/* * Copyright (c) 2005-2011 Atheros Communications Inc. * Copyright (c) 2011-2017 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include "core.h" #include "debug.h" #include "coredump.h" #include "targaddrs.h" #include "bmi.h" #include "hif.h" #include "htc.h" #include "ce.h" #include "pci.h" enum ath10k_pci_reset_mode { ATH10K_PCI_RESET_AUTO = 0, ATH10K_PCI_RESET_WARM_ONLY = 1, }; static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO; static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO; module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644); MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)"); module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644); MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)"); /* how long wait to wait for target to initialise, in ms */ #define ATH10K_PCI_TARGET_WAIT 3000 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3 /* Maximum number of bytes that can be handled atomically by * diag read and write. */ #define ATH10K_DIAG_TRANSFER_LIMIT 0x5000 #define QCA99X0_PCIE_BAR0_START_REG 0x81030 #define QCA99X0_CPU_MEM_ADDR_REG 0x4d00c #define QCA99X0_CPU_MEM_DATA_REG 0x4d010 static const struct pci_device_id ath10k_pci_id_table[] = { /* PCI-E QCA988X V2 (Ubiquiti branded) */ { PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) }, { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */ { PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */ { PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */ { PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */ { PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */ { PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */ { PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */ { PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */ {0} }; static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = { /* QCA988X pre 2.0 chips are not supported because they need some nasty * hacks. ath10k doesn't have them and these devices crash horribly * because of that. */ { QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV }, { QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV }, { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV }, { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV }, { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV }, { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV }, { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV }, { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV }, { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV }, { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV }, { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV }, { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV }, { QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV }, { QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV }, { QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV }, { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV }, { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV }, { QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV }, }; static void ath10k_pci_buffer_cleanup(struct ath10k *ar); static int ath10k_pci_cold_reset(struct ath10k *ar); static int ath10k_pci_safe_chip_reset(struct ath10k *ar); static int ath10k_pci_init_irq(struct ath10k *ar); static int ath10k_pci_deinit_irq(struct ath10k *ar); static int ath10k_pci_request_irq(struct ath10k *ar); static void ath10k_pci_free_irq(struct ath10k *ar); static int ath10k_pci_bmi_wait(struct ath10k *ar, struct ath10k_ce_pipe *tx_pipe, struct ath10k_ce_pipe *rx_pipe, struct bmi_xfer *xfer); static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar); static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state); static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state); static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state); static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state); static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state); static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state); static struct ce_attr host_ce_config_wlan[] = { /* CE0: host->target HTC control and raw streams */ { .flags = CE_ATTR_FLAGS, .src_nentries = 16, .src_sz_max = 256, .dest_nentries = 0, .send_cb = ath10k_pci_htc_tx_cb, }, /* CE1: target->host HTT + HTC control */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 2048, .dest_nentries = 512, .recv_cb = ath10k_pci_htt_htc_rx_cb, }, /* CE2: target->host WMI */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 2048, .dest_nentries = 128, .recv_cb = ath10k_pci_htc_rx_cb, }, /* CE3: host->target WMI */ { .flags = CE_ATTR_FLAGS, .src_nentries = 32, .src_sz_max = 2048, .dest_nentries = 0, .send_cb = ath10k_pci_htc_tx_cb, }, /* CE4: host->target HTT */ { .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR, .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES, .src_sz_max = 256, .dest_nentries = 0, .send_cb = ath10k_pci_htt_tx_cb, }, /* CE5: target->host HTT (HIF->HTT) */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 512, .dest_nentries = 512, .recv_cb = ath10k_pci_htt_rx_cb, }, /* CE6: target autonomous hif_memcpy */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 0, .dest_nentries = 0, }, /* CE7: ce_diag, the Diagnostic Window */ { .flags = CE_ATTR_FLAGS, .src_nentries = 2, .src_sz_max = DIAG_TRANSFER_LIMIT, .dest_nentries = 2, }, /* CE8: target->host pktlog */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 2048, .dest_nentries = 128, .recv_cb = ath10k_pci_pktlog_rx_cb, }, /* CE9 target autonomous qcache memcpy */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 0, .dest_nentries = 0, }, /* CE10: target autonomous hif memcpy */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 0, .dest_nentries = 0, }, /* CE11: target autonomous hif memcpy */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 0, .dest_nentries = 0, }, }; /* Target firmware's Copy Engine configuration. */ static struct ce_pipe_config target_ce_config_wlan[] = { /* CE0: host->target HTC control and raw streams */ { .pipenum = __cpu_to_le32(0), .pipedir = __cpu_to_le32(PIPEDIR_OUT), .nentries = __cpu_to_le32(32), .nbytes_max = __cpu_to_le32(256), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, /* CE1: target->host HTT + HTC control */ { .pipenum = __cpu_to_le32(1), .pipedir = __cpu_to_le32(PIPEDIR_IN), .nentries = __cpu_to_le32(32), .nbytes_max = __cpu_to_le32(2048), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, /* CE2: target->host WMI */ { .pipenum = __cpu_to_le32(2), .pipedir = __cpu_to_le32(PIPEDIR_IN), .nentries = __cpu_to_le32(64), .nbytes_max = __cpu_to_le32(2048), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, /* CE3: host->target WMI */ { .pipenum = __cpu_to_le32(3), .pipedir = __cpu_to_le32(PIPEDIR_OUT), .nentries = __cpu_to_le32(32), .nbytes_max = __cpu_to_le32(2048), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, /* CE4: host->target HTT */ { .pipenum = __cpu_to_le32(4), .pipedir = __cpu_to_le32(PIPEDIR_OUT), .nentries = __cpu_to_le32(256), .nbytes_max = __cpu_to_le32(256), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, /* NB: 50% of src nentries, since tx has 2 frags */ /* CE5: target->host HTT (HIF->HTT) */ { .pipenum = __cpu_to_le32(5), .pipedir = __cpu_to_le32(PIPEDIR_IN), .nentries = __cpu_to_le32(32), .nbytes_max = __cpu_to_le32(512), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, /* CE6: Reserved for target autonomous hif_memcpy */ { .pipenum = __cpu_to_le32(6), .pipedir = __cpu_to_le32(PIPEDIR_INOUT), .nentries = __cpu_to_le32(32), .nbytes_max = __cpu_to_le32(4096), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, /* CE7 used only by Host */ { .pipenum = __cpu_to_le32(7), .pipedir = __cpu_to_le32(PIPEDIR_INOUT), .nentries = __cpu_to_le32(0), .nbytes_max = __cpu_to_le32(0), .flags = __cpu_to_le32(0), .reserved = __cpu_to_le32(0), }, /* CE8 target->host packtlog */ { .pipenum = __cpu_to_le32(8), .pipedir = __cpu_to_le32(PIPEDIR_IN), .nentries = __cpu_to_le32(64), .nbytes_max = __cpu_to_le32(2048), .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR), .reserved = __cpu_to_le32(0), }, /* CE9 target autonomous qcache memcpy */ { .pipenum = __cpu_to_le32(9), .pipedir = __cpu_to_le32(PIPEDIR_INOUT), .nentries = __cpu_to_le32(32), .nbytes_max = __cpu_to_le32(2048), .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR), .reserved = __cpu_to_le32(0), }, /* It not necessary to send target wlan configuration for CE10 & CE11 * as these CEs are not actively used in target. */ }; /* * Map from service/endpoint to Copy Engine. * This table is derived from the CE_PCI TABLE, above. * It is passed to the Target at startup for use by firmware. */ static struct service_to_pipe target_service_to_ce_map_wlan[] = { { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(3), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(2), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(3), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(2), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(3), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(2), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(3), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(2), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(3), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(2), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(0), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(1), }, { /* not used */ __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(0), }, { /* not used */ __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(1), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(4), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(5), }, /* (Additions here) */ { /* must be last */ __cpu_to_le32(0), __cpu_to_le32(0), __cpu_to_le32(0), }, }; static bool ath10k_pci_is_awake(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + RTC_STATE_ADDRESS); return RTC_STATE_V_GET(val) == RTC_STATE_V_ON; } static void __ath10k_pci_wake(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); lockdep_assert_held(&ar_pci->ps_lock); ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n", ar_pci->ps_wake_refcount, ar_pci->ps_awake); iowrite32(PCIE_SOC_WAKE_V_MASK, ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + PCIE_SOC_WAKE_ADDRESS); } static void __ath10k_pci_sleep(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); lockdep_assert_held(&ar_pci->ps_lock); ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n", ar_pci->ps_wake_refcount, ar_pci->ps_awake); iowrite32(PCIE_SOC_WAKE_RESET, ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + PCIE_SOC_WAKE_ADDRESS); ar_pci->ps_awake = false; } static int ath10k_pci_wake_wait(struct ath10k *ar) { int tot_delay = 0; int curr_delay = 5; while (tot_delay < PCIE_WAKE_TIMEOUT) { if (ath10k_pci_is_awake(ar)) { if (tot_delay > PCIE_WAKE_LATE_US) ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n", tot_delay / 1000); return 0; } udelay(curr_delay); tot_delay += curr_delay; if (curr_delay < 50) curr_delay += 5; } return -ETIMEDOUT; } static int ath10k_pci_force_wake(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); unsigned long flags; int ret = 0; if (ar_pci->pci_ps) return ret; spin_lock_irqsave(&ar_pci->ps_lock, flags); if (!ar_pci->ps_awake) { iowrite32(PCIE_SOC_WAKE_V_MASK, ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + PCIE_SOC_WAKE_ADDRESS); ret = ath10k_pci_wake_wait(ar); if (ret == 0) ar_pci->ps_awake = true; } spin_unlock_irqrestore(&ar_pci->ps_lock, flags); return ret; } static void ath10k_pci_force_sleep(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); unsigned long flags; spin_lock_irqsave(&ar_pci->ps_lock, flags); iowrite32(PCIE_SOC_WAKE_RESET, ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + PCIE_SOC_WAKE_ADDRESS); ar_pci->ps_awake = false; spin_unlock_irqrestore(&ar_pci->ps_lock, flags); } static int ath10k_pci_wake(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); unsigned long flags; int ret = 0; if (ar_pci->pci_ps == 0) return ret; spin_lock_irqsave(&ar_pci->ps_lock, flags); ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n", ar_pci->ps_wake_refcount, ar_pci->ps_awake); /* This function can be called very frequently. To avoid excessive * CPU stalls for MMIO reads use a cache var to hold the device state. */ if (!ar_pci->ps_awake) { __ath10k_pci_wake(ar); ret = ath10k_pci_wake_wait(ar); if (ret == 0) ar_pci->ps_awake = true; } if (ret == 0) { ar_pci->ps_wake_refcount++; WARN_ON(ar_pci->ps_wake_refcount == 0); } spin_unlock_irqrestore(&ar_pci->ps_lock, flags); return ret; } static void ath10k_pci_sleep(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); unsigned long flags; if (ar_pci->pci_ps == 0) return; spin_lock_irqsave(&ar_pci->ps_lock, flags); ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n", ar_pci->ps_wake_refcount, ar_pci->ps_awake); if (WARN_ON(ar_pci->ps_wake_refcount == 0)) goto skip; ar_pci->ps_wake_refcount--; mod_timer(&ar_pci->ps_timer, jiffies + msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC)); skip: spin_unlock_irqrestore(&ar_pci->ps_lock, flags); } static void ath10k_pci_ps_timer(struct timer_list *t) { struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer); struct ath10k *ar = ar_pci->ar; unsigned long flags; spin_lock_irqsave(&ar_pci->ps_lock, flags); ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n", ar_pci->ps_wake_refcount, ar_pci->ps_awake); if (ar_pci->ps_wake_refcount > 0) goto skip; __ath10k_pci_sleep(ar); skip: spin_unlock_irqrestore(&ar_pci->ps_lock, flags); } static void ath10k_pci_sleep_sync(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); unsigned long flags; if (ar_pci->pci_ps == 0) { ath10k_pci_force_sleep(ar); return; } del_timer_sync(&ar_pci->ps_timer); spin_lock_irqsave(&ar_pci->ps_lock, flags); WARN_ON(ar_pci->ps_wake_refcount > 0); __ath10k_pci_sleep(ar); spin_unlock_irqrestore(&ar_pci->ps_lock, flags); } static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret; if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) { ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n", offset, offset + sizeof(value), ar_pci->mem_len); return; } ret = ath10k_pci_wake(ar); if (ret) { ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n", value, offset, ret); return; } iowrite32(value, ar_pci->mem + offset); ath10k_pci_sleep(ar); } static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); u32 val; int ret; if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) { ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n", offset, offset + sizeof(val), ar_pci->mem_len); return 0; } ret = ath10k_pci_wake(ar); if (ret) { ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n", offset, ret); return 0xffffffff; } val = ioread32(ar_pci->mem + offset); ath10k_pci_sleep(ar); return val; } inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value) { struct ath10k_ce *ce = ath10k_ce_priv(ar); ce->bus_ops->write32(ar, offset, value); } inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset) { struct ath10k_ce *ce = ath10k_ce_priv(ar); return ce->bus_ops->read32(ar, offset); } u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr) { return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr); } void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val) { ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val); } u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr) { return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr); } void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val) { ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val); } bool ath10k_pci_irq_pending(struct ath10k *ar) { u32 cause; /* Check if the shared legacy irq is for us */ cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CAUSE_ADDRESS); if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL)) return true; return false; } void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar) { /* IMPORTANT: INTR_CLR register has to be set after * INTR_ENABLE is set to 0, otherwise interrupt can not be * really cleared. */ ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, 0); ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS, PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL); /* IMPORTANT: this extra read transaction is required to * flush the posted write buffer. */ (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS); } void ath10k_pci_enable_legacy_irq(struct ath10k *ar) { ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL); /* IMPORTANT: this extra read transaction is required to * flush the posted write buffer. */ (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS); } static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI) return "msi"; return "legacy"; } static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe) { struct ath10k *ar = pipe->hif_ce_state; struct ath10k_ce *ce = ath10k_ce_priv(ar); struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl; struct sk_buff *skb; dma_addr_t paddr; int ret; skb = dev_alloc_skb(pipe->buf_sz); if (!skb) return -ENOMEM; WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb"); paddr = dma_map_single(ar->dev, skb->data, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(ar->dev, paddr))) { ath10k_warn(ar, "failed to dma map pci rx buf\n"); dev_kfree_skb_any(skb); return -EIO; } ATH10K_SKB_RXCB(skb)->paddr = paddr; spin_lock_bh(&ce->ce_lock); ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr); spin_unlock_bh(&ce->ce_lock); if (ret) { dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); dev_kfree_skb_any(skb); return ret; } return 0; } static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe) { struct ath10k *ar = pipe->hif_ce_state; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_ce *ce = ath10k_ce_priv(ar); struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl; int ret, num; if (pipe->buf_sz == 0) return; if (!ce_pipe->dest_ring) return; spin_lock_bh(&ce->ce_lock); num = __ath10k_ce_rx_num_free_bufs(ce_pipe); spin_unlock_bh(&ce->ce_lock); while (num >= 0) { ret = __ath10k_pci_rx_post_buf(pipe); if (ret) { if (ret == -ENOSPC) break; ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret); mod_timer(&ar_pci->rx_post_retry, jiffies + ATH10K_PCI_RX_POST_RETRY_MS); break; } num--; } } void ath10k_pci_rx_post(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int i; for (i = 0; i < CE_COUNT; i++) ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]); } void ath10k_pci_rx_replenish_retry(struct timer_list *t) { struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry); struct ath10k *ar = ar_pci->ar; ath10k_pci_rx_post(ar); } static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr) { u32 val = 0, region = addr & 0xfffff; val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS) & 0x7ff) << 21; val |= 0x100000 | region; return val; } static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr) { u32 val = 0, region = addr & 0xfffff; val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS); val |= 0x100000 | region; return val; } static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr)) return -ENOTSUPP; return ar_pci->targ_cpu_to_ce_addr(ar, addr); } /* * Diagnostic read/write access is provided for startup/config/debug usage. * Caller must guarantee proper alignment, when applicable, and single user * at any moment. */ static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data, int nbytes) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_ce *ce = ath10k_ce_priv(ar); int ret = 0; u32 *buf; unsigned int completed_nbytes, alloc_nbytes, remaining_bytes; struct ath10k_ce_pipe *ce_diag; /* Host buffer address in CE space */ u32 ce_data; dma_addr_t ce_data_base = 0; void *data_buf = NULL; int i; spin_lock_bh(&ce->ce_lock); ce_diag = ar_pci->ce_diag; /* * Allocate a temporary bounce buffer to hold caller's data * to be DMA'ed from Target. This guarantees * 1) 4-byte alignment * 2) Buffer in DMA-able space */ alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT); data_buf = (unsigned char *)dma_zalloc_coherent(ar->dev, alloc_nbytes, &ce_data_base, GFP_ATOMIC); if (!data_buf) { ret = -ENOMEM; goto done; } remaining_bytes = nbytes; ce_data = ce_data_base; while (remaining_bytes) { nbytes = min_t(unsigned int, remaining_bytes, DIAG_TRANSFER_LIMIT); ret = ce_diag->ops->ce_rx_post_buf(ce_diag, &ce_data, ce_data); if (ret != 0) goto done; /* Request CE to send from Target(!) address to Host buffer */ /* * The address supplied by the caller is in the * Target CPU virtual address space. * * In order to use this address with the diagnostic CE, * convert it from Target CPU virtual address space * to CE address space */ address = ath10k_pci_targ_cpu_to_ce_addr(ar, address); ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0, 0); if (ret) goto done; i = 0; while (ath10k_ce_completed_send_next_nolock(ce_diag, NULL) != 0) { mdelay(1); if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { ret = -EBUSY; goto done; } } i = 0; while (ath10k_ce_completed_recv_next_nolock(ce_diag, (void **)&buf, &completed_nbytes) != 0) { mdelay(1); if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { ret = -EBUSY; goto done; } } if (nbytes != completed_nbytes) { ret = -EIO; goto done; } if (*buf != ce_data) { ret = -EIO; goto done; } remaining_bytes -= nbytes; memcpy(data, data_buf, nbytes); address += nbytes; data += nbytes; } done: if (data_buf) dma_free_coherent(ar->dev, alloc_nbytes, data_buf, ce_data_base); spin_unlock_bh(&ce->ce_lock); return ret; } static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value) { __le32 val = 0; int ret; ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val)); *value = __le32_to_cpu(val); return ret; } static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest, u32 src, u32 len) { u32 host_addr, addr; int ret; host_addr = host_interest_item_address(src); ret = ath10k_pci_diag_read32(ar, host_addr, &addr); if (ret != 0) { ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n", src, ret); return ret; } ret = ath10k_pci_diag_read_mem(ar, addr, dest, len); if (ret != 0) { ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n", addr, len, ret); return ret; } return 0; } #define ath10k_pci_diag_read_hi(ar, dest, src, len) \ __ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len) int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address, const void *data, int nbytes) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_ce *ce = ath10k_ce_priv(ar); int ret = 0; u32 *buf; unsigned int completed_nbytes, alloc_nbytes, remaining_bytes; struct ath10k_ce_pipe *ce_diag; void *data_buf = NULL; dma_addr_t ce_data_base = 0; int i; spin_lock_bh(&ce->ce_lock); ce_diag = ar_pci->ce_diag; /* * Allocate a temporary bounce buffer to hold caller's data * to be DMA'ed to Target. This guarantees * 1) 4-byte alignment * 2) Buffer in DMA-able space */ alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT); data_buf = (unsigned char *)dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base, GFP_ATOMIC); if (!data_buf) { ret = -ENOMEM; goto done; } /* * The address supplied by the caller is in the * Target CPU virtual address space. * * In order to use this address with the diagnostic CE, * convert it from * Target CPU virtual address space * to * CE address space */ address = ath10k_pci_targ_cpu_to_ce_addr(ar, address); remaining_bytes = nbytes; while (remaining_bytes) { /* FIXME: check cast */ nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT); /* Copy caller's data to allocated DMA buf */ memcpy(data_buf, data, nbytes); /* Set up to receive directly into Target(!) address */ ret = ce_diag->ops->ce_rx_post_buf(ce_diag, &address, address); if (ret != 0) goto done; /* * Request CE to send caller-supplied data that * was copied to bounce buffer to Target(!) address. */ ret = ath10k_ce_send_nolock(ce_diag, NULL, ce_data_base, nbytes, 0, 0); if (ret != 0) goto done; i = 0; while (ath10k_ce_completed_send_next_nolock(ce_diag, NULL) != 0) { mdelay(1); if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { ret = -EBUSY; goto done; } } i = 0; while (ath10k_ce_completed_recv_next_nolock(ce_diag, (void **)&buf, &completed_nbytes) != 0) { mdelay(1); if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { ret = -EBUSY; goto done; } } if (nbytes != completed_nbytes) { ret = -EIO; goto done; } if (*buf != address) { ret = -EIO; goto done; } remaining_bytes -= nbytes; address += nbytes; data += nbytes; } done: if (data_buf) { dma_free_coherent(ar->dev, alloc_nbytes, data_buf, ce_data_base); } if (ret != 0) ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n", address, ret); spin_unlock_bh(&ce->ce_lock); return ret; } static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value) { __le32 val = __cpu_to_le32(value); return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val)); } /* Called by lower (CE) layer when a send to Target completes. */ static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state) { struct ath10k *ar = ce_state->ar; struct sk_buff_head list; struct sk_buff *skb; __skb_queue_head_init(&list); while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) { /* no need to call tx completion for NULL pointers */ if (skb == NULL) continue; __skb_queue_tail(&list, skb); } while ((skb = __skb_dequeue(&list))) ath10k_htc_tx_completion_handler(ar, skb); } static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state, void (*callback)(struct ath10k *ar, struct sk_buff *skb)) { struct ath10k *ar = ce_state->ar; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id]; struct sk_buff *skb; struct sk_buff_head list; void *transfer_context; unsigned int nbytes, max_nbytes; __skb_queue_head_init(&list); while (ath10k_ce_completed_recv_next(ce_state, &transfer_context, &nbytes) == 0) { skb = transfer_context; max_nbytes = skb->len + skb_tailroom(skb); dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, max_nbytes, DMA_FROM_DEVICE); if (unlikely(max_nbytes < nbytes)) { ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)", nbytes, max_nbytes); dev_kfree_skb_any(skb); continue; } skb_put(skb, nbytes); __skb_queue_tail(&list, skb); } while ((skb = __skb_dequeue(&list))) { ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n", ce_state->id, skb->len); ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ", skb->data, skb->len); callback(ar, skb); } ath10k_pci_rx_post_pipe(pipe_info); } static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state, void (*callback)(struct ath10k *ar, struct sk_buff *skb)) { struct ath10k *ar = ce_state->ar; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id]; struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl; struct sk_buff *skb; struct sk_buff_head list; void *transfer_context; unsigned int nbytes, max_nbytes, nentries; int orig_len; /* No need to aquire ce_lock for CE5, since this is the only place CE5 * is processed other than init and deinit. Before releasing CE5 * buffers, interrupts are disabled. Thus CE5 access is serialized. */ __skb_queue_head_init(&list); while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context, &nbytes) == 0) { skb = transfer_context; max_nbytes = skb->len + skb_tailroom(skb); if (unlikely(max_nbytes < nbytes)) { ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)", nbytes, max_nbytes); continue; } dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, max_nbytes, DMA_FROM_DEVICE); skb_put(skb, nbytes); __skb_queue_tail(&list, skb); } nentries = skb_queue_len(&list); while ((skb = __skb_dequeue(&list))) { ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n", ce_state->id, skb->len); ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ", skb->data, skb->len); orig_len = skb->len; callback(ar, skb); skb_push(skb, orig_len - skb->len); skb_reset_tail_pointer(skb); skb_trim(skb, 0); /*let device gain the buffer again*/ dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); } ath10k_ce_rx_update_write_idx(ce_pipe, nentries); } /* Called by lower (CE) layer when data is received from the Target. */ static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state) { ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler); } static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state) { /* CE4 polling needs to be done whenever CE pipe which transports * HTT Rx (target->host) is processed. */ ath10k_ce_per_engine_service(ce_state->ar, 4); ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler); } /* Called by lower (CE) layer when data is received from the Target. * Only 10.4 firmware uses separate CE to transfer pktlog data. */ static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state) { ath10k_pci_process_rx_cb(ce_state, ath10k_htt_rx_pktlog_completion_handler); } /* Called by lower (CE) layer when a send to HTT Target completes. */ static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state) { struct ath10k *ar = ce_state->ar; struct sk_buff *skb; while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) { /* no need to call tx completion for NULL pointers */ if (!skb) continue; dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr, skb->len, DMA_TO_DEVICE); ath10k_htt_hif_tx_complete(ar, skb); } } static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb) { skb_pull(skb, sizeof(struct ath10k_htc_hdr)); ath10k_htt_t2h_msg_handler(ar, skb); } /* Called by lower (CE) layer when HTT data is received from the Target. */ static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state) { /* CE4 polling needs to be done whenever CE pipe which transports * HTT Rx (target->host) is processed. */ ath10k_ce_per_engine_service(ce_state->ar, 4); ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver); } int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id, struct ath10k_hif_sg_item *items, int n_items) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_ce *ce = ath10k_ce_priv(ar); struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id]; struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl; struct ath10k_ce_ring *src_ring = ce_pipe->src_ring; unsigned int nentries_mask; unsigned int sw_index; unsigned int write_index; int err, i = 0; spin_lock_bh(&ce->ce_lock); nentries_mask = src_ring->nentries_mask; sw_index = src_ring->sw_index; write_index = src_ring->write_index; if (unlikely(CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) < n_items)) { err = -ENOBUFS; goto err; } for (i = 0; i < n_items - 1; i++) { ath10k_dbg(ar, ATH10K_DBG_PCI, "pci tx item %d paddr %pad len %d n_items %d\n", i, &items[i].paddr, items[i].len, n_items); ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ", items[i].vaddr, items[i].len); err = ath10k_ce_send_nolock(ce_pipe, items[i].transfer_context, items[i].paddr, items[i].len, items[i].transfer_id, CE_SEND_FLAG_GATHER); if (err) goto err; } /* `i` is equal to `n_items -1` after for() */ ath10k_dbg(ar, ATH10K_DBG_PCI, "pci tx item %d paddr %pad len %d n_items %d\n", i, &items[i].paddr, items[i].len, n_items); ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ", items[i].vaddr, items[i].len); err = ath10k_ce_send_nolock(ce_pipe, items[i].transfer_context, items[i].paddr, items[i].len, items[i].transfer_id, 0); if (err) goto err; spin_unlock_bh(&ce->ce_lock); return 0; err: for (; i > 0; i--) __ath10k_ce_send_revert(ce_pipe); spin_unlock_bh(&ce->ce_lock); return err; } int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf, size_t buf_len) { return ath10k_pci_diag_read_mem(ar, address, buf, buf_len); } u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n"); return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl); } static void ath10k_pci_dump_registers(struct ath10k *ar, struct ath10k_fw_crash_data *crash_data) { __le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {}; int i, ret; lockdep_assert_held(&ar->data_lock); ret = ath10k_pci_diag_read_hi(ar, ®_dump_values[0], hi_failure_state, REG_DUMP_COUNT_QCA988X * sizeof(__le32)); if (ret) { ath10k_err(ar, "failed to read firmware dump area: %d\n", ret); return; } BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4); ath10k_err(ar, "firmware register dump:\n"); for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4) ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n", i, __le32_to_cpu(reg_dump_values[i]), __le32_to_cpu(reg_dump_values[i + 1]), __le32_to_cpu(reg_dump_values[i + 2]), __le32_to_cpu(reg_dump_values[i + 3])); if (!crash_data) return; for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++) crash_data->registers[i] = reg_dump_values[i]; } static int ath10k_pci_dump_memory_section(struct ath10k *ar, const struct ath10k_mem_region *mem_region, u8 *buf, size_t buf_len) { const struct ath10k_mem_section *cur_section, *next_section; unsigned int count, section_size, skip_size; int ret, i, j; if (!mem_region || !buf) return 0; cur_section = &mem_region->section_table.sections[0]; if (mem_region->start > cur_section->start) { ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n", mem_region->start, cur_section->start); return 0; } skip_size = cur_section->start - mem_region->start; /* fill the gap between the first register section and register * start address */ for (i = 0; i < skip_size; i++) { *buf = ATH10K_MAGIC_NOT_COPIED; buf++; } count = 0; for (i = 0; cur_section != NULL; i++) { section_size = cur_section->end - cur_section->start; if (section_size <= 0) { ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n", cur_section->start, cur_section->end); break; } if ((i + 1) == mem_region->section_table.size) { /* last section */ next_section = NULL; skip_size = 0; } else { next_section = cur_section + 1; if (cur_section->end > next_section->start) { ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n", next_section->start, cur_section->end); break; } skip_size = next_section->start - cur_section->end; } if (buf_len < (skip_size + section_size)) { ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len); break; } buf_len -= skip_size + section_size; /* read section to dest memory */ ret = ath10k_pci_diag_read_mem(ar, cur_section->start, buf, section_size); if (ret) { ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n", cur_section->start, ret); break; } buf += section_size; count += section_size; /* fill in the gap between this section and the next */ for (j = 0; j < skip_size; j++) { *buf = ATH10K_MAGIC_NOT_COPIED; buf++; } count += skip_size; if (!next_section) /* this was the last section */ break; cur_section = next_section; } return count; } static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config) { u32 val; ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + FW_RAM_CONFIG_ADDRESS, config); val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + FW_RAM_CONFIG_ADDRESS); if (val != config) { ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n", val, config); return -EIO; } return 0; } /* if an error happened returns < 0, otherwise the length */ static int ath10k_pci_dump_memory_sram(struct ath10k *ar, const struct ath10k_mem_region *region, u8 *buf) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); u32 base_addr, i; base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG); base_addr += region->start; for (i = 0; i < region->len; i += 4) { iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG); *(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG); } return region->len; } /* if an error happened returns < 0, otherwise the length */ static int ath10k_pci_dump_memory_reg(struct ath10k *ar, const struct ath10k_mem_region *region, u8 *buf) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); u32 i; int ret; mutex_lock(&ar->conf_mutex); if (ar->state != ATH10K_STATE_ON) { ath10k_warn(ar, "Skipping pci_dump_memory_reg invalid state\n"); ret = -EIO; goto done; } for (i = 0; i < region->len; i += 4) *(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i); ret = region->len; done: mutex_unlock(&ar->conf_mutex); return ret; } /* if an error happened returns < 0, otherwise the length */ static int ath10k_pci_dump_memory_generic(struct ath10k *ar, const struct ath10k_mem_region *current_region, u8 *buf) { int ret; if (current_region->section_table.size > 0) /* Copy each section individually. */ return ath10k_pci_dump_memory_section(ar, current_region, buf, current_region->len); /* No individiual memory sections defined so we can * copy the entire memory region. */ ret = ath10k_pci_diag_read_mem(ar, current_region->start, buf, current_region->len); if (ret) { ath10k_warn(ar, "failed to copy ramdump region %s: %d\n", current_region->name, ret); return ret; } return current_region->len; } static void ath10k_pci_dump_memory(struct ath10k *ar, struct ath10k_fw_crash_data *crash_data) { const struct ath10k_hw_mem_layout *mem_layout; const struct ath10k_mem_region *current_region; struct ath10k_dump_ram_data_hdr *hdr; u32 count, shift; size_t buf_len; int ret, i; u8 *buf; lockdep_assert_held(&ar->data_lock); if (!crash_data) return; mem_layout = ath10k_coredump_get_mem_layout(ar); if (!mem_layout) return; current_region = &mem_layout->region_table.regions[0]; buf = crash_data->ramdump_buf; buf_len = crash_data->ramdump_buf_len; memset(buf, 0, buf_len); for (i = 0; i < mem_layout->region_table.size; i++) { count = 0; if (current_region->len > buf_len) { ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n", current_region->name, current_region->len, buf_len); break; } /* To get IRAM dump, the host driver needs to switch target * ram config from DRAM to IRAM. */ if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 || current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) { shift = current_region->start >> 20; ret = ath10k_pci_set_ram_config(ar, shift); if (ret) { ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n", current_region->name, ret); break; } } /* Reserve space for the header. */ hdr = (void *)buf; buf += sizeof(*hdr); buf_len -= sizeof(*hdr); switch (current_region->type) { case ATH10K_MEM_REGION_TYPE_IOSRAM: count = ath10k_pci_dump_memory_sram(ar, current_region, buf); break; case ATH10K_MEM_REGION_TYPE_IOREG: ret = ath10k_pci_dump_memory_reg(ar, current_region, buf); if (ret < 0) break; count = ret; break; default: ret = ath10k_pci_dump_memory_generic(ar, current_region, buf); if (ret < 0) break; count = ret; break; } hdr->region_type = cpu_to_le32(current_region->type); hdr->start = cpu_to_le32(current_region->start); hdr->length = cpu_to_le32(count); if (count == 0) /* Note: the header remains, just with zero length. */ break; buf += count; buf_len -= count; current_region++; } } static void ath10k_pci_fw_crashed_dump(struct ath10k *ar) { struct ath10k_fw_crash_data *crash_data; char guid[UUID_STRING_LEN + 1]; spin_lock_bh(&ar->data_lock); ar->stats.fw_crash_counter++; crash_data = ath10k_coredump_new(ar); if (crash_data) scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid); else scnprintf(guid, sizeof(guid), "n/a"); ath10k_err(ar, "firmware crashed! (guid %s)\n", guid); ath10k_print_driver_info(ar); ath10k_pci_dump_registers(ar, crash_data); ath10k_ce_dump_registers(ar, crash_data); ath10k_pci_dump_memory(ar, crash_data); spin_unlock_bh(&ar->data_lock); queue_work(ar->workqueue, &ar->restart_work); } void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe, int force) { ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n"); if (!force) { int resources; /* * Decide whether to actually poll for completions, or just * wait for a later chance. * If there seem to be plenty of resources left, then just wait * since checking involves reading a CE register, which is a * relatively expensive operation. */ resources = ath10k_pci_hif_get_free_queue_number(ar, pipe); /* * If at least 50% of the total resources are still available, * don't bother checking again yet. */ if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1)) return; } ath10k_ce_per_engine_service(ar, pipe); } static void ath10k_pci_rx_retry_sync(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); del_timer_sync(&ar_pci->rx_post_retry); } int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id, u8 *ul_pipe, u8 *dl_pipe) { const struct service_to_pipe *entry; bool ul_set = false, dl_set = false; int i; ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n"); for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) { entry = &target_service_to_ce_map_wlan[i]; if (__le32_to_cpu(entry->service_id) != service_id) continue; switch (__le32_to_cpu(entry->pipedir)) { case PIPEDIR_NONE: break; case PIPEDIR_IN: WARN_ON(dl_set); *dl_pipe = __le32_to_cpu(entry->pipenum); dl_set = true; break; case PIPEDIR_OUT: WARN_ON(ul_set); *ul_pipe = __le32_to_cpu(entry->pipenum); ul_set = true; break; case PIPEDIR_INOUT: WARN_ON(dl_set); WARN_ON(ul_set); *dl_pipe = __le32_to_cpu(entry->pipenum); *ul_pipe = __le32_to_cpu(entry->pipenum); dl_set = true; ul_set = true; break; } } if (WARN_ON(!ul_set || !dl_set)) return -ENOENT; return 0; } void ath10k_pci_hif_get_default_pipe(struct ath10k *ar, u8 *ul_pipe, u8 *dl_pipe) { ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n"); (void)ath10k_pci_hif_map_service_to_pipe(ar, ATH10K_HTC_SVC_ID_RSVD_CTRL, ul_pipe, dl_pipe); } void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar) { u32 val; switch (ar->hw_rev) { case ATH10K_HW_QCA988X: case ATH10K_HW_QCA9887: case ATH10K_HW_QCA6174: case ATH10K_HW_QCA9377: val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS); val &= ~CORE_CTRL_PCIE_REG_31_MASK; ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS, val); break; case ATH10K_HW_QCA99X0: case ATH10K_HW_QCA9984: case ATH10K_HW_QCA9888: case ATH10K_HW_QCA4019: /* TODO: Find appropriate register configuration for QCA99X0 * to mask irq/MSI. */ break; case ATH10K_HW_WCN3990: break; } } static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar) { u32 val; switch (ar->hw_rev) { case ATH10K_HW_QCA988X: case ATH10K_HW_QCA9887: case ATH10K_HW_QCA6174: case ATH10K_HW_QCA9377: val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS); val |= CORE_CTRL_PCIE_REG_31_MASK; ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS, val); break; case ATH10K_HW_QCA99X0: case ATH10K_HW_QCA9984: case ATH10K_HW_QCA9888: case ATH10K_HW_QCA4019: /* TODO: Find appropriate register configuration for QCA99X0 * to unmask irq/MSI. */ break; case ATH10K_HW_WCN3990: break; } } static void ath10k_pci_irq_disable(struct ath10k *ar) { ath10k_ce_disable_interrupts(ar); ath10k_pci_disable_and_clear_legacy_irq(ar); ath10k_pci_irq_msi_fw_mask(ar); } static void ath10k_pci_irq_sync(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); synchronize_irq(ar_pci->pdev->irq); } static void ath10k_pci_irq_enable(struct ath10k *ar) { ath10k_ce_enable_interrupts(ar); ath10k_pci_enable_legacy_irq(ar); ath10k_pci_irq_msi_fw_unmask(ar); } static int ath10k_pci_hif_start(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n"); napi_enable(&ar->napi); ath10k_pci_irq_enable(ar); ath10k_pci_rx_post(ar); pcie_capability_clear_and_set_word(ar_pci->pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_ASPMC, ar_pci->link_ctl & PCI_EXP_LNKCTL_ASPMC); return 0; } static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe) { struct ath10k *ar; struct ath10k_ce_pipe *ce_pipe; struct ath10k_ce_ring *ce_ring; struct sk_buff *skb; int i; ar = pci_pipe->hif_ce_state; ce_pipe = pci_pipe->ce_hdl; ce_ring = ce_pipe->dest_ring; if (!ce_ring) return; if (!pci_pipe->buf_sz) return; for (i = 0; i < ce_ring->nentries; i++) { skb = ce_ring->per_transfer_context[i]; if (!skb) continue; ce_ring->per_transfer_context[i] = NULL; dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); dev_kfree_skb_any(skb); } } static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe) { struct ath10k *ar; struct ath10k_ce_pipe *ce_pipe; struct ath10k_ce_ring *ce_ring; struct sk_buff *skb; int i; ar = pci_pipe->hif_ce_state; ce_pipe = pci_pipe->ce_hdl; ce_ring = ce_pipe->src_ring; if (!ce_ring) return; if (!pci_pipe->buf_sz) return; for (i = 0; i < ce_ring->nentries; i++) { skb = ce_ring->per_transfer_context[i]; if (!skb) continue; ce_ring->per_transfer_context[i] = NULL; ath10k_htc_tx_completion_handler(ar, skb); } } /* * Cleanup residual buffers for device shutdown: * buffers that were enqueued for receive * buffers that were to be sent * Note: Buffers that had completed but which were * not yet processed are on a completion queue. They * are handled when the completion thread shuts down. */ static void ath10k_pci_buffer_cleanup(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int pipe_num; for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) { struct ath10k_pci_pipe *pipe_info; pipe_info = &ar_pci->pipe_info[pipe_num]; ath10k_pci_rx_pipe_cleanup(pipe_info); ath10k_pci_tx_pipe_cleanup(pipe_info); } } void ath10k_pci_ce_deinit(struct ath10k *ar) { int i; for (i = 0; i < CE_COUNT; i++) ath10k_ce_deinit_pipe(ar, i); } void ath10k_pci_flush(struct ath10k *ar) { ath10k_pci_rx_retry_sync(ar); ath10k_pci_buffer_cleanup(ar); } static void ath10k_pci_hif_stop(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); unsigned long flags; ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n"); ath10k_pci_irq_disable(ar); ath10k_pci_irq_sync(ar); napi_synchronize(&ar->napi); napi_disable(&ar->napi); /* Most likely the device has HTT Rx ring configured. The only way to * prevent the device from accessing (and possible corrupting) host * memory is to reset the chip now. * * There's also no known way of masking MSI interrupts on the device. * For ranged MSI the CE-related interrupts can be masked. However * regardless how many MSI interrupts are assigned the first one * is always used for firmware indications (crashes) and cannot be * masked. To prevent the device from asserting the interrupt reset it * before proceeding with cleanup. */ ath10k_pci_safe_chip_reset(ar); ath10k_pci_flush(ar); spin_lock_irqsave(&ar_pci->ps_lock, flags); WARN_ON(ar_pci->ps_wake_refcount > 0); spin_unlock_irqrestore(&ar_pci->ps_lock, flags); } int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar, void *req, u32 req_len, void *resp, u32 *resp_len) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG]; struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST]; struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl; struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl; dma_addr_t req_paddr = 0; dma_addr_t resp_paddr = 0; struct bmi_xfer xfer = {}; void *treq, *tresp = NULL; int ret = 0; might_sleep(); if (resp && !resp_len) return -EINVAL; if (resp && resp_len && *resp_len == 0) return -EINVAL; treq = kmemdup(req, req_len, GFP_KERNEL); if (!treq) return -ENOMEM; req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE); ret = dma_mapping_error(ar->dev, req_paddr); if (ret) { ret = -EIO; goto err_dma; } if (resp && resp_len) { tresp = kzalloc(*resp_len, GFP_KERNEL); if (!tresp) { ret = -ENOMEM; goto err_req; } resp_paddr = dma_map_single(ar->dev, tresp, *resp_len, DMA_FROM_DEVICE); ret = dma_mapping_error(ar->dev, resp_paddr); if (ret) { ret = -EIO; goto err_req; } xfer.wait_for_resp = true; xfer.resp_len = 0; ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr); } ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0); if (ret) goto err_resp; ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer); if (ret) { dma_addr_t unused_buffer; unsigned int unused_nbytes; unsigned int unused_id; ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer, &unused_nbytes, &unused_id); } else { /* non-zero means we did not time out */ ret = 0; } err_resp: if (resp) { dma_addr_t unused_buffer; ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer); dma_unmap_single(ar->dev, resp_paddr, *resp_len, DMA_FROM_DEVICE); } err_req: dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE); if (ret == 0 && resp_len) { *resp_len = min(*resp_len, xfer.resp_len); memcpy(resp, tresp, xfer.resp_len); } err_dma: kfree(treq); kfree(tresp); return ret; } static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state) { struct bmi_xfer *xfer; if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer)) return; xfer->tx_done = true; } static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state) { struct ath10k *ar = ce_state->ar; struct bmi_xfer *xfer; unsigned int nbytes; if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, &nbytes)) return; if (WARN_ON_ONCE(!xfer)) return; if (!xfer->wait_for_resp) { ath10k_warn(ar, "unexpected: BMI data received; ignoring\n"); return; } xfer->resp_len = nbytes; xfer->rx_done = true; } static int ath10k_pci_bmi_wait(struct ath10k *ar, struct ath10k_ce_pipe *tx_pipe, struct ath10k_ce_pipe *rx_pipe, struct bmi_xfer *xfer) { unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; unsigned long started = jiffies; unsigned long dur; int ret; while (time_before_eq(jiffies, timeout)) { ath10k_pci_bmi_send_done(tx_pipe); ath10k_pci_bmi_recv_data(rx_pipe); if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) { ret = 0; goto out; } schedule(); } ret = -ETIMEDOUT; out: dur = jiffies - started; if (dur > HZ) ath10k_dbg(ar, ATH10K_DBG_BMI, "bmi cmd took %lu jiffies hz %d ret %d\n", dur, HZ, ret); return ret; } /* * Send an interrupt to the device to wake up the Target CPU * so it has an opportunity to notice any changed state. */ static int ath10k_pci_wake_target_cpu(struct ath10k *ar) { u32 addr, val; addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS; val = ath10k_pci_read32(ar, addr); val |= CORE_CTRL_CPU_INTR_MASK; ath10k_pci_write32(ar, addr, val); return 0; } static int ath10k_pci_get_num_banks(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); switch (ar_pci->pdev->device) { case QCA988X_2_0_DEVICE_ID_UBNT: case QCA988X_2_0_DEVICE_ID: case QCA99X0_2_0_DEVICE_ID: case QCA9888_2_0_DEVICE_ID: case QCA9984_1_0_DEVICE_ID: case QCA9887_1_0_DEVICE_ID: return 1; case QCA6164_2_1_DEVICE_ID: case QCA6174_2_1_DEVICE_ID: switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) { case QCA6174_HW_1_0_CHIP_ID_REV: case QCA6174_HW_1_1_CHIP_ID_REV: case QCA6174_HW_2_1_CHIP_ID_REV: case QCA6174_HW_2_2_CHIP_ID_REV: return 3; case QCA6174_HW_1_3_CHIP_ID_REV: return 2; case QCA6174_HW_3_0_CHIP_ID_REV: case QCA6174_HW_3_1_CHIP_ID_REV: case QCA6174_HW_3_2_CHIP_ID_REV: return 9; } break; case QCA9377_1_0_DEVICE_ID: return 9; } ath10k_warn(ar, "unknown number of banks, assuming 1\n"); return 1; } static int ath10k_bus_get_num_banks(struct ath10k *ar) { struct ath10k_ce *ce = ath10k_ce_priv(ar); return ce->bus_ops->get_num_banks(ar); } int ath10k_pci_init_config(struct ath10k *ar) { u32 interconnect_targ_addr; u32 pcie_state_targ_addr = 0; u32 pipe_cfg_targ_addr = 0; u32 svc_to_pipe_map = 0; u32 pcie_config_flags = 0; u32 ealloc_value; u32 ealloc_targ_addr; u32 flag2_value; u32 flag2_targ_addr; int ret = 0; /* Download to Target the CE Config and the service-to-CE map */ interconnect_targ_addr = host_interest_item_address(HI_ITEM(hi_interconnect_state)); /* Supply Target-side CE configuration */ ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr, &pcie_state_targ_addr); if (ret != 0) { ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret); return ret; } if (pcie_state_targ_addr == 0) { ret = -EIO; ath10k_err(ar, "Invalid pcie state addr\n"); return ret; } ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr + offsetof(struct pcie_state, pipe_cfg_addr)), &pipe_cfg_targ_addr); if (ret != 0) { ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret); return ret; } if (pipe_cfg_targ_addr == 0) { ret = -EIO; ath10k_err(ar, "Invalid pipe cfg addr\n"); return ret; } ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr, target_ce_config_wlan, sizeof(struct ce_pipe_config) * NUM_TARGET_CE_CONFIG_WLAN); if (ret != 0) { ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret); return ret; } ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr + offsetof(struct pcie_state, svc_to_pipe_map)), &svc_to_pipe_map); if (ret != 0) { ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret); return ret; } if (svc_to_pipe_map == 0) { ret = -EIO; ath10k_err(ar, "Invalid svc_to_pipe map\n"); return ret; } ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map, target_service_to_ce_map_wlan, sizeof(target_service_to_ce_map_wlan)); if (ret != 0) { ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret); return ret; } ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr + offsetof(struct pcie_state, config_flags)), &pcie_config_flags); if (ret != 0) { ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret); return ret; } pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1; ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr + offsetof(struct pcie_state, config_flags)), pcie_config_flags); if (ret != 0) { ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret); return ret; } /* configure early allocation */ ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc)); ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value); if (ret != 0) { ath10k_err(ar, "Failed to get early alloc val: %d\n", ret); return ret; } /* first bank is switched to IRAM */ ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) & HI_EARLY_ALLOC_MAGIC_MASK); ealloc_value |= ((ath10k_bus_get_num_banks(ar) << HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) & HI_EARLY_ALLOC_IRAM_BANKS_MASK); ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value); if (ret != 0) { ath10k_err(ar, "Failed to set early alloc val: %d\n", ret); return ret; } /* Tell Target to proceed with initialization */ flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2)); ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value); if (ret != 0) { ath10k_err(ar, "Failed to get option val: %d\n", ret); return ret; } flag2_value |= HI_OPTION_EARLY_CFG_DONE; ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value); if (ret != 0) { ath10k_err(ar, "Failed to set option val: %d\n", ret); return ret; } return 0; } static void ath10k_pci_override_ce_config(struct ath10k *ar) { struct ce_attr *attr; struct ce_pipe_config *config; /* For QCA6174 we're overriding the Copy Engine 5 configuration, * since it is currently used for other feature. */ /* Override Host's Copy Engine 5 configuration */ attr = &host_ce_config_wlan[5]; attr->src_sz_max = 0; attr->dest_nentries = 0; /* Override Target firmware's Copy Engine configuration */ config = &target_ce_config_wlan[5]; config->pipedir = __cpu_to_le32(PIPEDIR_OUT); config->nbytes_max = __cpu_to_le32(2048); /* Map from service/endpoint to Copy Engine */ target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1); } int ath10k_pci_alloc_pipes(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_pci_pipe *pipe; struct ath10k_ce *ce = ath10k_ce_priv(ar); int i, ret; for (i = 0; i < CE_COUNT; i++) { pipe = &ar_pci->pipe_info[i]; pipe->ce_hdl = &ce->ce_states[i]; pipe->pipe_num = i; pipe->hif_ce_state = ar; ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]); if (ret) { ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n", i, ret); return ret; } /* Last CE is Diagnostic Window */ if (i == CE_DIAG_PIPE) { ar_pci->ce_diag = pipe->ce_hdl; continue; } pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max); } return 0; } void ath10k_pci_free_pipes(struct ath10k *ar) { int i; for (i = 0; i < CE_COUNT; i++) ath10k_ce_free_pipe(ar, i); } int ath10k_pci_init_pipes(struct ath10k *ar) { int i, ret; for (i = 0; i < CE_COUNT; i++) { ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]); if (ret) { ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n", i, ret); return ret; } } return 0; } static bool ath10k_pci_has_fw_crashed(struct ath10k *ar) { return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) & FW_IND_EVENT_PENDING; } static void ath10k_pci_fw_crashed_clear(struct ath10k *ar) { u32 val; val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS); val &= ~FW_IND_EVENT_PENDING; ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val); } static bool ath10k_pci_has_device_gone(struct ath10k *ar) { u32 val; val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS); return (val == 0xffffffff); } /* this function effectively clears target memory controller assert line */ static void ath10k_pci_warm_reset_si0(struct ath10k *ar) { u32 val; val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, val | SOC_RESET_CONTROL_SI0_RST_MASK); val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); msleep(10); val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, val & ~SOC_RESET_CONTROL_SI0_RST_MASK); val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); msleep(10); } static void ath10k_pci_warm_reset_cpu(struct ath10k *ar) { u32 val; ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0); val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS); ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS, val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK); } static void ath10k_pci_warm_reset_ce(struct ath10k *ar) { u32 val; val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS); ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS, val | SOC_RESET_CONTROL_CE_RST_MASK); msleep(10); ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS, val & ~SOC_RESET_CONTROL_CE_RST_MASK); } static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar) { u32 val; val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + SOC_LF_TIMER_CONTROL0_ADDRESS); ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_LF_TIMER_CONTROL0_ADDRESS, val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK); } static int ath10k_pci_warm_reset(struct ath10k *ar) { int ret; ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n"); spin_lock_bh(&ar->data_lock); ar->stats.fw_warm_reset_counter++; spin_unlock_bh(&ar->data_lock); ath10k_pci_irq_disable(ar); /* Make sure the target CPU is not doing anything dangerous, e.g. if it * were to access copy engine while host performs copy engine reset * then it is possible for the device to confuse pci-e controller to * the point of bringing host system to a complete stop (i.e. hang). */ ath10k_pci_warm_reset_si0(ar); ath10k_pci_warm_reset_cpu(ar); ath10k_pci_init_pipes(ar); ath10k_pci_wait_for_target_init(ar); ath10k_pci_warm_reset_clear_lf(ar); ath10k_pci_warm_reset_ce(ar); ath10k_pci_warm_reset_cpu(ar); ath10k_pci_init_pipes(ar); ret = ath10k_pci_wait_for_target_init(ar); if (ret) { ath10k_warn(ar, "failed to wait for target init: %d\n", ret); return ret; } ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n"); return 0; } static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar) { ath10k_pci_irq_disable(ar); return ath10k_pci_qca99x0_chip_reset(ar); } static int ath10k_pci_safe_chip_reset(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); if (!ar_pci->pci_soft_reset) return -ENOTSUPP; return ar_pci->pci_soft_reset(ar); } static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar) { int i, ret; u32 val; ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n"); /* Some hardware revisions (e.g. CUS223v2) has issues with cold reset. * It is thus preferred to use warm reset which is safer but may not be * able to recover the device from all possible fail scenarios. * * Warm reset doesn't always work on first try so attempt it a few * times before giving up. */ for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) { ret = ath10k_pci_warm_reset(ar); if (ret) { ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n", i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS, ret); continue; } /* FIXME: Sometimes copy engine doesn't recover after warm * reset. In most cases this needs cold reset. In some of these * cases the device is in such a state that a cold reset may * lock up the host. * * Reading any host interest register via copy engine is * sufficient to verify if device is capable of booting * firmware blob. */ ret = ath10k_pci_init_pipes(ar); if (ret) { ath10k_warn(ar, "failed to init copy engine: %d\n", ret); continue; } ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS, &val); if (ret) { ath10k_warn(ar, "failed to poke copy engine: %d\n", ret); continue; } ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n"); return 0; } if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) { ath10k_warn(ar, "refusing cold reset as requested\n"); return -EPERM; } ret = ath10k_pci_cold_reset(ar); if (ret) { ath10k_warn(ar, "failed to cold reset: %d\n", ret); return ret; } ret = ath10k_pci_wait_for_target_init(ar); if (ret) { ath10k_warn(ar, "failed to wait for target after cold reset: %d\n", ret); return ret; } ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n"); return 0; } static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar) { int ret; ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n"); /* FIXME: QCA6174 requires cold + warm reset to work. */ ret = ath10k_pci_cold_reset(ar); if (ret) { ath10k_warn(ar, "failed to cold reset: %d\n", ret); return ret; } ret = ath10k_pci_wait_for_target_init(ar); if (ret) { ath10k_warn(ar, "failed to wait for target after cold reset: %d\n", ret); return ret; } ret = ath10k_pci_warm_reset(ar); if (ret) { ath10k_warn(ar, "failed to warm reset: %d\n", ret); return ret; } ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n"); return 0; } static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar) { int ret; ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n"); ret = ath10k_pci_cold_reset(ar); if (ret) { ath10k_warn(ar, "failed to cold reset: %d\n", ret); return ret; } ret = ath10k_pci_wait_for_target_init(ar); if (ret) { ath10k_warn(ar, "failed to wait for target after cold reset: %d\n", ret); return ret; } ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n"); return 0; } static int ath10k_pci_chip_reset(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); if (WARN_ON(!ar_pci->pci_hard_reset)) return -ENOTSUPP; return ar_pci->pci_hard_reset(ar); } static int ath10k_pci_hif_power_up(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret; ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n"); pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL, &ar_pci->link_ctl); pcie_capability_clear_word(ar_pci->pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_ASPMC); /* * Bring the target up cleanly. * * The target may be in an undefined state with an AUX-powered Target * and a Host in WoW mode. If the Host crashes, loses power, or is * restarted (without unloading the driver) then the Target is left * (aux) powered and running. On a subsequent driver load, the Target * is in an unexpected state. We try to catch that here in order to * reset the Target and retry the probe. */ ret = ath10k_pci_chip_reset(ar); if (ret) { if (ath10k_pci_has_fw_crashed(ar)) { ath10k_warn(ar, "firmware crashed during chip reset\n"); ath10k_pci_fw_crashed_clear(ar); ath10k_pci_fw_crashed_dump(ar); } ath10k_err(ar, "failed to reset chip: %d\n", ret); goto err_sleep; } ret = ath10k_pci_init_pipes(ar); if (ret) { ath10k_err(ar, "failed to initialize CE: %d\n", ret); goto err_sleep; } ret = ath10k_pci_init_config(ar); if (ret) { ath10k_err(ar, "failed to setup init config: %d\n", ret); goto err_ce; } ret = ath10k_pci_wake_target_cpu(ar); if (ret) { ath10k_err(ar, "could not wake up target CPU: %d\n", ret); goto err_ce; } return 0; err_ce: ath10k_pci_ce_deinit(ar); err_sleep: return ret; } void ath10k_pci_hif_power_down(struct ath10k *ar) { ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n"); /* Currently hif_power_up performs effectively a reset and hif_stop * resets the chip as well so there's no point in resetting here. */ } static int ath10k_pci_hif_suspend(struct ath10k *ar) { /* Nothing to do; the important stuff is in the driver suspend. */ return 0; } static int ath10k_pci_suspend(struct ath10k *ar) { /* The grace timer can still be counting down and ar->ps_awake be true. * It is known that the device may be asleep after resuming regardless * of the SoC powersave state before suspending. Hence make sure the * device is asleep before proceeding. */ ath10k_pci_sleep_sync(ar); return 0; } static int ath10k_pci_hif_resume(struct ath10k *ar) { /* Nothing to do; the important stuff is in the driver resume. */ return 0; } static int ath10k_pci_resume(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct pci_dev *pdev = ar_pci->pdev; u32 val; int ret = 0; ret = ath10k_pci_force_wake(ar); if (ret) { ath10k_err(ar, "failed to wake up target: %d\n", ret); return ret; } /* Suspend/Resume resets the PCI configuration space, so we have to * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries * from interfering with C3 CPU state. pci_restore_state won't help * here since it only restores the first 64 bytes pci config header. */ pci_read_config_dword(pdev, 0x40, &val); if ((val & 0x0000ff00) != 0) pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); return ret; } static bool ath10k_pci_validate_cal(void *data, size_t size) { __le16 *cal_words = data; u16 checksum = 0; size_t i; if (size % 2 != 0) return false; for (i = 0; i < size / 2; i++) checksum ^= le16_to_cpu(cal_words[i]); return checksum == 0xffff; } static void ath10k_pci_enable_eeprom(struct ath10k *ar) { /* Enable SI clock */ ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0); /* Configure GPIOs for I2C operation */ ath10k_pci_write32(ar, GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET + 4 * QCA9887_1_0_I2C_SDA_GPIO_PIN, SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG, GPIO_PIN0_CONFIG) | SM(1, GPIO_PIN0_PAD_PULL)); ath10k_pci_write32(ar, GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET + 4 * QCA9887_1_0_SI_CLK_GPIO_PIN, SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) | SM(1, GPIO_PIN0_PAD_PULL)); ath10k_pci_write32(ar, GPIO_BASE_ADDRESS + QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS, 1u << QCA9887_1_0_SI_CLK_GPIO_PIN); /* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */ ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CONFIG_OFFSET, SM(1, SI_CONFIG_ERR_INT) | SM(1, SI_CONFIG_BIDIR_OD_DATA) | SM(1, SI_CONFIG_I2C) | SM(1, SI_CONFIG_POS_SAMPLE) | SM(1, SI_CONFIG_INACTIVE_DATA) | SM(1, SI_CONFIG_INACTIVE_CLK) | SM(8, SI_CONFIG_DIVIDER)); } static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out) { u32 reg; int wait_limit; /* set device select byte and for the read operation */ reg = QCA9887_EEPROM_SELECT_READ | SM(addr, QCA9887_EEPROM_ADDR_LO) | SM(addr >> 8, QCA9887_EEPROM_ADDR_HI); ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg); /* write transmit data, transfer length, and START bit */ ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) | SM(4, SI_CS_TX_CNT)); /* wait max 1 sec */ wait_limit = 100000; /* wait for SI_CS_DONE_INT */ do { reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET); if (MS(reg, SI_CS_DONE_INT)) break; wait_limit--; udelay(10); } while (wait_limit > 0); if (!MS(reg, SI_CS_DONE_INT)) { ath10k_err(ar, "timeout while reading device EEPROM at %04x\n", addr); return -ETIMEDOUT; } /* clear SI_CS_DONE_INT */ ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg); if (MS(reg, SI_CS_DONE_ERR)) { ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr); return -EIO; } /* extract receive data */ reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET); *out = reg; return 0; } static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data, size_t *data_len) { u8 *caldata = NULL; size_t calsize, i; int ret; if (!QCA_REV_9887(ar)) return -EOPNOTSUPP; calsize = ar->hw_params.cal_data_len; caldata = kmalloc(calsize, GFP_KERNEL); if (!caldata) return -ENOMEM; ath10k_pci_enable_eeprom(ar); for (i = 0; i < calsize; i++) { ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]); if (ret) goto err_free; } if (!ath10k_pci_validate_cal(caldata, calsize)) goto err_free; *data = caldata; *data_len = calsize; return 0; err_free: kfree(caldata); return -EINVAL; } static const struct ath10k_hif_ops ath10k_pci_hif_ops = { .tx_sg = ath10k_pci_hif_tx_sg, .diag_read = ath10k_pci_hif_diag_read, .diag_write = ath10k_pci_diag_write_mem, .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg, .start = ath10k_pci_hif_start, .stop = ath10k_pci_hif_stop, .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe, .get_default_pipe = ath10k_pci_hif_get_default_pipe, .send_complete_check = ath10k_pci_hif_send_complete_check, .get_free_queue_number = ath10k_pci_hif_get_free_queue_number, .power_up = ath10k_pci_hif_power_up, .power_down = ath10k_pci_hif_power_down, .read32 = ath10k_pci_read32, .write32 = ath10k_pci_write32, .suspend = ath10k_pci_hif_suspend, .resume = ath10k_pci_hif_resume, .fetch_cal_eeprom = ath10k_pci_hif_fetch_cal_eeprom, }; /* * Top-level interrupt handler for all PCI interrupts from a Target. * When a block of MSI interrupts is allocated, this top-level handler * is not used; instead, we directly call the correct sub-handler. */ static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg) { struct ath10k *ar = arg; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret; if (ath10k_pci_has_device_gone(ar)) return IRQ_NONE; ret = ath10k_pci_force_wake(ar); if (ret) { ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret); return IRQ_NONE; } if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) && !ath10k_pci_irq_pending(ar)) return IRQ_NONE; ath10k_pci_disable_and_clear_legacy_irq(ar); ath10k_pci_irq_msi_fw_mask(ar); napi_schedule(&ar->napi); return IRQ_HANDLED; } static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget) { struct ath10k *ar = container_of(ctx, struct ath10k, napi); int done = 0; if (ath10k_pci_has_fw_crashed(ar)) { ath10k_pci_fw_crashed_clear(ar); ath10k_pci_fw_crashed_dump(ar); napi_complete(ctx); return done; } ath10k_ce_per_engine_service_any(ar); done = ath10k_htt_txrx_compl_task(ar, budget); if (done < budget) { napi_complete_done(ctx, done); /* In case of MSI, it is possible that interrupts are received * while NAPI poll is inprogress. So pending interrupts that are * received after processing all copy engine pipes by NAPI poll * will not be handled again. This is causing failure to * complete boot sequence in x86 platform. So before enabling * interrupts safer to check for pending interrupts for * immediate servicing. */ if (ath10k_ce_interrupt_summary(ar)) { napi_reschedule(ctx); goto out; } ath10k_pci_enable_legacy_irq(ar); ath10k_pci_irq_msi_fw_unmask(ar); } out: return done; } static int ath10k_pci_request_irq_msi(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret; ret = request_irq(ar_pci->pdev->irq, ath10k_pci_interrupt_handler, IRQF_SHARED, "ath10k_pci", ar); if (ret) { ath10k_warn(ar, "failed to request MSI irq %d: %d\n", ar_pci->pdev->irq, ret); return ret; } return 0; } static int ath10k_pci_request_irq_legacy(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret; ret = request_irq(ar_pci->pdev->irq, ath10k_pci_interrupt_handler, IRQF_SHARED, "ath10k_pci", ar); if (ret) { ath10k_warn(ar, "failed to request legacy irq %d: %d\n", ar_pci->pdev->irq, ret); return ret; } return 0; } static int ath10k_pci_request_irq(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); switch (ar_pci->oper_irq_mode) { case ATH10K_PCI_IRQ_LEGACY: return ath10k_pci_request_irq_legacy(ar); case ATH10K_PCI_IRQ_MSI: return ath10k_pci_request_irq_msi(ar); default: return -EINVAL; } } static void ath10k_pci_free_irq(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); free_irq(ar_pci->pdev->irq, ar); } void ath10k_pci_init_napi(struct ath10k *ar) { netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll, ATH10K_NAPI_BUDGET); } static int ath10k_pci_init_irq(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret; ath10k_pci_init_napi(ar); if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO) ath10k_info(ar, "limiting irq mode to: %d\n", ath10k_pci_irq_mode); /* Try MSI */ if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) { ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI; ret = pci_enable_msi(ar_pci->pdev); if (ret == 0) return 0; /* fall-through */ } /* Try legacy irq * * A potential race occurs here: The CORE_BASE write * depends on target correctly decoding AXI address but * host won't know when target writes BAR to CORE_CTRL. * This write might get lost if target has NOT written BAR. * For now, fix the race by repeating the write in below * synchronization checking. */ ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY; ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL); return 0; } static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar) { ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, 0); } static int ath10k_pci_deinit_irq(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); switch (ar_pci->oper_irq_mode) { case ATH10K_PCI_IRQ_LEGACY: ath10k_pci_deinit_irq_legacy(ar); break; default: pci_disable_msi(ar_pci->pdev); break; } return 0; } int ath10k_pci_wait_for_target_init(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); unsigned long timeout; u32 val; ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n"); timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT); do { val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS); ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n", val); /* target should never return this */ if (val == 0xffffffff) continue; /* the device has crashed so don't bother trying anymore */ if (val & FW_IND_EVENT_PENDING) break; if (val & FW_IND_INITIALIZED) break; if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) /* Fix potential race by repeating CORE_BASE writes */ ath10k_pci_enable_legacy_irq(ar); mdelay(10); } while (time_before(jiffies, timeout)); ath10k_pci_disable_and_clear_legacy_irq(ar); ath10k_pci_irq_msi_fw_mask(ar); if (val == 0xffffffff) { ath10k_err(ar, "failed to read device register, device is gone\n"); return -EIO; } if (val & FW_IND_EVENT_PENDING) { ath10k_warn(ar, "device has crashed during init\n"); return -ECOMM; } if (!(val & FW_IND_INITIALIZED)) { ath10k_err(ar, "failed to receive initialized event from target: %08x\n", val); return -ETIMEDOUT; } ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n"); return 0; } static int ath10k_pci_cold_reset(struct ath10k *ar) { u32 val; ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n"); spin_lock_bh(&ar->data_lock); ar->stats.fw_cold_reset_counter++; spin_unlock_bh(&ar->data_lock); /* Put Target, including PCIe, into RESET. */ val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS); val |= 1; ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val); /* After writing into SOC_GLOBAL_RESET to put device into * reset and pulling out of reset pcie may not be stable * for any immediate pcie register access and cause bus error, * add delay before any pcie access request to fix this issue. */ msleep(20); /* Pull Target, including PCIe, out of RESET. */ val &= ~1; ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val); msleep(20); ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n"); return 0; } static int ath10k_pci_claim(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct pci_dev *pdev = ar_pci->pdev; int ret; pci_set_drvdata(pdev, ar); ret = pci_enable_device(pdev); if (ret) { ath10k_err(ar, "failed to enable pci device: %d\n", ret); return ret; } ret = pci_request_region(pdev, BAR_NUM, "ath"); if (ret) { ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM, ret); goto err_device; } /* Target expects 32 bit DMA. Enforce it. */ ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (ret) { ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret); goto err_region; } ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); if (ret) { ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n", ret); goto err_region; } pci_set_master(pdev); /* Arrange for access to Target SoC registers. */ ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM); ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0); if (!ar_pci->mem) { ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM); ret = -EIO; goto err_master; } ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem); return 0; err_master: pci_clear_master(pdev); err_region: pci_release_region(pdev, BAR_NUM); err_device: pci_disable_device(pdev); return ret; } static void ath10k_pci_release(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct pci_dev *pdev = ar_pci->pdev; pci_iounmap(pdev, ar_pci->mem); pci_release_region(pdev, BAR_NUM); pci_clear_master(pdev); pci_disable_device(pdev); } static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id) { const struct ath10k_pci_supp_chip *supp_chip; int i; u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV); for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) { supp_chip = &ath10k_pci_supp_chips[i]; if (supp_chip->dev_id == dev_id && supp_chip->rev_id == rev_id) return true; } return false; } int ath10k_pci_setup_resource(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_ce *ce = ath10k_ce_priv(ar); int ret; spin_lock_init(&ce->ce_lock); spin_lock_init(&ar_pci->ps_lock); timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0); if (QCA_REV_6174(ar) || QCA_REV_9377(ar)) ath10k_pci_override_ce_config(ar); ret = ath10k_pci_alloc_pipes(ar); if (ret) { ath10k_err(ar, "failed to allocate copy engine pipes: %d\n", ret); return ret; } return 0; } void ath10k_pci_release_resource(struct ath10k *ar) { ath10k_pci_rx_retry_sync(ar); netif_napi_del(&ar->napi); ath10k_pci_ce_deinit(ar); ath10k_pci_free_pipes(ar); } static const struct ath10k_bus_ops ath10k_pci_bus_ops = { .read32 = ath10k_bus_pci_read32, .write32 = ath10k_bus_pci_write32, .get_num_banks = ath10k_pci_get_num_banks, }; static int ath10k_pci_probe(struct pci_dev *pdev, const struct pci_device_id *pci_dev) { int ret = 0; struct ath10k *ar; struct ath10k_pci *ar_pci; enum ath10k_hw_rev hw_rev; u32 chip_id; bool pci_ps; int (*pci_soft_reset)(struct ath10k *ar); int (*pci_hard_reset)(struct ath10k *ar); u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr); switch (pci_dev->device) { case QCA988X_2_0_DEVICE_ID_UBNT: case QCA988X_2_0_DEVICE_ID: hw_rev = ATH10K_HW_QCA988X; pci_ps = false; pci_soft_reset = ath10k_pci_warm_reset; pci_hard_reset = ath10k_pci_qca988x_chip_reset; targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr; break; case QCA9887_1_0_DEVICE_ID: hw_rev = ATH10K_HW_QCA9887; pci_ps = false; pci_soft_reset = ath10k_pci_warm_reset; pci_hard_reset = ath10k_pci_qca988x_chip_reset; targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr; break; case QCA6164_2_1_DEVICE_ID: case QCA6174_2_1_DEVICE_ID: hw_rev = ATH10K_HW_QCA6174; pci_ps = true; pci_soft_reset = ath10k_pci_warm_reset; pci_hard_reset = ath10k_pci_qca6174_chip_reset; targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr; break; case QCA99X0_2_0_DEVICE_ID: hw_rev = ATH10K_HW_QCA99X0; pci_ps = false; pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset; pci_hard_reset = ath10k_pci_qca99x0_chip_reset; targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr; break; case QCA9984_1_0_DEVICE_ID: hw_rev = ATH10K_HW_QCA9984; pci_ps = false; pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset; pci_hard_reset = ath10k_pci_qca99x0_chip_reset; targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr; break; case QCA9888_2_0_DEVICE_ID: hw_rev = ATH10K_HW_QCA9888; pci_ps = false; pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset; pci_hard_reset = ath10k_pci_qca99x0_chip_reset; targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr; break; case QCA9377_1_0_DEVICE_ID: hw_rev = ATH10K_HW_QCA9377; pci_ps = true; pci_soft_reset = NULL; pci_hard_reset = ath10k_pci_qca6174_chip_reset; targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr; break; default: WARN_ON(1); return -ENOTSUPP; } ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI, hw_rev, &ath10k_pci_hif_ops); if (!ar) { dev_err(&pdev->dev, "failed to allocate core\n"); return -ENOMEM; } ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n", pdev->vendor, pdev->device, pdev->subsystem_vendor, pdev->subsystem_device); ar_pci = ath10k_pci_priv(ar); ar_pci->pdev = pdev; ar_pci->dev = &pdev->dev; ar_pci->ar = ar; ar->dev_id = pci_dev->device; ar_pci->pci_ps = pci_ps; ar_pci->ce.bus_ops = &ath10k_pci_bus_ops; ar_pci->pci_soft_reset = pci_soft_reset; ar_pci->pci_hard_reset = pci_hard_reset; ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr; ar->ce_priv = &ar_pci->ce; ar->id.vendor = pdev->vendor; ar->id.device = pdev->device; ar->id.subsystem_vendor = pdev->subsystem_vendor; ar->id.subsystem_device = pdev->subsystem_device; timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0); ret = ath10k_pci_setup_resource(ar); if (ret) { ath10k_err(ar, "failed to setup resource: %d\n", ret); goto err_core_destroy; } ret = ath10k_pci_claim(ar); if (ret) { ath10k_err(ar, "failed to claim device: %d\n", ret); goto err_free_pipes; } ret = ath10k_pci_force_wake(ar); if (ret) { ath10k_warn(ar, "failed to wake up device : %d\n", ret); goto err_sleep; } ath10k_pci_ce_deinit(ar); ath10k_pci_irq_disable(ar); ret = ath10k_pci_init_irq(ar); if (ret) { ath10k_err(ar, "failed to init irqs: %d\n", ret); goto err_sleep; } ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n", ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode, ath10k_pci_irq_mode, ath10k_pci_reset_mode); ret = ath10k_pci_request_irq(ar); if (ret) { ath10k_warn(ar, "failed to request irqs: %d\n", ret); goto err_deinit_irq; } ret = ath10k_pci_chip_reset(ar); if (ret) { ath10k_err(ar, "failed to reset chip: %d\n", ret); goto err_free_irq; } chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS); if (chip_id == 0xffffffff) { ath10k_err(ar, "failed to get chip id\n"); goto err_free_irq; } if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) { ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n", pdev->device, chip_id); goto err_free_irq; } ret = ath10k_core_register(ar, chip_id); if (ret) { ath10k_err(ar, "failed to register driver core: %d\n", ret); goto err_free_irq; } return 0; err_free_irq: ath10k_pci_free_irq(ar); ath10k_pci_rx_retry_sync(ar); err_deinit_irq: ath10k_pci_deinit_irq(ar); err_sleep: ath10k_pci_sleep_sync(ar); ath10k_pci_release(ar); err_free_pipes: ath10k_pci_free_pipes(ar); err_core_destroy: ath10k_core_destroy(ar); return ret; } static void ath10k_pci_remove(struct pci_dev *pdev) { struct ath10k *ar = pci_get_drvdata(pdev); struct ath10k_pci *ar_pci; ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n"); if (!ar) return; ar_pci = ath10k_pci_priv(ar); if (!ar_pci) return; ath10k_core_unregister(ar); ath10k_pci_free_irq(ar); ath10k_pci_deinit_irq(ar); ath10k_pci_release_resource(ar); ath10k_pci_sleep_sync(ar); ath10k_pci_release(ar); ath10k_core_destroy(ar); } MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table); static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev) { struct ath10k *ar = dev_get_drvdata(dev); int ret; ret = ath10k_pci_suspend(ar); if (ret) ath10k_warn(ar, "failed to suspend hif: %d\n", ret); return ret; } static __maybe_unused int ath10k_pci_pm_resume(struct device *dev) { struct ath10k *ar = dev_get_drvdata(dev); int ret; ret = ath10k_pci_resume(ar); if (ret) ath10k_warn(ar, "failed to resume hif: %d\n", ret); return ret; } static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops, ath10k_pci_pm_suspend, ath10k_pci_pm_resume); static struct pci_driver ath10k_pci_driver = { .name = "ath10k_pci", .id_table = ath10k_pci_id_table, .probe = ath10k_pci_probe, .remove = ath10k_pci_remove, #ifdef CONFIG_PM .driver.pm = &ath10k_pci_pm_ops, #endif }; static int __init ath10k_pci_init(void) { int ret1, ret2; ret1 = pci_register_driver(&ath10k_pci_driver); if (ret1) printk(KERN_ERR "failed to register ath10k pci driver: %d\n", ret1); ret2 = ath10k_ahb_init(); if (ret2) printk(KERN_ERR "ahb init failed: %d\n", ret2); if (ret1 && ret2) return ret1; /* registered to at least one bus */ return 0; } module_init(ath10k_pci_init); static void __exit ath10k_pci_exit(void) { pci_unregister_driver(&ath10k_pci_driver); ath10k_ahb_exit(); } module_exit(ath10k_pci_exit); MODULE_AUTHOR("Qualcomm Atheros"); MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices"); MODULE_LICENSE("Dual BSD/GPL"); /* QCA988x 2.0 firmware files */ MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE); MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE); MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE); MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE); MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE); MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE); /* QCA9887 1.0 firmware files */ MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE); MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE); MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE); /* QCA6174 2.1 firmware files */ MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE); MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE); MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE); MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE); /* QCA6174 3.1 firmware files */ MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE); MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE); MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE); MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE); MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE); /* QCA9377 1.0 firmware files */ MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE); MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE); MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);