } spin_unlock(&pch->downl); return; } #ifdef CONFIG_PPP_MULTILINK /* Multilink: fragment the packet over as many links as can take the packet at the moment. */ if (!ppp_mp_explode(ppp, skb)) return; #endif /* CONFIG_PPP_MULTILINK */ ppp->xmit_pending = NULL; kfree_skb(skb); } #ifdef CONFIG_PPP_MULTILINK static bool mp_protocol_compress __read_mostly = true; module_param(mp_protocol_compress, bool, 0644); MODULE_PARM_DESC(mp_protocol_compress, "compress protocol id in multilink fragments"); /* * Divide a packet to be transmitted into fragments and * send them out the individual links. */ static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb) { int len, totlen; int i, bits, hdrlen, mtu; int flen; int navail, nfree, nzero; int nbigger; int totspeed; int totfree; unsigned char *p, *q; struct list_head *list; struct channel *pch; struct sk_buff *frag; struct ppp_channel *chan; totspeed = 0; /*total bitrate of the bundle*/ nfree = 0; /* # channels which have no packet already queued */ navail = 0; /* total # of usable channels (not deregistered) */ nzero = 0; /* number of channels with zero speed associated*/ totfree = 0; /*total # of channels available and *having no queued packets before *starting the fragmentation*/ hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; i = 0; list_for_each_entry(pch, &ppp->channels, clist) { if (pch->chan) { pch->avail = 1; navail++; pch->speed = pch->chan->speed; } else { pch->avail = 0; } if (pch->avail) { if (skb_queue_empty(&pch->file.xq) || !pch->had_frag) { if (pch->speed == 0) nzero++; else totspeed += pch->speed; pch->avail = 2; ++nfree; ++totfree; } if (!pch->had_frag && i < ppp->nxchan) ppp->nxchan = i; } ++i; } /* * Don't start sending this packet unless at least half of * the channels are free. This gives much better TCP * performance if we have a lot of channels. */ if (nfree == 0 || nfree < navail / 2) return 0; /* can't take now, leave it in xmit_pending */ /* Do protocol field compression */ p = skb->data; len = skb->len; if (*p == 0 && mp_protocol_compress) { ++p; --len; } totlen = len; nbigger = len % nfree; /* skip to the channel after the one we last used and start at that one */ list = &ppp->channels; for (i = 0; i < ppp->nxchan; ++i) { list = list->next; if (list == &ppp->channels) { i = 0; break; } } /* create a fragment for each channel */ bits = B; while (len > 0) { list = list->next; if (list == &ppp->channels) { i = 0; continue; } pch = list_entry(list, struct channel, clist); ++i; if (!pch->avail) continue; /* * Skip this channel if it has a fragment pending already and * we haven't given a fragment to all of the free channels. */ if (pch->avail == 1) { if (nfree > 0) continue; } else { pch->avail = 1; } /* check the channel's mtu and whether it is still attached. */ spin_lock(&pch->downl); if (pch->chan == NULL) { /* can't use this channel, it's being deregistered */ if (pch->speed == 0) nzero--; else totspeed -= pch->speed; spin_unlock(&pch->downl); pch->avail = 0; totlen = len; totfree--; nfree--; if (--navail == 0) break; continue; } /* *if the channel speed is not set divide *the packet evenly among the free channels; *otherwise divide it according to the speed *of the channel we are going to transmit on */ flen = len; if (nfree > 0) { if (pch->speed == 0) { flen = len/nfree; if (nbigger > 0) { flen++; nbigger--; } } else { flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) / ((totspeed*totfree)/pch->speed)) - hdrlen; if (nbigger > 0) { flen += ((totfree - nzero)*pch->speed)/totspeed; nbigger -= ((totfree - nzero)*pch->speed)/ totspeed; } } nfree--; } /* *check if we are on the last channel or *we exceded the length of the data to *fragment */ if ((nfree <= 0) || (flen > len)) flen = len; /* *it is not worth to tx on slow channels: *in that case from the resulting flen according to the *above formula will be equal or less than zero. *Skip the channel in this case */ if (flen <= 0) { pch->avail = 2; spin_unlock(&pch->downl); continue; } /* * hdrlen includes the 2-byte PPP protocol field, but the * MTU counts only the payload excluding the protocol field. * (RFC1661 Section 2) */ mtu = pch->chan->mtu - (hdrlen - 2); if (mtu < 4) mtu = 4; if (flen > mtu) flen = mtu; if (flen == len) bits |= E; frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC); if (!frag) goto noskb; q = skb_put(frag, flen + hdrlen); /* make the MP header */ put_unaligned_be16(PPP_MP, q); if (ppp->flags & SC_MP_XSHORTSEQ) { q[2] = bits + ((ppp->nxseq >> 8) & 0xf); q[3] = ppp->nxseq; } else { q[2] = bits; q[3] = ppp->nxseq >> 16; q[4] = ppp->nxseq >> 8; q[5] = ppp->nxseq; } memcpy(q + hdrlen, p, flen); /* try to send it down the channel */ chan = pch->chan; if (!skb_queue_empty(&pch->file.xq) || !chan->ops->start_xmit(chan, frag)) skb_queue_tail(&pch->file.xq, frag); pch->had_frag = 1; p += flen; len -= flen; ++ppp->nxseq; bits = 0; spin_unlock(&pch->downl); } ppp->nxchan = i; return 1; noskb: spin_unlock(&pch->downl); if (ppp->debug & 1) netdev_err(ppp->dev, "PPP: no memory (fragment)\n"); ++ppp->dev->stats.tx_errors; ++ppp->nxseq; return 1; /* abandon the frame */ } #endif /* CONFIG_PPP_MULTILINK */ /* Try to send data out on a channel */ static void __ppp_channel_push(struct channel *pch) { struct sk_buff *skb; struct ppp *ppp; spin_lock(&pch->downl); if (pch->chan) { while (!skb_queue_empty(&pch->file.xq)) { skb = skb_dequeue(&pch->file.xq); if (!pch->chan->ops->start_xmit(pch->chan, skb)) { /* put the packet back and try again later */ skb_queue_head(&pch->file.xq, skb); break; } } } else { /* channel got deregistered */ skb_queue_purge(&pch->file.xq); } spin_unlock(&pch->downl); /* see if there is anything from the attached unit to be sent */ if (skb_queue_empty(&pch->file.xq)) { ppp = pch->ppp; if (ppp) __ppp_xmit_process(ppp, NULL); } } static void ppp_channel_push(struct channel *pch) { read_lock_bh(&pch->upl); if (pch->ppp) { (*this_cpu_ptr(pch->ppp->xmit_recursion))++; __ppp_channel_push(pch); (*this_cpu_ptr(pch->ppp->xmit_recursion))--; } else { __ppp_channel_push(pch); } read_unlock_bh(&pch->upl); } /* * Receive-side routines. */ struct ppp_mp_skb_parm { u32 sequence; u8 BEbits; }; #define PPP_MP_CB(skb) ((struct ppp_mp_skb_parm *)((skb)->cb)) static inline void ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) { ppp_recv_lock(ppp); if (!ppp->closing) ppp_receive_frame(ppp, skb, pch); else kfree_skb(skb); ppp_recv_unlock(ppp); } void ppp_input(struct ppp_channel *chan, struct sk_buff *skb) { struct channel *pch = chan->ppp; int proto; if (!pch) { kfree_skb(skb); return; } read_lock_bh(&pch->upl); if (!pskb_may_pull(skb, 2)) { kfree_skb(skb); if (pch->ppp) { ++pch->ppp->dev->stats.rx_length_errors; ppp_receive_error(pch->ppp); } goto done; } proto = PPP_PROTO(skb); if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) { /* put it on the channel queue */ skb_queue_tail(&pch->file.rq, skb); /* drop old frames if queue too long */ while (pch->file.rq.qlen > PPP_MAX_RQLEN && (skb = skb_dequeue(&pch->file.rq))) kfree_skb(skb); wake_up_interruptible(&pch->file.rwait); } else { ppp_do_recv(pch->ppp, skb, pch); } done: read_unlock_bh(&pch->upl); } /* Put a 0-length skb in the receive queue as an error indication */ void ppp_input_error(struct ppp_channel *chan, int code) { struct channel *pch = chan->ppp; struct sk_buff *skb; if (!pch) return; read_lock_bh(&pch->upl); if (pch->ppp) { skb = alloc_skb(0, GFP_ATOMIC); if (skb) { skb->len = 0; /* probably unnecessary */ skb->cb[0] = code; ppp_do_recv(pch->ppp, skb, pch); } } read_unlock_bh(&pch->upl); } /* * We come in here to process a received frame. * The receive side of the ppp unit is locked. */ static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) { /* note: a 0-length skb is used as an error indication */ if (skb->len > 0) { skb_checksum_complete_unset(skb); #ifdef CONFIG_PPP_MULTILINK /* XXX do channel-level decompression here */ if (PPP_PROTO(skb) == PPP_MP) ppp_receive_mp_frame(ppp, skb, pch); else #endif /* CONFIG_PPP_MULTILINK */ ppp_receive_nonmp_frame(ppp, skb); } else { kfree_skb(skb); ppp_receive_error(ppp); } } static void ppp_receive_error(struct ppp *ppp) { ++ppp->dev->stats.rx_errors; if (ppp->vj) slhc_toss(ppp->vj); } static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb) { struct sk_buff *ns; int proto, len, npi; /* * Decompress the frame, if compressed. * Note that some decompressors need to see uncompressed frames * that come in as well as compressed frames. */ if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) && (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0) skb = ppp_decompress_frame(ppp, skb); if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR) goto err; proto = PPP_PROTO(skb); switch (proto) { case PPP_VJC_COMP: /* decompress VJ compressed packets */ if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP)) goto err; if (skb_tailroom(skb) < 124 || skb_cloned(skb)) { /* copy to a new sk_buff with more tailroom */ ns = dev_alloc_skb(skb->len + 128); if (!ns) { netdev_err(ppp->dev, "PPP: no memory " "(VJ decomp)\n"); goto err; } skb_reserve(ns, 2); skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len); consume_skb(skb); skb = ns; } else skb->ip_summed = CHECKSUM_NONE; len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2); if (len <= 0) { netdev_printk(KERN_DEBUG, ppp->dev, "PPP: VJ decompression error\n"); goto err; } len += 2; if (len > skb->len) skb_put(skb, len - skb->len); else if (len < skb->len) skb_trim(skb, len); proto = PPP_IP; break; case PPP_VJC_UNCOMP: if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP)) goto err; /* Until we fix the decompressor need to make sure * data portion is linear. */ if (!pskb_may_pull(skb, skb->len)) goto err; if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) { netdev_err(ppp->dev, "PPP: VJ uncompressed error\n"); goto err; } proto = PPP_IP; break; case PPP_CCP: ppp_ccp_peek(ppp, skb, 1); break; } ++ppp->stats64.rx_packets; ppp->stats64.rx_bytes += skb->len - 2; npi = proto_to_npindex(proto); if (npi < 0) { /* control or unknown frame - pass it to pppd */ skb_queue_tail(&ppp->file.rq, skb); /* limit queue length by dropping old frames */ while (ppp->file.rq.qlen > PPP_MAX_RQLEN && (skb = skb_dequeue(&ppp->file.rq))) kfree_skb(skb); /* wake up any process polling or blocking on read */ wake_up_interruptible(&ppp->file.rwait); } else { /* network protocol frame - give it to the kernel */ #ifdef CONFIG_PPP_FILTER /* check if the packet passes the pass and active filters */ /* the filter instructions are constructed assuming a four-byte PPP header on each packet */ if (ppp->pass_filter || ppp->active_filter) { if (skb_unclone(skb, GFP_ATOMIC)) goto err; *(u8 *)skb_push(skb, 2) = 0; if (ppp->pass_filter && BPF_PROG_RUN(ppp->pass_filter, skb) == 0) { if (ppp->debug & 1) netdev_printk(KERN_DEBUG, ppp->dev, "PPP: inbound frame " "not passed\n"); kfree_skb(skb); return; } if (!(ppp->active_filter && BPF_PROG_RUN(ppp->active_filter, skb) == 0)) ppp->last_recv = jiffies; __skb_pull(skb, 2); } else #endif /* CONFIG_PPP_FILTER */ ppp->last_recv = jiffies; if ((ppp->dev->flags & IFF_UP) == 0 || ppp->npmode[npi] != NPMODE_PASS) { kfree_skb(skb); } else { /* chop off protocol */ skb_pull_rcsum(skb, 2); skb->dev = ppp->dev; skb->protocol = htons(npindex_to_ethertype[npi]); skb_reset_mac_header(skb); skb_scrub_packet(skb, !net_eq(ppp->ppp_net, dev_net(ppp->dev))); netif_rx(skb); } } return; err: kfree_skb(skb); ppp_receive_error(ppp); } static struct sk_buff * ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb) { int proto = PPP_PROTO(skb); struct sk_buff *ns; int len; /* Until we fix all the decompressor's need to make sure * data portion is linear. */ if (!pskb_may_pull(skb, skb->len)) goto err; if (proto == PPP_COMP) { int obuff_size; switch(ppp->rcomp->compress_proto) { case CI_MPPE: obuff_size = ppp->mru + PPP_HDRLEN + 1; break; default: obuff_size = ppp->mru + PPP_HDRLEN; break; } ns = dev_alloc_skb(obuff_size); if (!ns) { netdev_err(ppp->dev, "ppp_decompress_frame: " "no memory\n"); goto err; } /* the decompressor still expects the A/C bytes in the hdr */ len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2, skb->len + 2, ns->data, obuff_size); if (len < 0) { /* Pass the compressed frame to pppd as an error indication. */ if (len == DECOMP_FATALERROR) ppp->rstate |= SC_DC_FERROR; kfree_skb(ns); goto err; } consume_skb(skb); skb = ns; skb_put(skb, len); skb_pull(skb, 2); /* pull off the A/C bytes */ } else { /* Uncompressed frame - pass to decompressor so it can update its dictionary if necessary. */ if (ppp->rcomp->incomp) ppp->rcomp->incomp(ppp->rc_state, skb->data - 2, skb->len + 2); } return skb; err: ppp->rstate |= SC_DC_ERROR; ppp_receive_error(ppp); return skb; } #ifdef CONFIG_PPP_MULTILINK /* * Receive a multilink frame. * We put it on the reconstruction queue and then pull off * as many completed frames as we can. */ static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) { u32 mask, seq; struct channel *ch; int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0) goto err; /* no good, throw it away */ /* Decode sequence number and begin/end bits */ if (ppp->flags & SC_MP_SHORTSEQ) { seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3]; mask = 0xfff; } else { seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5]; mask = 0xffffff; } PPP_MP_CB(skb)->BEbits = skb->data[2]; skb_pull(skb, mphdrlen); /* pull off PPP and MP headers */ /* * Do protocol ID decompression on the first fragment of each packet. */ if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1)) *(u8 *)skb_push(skb, 1) = 0; /* * Expand sequence number to 32 bits, making it as close * as possible to ppp->minseq. */ seq |= ppp->minseq & ~mask; if ((int)(ppp->minseq - seq) > (int)(mask >> 1)) seq += mask + 1; else if ((int)(seq - ppp->minseq) > (int)(mask >> 1)) seq -= mask + 1; /* should never happen */ PPP_MP_CB(skb)->sequence = seq; pch->lastseq = seq; /* * If this packet comes before the next one we were expecting, * drop it. */ if (seq_before(seq, ppp->nextseq)) { kfree_skb(skb); ++ppp->dev->stats.rx_dropped; ppp_receive_error(ppp); return; } /* * Reevaluate minseq, the minimum over all channels of the * last sequence number received on each channel. Because of * the increasing sequence number rule, we know that any fragment * before `minseq' which hasn't arrived is never going to arrive. * The list of channels can't change because we have the receive * side of the ppp unit locked. */ list_for_each_entry(ch, &ppp->channels, clist) { if (seq_before(ch->lastseq, seq)) seq = ch->lastseq; } if (seq_before(ppp->minseq, seq)) ppp->minseq = seq; /* Put the fragment on the reconstruction queue */ ppp_mp_insert(ppp, skb); /* If the queue is getting long, don't wait any longer for packets before the start of the queue. */ if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) { struct sk_buff *mskb = skb_peek(&ppp->mrq); if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence)) ppp->minseq = PPP_MP_CB(mskb)->sequence; } /* Pull completed packets off the queue and receive them. */ while ((skb = ppp_mp_reconstruct(ppp))) { if (pskb_may_pull(skb, 2)) ppp_receive_nonmp_frame(ppp, skb); else { ++ppp->dev->stats.rx_length_errors; kfree_skb(skb); ppp_receive_error(ppp); } } return; err: kfree_skb(skb); ppp_receive_error(ppp); } /* * Insert a fragment on the MP reconstruction queue. * The queue is ordered by increasing sequence number. */ static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb) { struct sk_buff *p; struct sk_buff_head *list = &ppp->mrq; u32 seq = PPP_MP_CB(skb)->sequence; /* N.B. we don't need to lock the list lock because we have the ppp unit receive-side lock. */ skb_queue_walk(list, p) { if (seq_before(seq, PPP_MP_CB(p)->sequence)) break; } __skb_queue_before(list, p, skb); } /* * Reconstruct a packet from the MP fragment queue. * We go through increasing sequence numbers until we find a * complete packet, or we get to the sequence number for a fragment * which hasn't arrived but might still do so. */ static struct sk_buff * ppp_mp_reconstruct(struct ppp *ppp) { u32 seq = ppp->nextseq; u32 minseq = ppp->minseq; struct sk_buff_head *list = &ppp->mrq; struct sk_buff *p, *tmp; struct sk_buff *head, *tail; struct sk_buff *skb = NULL; int lost = 0, len = 0; if (ppp->mrru == 0) /* do nothing until mrru is set */ return NULL; head = list->next; tail = NULL; skb_queue_walk_safe(list, p, tmp) { again: if (seq_before(PPP_MP_CB(p)->sequence, seq)) { /* this can't happen, anyway ignore the skb */ netdev_err(ppp->dev, "ppp_mp_reconstruct bad " "seq %u < %u\n", PPP_MP_CB(p)->sequence, seq); __skb_unlink(p, list); kfree_skb(p); continue; } if (PPP_MP_CB(p)->sequence != seq) { u32 oldseq; /* Fragment `seq' is missing. If it is after minseq, it might arrive later, so stop here. */ if (seq_after(seq, minseq)) break; /* Fragment `seq' is lost, keep going. */ lost = 1; oldseq = seq; seq = seq_before(minseq, PPP_MP_CB(p)->sequence)? minseq + 1: PPP_MP_CB(p)->sequence; if (ppp->debug & 1) netdev_printk(KERN_DEBUG, ppp->dev, "lost frag %u..%u\n", oldseq, seq-1); goto again; } /* * At this point we know that all the fragments from * ppp->nextseq to seq are either present or lost. * Also, there are no complete packets in the queue * that have no missing fragments and end before this * fragment. */ /* B bit set indicates this fragment starts a packet */ if (PPP_MP_CB(p)->BEbits & B) { head = p; lost = 0; len = 0; } len += p->len; /* Got a complete packet yet? */ if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) && (PPP_MP_CB(head)->BEbits & B)) { if (len > ppp->mrru + 2) { ++ppp->dev->stats.rx_length_errors; netdev_printk(KERN_DEBUG, ppp->dev, "PPP: reconstructed packet" " is too long (%d)\n", len); } else { tail = p; break; } ppp->nextseq = seq + 1; } /* * If this is the ending fragment of a packet, * and we haven't found a complete valid packet yet, * we can discard up to and including this fragment. */ if (PPP_MP_CB(p)->BEbits & E) { struct sk_buff *tmp2; skb_queue_reverse_walk_from_safe(list, p, tmp2) { if (ppp->debug & 1) netdev_printk(KERN_DEBUG, ppp->dev, "discarding frag %u\n", PPP_MP_CB(p)->sequence); __skb_unlink(p, list); kfree_skb(p); } head = skb_peek(list); if (!head) break; } ++seq; } /* If we have a complete packet, copy it all into one skb. */ if (tail != NULL) { /* If we have discarded any fragments, signal a receive error. */ if (PPP_MP_CB(head)->sequence != ppp->nextseq) { skb_queue_walk_safe(list, p, tmp) { if (p == head) break; if (ppp->debug & 1) netdev_printk(KERN_DEBUG, ppp->dev, "discarding frag %u\n", PPP_MP_CB(p)->sequence); __skb_unlink(p, list); kfree_skb(p); } if (ppp->debug & 1) netdev_printk(KERN_DEBUG, ppp->dev, " missed pkts %u..%u\n", ppp->nextseq, PPP_MP_CB(head)->sequence-1); ++ppp->dev->stats.rx_dropped; ppp_receive_error(ppp); } skb = head; if (head != tail) { struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list; p = skb_queue_next(list, head); __skb_unlink(skb, list); skb_queue_walk_from_safe(list, p, tmp) { __skb_unlink(p, list); *fragpp = p; p->next = NULL; fragpp = &p->next; skb->len += p->len; skb->data_len += p->len; skb->truesize += p->truesize; if (p == tail) break; } } else { __skb_unlink(skb, list); } ppp->nextseq = PPP_MP_CB(tail)->sequence + 1; } return skb; } #endif /* CONFIG_PPP_MULTILINK */ /* * Channel interface. */ /* Create a new, unattached ppp channel. */ int ppp_register_channel(struct ppp_channel *chan) { return ppp_register_net_channel(current->nsproxy->net_ns, chan); } /* Create a new, unattached ppp channel for specified net. */ int ppp_register_net_channel(struct net *net, struct ppp_channel *chan) { struct channel *pch; struct ppp_net *pn; pch = kzalloc(sizeof(struct channel), GFP_KERNEL); if (!pch) return -ENOMEM; pn = ppp_pernet(net); pch->ppp = NULL; pch->chan = chan; pch->chan_net = get_net(net); chan->ppp = pch; init_ppp_file(&pch->file, CHANNEL); pch->file.hdrlen = chan->hdrlen; #ifdef CONFIG_PPP_MULTILINK pch->lastseq = -1; #endif /* CONFIG_PPP_MULTILINK */ init_rwsem(&pch->chan_sem); spin_lock_init(&pch->downl); rwlock_init(&pch->upl); spin_lock_bh(&pn->all_channels_lock); pch->file.index = ++pn->last_channel_index; list_add(&pch->list, &pn->new_channels); atomic_inc(&channel_count); spin_unlock_bh(&pn->all_channels_lock); return 0; } /* * Return the index of a channel. */ int ppp_channel_index(struct ppp_channel *chan) { struct channel *pch = chan->ppp; if (pch) return pch->file.index; return -1; } /* * Return the PPP unit number to which a channel is connected. */ int ppp_unit_number(struct ppp_channel *chan) { struct channel *pch = chan->ppp; int unit = -1; if (pch) { read_lock_bh(&pch->upl); if (pch->ppp) unit = pch->ppp->file.index; read_unlock_bh(&pch->upl); } return unit; } /* * Return the PPP device interface name of a channel. */ char *ppp_dev_name(struct ppp_channel *chan) { struct channel *pch = chan->ppp; char *name = NULL; if (pch) { read_lock_bh(&pch->upl); if (pch->ppp && pch->ppp->dev) name = pch->ppp->dev->name; read_unlock_bh(&pch->upl); } return name; } /* * Disconnect a channel from the generic layer. * This must be called in process context. */ void ppp_unregister_channel(struct ppp_channel *chan) { struct channel *pch = chan->ppp; struct ppp_net *pn; if (!pch) return; /* should never happen */ chan->ppp = NULL; /* * This ensures that we have returned from any calls into the * the channel's start_xmit or ioctl routine before we proceed. */ down_write(&pch->chan_sem); spin_lock_bh(&pch->downl); pch->chan = NULL; spin_unlock_bh(&pch->downl); up_write(&pch->chan_sem); ppp_disconnect_channel(pch); pn = ppp_pernet(pch->chan_net); spin_lock_bh(&pn->all_channels_lock); list_del(&pch->list); spin_unlock_bh(&pn->all_channels_lock); pch->file.dead = 1; wake_up_interruptible(&pch->file.rwait); if (refcount_dec_and_test(&pch->file.refcnt)) ppp_destroy_channel(pch); } /* * Callback from a channel when it can accept more to transmit. * This should be called at BH/softirq level, not interrupt level. */ void ppp_output_wakeup(struct ppp_channel *chan) { struct channel *pch = chan->ppp; if (!pch) return; ppp_channel_push(pch); } /* * Compression control. */ /* Process the PPPIOCSCOMPRESS ioctl. */ static int ppp_set_compress(struct ppp *ppp, unsigned long arg) { int err; struct compressor *cp, *ocomp; struct ppp_option_data data; void *state, *ostate; unsigned char ccp_option[CCP_MAX_OPTION_LENGTH]; err = -EFAULT; if (copy_from_user(&data, (void __user *) arg, sizeof(data))) goto out; if (data.length > CCP_MAX_OPTION_LENGTH) goto out; if (copy_from_user(ccp_option, (void __user *) data.ptr, data.length)) goto out; err = -EINVAL; if (data.length < 2 || ccp_option[1] < 2 || ccp_option[1] > data.length) goto out; cp = try_then_request_module( find_compressor(ccp_option[0]), "ppp-compress-%d", ccp_option[0]); if (!cp) goto out; err = -ENOBUFS; if (data.transmit) { state = cp->comp_alloc(ccp_option, data.length); if (state) { ppp_xmit_lock(ppp); ppp->xstate &= ~SC_COMP_RUN; ocomp = ppp->xcomp; ostate = ppp->xc_state; ppp->xcomp = cp; ppp->xc_state = state; ppp_xmit_unlock(ppp); if (ostate) { ocomp->comp_free(ostate); module_put(ocomp->owner); } err = 0; } else module_put(cp->owner); } else { state = cp->decomp_alloc(ccp_option, data.length); if (state) { ppp_recv_lock(ppp); ppp->rstate &= ~SC_DECOMP_RUN; ocomp = ppp->rcomp; ostate = ppp->rc_state; ppp->rcomp = cp; ppp->rc_state = state; ppp_recv_unlock(ppp); if (ostate) { ocomp->decomp_free(ostate); module_put(ocomp->owner); } err = 0; } else module_put(cp->owner); } out: return err; } /* * Look at a CCP packet and update our state accordingly. * We assume the caller has the xmit or recv path locked. */ static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound) { unsigned char *dp; int len; if (!pskb_may_pull(skb, CCP_HDRLEN + 2)) return; /* no header */ dp = skb->data + 2; switch (CCP_CODE(dp)) { case CCP_CONFREQ: /* A ConfReq starts negotiation of compression * in one direction of transmission, * and hence brings it down...but which way? * * Remember: * A ConfReq indicates what the sender would like to receive */ if(inbound) /* He is proposing what I should send */ ppp->xstate &= ~SC_COMP_RUN; else /* I am proposing to what he should send */ ppp->rstate &= ~SC_DECOMP_RUN; break; case CCP_TERMREQ: case CCP_TERMACK: /* * CCP is going down, both directions of transmission */ ppp->rstate &= ~SC_DECOMP_RUN; ppp->xstate &= ~SC_COMP_RUN; break; case CCP_CONFACK: if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN) break; len = CCP_LENGTH(dp); if (!pskb_may_pull(skb, len + 2)) return; /* too short */ dp += CCP_HDRLEN; len -= CCP_HDRLEN; if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp)) break; if (inbound) { /* we will start receiving compressed packets */ if (!ppp->rc_state) break; if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len, ppp->file.index, 0, ppp->mru, ppp->debug)) { ppp->rstate |= SC_DECOMP_RUN; ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR); } } else { /* we will soon start sending compressed packets */ if (!ppp->xc_state) break; if (ppp->xcomp->comp_init(ppp->xc_state, dp, len, ppp->file.index, 0, ppp->debug)) ppp->xstate |= SC_COMP_RUN; } break; case CCP_RESETACK: /* reset the [de]compressor */ if ((ppp->flags & SC_CCP_UP) == 0) break; if (inbound) { if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) { ppp->rcomp->decomp_reset(ppp->rc_state); ppp->rstate &= ~SC_DC_ERROR; } } else { if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN)) ppp->xcomp->comp_reset(ppp->xc_state); } break; } } /* Free up compression resources. */ static void ppp_ccp_closed(struct ppp *ppp) { void *xstate, *rstate; struct compressor *xcomp, *rcomp; ppp_lock(ppp); ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP); ppp->xstate = 0; xcomp = ppp->xcomp; xstate = ppp->xc_state; ppp->xc_state = NULL; ppp->rstate = 0; rcomp = ppp->rcomp; rstate = ppp->rc_state; ppp->rc_state = NULL; ppp_unlock(ppp); if (xstate) { xcomp->comp_free(xstate); module_put(xcomp->owner); } if (rstate) { rcomp->decomp_free(rstate); module_put(rcomp->owner); } } /* List of compressors. */ static LIST_HEAD(compressor_list); static DEFINE_SPINLOCK(compressor_list_lock); struct compressor_entry { struct list_head list; struct compressor *comp; }; static struct compressor_entry * find_comp_entry(int proto) { struct compressor_entry *ce; list_for_each_entry(ce, &compressor_list, list) { if (ce->comp->compress_proto == proto) return ce; } return NULL; } /* Register a compressor */ int ppp_register_compressor(struct compressor *cp) { struct compressor_entry *ce; int ret; spin_lock(&compressor_list_lock); ret = -EEXIST; if (find_comp_entry(cp->compress_proto)) goto out; ret = -ENOMEM; ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC); if (!ce) goto out; ret = 0; ce->comp = cp; list_add(&ce->list, &compressor_list); out: spin_unlock(&compressor_list_lock); return ret; } /* Unregister a compressor */ void ppp_unregister_compressor(struct compressor *cp) { struct compressor_entry *ce; spin_lock(&compressor_list_lock); ce = find_comp_entry(cp->compress_proto); if (ce && ce->comp == cp) { list_del(&ce->list); kfree(ce); } spin_unlock(&compressor_list_lock); } /* Find a compressor. */ static struct compressor * find_compressor(int type) { struct compressor_entry *ce; struct compressor *cp = NULL; spin_lock(&compressor_list_lock); ce = find_comp_entry(type); if (ce) { cp = ce->comp; if (!try_module_get(cp->owner)) cp = NULL; } spin_unlock(&compressor_list_lock); return cp; } /* * Miscelleneous stuff. */ static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st) { struct slcompress *vj = ppp->vj; memset(st, 0, sizeof(*st)); st->p.ppp_ipackets = ppp->stats64.rx_packets; st->p.ppp_ierrors = ppp->dev->stats.rx_errors; st->p.ppp_ibytes = ppp->stats64.rx_bytes; st->p.ppp_opackets = ppp->stats64.tx_packets; st->p.ppp_oerrors = ppp->dev->stats.tx_errors; st->p.ppp_obytes = ppp->stats64.tx_bytes; if (!vj) return; st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed; st->vj.vjs_compressed = vj->sls_o_compressed; st->vj.vjs_searches = vj->sls_o_searches; st->vj.vjs_misses = vj->sls_o_misses; st->vj.vjs_errorin = vj->sls_i_error; st->vj.vjs_tossed = vj->sls_i_tossed; st->vj.vjs_uncompressedin = vj->sls_i_uncompressed; st->vj.vjs_compressedin = vj->sls_i_compressed; } /* * Stuff for handling the lists of ppp units and channels * and for initialization. */ /* * Create a new ppp interface unit. Fails if it can't allocate memory * or if there is already a unit with the requested number. * unit == -1 means allocate a new number. */ static int ppp_create_interface(struct net *net, struct file *file, int *unit) { struct ppp_config conf = { .file = file, .unit = *unit, .ifname_is_set = false, }; struct net_device *dev; struct ppp *ppp; int err; dev = alloc_netdev(sizeof(struct ppp), "", NET_NAME_ENUM, ppp_setup); if (!dev) { err = -ENOMEM; goto err; } dev_net_set(dev, net); dev->rtnl_link_ops = &ppp_link_ops; rtnl_lock(); err = ppp_dev_configure(net, dev, &conf); if (err < 0) goto err_dev; ppp = netdev_priv(dev); *unit = ppp->file.index; rtnl_unlock(); return 0; err_dev: rtnl_unlock(); free_netdev(dev); err: return err; } /* * Initialize a ppp_file structure. */ static void init_ppp_file(struct ppp_file *pf, int kind) { pf->kind = kind; skb_queue_head_init(&pf->xq); skb_queue_head_init(&pf->rq); refcount_set(&pf->refcnt, 1); init_waitqueue_head(&pf->rwait); } /* * Free the memory used by a ppp unit. This is only called once * there are no channels connected to the unit and no file structs * that reference the unit. */ static void ppp_destroy_interface(struct ppp *ppp) { atomic_dec(&ppp_unit_count); if (!ppp->file.dead || ppp->n_channels) { /* "can't happen" */ netdev_err(ppp->dev, "ppp: destroying ppp struct %p " "but dead=%d n_channels=%d !\n", ppp, ppp->file.dead, ppp->n_channels); return; } ppp_ccp_closed(ppp); if (ppp->vj) { slhc_free(ppp->vj); ppp->vj = NULL; } skb_queue_purge(&ppp->file.xq); skb_queue_purge(&ppp->file.rq); #ifdef CONFIG_PPP_MULTILINK skb_queue_purge(&ppp->mrq); #endif /* CONFIG_PPP_MULTILINK */ #ifdef CONFIG_PPP_FILTER if (ppp->pass_filter) { bpf_prog_destroy(ppp->pass_filter); ppp->pass_filter = NULL; } if (ppp->active_filter) { bpf_prog_destroy(ppp->active_filter); ppp->active_filter = NULL; } #endif /* CONFIG_PPP_FILTER */ kfree_skb(ppp->xmit_pending); free_percpu(ppp->xmit_recursion); free_netdev(ppp->dev); } /* * Locate an existing ppp unit. * The caller should have locked the all_ppp_mutex. */ static struct ppp * ppp_find_unit(struct ppp_net *pn, int unit) { return unit_find(&pn->units_idr, unit); } /* * Locate an existing ppp channel. * The caller should have locked the all_channels_lock. * First we look in the new_channels list, then in the * all_channels list. If found in the new_channels list, * we move it to the all_channels list. This is for speed * when we have a lot of channels in use. */ static struct channel * ppp_find_channel(struct ppp_net *pn, int unit) { struct channel *pch; list_for_each_entry(pch, &pn->new_channels, list) { if (pch->file.index == unit) { list_move(&pch->list, &pn->all_channels); return pch; } } list_for_each_entry(pch, &pn->all_channels, list) { if (pch->file.index == unit) return pch; } return NULL; } /* * Connect a PPP channel to a PPP interface unit. */ static int ppp_connect_channel(struct channel *pch, int unit) { struct ppp *ppp; struct ppp_net *pn; int ret = -ENXIO; int hdrlen; pn = ppp_pernet(pch->chan_net); mutex_lock(&pn->all_ppp_mutex); ppp = ppp_find_unit(pn, unit); if (!ppp) goto out; write_lock_bh(&pch->upl); ret = -EINVAL; if (pch->ppp) goto outl; ppp_lock(ppp); spin_lock_bh(&pch->downl); if (!pch->chan) { /* Don't connect unregistered channels */ spin_unlock_bh(&pch->downl); ppp_unlock(ppp); ret = -ENOTCONN; goto outl; } spin_unlock_bh(&pch->downl); if (pch->file.hdrlen > ppp->file.hdrlen) ppp->file.hdrlen = pch->file.hdrlen; hdrlen = pch->file.hdrlen + 2; /* for protocol bytes */ if (hdrlen > ppp->dev->hard_header_len) ppp->dev->hard_header_len = hdrlen; list_add_tail(&pch->clist, &ppp->channels); ++ppp->n_channels; pch->ppp = ppp; refcount_inc(&ppp->file.refcnt); ppp_unlock(ppp); ret = 0; outl: write_unlock_bh(&pch->upl); out: mutex_unlock(&pn->all_ppp_mutex); return ret; } /* * Disconnect a channel from its ppp unit. */ static int ppp_disconnect_channel(struct channel *pch) { struct ppp *ppp; int err = -EINVAL; write_lock_bh(&pch->upl); ppp = pch->ppp; pch->ppp = NULL; write_unlock_bh(&pch->upl); if (ppp) { /* remove it from the ppp unit's list */ ppp_lock(ppp); list_del(&pch->clist); if (--ppp->n_channels == 0) wake_up_interruptible(&ppp->file.rwait); ppp_unlock(ppp); if (refcount_dec_and_test(&ppp->file.refcnt)) ppp_destroy_interface(ppp); err = 0; } return err; } /* * Free up the resources used by a ppp channel. */ static void ppp_destroy_channel(struct channel *pch) { put_net(pch->chan_net); pch->chan_net = NULL; atomic_dec(&channel_count); if (!pch->file.dead) { /* "can't happen" */ pr_err("ppp: destroying undead channel %p !\n", pch); return; } skb_queue_purge(&pch->file.xq); skb_queue_purge(&pch->file.rq); kfree(pch); } static void __exit ppp_cleanup(void) { /* should never happen */ if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count)) pr_err("PPP: removing module but units remain!\n"); rtnl_link_unregister(&ppp_link_ops); unregister_chrdev(PPP_MAJOR, "ppp"); device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0)); class_destroy(ppp_class); unregister_pernet_device(&ppp_net_ops); } /* * Units handling. Caller must protect concurrent access * by holding all_ppp_mutex */ /* associate pointer with specified number */ static int unit_set(struct idr *p, void *ptr, int n) { int unit; unit = idr_alloc(p, ptr, n, n + 1, GFP_KERNEL); if (unit == -ENOSPC) unit = -EINVAL; return unit; } /* get new free unit number and associate pointer with it */ static int unit_get(struct idr *p, void *ptr, int min) { return idr_alloc(p, ptr, min, 0, GFP_KERNEL); } /* put unit number back to a pool */ static void unit_put(struct idr *p, int n) { idr_remove(p, n); } /* get pointer associated with the number */ static void *unit_find(struct idr *p, int n) { return idr_find(p, n); } /* Module/initialization stuff */ module_init(ppp_init); module_exit(ppp_cleanup); EXPORT_SYMBOL(ppp_register_net_channel); EXPORT_SYMBOL(ppp_register_channel); EXPORT_SYMBOL(ppp_unregister_channel); EXPORT_SYMBOL(ppp_channel_index); EXPORT_SYMBOL(ppp_unit_number); EXPORT_SYMBOL(ppp_dev_name); EXPORT_SYMBOL(ppp_input); EXPORT_SYMBOL(ppp_input_error); EXPORT_SYMBOL(ppp_output_wakeup); EXPORT_SYMBOL(ppp_register_compressor); EXPORT_SYMBOL(ppp_unregister_compressor); MODULE_LICENSE("GPL"); MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0); MODULE_ALIAS_RTNL_LINK("ppp"); MODULE_ALIAS("devname:ppp");