/* * Networking over Thunderbolt cable using Apple ThunderboltIP protocol * * Copyright (C) 2017, Intel Corporation * Authors: Amir Levy * Michael Jamet * Mika Westerberg * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include /* Protocol timeouts in ms */ #define TBNET_LOGIN_DELAY 4500 #define TBNET_LOGIN_TIMEOUT 500 #define TBNET_LOGOUT_TIMEOUT 100 #define TBNET_RING_SIZE 256 #define TBNET_LOCAL_PATH 0xf #define TBNET_LOGIN_RETRIES 60 #define TBNET_LOGOUT_RETRIES 5 #define TBNET_MATCH_FRAGS_ID BIT(1) #define TBNET_MAX_MTU SZ_64K #define TBNET_FRAME_SIZE SZ_4K #define TBNET_MAX_PAYLOAD_SIZE \ (TBNET_FRAME_SIZE - sizeof(struct thunderbolt_ip_frame_header)) /* Rx packets need to hold space for skb_shared_info */ #define TBNET_RX_MAX_SIZE \ (TBNET_FRAME_SIZE + SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) #define TBNET_RX_PAGE_ORDER get_order(TBNET_RX_MAX_SIZE) #define TBNET_RX_PAGE_SIZE (PAGE_SIZE << TBNET_RX_PAGE_ORDER) #define TBNET_L0_PORT_NUM(route) ((route) & GENMASK(5, 0)) /** * struct thunderbolt_ip_frame_header - Header for each Thunderbolt frame * @frame_size: size of the data with the frame * @frame_index: running index on the frames * @frame_id: ID of the frame to match frames to specific packet * @frame_count: how many frames assembles a full packet * * Each data frame passed to the high-speed DMA ring has this header. If * the XDomain network directory announces that %TBNET_MATCH_FRAGS_ID is * supported then @frame_id is filled, otherwise it stays %0. */ struct thunderbolt_ip_frame_header { u32 frame_size; u16 frame_index; u16 frame_id; u32 frame_count; }; enum thunderbolt_ip_frame_pdf { TBIP_PDF_FRAME_START = 1, TBIP_PDF_FRAME_END, }; enum thunderbolt_ip_type { TBIP_LOGIN, TBIP_LOGIN_RESPONSE, TBIP_LOGOUT, TBIP_STATUS, }; struct thunderbolt_ip_header { u32 route_hi; u32 route_lo; u32 length_sn; uuid_t uuid; uuid_t initiator_uuid; uuid_t target_uuid; u32 type; u32 command_id; }; #define TBIP_HDR_LENGTH_MASK GENMASK(5, 0) #define TBIP_HDR_SN_MASK GENMASK(28, 27) #define TBIP_HDR_SN_SHIFT 27 struct thunderbolt_ip_login { struct thunderbolt_ip_header hdr; u32 proto_version; u32 transmit_path; u32 reserved[4]; }; #define TBIP_LOGIN_PROTO_VERSION 1 struct thunderbolt_ip_login_response { struct thunderbolt_ip_header hdr; u32 status; u32 receiver_mac[2]; u32 receiver_mac_len; u32 reserved[4]; }; struct thunderbolt_ip_logout { struct thunderbolt_ip_header hdr; }; struct thunderbolt_ip_status { struct thunderbolt_ip_header hdr; u32 status; }; struct tbnet_stats { u64 tx_packets; u64 rx_packets; u64 tx_bytes; u64 rx_bytes; u64 rx_errors; u64 tx_errors; u64 rx_length_errors; u64 rx_over_errors; u64 rx_crc_errors; u64 rx_missed_errors; }; struct tbnet_frame { struct net_device *dev; struct page *page; struct ring_frame frame; }; struct tbnet_ring { struct tbnet_frame frames[TBNET_RING_SIZE]; unsigned int cons; unsigned int prod; struct tb_ring *ring; }; /** * struct tbnet - ThunderboltIP network driver private data * @svc: XDomain service the driver is bound to * @xd: XDomain the service blongs to * @handler: ThunderboltIP configuration protocol handler * @dev: Networking device * @napi: NAPI structure for Rx polling * @stats: Network statistics * @skb: Network packet that is currently processed on Rx path * @command_id: ID used for next configuration protocol packet * @login_sent: ThunderboltIP login message successfully sent * @login_received: ThunderboltIP login message received from the remote * host * @transmit_path: HopID the other end needs to use building the * opposite side path. * @connection_lock: Lock serializing access to @login_sent, * @login_received and @transmit_path. * @login_retries: Number of login retries currently done * @login_work: Worker to send ThunderboltIP login packets * @connected_work: Worker that finalizes the ThunderboltIP connection * setup and enables DMA paths for high speed data * transfers * @disconnect_work: Worker that handles tearing down the ThunderboltIP * connection * @rx_hdr: Copy of the currently processed Rx frame. Used when a * network packet consists of multiple Thunderbolt frames. * In host byte order. * @rx_ring: Software ring holding Rx frames * @frame_id: Frame ID use for next Tx packet * (if %TBNET_MATCH_FRAGS_ID is supported in both ends) * @tx_ring: Software ring holding Tx frames */ struct tbnet { const struct tb_service *svc; struct tb_xdomain *xd; struct tb_protocol_handler handler; struct net_device *dev; struct napi_struct napi; struct tbnet_stats stats; struct sk_buff *skb; atomic_t command_id; bool login_sent; bool login_received; u32 transmit_path; struct mutex connection_lock; int login_retries; struct delayed_work login_work; struct work_struct connected_work; struct work_struct disconnect_work; struct thunderbolt_ip_frame_header rx_hdr; struct tbnet_ring rx_ring; atomic_t frame_id; struct tbnet_ring tx_ring; }; /* Network property directory UUID: c66189ca-1cce-4195-bdb8-49592e5f5a4f */ static const uuid_t tbnet_dir_uuid = UUID_INIT(0xc66189ca, 0x1cce, 0x4195, 0xbd, 0xb8, 0x49, 0x59, 0x2e, 0x5f, 0x5a, 0x4f); /* ThunderboltIP protocol UUID: 798f589e-3616-8a47-97c6-5664a920c8dd */ static const uuid_t tbnet_svc_uuid = UUID_INIT(0x798f589e, 0x3616, 0x8a47, 0x97, 0xc6, 0x56, 0x64, 0xa9, 0x20, 0xc8, 0xdd); static struct tb_property_dir *tbnet_dir; static void tbnet_fill_header(struct thunderbolt_ip_header *hdr, u64 route, u8 sequence, const uuid_t *initiator_uuid, const uuid_t *target_uuid, enum thunderbolt_ip_type type, size_t size, u32 command_id) { u32 length_sn; /* Length does not include route_hi/lo and length_sn fields */ length_sn = (size - 3 * 4) / 4; length_sn |= (sequence << TBIP_HDR_SN_SHIFT) & TBIP_HDR_SN_MASK; hdr->route_hi = upper_32_bits(route); hdr->route_lo = lower_32_bits(route); hdr->length_sn = length_sn; uuid_copy(&hdr->uuid, &tbnet_svc_uuid); uuid_copy(&hdr->initiator_uuid, initiator_uuid); uuid_copy(&hdr->target_uuid, target_uuid); hdr->type = type; hdr->command_id = command_id; } static int tbnet_login_response(struct tbnet *net, u64 route, u8 sequence, u32 command_id) { struct thunderbolt_ip_login_response reply; struct tb_xdomain *xd = net->xd; memset(&reply, 0, sizeof(reply)); tbnet_fill_header(&reply.hdr, route, sequence, xd->local_uuid, xd->remote_uuid, TBIP_LOGIN_RESPONSE, sizeof(reply), command_id); memcpy(reply.receiver_mac, net->dev->dev_addr, ETH_ALEN); reply.receiver_mac_len = ETH_ALEN; return tb_xdomain_response(xd, &reply, sizeof(reply), TB_CFG_PKG_XDOMAIN_RESP); } static int tbnet_login_request(struct tbnet *net, u8 sequence) { struct thunderbolt_ip_login_response reply; struct thunderbolt_ip_login request; struct tb_xdomain *xd = net->xd; memset(&request, 0, sizeof(request)); tbnet_fill_header(&request.hdr, xd->route, sequence, xd->local_uuid, xd->remote_uuid, TBIP_LOGIN, sizeof(request), atomic_inc_return(&net->command_id)); request.proto_version = TBIP_LOGIN_PROTO_VERSION; request.transmit_path = TBNET_LOCAL_PATH; return tb_xdomain_request(xd, &request, sizeof(request), TB_CFG_PKG_XDOMAIN_RESP, &reply, sizeof(reply), TB_CFG_PKG_XDOMAIN_RESP, TBNET_LOGIN_TIMEOUT); } static int tbnet_logout_response(struct tbnet *net, u64 route, u8 sequence, u32 command_id) { struct thunderbolt_ip_status reply; struct tb_xdomain *xd = net->xd; memset(&reply, 0, sizeof(reply)); tbnet_fill_header(&reply.hdr, route, sequence, xd->local_uuid, xd->remote_uuid, TBIP_STATUS, sizeof(reply), atomic_inc_return(&net->command_id)); return tb_xdomain_response(xd, &reply, sizeof(reply), TB_CFG_PKG_XDOMAIN_RESP); } static int tbnet_logout_request(struct tbnet *net) { struct thunderbolt_ip_logout request; struct thunderbolt_ip_status reply; struct tb_xdomain *xd = net->xd; memset(&request, 0, sizeof(request)); tbnet_fill_header(&request.hdr, xd->route, 0, xd->local_uuid, xd->remote_uuid, TBIP_LOGOUT, sizeof(request), atomic_inc_return(&net->command_id)); return tb_xdomain_request(xd, &request, sizeof(request), TB_CFG_PKG_XDOMAIN_RESP, &reply, sizeof(reply), TB_CFG_PKG_XDOMAIN_RESP, TBNET_LOGOUT_TIMEOUT); } static void start_login(struct tbnet *net) { mutex_lock(&net->connection_lock); net->login_sent = false; net->login_received = false; mutex_unlock(&net->connection_lock); queue_delayed_work(system_long_wq, &net->login_work, msecs_to_jiffies(1000)); } static void stop_login(struct tbnet *net) { cancel_delayed_work_sync(&net->login_work); cancel_work_sync(&net->connected_work); } static inline unsigned int tbnet_frame_size(const struct tbnet_frame *tf) { return tf->frame.size ? : TBNET_FRAME_SIZE; } static void tbnet_free_buffers(struct tbnet_ring *ring) { unsigned int i; for (i = 0; i < TBNET_RING_SIZE; i++) { struct device *dma_dev = tb_ring_dma_device(ring->ring); struct tbnet_frame *tf = &ring->frames[i]; enum dma_data_direction dir; unsigned int order; size_t size; if (!tf->page) continue; if (ring->ring->is_tx) { dir = DMA_TO_DEVICE; order = 0; size = TBNET_FRAME_SIZE; } else { dir = DMA_FROM_DEVICE; order = TBNET_RX_PAGE_ORDER; size = TBNET_RX_PAGE_SIZE; } if (tf->frame.buffer_phy) dma_unmap_page(dma_dev, tf->frame.buffer_phy, size, dir); __free_pages(tf->page, order); tf->page = NULL; } ring->cons = 0; ring->prod = 0; } static void tbnet_tear_down(struct tbnet *net, bool send_logout) { netif_carrier_off(net->dev); netif_stop_queue(net->dev); stop_login(net); mutex_lock(&net->connection_lock); if (net->login_sent && net->login_received) { int retries = TBNET_LOGOUT_RETRIES; while (send_logout && retries-- > 0) { int ret = tbnet_logout_request(net); if (ret != -ETIMEDOUT) break; } tb_ring_stop(net->rx_ring.ring); tb_ring_stop(net->tx_ring.ring); tbnet_free_buffers(&net->rx_ring); tbnet_free_buffers(&net->tx_ring); if (tb_xdomain_disable_paths(net->xd)) netdev_warn(net->dev, "failed to disable DMA paths\n"); } net->login_retries = 0; net->login_sent = false; net->login_received = false; mutex_unlock(&net->connection_lock); } static int tbnet_handle_packet(const void *buf, size_t size, void *data) { const struct thunderbolt_ip_login *pkg = buf; struct tbnet *net = data; u32 command_id; int ret = 0; u32 sequence; u64 route; /* Make sure the packet is for us */ if (size < sizeof(struct thunderbolt_ip_header)) return 0; if (!uuid_equal(&pkg->hdr.initiator_uuid, net->xd->remote_uuid)) return 0; if (!uuid_equal(&pkg->hdr.target_uuid, net->xd->local_uuid)) return 0; route = ((u64)pkg->hdr.route_hi << 32) | pkg->hdr.route_lo; route &= ~BIT_ULL(63); if (route != net->xd->route) return 0; sequence = pkg->hdr.length_sn & TBIP_HDR_SN_MASK; sequence >>= TBIP_HDR_SN_SHIFT; command_id = pkg->hdr.command_id; switch (pkg->hdr.type) { case TBIP_LOGIN: if (!netif_running(net->dev)) break; ret = tbnet_login_response(net, route, sequence, pkg->hdr.command_id); if (!ret) { mutex_lock(&net->connection_lock); net->login_received = true; net->transmit_path = pkg->transmit_path; /* If we reached the number of max retries or * previous logout, schedule another round of * login retries */ if (net->login_retries >= TBNET_LOGIN_RETRIES || !net->login_sent) { net->login_retries = 0; queue_delayed_work(system_long_wq, &net->login_work, 0); } mutex_unlock(&net->connection_lock); queue_work(system_long_wq, &net->connected_work); } break; case TBIP_LOGOUT: ret = tbnet_logout_response(net, route, sequence, command_id); if (!ret) queue_work(system_long_wq, &net->disconnect_work); break; default: return 0; } if (ret) netdev_warn(net->dev, "failed to send ThunderboltIP response\n"); return 1; } static unsigned int tbnet_available_buffers(const struct tbnet_ring *ring) { return ring->prod - ring->cons; } static int tbnet_alloc_rx_buffers(struct tbnet *net, unsigned int nbuffers) { struct tbnet_ring *ring = &net->rx_ring; int ret; while (nbuffers--) { struct device *dma_dev = tb_ring_dma_device(ring->ring); unsigned int index = ring->prod & (TBNET_RING_SIZE - 1); struct tbnet_frame *tf = &ring->frames[index]; dma_addr_t dma_addr; if (tf->page) break; /* Allocate page (order > 0) so that it can hold maximum * ThunderboltIP frame (4kB) and the additional room for * SKB shared info required by build_skb(). */ tf->page = dev_alloc_pages(TBNET_RX_PAGE_ORDER); if (!tf->page) { ret = -ENOMEM; goto err_free; } dma_addr = dma_map_page(dma_dev, tf->page, 0, TBNET_RX_PAGE_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(dma_dev, dma_addr)) { ret = -ENOMEM; goto err_free; } tf->frame.buffer_phy = dma_addr; tf->dev = net->dev; tb_ring_rx(ring->ring, &tf->frame); ring->prod++; } return 0; err_free: tbnet_free_buffers(ring); return ret; } static struct tbnet_frame *tbnet_get_tx_buffer(struct tbnet *net) { struct tbnet_ring *ring = &net->tx_ring; struct device *dma_dev = tb_ring_dma_device(ring->ring); struct tbnet_frame *tf; unsigned int index; if (!tbnet_available_buffers(ring)) return NULL; index = ring->cons++ & (TBNET_RING_SIZE - 1); tf = &ring->frames[index]; tf->frame.size = 0; dma_sync_single_for_cpu(dma_dev, tf->frame.buffer_phy, tbnet_frame_size(tf), DMA_TO_DEVICE); return tf; } static void tbnet_tx_callback(struct tb_ring *ring, struct ring_frame *frame, bool canceled) { struct tbnet_frame *tf = container_of(frame, typeof(*tf), frame); struct tbnet *net = netdev_priv(tf->dev); /* Return buffer to the ring */ net->tx_ring.prod++; if (tbnet_available_buffers(&net->tx_ring) >= TBNET_RING_SIZE / 2) netif_wake_queue(net->dev); } static int tbnet_alloc_tx_buffers(struct tbnet *net) { struct tbnet_ring *ring = &net->tx_ring; struct device *dma_dev = tb_ring_dma_device(ring->ring); unsigned int i; for (i = 0; i < TBNET_RING_SIZE; i++) { struct tbnet_frame *tf = &ring->frames[i]; dma_addr_t dma_addr; tf->page = alloc_page(GFP_KERNEL); if (!tf->page) { tbnet_free_buffers(ring); return -ENOMEM; } dma_addr = dma_map_page(dma_dev, tf->page, 0, TBNET_FRAME_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(dma_dev, dma_addr)) { __free_page(tf->page); tf->page = NULL; tbnet_free_buffers(ring); return -ENOMEM; } tf->dev = net->dev; tf->frame.buffer_phy = dma_addr; tf->frame.callback = tbnet_tx_callback; tf->frame.sof = TBIP_PDF_FRAME_START; tf->frame.eof = TBIP_PDF_FRAME_END; } ring->cons = 0; ring->prod = TBNET_RING_SIZE - 1; return 0; } static void tbnet_connected_work(struct work_struct *work) { struct tbnet *net = container_of(work, typeof(*net), connected_work); bool connected; int ret; if (netif_carrier_ok(net->dev)) return; mutex_lock(&net->connection_lock); connected = net->login_sent && net->login_received; mutex_unlock(&net->connection_lock); if (!connected) return; /* Both logins successful so enable the high-speed DMA paths and * start the network device queue. */ ret = tb_xdomain_enable_paths(net->xd, TBNET_LOCAL_PATH, net->rx_ring.ring->hop, net->transmit_path, net->tx_ring.ring->hop); if (ret) { netdev_err(net->dev, "failed to enable DMA paths\n"); return; } tb_ring_start(net->tx_ring.ring); tb_ring_start(net->rx_ring.ring); ret = tbnet_alloc_rx_buffers(net, TBNET_RING_SIZE); if (ret) goto err_stop_rings; ret = tbnet_alloc_tx_buffers(net); if (ret) goto err_free_rx_buffers; netif_carrier_on(net->dev); netif_start_queue(net->dev); return; err_free_rx_buffers: tbnet_free_buffers(&net->rx_ring); err_stop_rings: tb_ring_stop(net->rx_ring.ring); tb_ring_stop(net->tx_ring.ring); } static void tbnet_login_work(struct work_struct *work) { struct tbnet *net = container_of(work, typeof(*net), login_work.work); unsigned long delay = msecs_to_jiffies(TBNET_LOGIN_DELAY); int ret; if (netif_carrier_ok(net->dev)) return; ret = tbnet_login_request(net, net->login_retries % 4); if (ret) { if (net->login_retries++ < TBNET_LOGIN_RETRIES) { queue_delayed_work(system_long_wq, &net->login_work, delay); } else { netdev_info(net->dev, "ThunderboltIP login timed out\n"); } } else { net->login_retries = 0; mutex_lock(&net->connection_lock); net->login_sent = true; mutex_unlock(&net->connection_lock); queue_work(system_long_wq, &net->connected_work); } } static void tbnet_disconnect_work(struct work_struct *work) { struct tbnet *net = container_of(work, typeof(*net), disconnect_work); tbnet_tear_down(net, false); } static bool tbnet_check_frame(struct tbnet *net, const struct tbnet_frame *tf, const struct thunderbolt_ip_frame_header *hdr) { u32 frame_id, frame_count, frame_size, frame_index; unsigned int size; if (tf->frame.flags & RING_DESC_CRC_ERROR) { net->stats.rx_crc_errors++; return false; } else if (tf->frame.flags & RING_DESC_BUFFER_OVERRUN) { net->stats.rx_over_errors++; return false; } /* Should be greater than just header i.e. contains data */ size = tbnet_frame_size(tf); if (size <= sizeof(*hdr)) { net->stats.rx_length_errors++; return false; } frame_count = le32_to_cpu(hdr->frame_count); frame_size = le32_to_cpu(hdr->frame_size); frame_index = le16_to_cpu(hdr->frame_index); frame_id = le16_to_cpu(hdr->frame_id); if ((frame_size > size - sizeof(*hdr)) || !frame_size) { net->stats.rx_length_errors++; return false; } /* In case we're in the middle of packet, validate the frame * header based on first fragment of the packet. */ if (net->skb && net->rx_hdr.frame_count) { /* Check the frame count fits the count field */ if (frame_count != net->rx_hdr.frame_count) { net->stats.rx_length_errors++; return false; } /* Check the frame identifiers are incremented correctly, * and id is matching. */ if (frame_index != net->rx_hdr.frame_index + 1 || frame_id != net->rx_hdr.frame_id) { net->stats.rx_missed_errors++; return false; } if (net->skb->len + frame_size > TBNET_MAX_MTU) { net->stats.rx_length_errors++; return false; } return true; } /* Start of packet, validate the frame header */ if (frame_count == 0 || frame_count > TBNET_RING_SIZE / 4) { net->stats.rx_length_errors++; return false; } if (frame_index != 0) { net->stats.rx_missed_errors++; return false; } return true; } static int tbnet_poll(struct napi_struct *napi, int budget) { struct tbnet *net = container_of(napi, struct tbnet, napi); unsigned int cleaned_count = tbnet_available_buffers(&net->rx_ring); struct device *dma_dev = tb_ring_dma_device(net->rx_ring.ring); unsigned int rx_packets = 0; while (rx_packets < budget) { const struct thunderbolt_ip_frame_header *hdr; unsigned int hdr_size = sizeof(*hdr); struct sk_buff *skb = NULL; struct ring_frame *frame; struct tbnet_frame *tf; struct page *page; bool last = true; u32 frame_size; /* Return some buffers to hardware, one at a time is too * slow so allocate MAX_SKB_FRAGS buffers at the same * time. */ if (cleaned_count >= MAX_SKB_FRAGS) { tbnet_alloc_rx_buffers(net, cleaned_count); cleaned_count = 0; } frame = tb_ring_poll(net->rx_ring.ring); if (!frame) break; dma_unmap_page(dma_dev, frame->buffer_phy, TBNET_RX_PAGE_SIZE, DMA_FROM_DEVICE); tf = container_of(frame, typeof(*tf), frame); page = tf->page; tf->page = NULL; net->rx_ring.cons++; cleaned_count++; hdr = page_address(page); if (!tbnet_check_frame(net, tf, hdr)) { __free_pages(page, TBNET_RX_PAGE_ORDER); dev_kfree_skb_any(net->skb); net->skb = NULL; continue; } frame_size = le32_to_cpu(hdr->frame_size); skb = net->skb; if (!skb) { skb = build_skb(page_address(page), TBNET_RX_PAGE_SIZE); if (!skb) { __free_pages(page, TBNET_RX_PAGE_ORDER); net->stats.rx_errors++; break; } skb_reserve(skb, hdr_size); skb_put(skb, frame_size); net->skb = skb; } else { skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, hdr_size, frame_size, TBNET_RX_PAGE_SIZE - hdr_size); } net->rx_hdr.frame_size = frame_size; net->rx_hdr.frame_count = le32_to_cpu(hdr->frame_count); net->rx_hdr.frame_index = le16_to_cpu(hdr->frame_index); net->rx_hdr.frame_id = le16_to_cpu(hdr->frame_id); last = net->rx_hdr.frame_index == net->rx_hdr.frame_count - 1; rx_packets++; net->stats.rx_bytes += frame_size; if (last) { skb->protocol = eth_type_trans(skb, net->dev); napi_gro_receive(&net->napi, skb); net->skb = NULL; } } net->stats.rx_packets += rx_packets; if (cleaned_count) tbnet_alloc_rx_buffers(net, cleaned_count); if (rx_packets >= budget) return budget; napi_complete_done(napi, rx_packets); /* Re-enable the ring interrupt */ tb_ring_poll_complete(net->rx_ring.ring); return rx_packets; } static void tbnet_start_poll(void *data) { struct tbnet *net = data; napi_schedule(&net->napi); } static int tbnet_open(struct net_device *dev) { struct tbnet *net = netdev_priv(dev); struct tb_xdomain *xd = net->xd; u16 sof_mask, eof_mask; struct tb_ring *ring; netif_carrier_off(dev); ring = tb_ring_alloc_tx(xd->tb->nhi, -1, TBNET_RING_SIZE, RING_FLAG_FRAME); if (!ring) { netdev_err(dev, "failed to allocate Tx ring\n"); return -ENOMEM; } net->tx_ring.ring = ring; sof_mask = BIT(TBIP_PDF_FRAME_START); eof_mask = BIT(TBIP_PDF_FRAME_END); ring = tb_ring_alloc_rx(xd->tb->nhi, -1, TBNET_RING_SIZE, RING_FLAG_FRAME | RING_FLAG_E2E, sof_mask, eof_mask, tbnet_start_poll, net); if (!ring) { netdev_err(dev, "failed to allocate Rx ring\n"); tb_ring_free(net->tx_ring.ring); net->tx_ring.ring = NULL; return -ENOMEM; } net->rx_ring.ring = ring; napi_enable(&net->napi); start_login(net); return 0; } static int tbnet_stop(struct net_device *dev) { struct tbnet *net = netdev_priv(dev); napi_disable(&net->napi); cancel_work_sync(&net->disconnect_work); tbnet_tear_down(net, true); tb_ring_free(net->rx_ring.ring); net->rx_ring.ring = NULL; tb_ring_free(net->tx_ring.ring); net->tx_ring.ring = NULL; return 0; } static bool tbnet_xmit_csum_and_map(struct tbnet *net, struct sk_buff *skb, struct tbnet_frame **frames, u32 frame_count) { struct thunderbolt_ip_frame_header *hdr = page_address(frames[0]->page); struct device *dma_dev = tb_ring_dma_device(net->tx_ring.ring); __wsum wsum = htonl(skb->len - skb_transport_offset(skb)); unsigned int i, len, offset = skb_transport_offset(skb); __be16 protocol = skb->protocol; void *data = skb->data; void *dest = hdr + 1; __sum16 *tucso; if (skb->ip_summed != CHECKSUM_PARTIAL) { /* No need to calculate checksum so we just update the * total frame count and sync the frames for DMA. */ for (i = 0; i < frame_count; i++) { hdr = page_address(frames[i]->page); hdr->frame_count = cpu_to_le32(frame_count); dma_sync_single_for_device(dma_dev, frames[i]->frame.buffer_phy, tbnet_frame_size(frames[i]), DMA_TO_DEVICE); } return true; } if (protocol == htons(ETH_P_8021Q)) { struct vlan_hdr *vhdr, vh; vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(vh), &vh); if (!vhdr) return false; protocol = vhdr->h_vlan_encapsulated_proto; } /* Data points on the beginning of packet. * Check is the checksum absolute place in the packet. * ipcso will update IP checksum. * tucso will update TCP/UPD checksum. */ if (protocol == htons(ETH_P_IP)) { __sum16 *ipcso = dest + ((void *)&(ip_hdr(skb)->check) - data); *ipcso = 0; *ipcso = ip_fast_csum(dest + skb_network_offset(skb), ip_hdr(skb)->ihl); if (ip_hdr(skb)->protocol == IPPROTO_TCP) tucso = dest + ((void *)&(tcp_hdr(skb)->check) - data); else if (ip_hdr(skb)->protocol == IPPROTO_UDP) tucso = dest + ((void *)&(udp_hdr(skb)->check) - data); else return false; *tucso = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 0, ip_hdr(skb)->protocol, 0); } else if (skb_is_gso_v6(skb)) { tucso = dest + ((void *)&(tcp_hdr(skb)->check) - data); *tucso = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); return false; } else if (protocol == htons(ETH_P_IPV6)) { tucso = dest + skb_checksum_start_offset(skb) + skb->csum_offset; *tucso = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, 0, ipv6_hdr(skb)->nexthdr, 0); } else { return false; } /* First frame was headers, rest of the frames contain data. * Calculate checksum over each frame. */ for (i = 0; i < frame_count; i++) { hdr = page_address(frames[i]->page); dest = (void *)(hdr + 1) + offset; len = le32_to_cpu(hdr->frame_size) - offset; wsum = csum_partial(dest, len, wsum); hdr->frame_count = cpu_to_le32(frame_count); offset = 0; } *tucso = csum_fold(wsum); /* Checksum is finally calculated and we don't touch the memory * anymore, so DMA sync the frames now. */ for (i = 0; i < frame_count; i++) { dma_sync_single_for_device(dma_dev, frames[i]->frame.buffer_phy, tbnet_frame_size(frames[i]), DMA_TO_DEVICE); } return true; } static void *tbnet_kmap_frag(struct sk_buff *skb, unsigned int frag_num, unsigned int *len) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_num]; *len = skb_frag_size(frag); return kmap_atomic(skb_frag_page(frag)) + frag->page_offset; } static netdev_tx_t tbnet_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct tbnet *net = netdev_priv(dev); struct tbnet_frame *frames[MAX_SKB_FRAGS]; u16 frame_id = atomic_read(&net->frame_id); struct thunderbolt_ip_frame_header *hdr; unsigned int len = skb_headlen(skb); unsigned int data_len = skb->len; unsigned int nframes, i; unsigned int frag = 0; void *src = skb->data; u32 frame_index = 0; bool unmap = false; void *dest; nframes = DIV_ROUND_UP(data_len, TBNET_MAX_PAYLOAD_SIZE); if (tbnet_available_buffers(&net->tx_ring) < nframes) { netif_stop_queue(net->dev); return NETDEV_TX_BUSY; } frames[frame_index] = tbnet_get_tx_buffer(net); if (!frames[frame_index]) goto err_drop; hdr = page_address(frames[frame_index]->page); dest = hdr + 1; /* If overall packet is bigger than the frame data size */ while (data_len > TBNET_MAX_PAYLOAD_SIZE) { unsigned int size_left = TBNET_MAX_PAYLOAD_SIZE; hdr->frame_size = cpu_to_le32(TBNET_MAX_PAYLOAD_SIZE); hdr->frame_index = cpu_to_le16(frame_index); hdr->frame_id = cpu_to_le16(frame_id); do { if (len > size_left) { /* Copy data onto Tx buffer data with * full frame size then break and go to * next frame */ memcpy(dest, src, size_left); len -= size_left; dest += size_left; src += size_left; break; } memcpy(dest, src, len); size_left -= len; dest += len; if (unmap) { kunmap_atomic(src); unmap = false; } /* Ensure all fragments have been processed */ if (frag < skb_shinfo(skb)->nr_frags) { /* Map and then unmap quickly */ src = tbnet_kmap_frag(skb, frag++, &len); unmap = true; } else if (unlikely(size_left > 0)) { goto err_drop; } } while (size_left > 0); data_len -= TBNET_MAX_PAYLOAD_SIZE; frame_index++; frames[frame_index] = tbnet_get_tx_buffer(net); if (!frames[frame_index]) goto err_drop; hdr = page_address(frames[frame_index]->page); dest = hdr + 1; } hdr->frame_size = cpu_to_le32(data_len); hdr->frame_index = cpu_to_le16(frame_index); hdr->frame_id = cpu_to_le16(frame_id); frames[frame_index]->frame.size = data_len + sizeof(*hdr); /* In case the remaining data_len is smaller than a frame */ while (len < data_len) { memcpy(dest, src, len); data_len -= len; dest += len; if (unmap) { kunmap_atomic(src); unmap = false; } if (frag < skb_shinfo(skb)->nr_frags) { src = tbnet_kmap_frag(skb, frag++, &len); unmap = true; } else if (unlikely(data_len > 0)) { goto err_drop; } } memcpy(dest, src, data_len); if (unmap) kunmap_atomic(src); if (!tbnet_xmit_csum_and_map(net, skb, frames, frame_index + 1)) goto err_drop; for (i = 0; i < frame_index + 1; i++) tb_ring_tx(net->tx_ring.ring, &frames[i]->frame); if (net->svc->prtcstns & TBNET_MATCH_FRAGS_ID) atomic_inc(&net->frame_id); net->stats.tx_packets++; net->stats.tx_bytes += skb->len; dev_consume_skb_any(skb); return NETDEV_TX_OK; err_drop: /* We can re-use the buffers */ net->tx_ring.cons -= frame_index; dev_kfree_skb_any(skb); net->stats.tx_errors++; return NETDEV_TX_OK; } static void tbnet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { struct tbnet *net = netdev_priv(dev); stats->tx_packets = net->stats.tx_packets; stats->rx_packets = net->stats.rx_packets; stats->tx_bytes = net->stats.tx_bytes; stats->rx_bytes = net->stats.rx_bytes; stats->rx_errors = net->stats.rx_errors + net->stats.rx_length_errors + net->stats.rx_over_errors + net->stats.rx_crc_errors + net->stats.rx_missed_errors; stats->tx_errors = net->stats.tx_errors; stats->rx_length_errors = net->stats.rx_length_errors; stats->rx_over_errors = net->stats.rx_over_errors; stats->rx_crc_errors = net->stats.rx_crc_errors; stats->rx_missed_errors = net->stats.rx_missed_errors; } static const struct net_device_ops tbnet_netdev_ops = { .ndo_open = tbnet_open, .ndo_stop = tbnet_stop, .ndo_start_xmit = tbnet_start_xmit, .ndo_get_stats64 = tbnet_get_stats64, }; static void tbnet_generate_mac(struct net_device *dev) { const struct tbnet *net = netdev_priv(dev); const struct tb_xdomain *xd = net->xd; u8 phy_port; u32 hash; phy_port = tb_phy_port_from_link(TBNET_L0_PORT_NUM(xd->route)); /* Unicast and locally administered MAC */ dev->dev_addr[0] = phy_port << 4 | 0x02; hash = jhash2((u32 *)xd->local_uuid, 4, 0); memcpy(dev->dev_addr + 1, &hash, sizeof(hash)); hash = jhash2((u32 *)xd->local_uuid, 4, hash); dev->dev_addr[5] = hash & 0xff; } static int tbnet_probe(struct tb_service *svc, const struct tb_service_id *id) { struct tb_xdomain *xd = tb_service_parent(svc); struct net_device *dev; struct tbnet *net; int ret; dev = alloc_etherdev(sizeof(*net)); if (!dev) return -ENOMEM; SET_NETDEV_DEV(dev, &svc->dev); net = netdev_priv(dev); INIT_DELAYED_WORK(&net->login_work, tbnet_login_work); INIT_WORK(&net->connected_work, tbnet_connected_work); INIT_WORK(&net->disconnect_work, tbnet_disconnect_work); mutex_init(&net->connection_lock); atomic_set(&net->command_id, 0); atomic_set(&net->frame_id, 0); net->svc = svc; net->dev = dev; net->xd = xd; tbnet_generate_mac(dev); strcpy(dev->name, "thunderbolt%d"); dev->netdev_ops = &tbnet_netdev_ops; /* ThunderboltIP takes advantage of TSO packets but instead of * segmenting them we just split the packet into Thunderbolt * frames (maximum payload size of each frame is 4084 bytes) and * calculate checksum over the whole packet here. * * The receiving side does the opposite if the host OS supports * LRO, otherwise it needs to split the large packet into MTU * sized smaller packets. * * In order to receive large packets from the networking stack, * we need to announce support for most of the offloading * features here. */ dev->hw_features = NETIF_F_SG | NETIF_F_ALL_TSO | NETIF_F_GRO | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; dev->features = dev->hw_features | NETIF_F_HIGHDMA; dev->hard_header_len += sizeof(struct thunderbolt_ip_frame_header); netif_napi_add(dev, &net->napi, tbnet_poll, NAPI_POLL_WEIGHT); /* MTU range: 68 - 65522 */ dev->min_mtu = ETH_MIN_MTU; dev->max_mtu = TBNET_MAX_MTU - ETH_HLEN; net->handler.uuid = &tbnet_svc_uuid; net->handler.callback = tbnet_handle_packet, net->handler.data = net; tb_register_protocol_handler(&net->handler); tb_service_set_drvdata(svc, net); ret = register_netdev(dev); if (ret) { tb_unregister_protocol_handler(&net->handler); free_netdev(dev); return ret; } return 0; } static void tbnet_remove(struct tb_service *svc) { struct tbnet *net = tb_service_get_drvdata(svc); unregister_netdev(net->dev); tb_unregister_protocol_handler(&net->handler); free_netdev(net->dev); } static void tbnet_shutdown(struct tb_service *svc) { tbnet_tear_down(tb_service_get_drvdata(svc), true); } static int __maybe_unused tbnet_suspend(struct device *dev) { struct tb_service *svc = tb_to_service(dev); struct tbnet *net = tb_service_get_drvdata(svc); stop_login(net); if (netif_running(net->dev)) { netif_device_detach(net->dev); tbnet_tear_down(net, true); } tb_unregister_protocol_handler(&net->handler); return 0; } static int __maybe_unused tbnet_resume(struct device *dev) { struct tb_service *svc = tb_to_service(dev); struct tbnet *net = tb_service_get_drvdata(svc); tb_register_protocol_handler(&net->handler); netif_carrier_off(net->dev); if (netif_running(net->dev)) { netif_device_attach(net->dev); start_login(net); } return 0; } static const struct dev_pm_ops tbnet_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(tbnet_suspend, tbnet_resume) }; static const struct tb_service_id tbnet_ids[] = { { TB_SERVICE("network", 1) }, { }, }; MODULE_DEVICE_TABLE(tbsvc, tbnet_ids); static struct tb_service_driver tbnet_driver = { .driver = { .owner = THIS_MODULE, .name = "thunderbolt-net", .pm = &tbnet_pm_ops, }, .probe = tbnet_probe, .remove = tbnet_remove, .shutdown = tbnet_shutdown, .id_table = tbnet_ids, }; static int __init tbnet_init(void) { int ret; tbnet_dir = tb_property_create_dir(&tbnet_dir_uuid); if (!tbnet_dir) return -ENOMEM; tb_property_add_immediate(tbnet_dir, "prtcid", 1); tb_property_add_immediate(tbnet_dir, "prtcvers", 1); tb_property_add_immediate(tbnet_dir, "prtcrevs", 1); tb_property_add_immediate(tbnet_dir, "prtcstns", TBNET_MATCH_FRAGS_ID); ret = tb_register_property_dir("network", tbnet_dir); if (ret) goto err_free_dir; ret = tb_register_service_driver(&tbnet_driver); if (ret) goto err_unregister; return 0; err_unregister: tb_unregister_property_dir("network", tbnet_dir); err_free_dir: tb_property_free_dir(tbnet_dir); return ret; } module_init(tbnet_init); static void __exit tbnet_exit(void) { tb_unregister_service_driver(&tbnet_driver); tb_unregister_property_dir("network", tbnet_dir); tb_property_free_dir(tbnet_dir); } module_exit(tbnet_exit); MODULE_AUTHOR("Amir Levy "); MODULE_AUTHOR("Michael Jamet "); MODULE_AUTHOR("Mika Westerberg "); MODULE_DESCRIPTION("Thunderbolt network driver"); MODULE_LICENSE("GPL v2");