// SPDX-License-Identifier: GPL-2.0 /* * Author(s)......: Holger Smolinski * Horst Hummel * Carsten Otte * Martin Schwidefsky * Bugreports.to..: * Copyright IBM Corp. 1999, 2009 */ #define KMSG_COMPONENT "dasd" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* This is ugly... */ #define PRINTK_HEADER "dasd:" #include "dasd_int.h" /* * SECTION: Constant definitions to be used within this file */ #define DASD_CHANQ_MAX_SIZE 4 #define DASD_DIAG_MOD "dasd_diag_mod" static unsigned int queue_depth = 32; static unsigned int nr_hw_queues = 4; module_param(queue_depth, uint, 0444); MODULE_PARM_DESC(queue_depth, "Default queue depth for new DASD devices"); module_param(nr_hw_queues, uint, 0444); MODULE_PARM_DESC(nr_hw_queues, "Default number of hardware queues for new DASD devices"); /* * SECTION: exported variables of dasd.c */ debug_info_t *dasd_debug_area; EXPORT_SYMBOL(dasd_debug_area); static struct dentry *dasd_debugfs_root_entry; struct dasd_discipline *dasd_diag_discipline_pointer; EXPORT_SYMBOL(dasd_diag_discipline_pointer); void dasd_int_handler(struct ccw_device *, unsigned long, struct irb *); MODULE_AUTHOR("Holger Smolinski "); MODULE_DESCRIPTION("Linux on S/390 DASD device driver," " Copyright IBM Corp. 2000"); MODULE_SUPPORTED_DEVICE("dasd"); MODULE_LICENSE("GPL"); /* * SECTION: prototypes for static functions of dasd.c */ static int dasd_alloc_queue(struct dasd_block *); static void dasd_setup_queue(struct dasd_block *); static void dasd_free_queue(struct dasd_block *); static int dasd_flush_block_queue(struct dasd_block *); static void dasd_device_tasklet(unsigned long); static void dasd_block_tasklet(unsigned long); static void do_kick_device(struct work_struct *); static void do_restore_device(struct work_struct *); static void do_reload_device(struct work_struct *); static void do_requeue_requests(struct work_struct *); static void dasd_return_cqr_cb(struct dasd_ccw_req *, void *); static void dasd_device_timeout(struct timer_list *); static void dasd_block_timeout(struct timer_list *); static void __dasd_process_erp(struct dasd_device *, struct dasd_ccw_req *); static void dasd_profile_init(struct dasd_profile *, struct dentry *); static void dasd_profile_exit(struct dasd_profile *); static void dasd_hosts_init(struct dentry *, struct dasd_device *); static void dasd_hosts_exit(struct dasd_device *); /* * SECTION: Operations on the device structure. */ static wait_queue_head_t dasd_init_waitq; static wait_queue_head_t dasd_flush_wq; static wait_queue_head_t generic_waitq; static wait_queue_head_t shutdown_waitq; /* * Allocate memory for a new device structure. */ struct dasd_device *dasd_alloc_device(void) { struct dasd_device *device; device = kzalloc(sizeof(struct dasd_device), GFP_ATOMIC); if (!device) return ERR_PTR(-ENOMEM); /* Get two pages for normal block device operations. */ device->ccw_mem = (void *) __get_free_pages(GFP_ATOMIC | GFP_DMA, 1); if (!device->ccw_mem) { kfree(device); return ERR_PTR(-ENOMEM); } /* Get one page for error recovery. */ device->erp_mem = (void *) get_zeroed_page(GFP_ATOMIC | GFP_DMA); if (!device->erp_mem) { free_pages((unsigned long) device->ccw_mem, 1); kfree(device); return ERR_PTR(-ENOMEM); } dasd_init_chunklist(&device->ccw_chunks, device->ccw_mem, PAGE_SIZE*2); dasd_init_chunklist(&device->erp_chunks, device->erp_mem, PAGE_SIZE); spin_lock_init(&device->mem_lock); atomic_set(&device->tasklet_scheduled, 0); tasklet_init(&device->tasklet, dasd_device_tasklet, (unsigned long) device); INIT_LIST_HEAD(&device->ccw_queue); timer_setup(&device->timer, dasd_device_timeout, 0); INIT_WORK(&device->kick_work, do_kick_device); INIT_WORK(&device->restore_device, do_restore_device); INIT_WORK(&device->reload_device, do_reload_device); INIT_WORK(&device->requeue_requests, do_requeue_requests); device->state = DASD_STATE_NEW; device->target = DASD_STATE_NEW; mutex_init(&device->state_mutex); spin_lock_init(&device->profile.lock); return device; } /* * Free memory of a device structure. */ void dasd_free_device(struct dasd_device *device) { kfree(device->private); free_page((unsigned long) device->erp_mem); free_pages((unsigned long) device->ccw_mem, 1); kfree(device); } /* * Allocate memory for a new device structure. */ struct dasd_block *dasd_alloc_block(void) { struct dasd_block *block; block = kzalloc(sizeof(*block), GFP_ATOMIC); if (!block) return ERR_PTR(-ENOMEM); /* open_count = 0 means device online but not in use */ atomic_set(&block->open_count, -1); atomic_set(&block->tasklet_scheduled, 0); tasklet_init(&block->tasklet, dasd_block_tasklet, (unsigned long) block); INIT_LIST_HEAD(&block->ccw_queue); spin_lock_init(&block->queue_lock); timer_setup(&block->timer, dasd_block_timeout, 0); spin_lock_init(&block->profile.lock); return block; } EXPORT_SYMBOL_GPL(dasd_alloc_block); /* * Free memory of a device structure. */ void dasd_free_block(struct dasd_block *block) { kfree(block); } EXPORT_SYMBOL_GPL(dasd_free_block); /* * Make a new device known to the system. */ static int dasd_state_new_to_known(struct dasd_device *device) { int rc; /* * As long as the device is not in state DASD_STATE_NEW we want to * keep the reference count > 0. */ dasd_get_device(device); if (device->block) { rc = dasd_alloc_queue(device->block); if (rc) { dasd_put_device(device); return rc; } } device->state = DASD_STATE_KNOWN; return 0; } /* * Let the system forget about a device. */ static int dasd_state_known_to_new(struct dasd_device *device) { /* Disable extended error reporting for this device. */ dasd_eer_disable(device); device->state = DASD_STATE_NEW; if (device->block) dasd_free_queue(device->block); /* Give up reference we took in dasd_state_new_to_known. */ dasd_put_device(device); return 0; } static struct dentry *dasd_debugfs_setup(const char *name, struct dentry *base_dentry) { struct dentry *pde; if (!base_dentry) return NULL; pde = debugfs_create_dir(name, base_dentry); if (!pde || IS_ERR(pde)) return NULL; return pde; } /* * Request the irq line for the device. */ static int dasd_state_known_to_basic(struct dasd_device *device) { struct dasd_block *block = device->block; int rc = 0; /* Allocate and register gendisk structure. */ if (block) { rc = dasd_gendisk_alloc(block); if (rc) return rc; block->debugfs_dentry = dasd_debugfs_setup(block->gdp->disk_name, dasd_debugfs_root_entry); dasd_profile_init(&block->profile, block->debugfs_dentry); if (dasd_global_profile_level == DASD_PROFILE_ON) dasd_profile_on(&device->block->profile); } device->debugfs_dentry = dasd_debugfs_setup(dev_name(&device->cdev->dev), dasd_debugfs_root_entry); dasd_profile_init(&device->profile, device->debugfs_dentry); dasd_hosts_init(device->debugfs_dentry, device); /* register 'device' debug area, used for all DBF_DEV_XXX calls */ device->debug_area = debug_register(dev_name(&device->cdev->dev), 4, 1, 8 * sizeof(long)); debug_register_view(device->debug_area, &debug_sprintf_view); debug_set_level(device->debug_area, DBF_WARNING); DBF_DEV_EVENT(DBF_EMERG, device, "%s", "debug area created"); device->state = DASD_STATE_BASIC; return rc; } /* * Release the irq line for the device. Terminate any running i/o. */ static int dasd_state_basic_to_known(struct dasd_device *device) { int rc; if (device->discipline->basic_to_known) { rc = device->discipline->basic_to_known(device); if (rc) return rc; } if (device->block) { dasd_profile_exit(&device->block->profile); debugfs_remove(device->block->debugfs_dentry); dasd_gendisk_free(device->block); dasd_block_clear_timer(device->block); } rc = dasd_flush_device_queue(device); if (rc) return rc; dasd_device_clear_timer(device); dasd_profile_exit(&device->profile); dasd_hosts_exit(device); debugfs_remove(device->debugfs_dentry); DBF_DEV_EVENT(DBF_EMERG, device, "%p debug area deleted", device); if (device->debug_area != NULL) { debug_unregister(device->debug_area); device->debug_area = NULL; } device->state = DASD_STATE_KNOWN; return 0; } /* * Do the initial analysis. The do_analysis function may return * -EAGAIN in which case the device keeps the state DASD_STATE_BASIC * until the discipline decides to continue the startup sequence * by calling the function dasd_change_state. The eckd disciplines * uses this to start a ccw that detects the format. The completion * interrupt for this detection ccw uses the kernel event daemon to * trigger the call to dasd_change_state. All this is done in the * discipline code, see dasd_eckd.c. * After the analysis ccw is done (do_analysis returned 0) the block * device is setup. * In case the analysis returns an error, the device setup is stopped * (a fake disk was already added to allow formatting). */ static int dasd_state_basic_to_ready(struct dasd_device *device) { int rc; struct dasd_block *block; struct gendisk *disk; rc = 0; block = device->block; /* make disk known with correct capacity */ if (block) { if (block->base->discipline->do_analysis != NULL) rc = block->base->discipline->do_analysis(block); if (rc) { if (rc != -EAGAIN) { device->state = DASD_STATE_UNFMT; disk = device->block->gdp; kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE); goto out; } return rc; } dasd_setup_queue(block); set_capacity(block->gdp, block->blocks << block->s2b_shift); device->state = DASD_STATE_READY; rc = dasd_scan_partitions(block); if (rc) { device->state = DASD_STATE_BASIC; return rc; } } else { device->state = DASD_STATE_READY; } out: if (device->discipline->basic_to_ready) rc = device->discipline->basic_to_ready(device); return rc; } static inline int _wait_for_empty_queues(struct dasd_device *device) { if (device->block) return list_empty(&device->ccw_queue) && list_empty(&device->block->ccw_queue); else return list_empty(&device->ccw_queue); } /* * Remove device from block device layer. Destroy dirty buffers. * Forget format information. Check if the target level is basic * and if it is create fake disk for formatting. */ static int dasd_state_ready_to_basic(struct dasd_device *device) { int rc; device->state = DASD_STATE_BASIC; if (device->block) { struct dasd_block *block = device->block; rc = dasd_flush_block_queue(block); if (rc) { device->state = DASD_STATE_READY; return rc; } dasd_destroy_partitions(block); block->blocks = 0; block->bp_block = 0; block->s2b_shift = 0; } return 0; } /* * Back to basic. */ static int dasd_state_unfmt_to_basic(struct dasd_device *device) { device->state = DASD_STATE_BASIC; return 0; } /* * Make the device online and schedule the bottom half to start * the requeueing of requests from the linux request queue to the * ccw queue. */ static int dasd_state_ready_to_online(struct dasd_device * device) { struct gendisk *disk; struct disk_part_iter piter; struct hd_struct *part; device->state = DASD_STATE_ONLINE; if (device->block) { dasd_schedule_block_bh(device->block); if ((device->features & DASD_FEATURE_USERAW)) { disk = device->block->gdp; kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE); return 0; } disk = device->block->bdev->bd_disk; disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0); while ((part = disk_part_iter_next(&piter))) kobject_uevent(&part_to_dev(part)->kobj, KOBJ_CHANGE); disk_part_iter_exit(&piter); } return 0; } /* * Stop the requeueing of requests again. */ static int dasd_state_online_to_ready(struct dasd_device *device) { int rc; struct gendisk *disk; struct disk_part_iter piter; struct hd_struct *part; if (device->discipline->online_to_ready) { rc = device->discipline->online_to_ready(device); if (rc) return rc; } device->state = DASD_STATE_READY; if (device->block && !(device->features & DASD_FEATURE_USERAW)) { disk = device->block->bdev->bd_disk; disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0); while ((part = disk_part_iter_next(&piter))) kobject_uevent(&part_to_dev(part)->kobj, KOBJ_CHANGE); disk_part_iter_exit(&piter); } return 0; } /* * Device startup state changes. */ static int dasd_increase_state(struct dasd_device *device) { int rc; rc = 0; if (device->state == DASD_STATE_NEW && device->target >= DASD_STATE_KNOWN) rc = dasd_state_new_to_known(device); if (!rc && device->state == DASD_STATE_KNOWN && device->target >= DASD_STATE_BASIC) rc = dasd_state_known_to_basic(device); if (!rc && device->state == DASD_STATE_BASIC && device->target >= DASD_STATE_READY) rc = dasd_state_basic_to_ready(device); if (!rc && device->state == DASD_STATE_UNFMT && device->target > DASD_STATE_UNFMT) rc = -EPERM; if (!rc && device->state == DASD_STATE_READY && device->target >= DASD_STATE_ONLINE) rc = dasd_state_ready_to_online(device); return rc; } /* * Device shutdown state changes. */ static int dasd_decrease_state(struct dasd_device *device) { int rc; rc = 0; if (device->state == DASD_STATE_ONLINE && device->target <= DASD_STATE_READY) rc = dasd_state_online_to_ready(device); if (!rc && device->state == DASD_STATE_READY && device->target <= DASD_STATE_BASIC) rc = dasd_state_ready_to_basic(device); if (!rc && device->state == DASD_STATE_UNFMT && device->target <= DASD_STATE_BASIC) rc = dasd_state_unfmt_to_basic(device); if (!rc && device->state == DASD_STATE_BASIC && device->target <= DASD_STATE_KNOWN) rc = dasd_state_basic_to_known(device); if (!rc && device->state == DASD_STATE_KNOWN && device->target <= DASD_STATE_NEW) rc = dasd_state_known_to_new(device); return rc; } /* * This is the main startup/shutdown routine. */ static void dasd_change_state(struct dasd_device *device) { int rc; if (device->state == device->target) /* Already where we want to go today... */ return; if (device->state < device->target) rc = dasd_increase_state(device); else rc = dasd_decrease_state(device); if (rc == -EAGAIN) return; if (rc) device->target = device->state; /* let user-space know that the device status changed */ kobject_uevent(&device->cdev->dev.kobj, KOBJ_CHANGE); if (device->state == device->target) wake_up(&dasd_init_waitq); } /* * Kick starter for devices that did not complete the startup/shutdown * procedure or were sleeping because of a pending state. * dasd_kick_device will schedule a call do do_kick_device to the kernel * event daemon. */ static void do_kick_device(struct work_struct *work) { struct dasd_device *device = container_of(work, struct dasd_device, kick_work); mutex_lock(&device->state_mutex); dasd_change_state(device); mutex_unlock(&device->state_mutex); dasd_schedule_device_bh(device); dasd_put_device(device); } void dasd_kick_device(struct dasd_device *device) { dasd_get_device(device); /* queue call to dasd_kick_device to the kernel event daemon. */ if (!schedule_work(&device->kick_work)) dasd_put_device(device); } EXPORT_SYMBOL(dasd_kick_device); /* * dasd_reload_device will schedule a call do do_reload_device to the kernel * event daemon. */ static void do_reload_device(struct work_struct *work) { struct dasd_device *device = container_of(work, struct dasd_device, reload_device); device->discipline->reload(device); dasd_put_device(device); } void dasd_reload_device(struct dasd_device *device) { dasd_get_device(device); /* queue call to dasd_reload_device to the kernel event daemon. */ if (!schedule_work(&device->reload_device)) dasd_put_device(device); } EXPORT_SYMBOL(dasd_reload_device); /* * dasd_restore_device will schedule a call do do_restore_device to the kernel * event daemon. */ static void do_restore_device(struct work_struct *work) { struct dasd_device *device = container_of(work, struct dasd_device, restore_device); device->cdev->drv->restore(device->cdev); dasd_put_device(device); } void dasd_restore_device(struct dasd_device *device) { dasd_get_device(device); /* queue call to dasd_restore_device to the kernel event daemon. */ if (!schedule_work(&device->restore_device)) dasd_put_device(device); } /* * Set the target state for a device and starts the state change. */ void dasd_set_target_state(struct dasd_device *device, int target) { dasd_get_device(device); mutex_lock(&device->state_mutex); /* If we are in probeonly mode stop at DASD_STATE_READY. */ if (dasd_probeonly && target > DASD_STATE_READY) target = DASD_STATE_READY; if (device->target != target) { if (device->state == target) wake_up(&dasd_init_waitq); device->target = target; } if (device->state != device->target) dasd_change_state(device); mutex_unlock(&device->state_mutex); dasd_put_device(device); } EXPORT_SYMBOL(dasd_set_target_state); /* * Enable devices with device numbers in [from..to]. */ static inline int _wait_for_device(struct dasd_device *device) { return (device->state == device->target); } void dasd_enable_device(struct dasd_device *device) { dasd_set_target_state(device, DASD_STATE_ONLINE); if (device->state <= DASD_STATE_KNOWN) /* No discipline for device found. */ dasd_set_target_state(device, DASD_STATE_NEW); /* Now wait for the devices to come up. */ wait_event(dasd_init_waitq, _wait_for_device(device)); dasd_reload_device(device); if (device->discipline->kick_validate) device->discipline->kick_validate(device); } EXPORT_SYMBOL(dasd_enable_device); /* * SECTION: device operation (interrupt handler, start i/o, term i/o ...) */ unsigned int dasd_global_profile_level = DASD_PROFILE_OFF; #ifdef CONFIG_DASD_PROFILE struct dasd_profile dasd_global_profile = { .lock = __SPIN_LOCK_UNLOCKED(dasd_global_profile.lock), }; static struct dentry *dasd_debugfs_global_entry; /* * Add profiling information for cqr before execution. */ static void dasd_profile_start(struct dasd_block *block, struct dasd_ccw_req *cqr, struct request *req) { struct list_head *l; unsigned int counter; struct dasd_device *device; /* count the length of the chanq for statistics */ counter = 0; if (dasd_global_profile_level || block->profile.data) list_for_each(l, &block->ccw_queue) if (++counter >= 31) break; spin_lock(&dasd_global_profile.lock); if (dasd_global_profile.data) { dasd_global_profile.data->dasd_io_nr_req[counter]++; if (rq_data_dir(req) == READ) dasd_global_profile.data->dasd_read_nr_req[counter]++; } spin_unlock(&dasd_global_profile.lock); spin_lock(&block->profile.lock); if (block->profile.data) { block->profile.data->dasd_io_nr_req[counter]++; if (rq_data_dir(req) == READ) block->profile.data->dasd_read_nr_req[counter]++; } spin_unlock(&block->profile.lock); /* * We count the request for the start device, even though it may run on * some other device due to error recovery. This way we make sure that * we count each request only once. */ device = cqr->startdev; if (device->profile.data) { counter = 1; /* request is not yet queued on the start device */ list_for_each(l, &device->ccw_queue) if (++counter >= 31) break; } spin_lock(&device->profile.lock); if (device->profile.data) { device->profile.data->dasd_io_nr_req[counter]++; if (rq_data_dir(req) == READ) device->profile.data->dasd_read_nr_req[counter]++; } spin_unlock(&device->profile.lock); } /* * Add profiling information for cqr after execution. */ #define dasd_profile_counter(value, index) \ { \ for (index = 0; index < 31 && value >> (2+index); index++) \ ; \ } static void dasd_profile_end_add_data(struct dasd_profile_info *data, int is_alias, int is_tpm, int is_read, long sectors, int sectors_ind, int tottime_ind, int tottimeps_ind, int strtime_ind, int irqtime_ind, int irqtimeps_ind, int endtime_ind) { /* in case of an overflow, reset the whole profile */ if (data->dasd_io_reqs == UINT_MAX) { memset(data, 0, sizeof(*data)); ktime_get_real_ts64(&data->starttod); } data->dasd_io_reqs++; data->dasd_io_sects += sectors; if (is_alias) data->dasd_io_alias++; if (is_tpm) data->dasd_io_tpm++; data->dasd_io_secs[sectors_ind]++; data->dasd_io_times[tottime_ind]++; data->dasd_io_timps[tottimeps_ind]++; data->dasd_io_time1[strtime_ind]++; data->dasd_io_time2[irqtime_ind]++; data->dasd_io_time2ps[irqtimeps_ind]++; data->dasd_io_time3[endtime_ind]++; if (is_read) { data->dasd_read_reqs++; data->dasd_read_sects += sectors; if (is_alias) data->dasd_read_alias++; if (is_tpm) data->dasd_read_tpm++; data->dasd_read_secs[sectors_ind]++; data->dasd_read_times[tottime_ind]++; data->dasd_read_time1[strtime_ind]++; data->dasd_read_time2[irqtime_ind]++; data->dasd_read_time3[endtime_ind]++; } } static void dasd_profile_end(struct dasd_block *block, struct dasd_ccw_req *cqr, struct request *req) { unsigned long strtime, irqtime, endtime, tottime; unsigned long tottimeps, sectors; struct dasd_device *device; int sectors_ind, tottime_ind, tottimeps_ind, strtime_ind; int irqtime_ind, irqtimeps_ind, endtime_ind; struct dasd_profile_info *data; device = cqr->startdev; if (!(dasd_global_profile_level || block->profile.data || device->profile.data)) return; sectors = blk_rq_sectors(req); if (!cqr->buildclk || !cqr->startclk || !cqr->stopclk || !cqr->endclk || !sectors) return; strtime = ((cqr->startclk - cqr->buildclk) >> 12); irqtime = ((cqr->stopclk - cqr->startclk) >> 12); endtime = ((cqr->endclk - cqr->stopclk) >> 12); tottime = ((cqr->endclk - cqr->buildclk) >> 12); tottimeps = tottime / sectors; dasd_profile_counter(sectors, sectors_ind); dasd_profile_counter(tottime, tottime_ind); dasd_profile_counter(tottimeps, tottimeps_ind); dasd_profile_counter(strtime, strtime_ind); dasd_profile_counter(irqtime, irqtime_ind); dasd_profile_counter(irqtime / sectors, irqtimeps_ind); dasd_profile_counter(endtime, endtime_ind); spin_lock(&dasd_global_profile.lock); if (dasd_global_profile.data) { data = dasd_global_profile.data; data->dasd_sum_times += tottime; data->dasd_sum_time_str += strtime; data->dasd_sum_time_irq += irqtime; data->dasd_sum_time_end += endtime; dasd_profile_end_add_data(dasd_global_profile.data, cqr->startdev != block->base, cqr->cpmode == 1, rq_data_dir(req) == READ, sectors, sectors_ind, tottime_ind, tottimeps_ind, strtime_ind, irqtime_ind, irqtimeps_ind, endtime_ind); } spin_unlock(&dasd_global_profile.lock); spin_lock(&block->profile.lock); if (block->profile.data) { data = block->profile.data; data->dasd_sum_times += tottime; data->dasd_sum_time_str += strtime; data->dasd_sum_time_irq += irqtime; data->dasd_sum_time_end += endtime; dasd_profile_end_add_data(block->profile.data, cqr->startdev != block->base, cqr->cpmode == 1, rq_data_dir(req) == READ, sectors, sectors_ind, tottime_ind, tottimeps_ind, strtime_ind, irqtime_ind, irqtimeps_ind, endtime_ind); } spin_unlock(&block->profile.lock); spin_lock(&device->profile.lock); if (device->profile.data) { data = device->profile.data; data->dasd_sum_times += tottime; data->dasd_sum_time_str += strtime; data->dasd_sum_time_irq += irqtime; data->dasd_sum_time_end += endtime; dasd_profile_end_add_data(device->profile.data, cqr->startdev != block->base, cqr->cpmode == 1, rq_data_dir(req) == READ, sectors, sectors_ind, tottime_ind, tottimeps_ind, strtime_ind, irqtime_ind, irqtimeps_ind, endtime_ind); } spin_unlock(&device->profile.lock); } void dasd_profile_reset(struct dasd_profile *profile) { struct dasd_profile_info *data; spin_lock_bh(&profile->lock); data = profile->data; if (!data) { spin_unlock_bh(&profile->lock); return; } memset(data, 0, sizeof(*data)); ktime_get_real_ts64(&data->starttod); spin_unlock_bh(&profile->lock); } int dasd_profile_on(struct dasd_profile *profile) { struct dasd_profile_info *data; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; spin_lock_bh(&profile->lock); if (profile->data) { spin_unlock_bh(&profile->lock); kfree(data); return 0; } ktime_get_real_ts64(&data->starttod); profile->data = data; spin_unlock_bh(&profile->lock); return 0; } void dasd_profile_off(struct dasd_profile *profile) { spin_lock_bh(&profile->lock); kfree(profile->data); profile->data = NULL; spin_unlock_bh(&profile->lock); } char *dasd_get_user_string(const char __user *user_buf, size_t user_len) { char *buffer; buffer = vmalloc(user_len + 1); if (buffer == NULL) return ERR_PTR(-ENOMEM); if (copy_from_user(buffer, user_buf, user_len) != 0) { vfree(buffer); return ERR_PTR(-EFAULT); } /* got the string, now strip linefeed. */ if (buffer[user_len - 1] == '\n') buffer[user_len - 1] = 0; else buffer[user_len] = 0; return buffer; } static ssize_t dasd_stats_write(struct file *file, const char __user *user_buf, size_t user_len, loff_t *pos) { char *buffer, *str; int rc; struct seq_file *m = (struct seq_file *)file->private_data; struct dasd_profile *prof = m->private; if (user_len > 65536) user_len = 65536; buffer = dasd_get_user_string(user_buf, user_len); if (IS_ERR(buffer)) return PTR_ERR(buffer); str = skip_spaces(buffer); rc = user_len; if (strncmp(str, "reset", 5) == 0) { dasd_profile_reset(prof); } else if (strncmp(str, "on", 2) == 0) { rc = dasd_profile_on(prof); if (rc) goto out; rc = user_len; if (prof == &dasd_global_profile) { dasd_profile_reset(prof); dasd_global_profile_level = DASD_PROFILE_GLOBAL_ONLY; } } else if (strncmp(str, "off", 3) == 0) { if (prof == &dasd_global_profile) dasd_global_profile_level = DASD_PROFILE_OFF; dasd_profile_off(prof); } else rc = -EINVAL; out: vfree(buffer); return rc; } static void dasd_stats_array(struct seq_file *m, unsigned int *array) { int i; for (i = 0; i < 32; i++) seq_printf(m, "%u ", array[i]); seq_putc(m, '\n'); } static void dasd_stats_seq_print(struct seq_file *m, struct dasd_profile_info *data) { seq_printf(m, "start_time %lld.%09ld\n", (s64)data->starttod.tv_sec, data->starttod.tv_nsec); seq_printf(m, "total_requests %u\n", data->dasd_io_reqs); seq_printf(m, "total_sectors %u\n", data->dasd_io_sects); seq_printf(m, "total_pav %u\n", data->dasd_io_alias); seq_printf(m, "total_hpf %u\n", data->dasd_io_tpm); seq_printf(m, "avg_total %lu\n", data->dasd_io_reqs ? data->dasd_sum_times / data->dasd_io_reqs : 0UL); seq_printf(m, "avg_build_to_ssch %lu\n", data->dasd_io_reqs ? data->dasd_sum_time_str / data->dasd_io_reqs : 0UL); seq_printf(m, "avg_ssch_to_irq %lu\n", data->dasd_io_reqs ? data->dasd_sum_time_irq / data->dasd_io_reqs : 0UL); seq_printf(m, "avg_irq_to_end %lu\n", data->dasd_io_reqs ? data->dasd_sum_time_end / data->dasd_io_reqs : 0UL); seq_puts(m, "histogram_sectors "); dasd_stats_array(m, data->dasd_io_secs); seq_puts(m, "histogram_io_times "); dasd_stats_array(m, data->dasd_io_times); seq_puts(m, "histogram_io_times_weighted "); dasd_stats_array(m, data->dasd_io_timps); seq_puts(m, "histogram_time_build_to_ssch "); dasd_stats_array(m, data->dasd_io_time1); seq_puts(m, "histogram_time_ssch_to_irq "); dasd_stats_array(m, data->dasd_io_time2); seq_puts(m, "histogram_time_ssch_to_irq_weighted "); dasd_stats_array(m, data->dasd_io_time2ps); seq_puts(m, "histogram_time_irq_to_end "); dasd_stats_array(m, data->dasd_io_time3); seq_puts(m, "histogram_ccw_queue_length "); dasd_stats_array(m, data->dasd_io_nr_req); seq_printf(m, "total_read_requests %u\n", data->dasd_read_reqs); seq_printf(m, "total_read_sectors %u\n", data->dasd_read_sects); seq_printf(m, "total_read_pav %u\n", data->dasd_read_alias); seq_printf(m, "total_read_hpf %u\n", data->dasd_read_tpm); seq_puts(m, "histogram_read_sectors "); dasd_stats_array(m, data->dasd_read_secs); seq_puts(m, "histogram_read_times "); dasd_stats_array(m, data->dasd_read_times); seq_puts(m, "histogram_read_time_build_to_ssch "); dasd_stats_array(m, data->dasd_read_time1); seq_puts(m, "histogram_read_time_ssch_to_irq "); dasd_stats_array(m, data->dasd_read_time2); seq_puts(m, "histogram_read_time_irq_to_end "); dasd_stats_array(m, data->dasd_read_time3); seq_puts(m, "histogram_read_ccw_queue_length "); dasd_stats_array(m, data->dasd_read_nr_req); } static int dasd_stats_show(struct seq_file *m, void *v) { struct dasd_profile *profile; struct dasd_profile_info *data; profile = m->private; spin_lock_bh(&profile->lock); data = profile->data; if (!data) { spin_unlock_bh(&profile->lock); seq_puts(m, "disabled\n"); return 0; } dasd_stats_seq_print(m, data); spin_unlock_bh(&profile->lock); return 0; } static int dasd_stats_open(struct inode *inode, struct file *file) { struct dasd_profile *profile = inode->i_private; return single_open(file, dasd_stats_show, profile); } static const struct file_operations dasd_stats_raw_fops = { .owner = THIS_MODULE, .open = dasd_stats_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = dasd_stats_write, }; static void dasd_profile_init(struct dasd_profile *profile, struct dentry *base_dentry) { umode_t mode; struct dentry *pde; if (!base_dentry) return; profile->dentry = NULL; profile->data = NULL; mode = (S_IRUSR | S_IWUSR | S_IFREG); pde = debugfs_create_file("statistics", mode, base_dentry, profile, &dasd_stats_raw_fops); if (pde && !IS_ERR(pde)) profile->dentry = pde; return; } static void dasd_profile_exit(struct dasd_profile *profile) { dasd_profile_off(profile); debugfs_remove(profile->dentry); profile->dentry = NULL; } static void dasd_statistics_removeroot(void) { dasd_global_profile_level = DASD_PROFILE_OFF; dasd_profile_exit(&dasd_global_profile); debugfs_remove(dasd_debugfs_global_entry); debugfs_remove(dasd_debugfs_root_entry); } static void dasd_statistics_createroot(void) { struct dentry *pde; dasd_debugfs_root_entry = NULL; pde = debugfs_create_dir("dasd", NULL); if (!pde || IS_ERR(pde)) goto error; dasd_debugfs_root_entry = pde; pde = debugfs_create_dir("global", dasd_debugfs_root_entry); if (!pde || IS_ERR(pde)) goto error; dasd_debugfs_global_entry = pde; dasd_profile_init(&dasd_global_profile, dasd_debugfs_global_entry); return; error: DBF_EVENT(DBF_ERR, "%s", "Creation of the dasd debugfs interface failed"); dasd_statistics_removeroot(); return; } #else #define dasd_profile_start(block, cqr, req) do {} while (0) #define dasd_profile_end(block, cqr, req) do {} while (0) static void dasd_statistics_createroot(void) { return; } static void dasd_statistics_removeroot(void) { return; } int dasd_stats_generic_show(struct seq_file *m, void *v) { seq_puts(m, "Statistics are not activated in this kernel\n"); return 0; } static void dasd_profile_init(struct dasd_profile *profile, struct dentry *base_dentry) { return; } static void dasd_profile_exit(struct dasd_profile *profile) { return; } int dasd_profile_on(struct dasd_profile *profile) { return 0; } #endif /* CONFIG_DASD_PROFILE */ static int dasd_hosts_show(struct seq_file *m, void *v) { struct dasd_device *device; int rc = -EOPNOTSUPP; device = m->private; dasd_get_device(device); if (device->discipline->hosts_print) rc = device->discipline->hosts_print(device, m); dasd_put_device(device); return rc; } static int dasd_hosts_open(struct inode *inode, struct file *file) { struct dasd_device *device = inode->i_private; return single_open(file, dasd_hosts_show, device); } static const struct file_operations dasd_hosts_fops = { .owner = THIS_MODULE, .open = dasd_hosts_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static void dasd_hosts_exit(struct dasd_device *device) { debugfs_remove(device->hosts_dentry); device->hosts_dentry = NULL; } static void dasd_hosts_init(struct dentry *base_dentry, struct dasd_device *device) { struct dentry *pde; umode_t mode; if (!base_dentry) return; mode = S_IRUSR | S_IFREG; pde = debugfs_create_file("host_access_list", mode, base_dentry, device, &dasd_hosts_fops); if (pde && !IS_ERR(pde)) device->hosts_dentry = pde; } struct dasd_ccw_req *dasd_smalloc_request(int magic, int cplength, int datasize, struct dasd_device *device, struct dasd_ccw_req *cqr) { unsigned long flags; char *data, *chunk; int size = 0; if (cplength > 0) size += cplength * sizeof(struct ccw1); if (datasize > 0) size += datasize; if (!cqr) size += (sizeof(*cqr) + 7L) & -8L; spin_lock_irqsave(&device->mem_lock, flags); data = chunk = dasd_alloc_chunk(&device->ccw_chunks, size); spin_unlock_irqrestore(&device->mem_lock, flags); if (!chunk) return ERR_PTR(-ENOMEM); if (!cqr) { cqr = (void *) data; data += (sizeof(*cqr) + 7L) & -8L; } memset(cqr, 0, sizeof(*cqr)); cqr->mem_chunk = chunk; if (cplength > 0) { cqr->cpaddr = data; data += cplength * sizeof(struct ccw1); memset(cqr->cpaddr, 0, cplength * sizeof(struct ccw1)); } if (datasize > 0) { cqr->data = data; memset(cqr->data, 0, datasize); } cqr->magic = magic; set_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); dasd_get_device(device); return cqr; } EXPORT_SYMBOL(dasd_smalloc_request); void dasd_sfree_request(struct dasd_ccw_req *cqr, struct dasd_device *device) { unsigned long flags; spin_lock_irqsave(&device->mem_lock, flags); dasd_free_chunk(&device->ccw_chunks, cqr->mem_chunk); spin_unlock_irqrestore(&device->mem_lock, flags); dasd_put_device(device); } EXPORT_SYMBOL(dasd_sfree_request); /* * Check discipline magic in cqr. */ static inline int dasd_check_cqr(struct dasd_ccw_req *cqr) { struct dasd_device *device; if (cqr == NULL) return -EINVAL; device = cqr->startdev; if (strncmp((char *) &cqr->magic, device->discipline->ebcname, 4)) { DBF_DEV_EVENT(DBF_WARNING, device, " dasd_ccw_req 0x%08x magic doesn't match" " discipline 0x%08x", cqr->magic, *(unsigned int *) device->discipline->name); return -EINVAL; } return 0; } /* * Terminate the current i/o and set the request to clear_pending. * Timer keeps device runnig. * ccw_device_clear can fail if the i/o subsystem * is in a bad mood. */ int dasd_term_IO(struct dasd_ccw_req *cqr) { struct dasd_device *device; int retries, rc; char errorstring[ERRORLENGTH]; /* Check the cqr */ rc = dasd_check_cqr(cqr); if (rc) return rc; retries = 0; device = (struct dasd_device *) cqr->startdev; while ((retries < 5) && (cqr->status == DASD_CQR_IN_IO)) { rc = ccw_device_clear(device->cdev, (long) cqr); switch (rc) { case 0: /* termination successful */ cqr->status = DASD_CQR_CLEAR_PENDING; cqr->stopclk = get_tod_clock(); cqr->starttime = 0; DBF_DEV_EVENT(DBF_DEBUG, device, "terminate cqr %p successful", cqr); break; case -ENODEV: DBF_DEV_EVENT(DBF_ERR, device, "%s", "device gone, retry"); break; case -EINVAL: /* * device not valid so no I/O could be running * handle CQR as termination successful */ cqr->status = DASD_CQR_CLEARED; cqr->stopclk = get_tod_clock(); cqr->starttime = 0; /* no retries for invalid devices */ cqr->retries = -1; DBF_DEV_EVENT(DBF_ERR, device, "%s", "EINVAL, handle as terminated"); /* fake rc to success */ rc = 0; break; default: /* internal error 10 - unknown rc*/ snprintf(errorstring, ERRORLENGTH, "10 %d", rc); dev_err(&device->cdev->dev, "An error occurred in the " "DASD device driver, reason=%s\n", errorstring); BUG(); break; } retries++; } dasd_schedule_device_bh(device); return rc; } EXPORT_SYMBOL(dasd_term_IO); /* * Start the i/o. This start_IO can fail if the channel is really busy. * In that case set up a timer to start the request later. */ int dasd_start_IO(struct dasd_ccw_req *cqr) { struct dasd_device *device; int rc; char errorstring[ERRORLENGTH]; /* Check the cqr */ rc = dasd_check_cqr(cqr); if (rc) { cqr->intrc = rc; return rc; } device = (struct dasd_device *) cqr->startdev; if (((cqr->block && test_bit(DASD_FLAG_LOCK_STOLEN, &cqr->block->base->flags)) || test_bit(DASD_FLAG_LOCK_STOLEN, &device->flags)) && !test_bit(DASD_CQR_ALLOW_SLOCK, &cqr->flags)) { DBF_DEV_EVENT(DBF_DEBUG, device, "start_IO: return request %p " "because of stolen lock", cqr); cqr->status = DASD_CQR_ERROR; cqr->intrc = -EPERM; return -EPERM; } if (cqr->retries < 0) { /* internal error 14 - start_IO run out of retries */ sprintf(errorstring, "14 %p", cqr); dev_err(&device->cdev->dev, "An error occurred in the DASD " "device driver, reason=%s\n", errorstring); cqr->status = DASD_CQR_ERROR; return -EIO; } cqr->startclk = get_tod_clock(); cqr->starttime = jiffies; cqr->retries--; if (!test_bit(DASD_CQR_VERIFY_PATH, &cqr->flags)) { cqr->lpm &= dasd_path_get_opm(device); if (!cqr->lpm) cqr->lpm = dasd_path_get_opm(device); } if (cqr->cpmode == 1) { rc = ccw_device_tm_start(device->cdev, cqr->cpaddr, (long) cqr, cqr->lpm); } else { rc = ccw_device_start(device->cdev, cqr->cpaddr, (long) cqr, cqr->lpm, 0); } switch (rc) { case 0: cqr->status = DASD_CQR_IN_IO; break; case -EBUSY: DBF_DEV_EVENT(DBF_WARNING, device, "%s", "start_IO: device busy, retry later"); break; case -EACCES: /* -EACCES indicates that the request used only a subset of the * available paths and all these paths are gone. If the lpm of * this request was only a subset of the opm (e.g. the ppm) then * we just do a retry with all available paths. * If we already use the full opm, something is amiss, and we * need a full path verification. */ if (test_bit(DASD_CQR_VERIFY_PATH, &cqr->flags)) { DBF_DEV_EVENT(DBF_WARNING, device, "start_IO: selected paths gone (%x)", cqr->lpm); } else if (cqr->lpm != dasd_path_get_opm(device)) { cqr->lpm = dasd_path_get_opm(device); DBF_DEV_EVENT(DBF_DEBUG, device, "%s", "start_IO: selected paths gone," " retry on all paths"); } else { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "start_IO: all paths in opm gone," " do path verification"); dasd_generic_last_path_gone(device); dasd_path_no_path(device); dasd_path_set_tbvpm(device, ccw_device_get_path_mask( device->cdev)); } break; case -ENODEV: DBF_DEV_EVENT(DBF_WARNING, device, "%s", "start_IO: -ENODEV device gone, retry"); break; case -EIO: DBF_DEV_EVENT(DBF_WARNING, device, "%s", "start_IO: -EIO device gone, retry"); break; case -EINVAL: /* most likely caused in power management context */ DBF_DEV_EVENT(DBF_WARNING, device, "%s", "start_IO: -EINVAL device currently " "not accessible"); break; default: /* internal error 11 - unknown rc */ snprintf(errorstring, ERRORLENGTH, "11 %d", rc); dev_err(&device->cdev->dev, "An error occurred in the DASD device driver, " "reason=%s\n", errorstring); BUG(); break; } cqr->intrc = rc; return rc; } EXPORT_SYMBOL(dasd_start_IO); /* * Timeout function for dasd devices. This is used for different purposes * 1) missing interrupt handler for normal operation * 2) delayed start of request where start_IO failed with -EBUSY * 3) timeout for missing state change interrupts * The head of the ccw queue will have status DASD_CQR_IN_IO for 1), * DASD_CQR_QUEUED for 2) and 3). */ static void dasd_device_timeout(struct timer_list *t) { unsigned long flags; struct dasd_device *device; device = from_timer(device, t, timer); spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); /* re-activate request queue */ dasd_device_remove_stop_bits(device, DASD_STOPPED_PENDING); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); dasd_schedule_device_bh(device); } /* * Setup timeout for a device in jiffies. */ void dasd_device_set_timer(struct dasd_device *device, int expires) { if (expires == 0) del_timer(&device->timer); else mod_timer(&device->timer, jiffies + expires); } EXPORT_SYMBOL(dasd_device_set_timer); /* * Clear timeout for a device. */ void dasd_device_clear_timer(struct dasd_device *device) { del_timer(&device->timer); } EXPORT_SYMBOL(dasd_device_clear_timer); static void dasd_handle_killed_request(struct ccw_device *cdev, unsigned long intparm) { struct dasd_ccw_req *cqr; struct dasd_device *device; if (!intparm) return; cqr = (struct dasd_ccw_req *) intparm; if (cqr->status != DASD_CQR_IN_IO) { DBF_EVENT_DEVID(DBF_DEBUG, cdev, "invalid status in handle_killed_request: " "%02x", cqr->status); return; } device = dasd_device_from_cdev_locked(cdev); if (IS_ERR(device)) { DBF_EVENT_DEVID(DBF_DEBUG, cdev, "%s", "unable to get device from cdev"); return; } if (!cqr->startdev || device != cqr->startdev || strncmp(cqr->startdev->discipline->ebcname, (char *) &cqr->magic, 4)) { DBF_EVENT_DEVID(DBF_DEBUG, cdev, "%s", "invalid device in request"); dasd_put_device(device); return; } /* Schedule request to be retried. */ cqr->status = DASD_CQR_QUEUED; dasd_device_clear_timer(device); dasd_schedule_device_bh(device); dasd_put_device(device); } void dasd_generic_handle_state_change(struct dasd_device *device) { /* First of all start sense subsystem status request. */ dasd_eer_snss(device); dasd_device_remove_stop_bits(device, DASD_STOPPED_PENDING); dasd_schedule_device_bh(device); if (device->block) { dasd_schedule_block_bh(device->block); if (device->block->request_queue) blk_mq_run_hw_queues(device->block->request_queue, true); } } EXPORT_SYMBOL_GPL(dasd_generic_handle_state_change); static int dasd_check_hpf_error(struct irb *irb) { return (scsw_tm_is_valid_schxs(&irb->scsw) && (irb->scsw.tm.sesq == SCSW_SESQ_DEV_NOFCX || irb->scsw.tm.sesq == SCSW_SESQ_PATH_NOFCX)); } /* * Interrupt handler for "normal" ssch-io based dasd devices. */ void dasd_int_handler(struct ccw_device *cdev, unsigned long intparm, struct irb *irb) { struct dasd_ccw_req *cqr, *next; struct dasd_device *device; unsigned long now; int nrf_suppressed = 0; int fp_suppressed = 0; u8 *sense = NULL; int expires; cqr = (struct dasd_ccw_req *) intparm; if (IS_ERR(irb)) { switch (PTR_ERR(irb)) { case -EIO: if (cqr && cqr->status == DASD_CQR_CLEAR_PENDING) { device = cqr->startdev; cqr->status = DASD_CQR_CLEARED; dasd_device_clear_timer(device); wake_up(&dasd_flush_wq); dasd_schedule_device_bh(device); return; } break; case -ETIMEDOUT: DBF_EVENT_DEVID(DBF_WARNING, cdev, "%s: " "request timed out\n", __func__); break; default: DBF_EVENT_DEVID(DBF_WARNING, cdev, "%s: " "unknown error %ld\n", __func__, PTR_ERR(irb)); } dasd_handle_killed_request(cdev, intparm); return; } now = get_tod_clock(); /* check for conditions that should be handled immediately */ if (!cqr || !(scsw_dstat(&irb->scsw) == (DEV_STAT_CHN_END | DEV_STAT_DEV_END) && scsw_cstat(&irb->scsw) == 0)) { if (cqr) memcpy(&cqr->irb, irb, sizeof(*irb)); device = dasd_device_from_cdev_locked(cdev); if (IS_ERR(device)) return; /* ignore unsolicited interrupts for DIAG discipline */ if (device->discipline == dasd_diag_discipline_pointer) { dasd_put_device(device); return; } /* * In some cases 'File Protected' or 'No Record Found' errors * might be expected and debug log messages for the * corresponding interrupts shouldn't be written then. * Check if either of the according suppress bits is set. */ sense = dasd_get_sense(irb); if (sense) { fp_suppressed = (sense[1] & SNS1_FILE_PROTECTED) && test_bit(DASD_CQR_SUPPRESS_FP, &cqr->flags); nrf_suppressed = (sense[1] & SNS1_NO_REC_FOUND) && test_bit(DASD_CQR_SUPPRESS_NRF, &cqr->flags); } if (!(fp_suppressed || nrf_suppressed)) device->discipline->dump_sense_dbf(device, irb, "int"); if (device->features & DASD_FEATURE_ERPLOG) device->discipline->dump_sense(device, cqr, irb); device->discipline->check_for_device_change(device, cqr, irb); dasd_put_device(device); } /* check for for attention message */ if (scsw_dstat(&irb->scsw) & DEV_STAT_ATTENTION) { device = dasd_device_from_cdev_locked(cdev); if (!IS_ERR(device)) { device->discipline->check_attention(device, irb->esw.esw1.lpum); dasd_put_device(device); } } if (!cqr) return; device = (struct dasd_device *) cqr->startdev; if (!device || strncmp(device->discipline->ebcname, (char *) &cqr->magic, 4)) { DBF_EVENT_DEVID(DBF_DEBUG, cdev, "%s", "invalid device in request"); return; } /* Check for clear pending */ if (cqr->status == DASD_CQR_CLEAR_PENDING && scsw_fctl(&irb->scsw) & SCSW_FCTL_CLEAR_FUNC) { cqr->status = DASD_CQR_CLEARED; dasd_device_clear_timer(device); wake_up(&dasd_flush_wq); dasd_schedule_device_bh(device); return; } /* check status - the request might have been killed by dyn detach */ if (cqr->status != DASD_CQR_IN_IO) { DBF_DEV_EVENT(DBF_DEBUG, device, "invalid status: bus_id %s, " "status %02x", dev_name(&cdev->dev), cqr->status); return; } next = NULL; expires = 0; if (scsw_dstat(&irb->scsw) == (DEV_STAT_CHN_END | DEV_STAT_DEV_END) && scsw_cstat(&irb->scsw) == 0) { /* request was completed successfully */ cqr->status = DASD_CQR_SUCCESS; cqr->stopclk = now; /* Start first request on queue if possible -> fast_io. */ if (cqr->devlist.next != &device->ccw_queue) { next = list_entry(cqr->devlist.next, struct dasd_ccw_req, devlist); } } else { /* error */ /* check for HPF error * call discipline function to requeue all requests * and disable HPF accordingly */ if (cqr->cpmode && dasd_check_hpf_error(irb) && device->discipline->handle_hpf_error) device->discipline->handle_hpf_error(device, irb); /* * If we don't want complex ERP for this request, then just * reset this and retry it in the fastpath */ if (!test_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags) && cqr->retries > 0) { if (cqr->lpm == dasd_path_get_opm(device)) DBF_DEV_EVENT(DBF_DEBUG, device, "default ERP in fastpath " "(%i retries left)", cqr->retries); if (!test_bit(DASD_CQR_VERIFY_PATH, &cqr->flags)) cqr->lpm = dasd_path_get_opm(device); cqr->status = DASD_CQR_QUEUED; next = cqr; } else cqr->status = DASD_CQR_ERROR; } if (next && (next->status == DASD_CQR_QUEUED) && (!device->stopped)) { if (device->discipline->start_IO(next) == 0) expires = next->expires; } if (expires != 0) dasd_device_set_timer(device, expires); else dasd_device_clear_timer(device); dasd_schedule_device_bh(device); } EXPORT_SYMBOL(dasd_int_handler); enum uc_todo dasd_generic_uc_handler(struct ccw_device *cdev, struct irb *irb) { struct dasd_device *device; device = dasd_device_from_cdev_locked(cdev); if (IS_ERR(device)) goto out; if (test_bit(DASD_FLAG_OFFLINE, &device->flags) || device->state != device->target || !device->discipline->check_for_device_change){ dasd_put_device(device); goto out; } if (device->discipline->dump_sense_dbf) device->discipline->dump_sense_dbf(device, irb, "uc"); device->discipline->check_for_device_change(device, NULL, irb); dasd_put_device(device); out: return UC_TODO_RETRY; } EXPORT_SYMBOL_GPL(dasd_generic_uc_handler); /* * If we have an error on a dasd_block layer request then we cancel * and return all further requests from the same dasd_block as well. */ static void __dasd_device_recovery(struct dasd_device *device, struct dasd_ccw_req *ref_cqr) { struct list_head *l, *n; struct dasd_ccw_req *cqr; /* * only requeue request that came from the dasd_block layer */ if (!ref_cqr->block) return; list_for_each_safe(l, n, &device->ccw_queue) { cqr = list_entry(l, struct dasd_ccw_req, devlist); if (cqr->status == DASD_CQR_QUEUED && ref_cqr->block == cqr->block) { cqr->status = DASD_CQR_CLEARED; } } }; /* * Remove those ccw requests from the queue that need to be returned * to the upper layer. */ static void __dasd_device_process_ccw_queue(struct dasd_device *device, struct list_head *final_queue) { struct list_head *l, *n; struct dasd_ccw_req *cqr; /* Process request with final status. */ list_for_each_safe(l, n, &device->ccw_queue) { cqr = list_entry(l, struct dasd_ccw_req, devlist); /* Skip any non-final request. */ if (cqr->status == DASD_CQR_QUEUED || cqr->status == DASD_CQR_IN_IO || cqr->status == DASD_CQR_CLEAR_PENDING) continue; if (cqr->status == DASD_CQR_ERROR) { __dasd_device_recovery(device, cqr); } /* Rechain finished requests to final queue */ list_move_tail(&cqr->devlist, final_queue); } } static void __dasd_process_cqr(struct dasd_device *device, struct dasd_ccw_req *cqr) { char errorstring[ERRORLENGTH]; switch (cqr->status) { case DASD_CQR_SUCCESS: cqr->status = DASD_CQR_DONE; break; case DASD_CQR_ERROR: cqr->status = DASD_CQR_NEED_ERP; break; case DASD_CQR_CLEARED: cqr->status = DASD_CQR_TERMINATED; break; default: /* internal error 12 - wrong cqr status*/ snprintf(errorstring, ERRORLENGTH, "12 %p %x02", cqr, cqr->status); dev_err(&device->cdev->dev, "An error occurred in the DASD device driver, " "reason=%s\n", errorstring); BUG(); } if (cqr->callback) cqr->callback(cqr, cqr->callback_data); } /* * the cqrs from the final queue are returned to the upper layer * by setting a dasd_block state and calling the callback function */ static void __dasd_device_process_final_queue(struct dasd_device *device, struct list_head *final_queue) { struct list_head *l, *n; struct dasd_ccw_req *cqr; struct dasd_block *block; list_for_each_safe(l, n, final_queue) { cqr = list_entry(l, struct dasd_ccw_req, devlist); list_del_init(&cqr->devlist); block = cqr->block; if (!block) { __dasd_process_cqr(device, cqr); } else { spin_lock_bh(&block->queue_lock); __dasd_process_cqr(device, cqr); spin_unlock_bh(&block->queue_lock); } } } /* * Take a look at the first request on the ccw queue and check * if it reached its expire time. If so, terminate the IO. */ static void __dasd_device_check_expire(struct dasd_device *device) { struct dasd_ccw_req *cqr; if (list_empty(&device->ccw_queue)) return; cqr = list_entry(device->ccw_queue.next, struct dasd_ccw_req, devlist); if ((cqr->status == DASD_CQR_IN_IO && cqr->expires != 0) && (time_after_eq(jiffies, cqr->expires + cqr->starttime))) { if (test_bit(DASD_FLAG_SAFE_OFFLINE_RUNNING, &device->flags)) { /* * IO in safe offline processing should not * run out of retries */ cqr->retries++; } if (device->discipline->term_IO(cqr) != 0) { /* Hmpf, try again in 5 sec */ dev_err(&device->cdev->dev, "cqr %p timed out (%lus) but cannot be " "ended, retrying in 5 s\n", cqr, (cqr->expires/HZ)); cqr->expires += 5*HZ; dasd_device_set_timer(device, 5*HZ); } else { dev_err(&device->cdev->dev, "cqr %p timed out (%lus), %i retries " "remaining\n", cqr, (cqr->expires/HZ), cqr->retries); } } } /* * return 1 when device is not eligible for IO */ static int __dasd_device_is_unusable(struct dasd_device *device, struct dasd_ccw_req *cqr) { int mask = ~(DASD_STOPPED_DC_WAIT | DASD_UNRESUMED_PM); if (test_bit(DASD_FLAG_OFFLINE, &device->flags) && !test_bit(DASD_FLAG_SAFE_OFFLINE_RUNNING, &device->flags)) { /* * dasd is being set offline * but it is no safe offline where we have to allow I/O */ return 1; } if (device->stopped) { if (device->stopped & mask) { /* stopped and CQR will not change that. */ return 1; } if (!test_bit(DASD_CQR_VERIFY_PATH, &cqr->flags)) { /* CQR is not able to change device to * operational. */ return 1; } /* CQR required to get device operational. */ } return 0; } /* * Take a look at the first request on the ccw queue and check * if it needs to be started. */ static void __dasd_device_start_head(struct dasd_device *device) { struct dasd_ccw_req *cqr; int rc; if (list_empty(&device->ccw_queue)) return; cqr = list_entry(device->ccw_queue.next, struct dasd_ccw_req, devlist); if (cqr->status != DASD_CQR_QUEUED) return; /* if device is not usable return request to upper layer */ if (__dasd_device_is_unusable(device, cqr)) { cqr->intrc = -EAGAIN; cqr->status = DASD_CQR_CLEARED; dasd_schedule_device_bh(device); return; } rc = device->discipline->start_IO(cqr); if (rc == 0) dasd_device_set_timer(device, cqr->expires); else if (rc == -EACCES) { dasd_schedule_device_bh(device); } else /* Hmpf, try again in 1/2 sec */ dasd_device_set_timer(device, 50); } static void __dasd_device_check_path_events(struct dasd_device *device) { int rc; if (!dasd_path_get_tbvpm(device)) return; if (device->stopped & ~(DASD_STOPPED_DC_WAIT | DASD_UNRESUMED_PM)) return; rc = device->discipline->verify_path(device, dasd_path_get_tbvpm(device)); if (rc) dasd_device_set_timer(device, 50); else dasd_path_clear_all_verify(device); }; /* * Go through all request on the dasd_device request queue, * terminate them on the cdev if necessary, and return them to the * submitting layer via callback. * Note: * Make sure that all 'submitting layers' still exist when * this function is called!. In other words, when 'device' is a base * device then all block layer requests must have been removed before * via dasd_flush_block_queue. */ int dasd_flush_device_queue(struct dasd_device *device) { struct dasd_ccw_req *cqr, *n; int rc; struct list_head flush_queue; INIT_LIST_HEAD(&flush_queue); spin_lock_irq(get_ccwdev_lock(device->cdev)); rc = 0; list_for_each_entry_safe(cqr, n, &device->ccw_queue, devlist) { /* Check status and move request to flush_queue */ switch (cqr->status) { case DASD_CQR_IN_IO: rc = device->discipline->term_IO(cqr); if (rc) { /* unable to terminate requeust */ dev_err(&device->cdev->dev, "Flushing the DASD request queue " "failed for request %p\n", cqr); /* stop flush processing */ goto finished; } break; case DASD_CQR_QUEUED: cqr->stopclk = get_tod_clock(); cqr->status = DASD_CQR_CLEARED; break; default: /* no need to modify the others */ break; } list_move_tail(&cqr->devlist, &flush_queue); } finished: spin_unlock_irq(get_ccwdev_lock(device->cdev)); /* * After this point all requests must be in state CLEAR_PENDING, * CLEARED, SUCCESS or ERROR. Now wait for CLEAR_PENDING to become * one of the others. */ list_for_each_entry_safe(cqr, n, &flush_queue, devlist) wait_event(dasd_flush_wq, (cqr->status != DASD_CQR_CLEAR_PENDING)); /* * Now set each request back to TERMINATED, DONE or NEED_ERP * and call the callback function of flushed requests */ __dasd_device_process_final_queue(device, &flush_queue); return rc; } EXPORT_SYMBOL_GPL(dasd_flush_device_queue); /* * Acquire the device lock and process queues for the device. */ static void dasd_device_tasklet(unsigned long data) { struct dasd_device *device = (struct dasd_device *) data; struct list_head final_queue; atomic_set (&device->tasklet_scheduled, 0); INIT_LIST_HEAD(&final_queue); spin_lock_irq(get_ccwdev_lock(device->cdev)); /* Check expire time of first request on the ccw queue. */ __dasd_device_check_expire(device); /* find final requests on ccw queue */ __dasd_device_process_ccw_queue(device, &final_queue); __dasd_device_check_path_events(device); spin_unlock_irq(get_ccwdev_lock(device->cdev)); /* Now call the callback function of requests with final status */ __dasd_device_process_final_queue(device, &final_queue); spin_lock_irq(get_ccwdev_lock(device->cdev)); /* Now check if the head of the ccw queue needs to be started. */ __dasd_device_start_head(device); spin_unlock_irq(get_ccwdev_lock(device->cdev)); if (waitqueue_active(&shutdown_waitq)) wake_up(&shutdown_waitq); dasd_put_device(device); } /* * Schedules a call to dasd_tasklet over the device tasklet. */ void dasd_schedule_device_bh(struct dasd_device *device) { /* Protect against rescheduling. */ if (atomic_cmpxchg (&device->tasklet_scheduled, 0, 1) != 0) return; dasd_get_device(device); tasklet_hi_schedule(&device->tasklet); } EXPORT_SYMBOL(dasd_schedule_device_bh); void dasd_device_set_stop_bits(struct dasd_device *device, int bits) { device->stopped |= bits; } EXPORT_SYMBOL_GPL(dasd_device_set_stop_bits); void dasd_device_remove_stop_bits(struct dasd_device *device, int bits) { device->stopped &= ~bits; if (!device->stopped) wake_up(&generic_waitq); } EXPORT_SYMBOL_GPL(dasd_device_remove_stop_bits); /* * Queue a request to the head of the device ccw_queue. * Start the I/O if possible. */ void dasd_add_request_head(struct dasd_ccw_req *cqr) { struct dasd_device *device; unsigned long flags; device = cqr->startdev; spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); cqr->status = DASD_CQR_QUEUED; list_add(&cqr->devlist, &device->ccw_queue); /* let the bh start the request to keep them in order */ dasd_schedule_device_bh(device); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); } EXPORT_SYMBOL(dasd_add_request_head); /* * Queue a request to the tail of the device ccw_queue. * Start the I/O if possible. */ void dasd_add_request_tail(struct dasd_ccw_req *cqr) { struct dasd_device *device; unsigned long flags; device = cqr->startdev; spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); cqr->status = DASD_CQR_QUEUED; list_add_tail(&cqr->devlist, &device->ccw_queue); /* let the bh start the request to keep them in order */ dasd_schedule_device_bh(device); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); } EXPORT_SYMBOL(dasd_add_request_tail); /* * Wakeup helper for the 'sleep_on' functions. */ void dasd_wakeup_cb(struct dasd_ccw_req *cqr, void *data) { spin_lock_irq(get_ccwdev_lock(cqr->startdev->cdev)); cqr->callback_data = DASD_SLEEPON_END_TAG; spin_unlock_irq(get_ccwdev_lock(cqr->startdev->cdev)); wake_up(&generic_waitq); } EXPORT_SYMBOL_GPL(dasd_wakeup_cb); static inline int _wait_for_wakeup(struct dasd_ccw_req *cqr) { struct dasd_device *device; int rc; device = cqr->startdev; spin_lock_irq(get_ccwdev_lock(device->cdev)); rc = (cqr->callback_data == DASD_SLEEPON_END_TAG); spin_unlock_irq(get_ccwdev_lock(device->cdev)); return rc; } /* * checks if error recovery is necessary, returns 1 if yes, 0 otherwise. */ static int __dasd_sleep_on_erp(struct dasd_ccw_req *cqr) { struct dasd_device *device; dasd_erp_fn_t erp_fn; if (cqr->status == DASD_CQR_FILLED) return 0; device = cqr->startdev; if (test_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags)) { if (cqr->status == DASD_CQR_TERMINATED) { device->discipline->handle_terminated_request(cqr); return 1; } if (cqr->status == DASD_CQR_NEED_ERP) { erp_fn = device->discipline->erp_action(cqr); erp_fn(cqr); return 1; } if (cqr->status == DASD_CQR_FAILED) dasd_log_sense(cqr, &cqr->irb); if (cqr->refers) { __dasd_process_erp(device, cqr); return 1; } } return 0; } static int __dasd_sleep_on_loop_condition(struct dasd_ccw_req *cqr) { if (test_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags)) { if (cqr->refers) /* erp is not done yet */ return 1; return ((cqr->status != DASD_CQR_DONE) && (cqr->status != DASD_CQR_FAILED)); } else return (cqr->status == DASD_CQR_FILLED); } static int _dasd_sleep_on(struct dasd_ccw_req *maincqr, int interruptible) { struct dasd_device *device; int rc; struct list_head ccw_queue; struct dasd_ccw_req *cqr; INIT_LIST_HEAD(&ccw_queue); maincqr->status = DASD_CQR_FILLED; device = maincqr->startdev; list_add(&maincqr->blocklist, &ccw_queue); for (cqr = maincqr; __dasd_sleep_on_loop_condition(cqr); cqr = list_first_entry(&ccw_queue, struct dasd_ccw_req, blocklist)) { if (__dasd_sleep_on_erp(cqr)) continue; if (cqr->status != DASD_CQR_FILLED) /* could be failed */ continue; if (test_bit(DASD_FLAG_LOCK_STOLEN, &device->flags) && !test_bit(DASD_CQR_ALLOW_SLOCK, &cqr->flags)) { cqr->status = DASD_CQR_FAILED; cqr->intrc = -EPERM; continue; } /* Non-temporary stop condition will trigger fail fast */ if (device->stopped & ~DASD_STOPPED_PENDING && test_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags) && (!dasd_eer_enabled(device))) { cqr->status = DASD_CQR_FAILED; cqr->intrc = -ENOLINK; continue; } /* * Don't try to start requests if device is in * offline processing, it might wait forever */ if (test_bit(DASD_FLAG_OFFLINE, &device->flags)) { cqr->status = DASD_CQR_FAILED; cqr->intrc = -ENODEV; continue; } /* * Don't try to start requests if device is stopped * except path verification requests */ if (!test_bit(DASD_CQR_VERIFY_PATH, &cqr->flags)) { if (interruptible) { rc = wait_event_interruptible( generic_waitq, !(device->stopped)); if (rc == -ERESTARTSYS) { cqr->status = DASD_CQR_FAILED; maincqr->intrc = rc; continue; } } else wait_event(generic_waitq, !(device->stopped)); } if (!cqr->callback) cqr->callback = dasd_wakeup_cb; cqr->callback_data = DASD_SLEEPON_START_TAG; dasd_add_request_tail(cqr); if (interruptible) { rc = wait_event_interruptible( generic_waitq, _wait_for_wakeup(cqr)); if (rc == -ERESTARTSYS) { dasd_cancel_req(cqr); /* wait (non-interruptible) for final status */ wait_event(generic_waitq, _wait_for_wakeup(cqr)); cqr->status = DASD_CQR_FAILED; maincqr->intrc = rc; continue; } } else wait_event(generic_waitq, _wait_for_wakeup(cqr)); } maincqr->endclk = get_tod_clock(); if ((maincqr->status != DASD_CQR_DONE) && (maincqr->intrc != -ERESTARTSYS)) dasd_log_sense(maincqr, &maincqr->irb); if (maincqr->status == DASD_CQR_DONE) rc = 0; else if (maincqr->intrc) rc = maincqr->intrc; else rc = -EIO; return rc; } static inline int _wait_for_wakeup_queue(struct list_head *ccw_queue) { struct dasd_ccw_req *cqr; list_for_each_entry(cqr, ccw_queue, blocklist) { if (cqr->callback_data != DASD_SLEEPON_END_TAG) return 0; } return 1; } static int _dasd_sleep_on_queue(struct list_head *ccw_queue, int interruptible) { struct dasd_device *device; struct dasd_ccw_req *cqr, *n; u8 *sense = NULL; int rc; retry: list_for_each_entry_safe(cqr, n, ccw_queue, blocklist) { device = cqr->startdev; if (cqr->status != DASD_CQR_FILLED) /*could be failed*/ continue; if (test_bit(DASD_FLAG_LOCK_STOLEN, &device->flags) && !test_bit(DASD_CQR_ALLOW_SLOCK, &cqr->flags)) { cqr->status = DASD_CQR_FAILED; cqr->intrc = -EPERM; continue; } /*Non-temporary stop condition will trigger fail fast*/ if (device->stopped & ~DASD_STOPPED_PENDING && test_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags) && !dasd_eer_enabled(device)) { cqr->status = DASD_CQR_FAILED; cqr->intrc = -EAGAIN; continue; } /*Don't try to start requests if device is stopped*/ if (interruptible) { rc = wait_event_interruptible( generic_waitq, !device->stopped); if (rc == -ERESTARTSYS) { cqr->status = DASD_CQR_FAILED; cqr->intrc = rc; continue; } } else wait_event(generic_waitq, !(device->stopped)); if (!cqr->callback) cqr->callback = dasd_wakeup_cb; cqr->callback_data = DASD_SLEEPON_START_TAG; dasd_add_request_tail(cqr); } wait_event(generic_waitq, _wait_for_wakeup_queue(ccw_queue)); rc = 0; list_for_each_entry_safe(cqr, n, ccw_queue, blocklist) { /* * In some cases the 'File Protected' or 'Incorrect Length' * error might be expected and error recovery would be * unnecessary in these cases. Check if the according suppress * bit is set. */ sense = dasd_get_sense(&cqr->irb); if (sense && sense[1] & SNS1_FILE_PROTECTED && test_bit(DASD_CQR_SUPPRESS_FP, &cqr->flags)) continue; if (scsw_cstat(&cqr->irb.scsw) == 0x40 && test_bit(DASD_CQR_SUPPRESS_IL, &cqr->flags)) continue; /* * for alias devices simplify error recovery and * return to upper layer * do not skip ERP requests */ if (cqr->startdev != cqr->basedev && !cqr->refers && (cqr->status == DASD_CQR_TERMINATED || cqr->status == DASD_CQR_NEED_ERP)) return -EAGAIN; /* normal recovery for basedev IO */ if (__dasd_sleep_on_erp(cqr)) /* handle erp first */ goto retry; } return 0; } /* * Queue a request to the tail of the device ccw_queue and wait for * it's completion. */ int dasd_sleep_on(struct dasd_ccw_req *cqr) { return _dasd_sleep_on(cqr, 0); } EXPORT_SYMBOL(dasd_sleep_on); /* * Start requests from a ccw_queue and wait for their completion. */ int dasd_sleep_on_queue(struct list_head *ccw_queue) { return _dasd_sleep_on_queue(ccw_queue, 0); } EXPORT_SYMBOL(dasd_sleep_on_queue); /* * Queue a request to the tail of the device ccw_queue and wait * interruptible for it's completion. */ int dasd_sleep_on_interruptible(struct dasd_ccw_req *cqr) { return _dasd_sleep_on(cqr, 1); } EXPORT_SYMBOL(dasd_sleep_on_interruptible); /* * Whoa nelly now it gets really hairy. For some functions (e.g. steal lock * for eckd devices) the currently running request has to be terminated * and be put back to status queued, before the special request is added * to the head of the queue. Then the special request is waited on normally. */ static inline int _dasd_term_running_cqr(struct dasd_device *device) { struct dasd_ccw_req *cqr; int rc; if (list_empty(&device->ccw_queue)) return 0; cqr = list_entry(device->ccw_queue.next, struct dasd_ccw_req, devlist); rc = device->discipline->term_IO(cqr); if (!rc) /* * CQR terminated because a more important request is pending. * Undo decreasing of retry counter because this is * not an error case. */ cqr->retries++; return rc; } int dasd_sleep_on_immediatly(struct dasd_ccw_req *cqr) { struct dasd_device *device; int rc; device = cqr->startdev; if (test_bit(DASD_FLAG_LOCK_STOLEN, &device->flags) && !test_bit(DASD_CQR_ALLOW_SLOCK, &cqr->flags)) { cqr->status = DASD_CQR_FAILED; cqr->intrc = -EPERM; return -EIO; } spin_lock_irq(get_ccwdev_lock(device->cdev)); rc = _dasd_term_running_cqr(device); if (rc) { spin_unlock_irq(get_ccwdev_lock(device->cdev)); return rc; } cqr->callback = dasd_wakeup_cb; cqr->callback_data = DASD_SLEEPON_START_TAG; cqr->status = DASD_CQR_QUEUED; /* * add new request as second * first the terminated cqr needs to be finished */ list_add(&cqr->devlist, device->ccw_queue.next); /* let the bh start the request to keep them in order */ dasd_schedule_device_bh(device); spin_unlock_irq(get_ccwdev_lock(device->cdev)); wait_event(generic_waitq, _wait_for_wakeup(cqr)); if (cqr->status == DASD_CQR_DONE) rc = 0; else if (cqr->intrc) rc = cqr->intrc; else rc = -EIO; /* kick tasklets */ dasd_schedule_device_bh(device); if (device->block) dasd_schedule_block_bh(device->block); return rc; } EXPORT_SYMBOL(dasd_sleep_on_immediatly); /* * Cancels a request that was started with dasd_sleep_on_req. * This is useful to timeout requests. The request will be * terminated if it is currently in i/o. * Returns 0 if request termination was successful * negative error code if termination failed * Cancellation of a request is an asynchronous operation! The calling * function has to wait until the request is properly returned via callback. */ static int __dasd_cancel_req(struct dasd_ccw_req *cqr) { struct dasd_device *device = cqr->startdev; int rc = 0; switch (cqr->status) { case DASD_CQR_QUEUED: /* request was not started - just set to cleared */ cqr->status = DASD_CQR_CLEARED; break; case DASD_CQR_IN_IO: /* request in IO - terminate IO and release again */ rc = device->discipline->term_IO(cqr); if (rc) { dev_err(&device->cdev->dev, "Cancelling request %p failed with rc=%d\n", cqr, rc); } else { cqr->stopclk = get_tod_clock(); } break; default: /* already finished or clear pending - do nothing */ break; } dasd_schedule_device_bh(device); return rc; } int dasd_cancel_req(struct dasd_ccw_req *cqr) { struct dasd_device *device = cqr->startdev; unsigned long flags; int rc; spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); rc = __dasd_cancel_req(cqr); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); return rc; } /* * SECTION: Operations of the dasd_block layer. */ /* * Timeout function for dasd_block. This is used when the block layer * is waiting for something that may not come reliably, (e.g. a state * change interrupt) */ static void dasd_block_timeout(struct timer_list *t) { unsigned long flags; struct dasd_block *block; block = from_timer(block, t, timer); spin_lock_irqsave(get_ccwdev_lock(block->base->cdev), flags); /* re-activate request queue */ dasd_device_remove_stop_bits(block->base, DASD_STOPPED_PENDING); spin_unlock_irqrestore(get_ccwdev_lock(block->base->cdev), flags); dasd_schedule_block_bh(block); blk_mq_run_hw_queues(block->request_queue, true); } /* * Setup timeout for a dasd_block in jiffies. */ void dasd_block_set_timer(struct dasd_block *block, int expires) { if (expires == 0) del_timer(&block->timer); else mod_timer(&block->timer, jiffies + expires); } EXPORT_SYMBOL(dasd_block_set_timer); /* * Clear timeout for a dasd_block. */ void dasd_block_clear_timer(struct dasd_block *block) { del_timer(&block->timer); } EXPORT_SYMBOL(dasd_block_clear_timer); /* * Process finished error recovery ccw. */ static void __dasd_process_erp(struct dasd_device *device, struct dasd_ccw_req *cqr) { dasd_erp_fn_t erp_fn; if (cqr->status == DASD_CQR_DONE) DBF_DEV_EVENT(DBF_NOTICE, device, "%s", "ERP successful"); else dev_err(&device->cdev->dev, "ERP failed for the DASD\n"); erp_fn = device->discipline->erp_postaction(cqr); erp_fn(cqr); } static void __dasd_cleanup_cqr(struct dasd_ccw_req *cqr) { struct request *req; blk_status_t error = BLK_STS_OK; int status; req = (struct request *) cqr->callback_data; dasd_profile_end(cqr->block, cqr, req); status = cqr->block->base->discipline->free_cp(cqr, req); if (status < 0) error = errno_to_blk_status(status); else if (status == 0) { switch (cqr->intrc) { case -EPERM: error = BLK_STS_NEXUS; break; case -ENOLINK: error = BLK_STS_TRANSPORT; break; case -ETIMEDOUT: error = BLK_STS_TIMEOUT; break; default: error = BLK_STS_IOERR; break; } } /* * We need to take care for ETIMEDOUT errors here since the * complete callback does not get called in this case. * Take care of all errors here and avoid additional code to * transfer the error value to the complete callback. */ if (error) { blk_mq_end_request(req, error); blk_mq_run_hw_queues(req->q, true); } else { blk_mq_complete_request(req); } } /* * Process ccw request queue. */ static void __dasd_process_block_ccw_queue(struct dasd_block *block, struct list_head *final_queue) { struct list_head *l, *n; struct dasd_ccw_req *cqr; dasd_erp_fn_t erp_fn; unsigned long flags; struct dasd_device *base = block->base; restart: /* Process request with final status. */ list_for_each_safe(l, n, &block->ccw_queue) { cqr = list_entry(l, struct dasd_ccw_req, blocklist); if (cqr->status != DASD_CQR_DONE && cqr->status != DASD_CQR_FAILED && cqr->status != DASD_CQR_NEED_ERP && cqr->status != DASD_CQR_TERMINATED) continue; if (cqr->status == DASD_CQR_TERMINATED) { base->discipline->handle_terminated_request(cqr); goto restart; } /* Process requests that may be recovered */ if (cqr->status == DASD_CQR_NEED_ERP) { erp_fn = base->discipline->erp_action(cqr); if (IS_ERR(erp_fn(cqr))) continue; goto restart; } /* log sense for fatal error */ if (cqr->status == DASD_CQR_FAILED) { dasd_log_sense(cqr, &cqr->irb); } /* First of all call extended error reporting. */ if (dasd_eer_enabled(base) && cqr->status == DASD_CQR_FAILED) { dasd_eer_write(base, cqr, DASD_EER_FATALERROR); /* restart request */ cqr->status = DASD_CQR_FILLED; cqr->retries = 255; spin_lock_irqsave(get_ccwdev_lock(base->cdev), flags); dasd_device_set_stop_bits(base, DASD_STOPPED_QUIESCE); spin_unlock_irqrestore(get_ccwdev_lock(base->cdev), flags); goto restart; } /* Process finished ERP request. */ if (cqr->refers) { __dasd_process_erp(base, cqr); goto restart; } /* Rechain finished requests to final queue */ cqr->endclk = get_tod_clock(); list_move_tail(&cqr->blocklist, final_queue); } } static void dasd_return_cqr_cb(struct dasd_ccw_req *cqr, void *data) { dasd_schedule_block_bh(cqr->block); } static void __dasd_block_start_head(struct dasd_block *block) { struct dasd_ccw_req *cqr; if (list_empty(&block->ccw_queue)) return; /* We allways begin with the first requests on the queue, as some * of previously started requests have to be enqueued on a * dasd_device again for error recovery. */ list_for_each_entry(cqr, &block->ccw_queue, blocklist) { if (cqr->status != DASD_CQR_FILLED) continue; if (test_bit(DASD_FLAG_LOCK_STOLEN, &block->base->flags) && !test_bit(DASD_CQR_ALLOW_SLOCK, &cqr->flags)) { cqr->status = DASD_CQR_FAILED; cqr->intrc = -EPERM; dasd_schedule_block_bh(block); continue; } /* Non-temporary stop condition will trigger fail fast */ if (block->base->stopped & ~DASD_STOPPED_PENDING && test_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags) && (!dasd_eer_enabled(block->base))) { cqr->status = DASD_CQR_FAILED; cqr->intrc = -ENOLINK; dasd_schedule_block_bh(block); continue; } /* Don't try to start requests if device is stopped */ if (block->base->stopped) return; /* just a fail safe check, should not happen */ if (!cqr->startdev) cqr->startdev = block->base; /* make sure that the requests we submit find their way back */ cqr->callback = dasd_return_cqr_cb; dasd_add_request_tail(cqr); } } /* * Central dasd_block layer routine. Takes requests from the generic * block layer request queue, creates ccw requests, enqueues them on * a dasd_device and processes ccw requests that have been returned. */ static void dasd_block_tasklet(unsigned long data) { struct dasd_block *block = (struct dasd_block *) data; struct list_head final_queue; struct list_head *l, *n; struct dasd_ccw_req *cqr; struct dasd_queue *dq; atomic_set(&block->tasklet_scheduled, 0); INIT_LIST_HEAD(&final_queue); spin_lock_irq(&block->queue_lock); /* Finish off requests on ccw queue */ __dasd_process_block_ccw_queue(block, &final_queue); spin_unlock_irq(&block->queue_lock); /* Now call the callback function of requests with final status */ list_for_each_safe(l, n, &final_queue) { cqr = list_entry(l, struct dasd_ccw_req, blocklist); dq = cqr->dq; spin_lock_irq(&dq->lock); list_del_init(&cqr->blocklist); __dasd_cleanup_cqr(cqr); spin_unlock_irq(&dq->lock); } spin_lock_irq(&block->queue_lock); /* Now check if the head of the ccw queue needs to be started. */ __dasd_block_start_head(block); spin_unlock_irq(&block->queue_lock); if (waitqueue_active(&shutdown_waitq)) wake_up(&shutdown_waitq); dasd_put_device(block->base); } static void _dasd_wake_block_flush_cb(struct dasd_ccw_req *cqr, void *data) { wake_up(&dasd_flush_wq); } /* * Requeue a request back to the block request queue * only works for block requests */ static int _dasd_requeue_request(struct dasd_ccw_req *cqr) { struct dasd_block *block = cqr->block; struct request *req; if (!block) return -EINVAL; /* * If the request is an ERP request there is nothing to requeue. * This will be done with the remaining original request. */ if (cqr->refers) return 0; spin_lock_irq(&cqr->dq->lock); req = (struct request *) cqr->callback_data; blk_mq_requeue_request(req, true); spin_unlock_irq(&cqr->dq->lock); return 0; } /* * Go through all request on the dasd_block request queue, cancel them * on the respective dasd_device, and return them to the generic * block layer. */ static int dasd_flush_block_queue(struct dasd_block *block) { struct dasd_ccw_req *cqr, *n; int rc, i; struct list_head flush_queue; unsigned long flags; INIT_LIST_HEAD(&flush_queue); spin_lock_bh(&block->queue_lock); rc = 0; restart: list_for_each_entry_safe(cqr, n, &block->ccw_queue, blocklist) { /* if this request currently owned by a dasd_device cancel it */ if (cqr->status >= DASD_CQR_QUEUED) rc = dasd_cancel_req(cqr); if (rc < 0) break; /* Rechain request (including erp chain) so it won't be * touched by the dasd_block_tasklet anymore. * Replace the callback so we notice when the request * is returned from the dasd_device layer. */ cqr->callback = _dasd_wake_block_flush_cb; for (i = 0; cqr != NULL; cqr = cqr->refers, i++) list_move_tail(&cqr->blocklist, &flush_queue); if (i > 1) /* moved more than one request - need to restart */ goto restart; } spin_unlock_bh(&block->queue_lock); /* Now call the callback function of flushed requests */ restart_cb: list_for_each_entry_safe(cqr, n, &flush_queue, blocklist) { wait_event(dasd_flush_wq, (cqr->status < DASD_CQR_QUEUED)); /* Process finished ERP request. */ if (cqr->refers) { spin_lock_bh(&block->queue_lock); __dasd_process_erp(block->base, cqr); spin_unlock_bh(&block->queue_lock); /* restart list_for_xx loop since dasd_process_erp * might remove multiple elements */ goto restart_cb; } /* call the callback function */ spin_lock_irqsave(&cqr->dq->lock, flags); cqr->endclk = get_tod_clock(); list_del_init(&cqr->blocklist); __dasd_cleanup_cqr(cqr); spin_unlock_irqrestore(&cqr->dq->lock, flags); } return rc; } /* * Schedules a call to dasd_tasklet over the device tasklet. */ void dasd_schedule_block_bh(struct dasd_block *block) { /* Protect against rescheduling. */ if (atomic_cmpxchg(&block->tasklet_scheduled, 0, 1) != 0) return; /* life cycle of block is bound to it's base device */ dasd_get_device(block->base); tasklet_hi_schedule(&block->tasklet); } EXPORT_SYMBOL(dasd_schedule_block_bh); /* * SECTION: external block device operations * (request queue handling, open, release, etc.) */ /* * Dasd request queue function. Called from ll_rw_blk.c */ static blk_status_t do_dasd_request(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *qd) { struct dasd_block *block = hctx->queue->queuedata; struct dasd_queue *dq = hctx->driver_data; struct request *req = qd->rq; struct dasd_device *basedev; struct dasd_ccw_req *cqr; blk_status_t rc = BLK_STS_OK; basedev = block->base; spin_lock_irq(&dq->lock); if (basedev->state < DASD_STATE_READY || test_bit(DASD_FLAG_OFFLINE, &basedev->flags)) { DBF_DEV_EVENT(DBF_ERR, basedev, "device not ready for request %p", req); rc = BLK_STS_IOERR; goto out; } /* * if device is stopped do not fetch new requests * except failfast is active which will let requests fail * immediately in __dasd_block_start_head() */ if (basedev->stopped && !(basedev->features & DASD_FEATURE_FAILFAST)) { DBF_DEV_EVENT(DBF_ERR, basedev, "device stopped request %p", req); rc = BLK_STS_RESOURCE; goto out; } if (basedev->features & DASD_FEATURE_READONLY && rq_data_dir(req) == WRITE) { DBF_DEV_EVENT(DBF_ERR, basedev, "Rejecting write request %p", req); rc = BLK_STS_IOERR; goto out; } if (test_bit(DASD_FLAG_ABORTALL, &basedev->flags) && (basedev->features & DASD_FEATURE_FAILFAST || blk_noretry_request(req))) { DBF_DEV_EVENT(DBF_ERR, basedev, "Rejecting failfast request %p", req); rc = BLK_STS_IOERR; goto out; } cqr = basedev->discipline->build_cp(basedev, block, req); if (IS_ERR(cqr)) { if (PTR_ERR(cqr) == -EBUSY || PTR_ERR(cqr) == -ENOMEM || PTR_ERR(cqr) == -EAGAIN) { rc = BLK_STS_RESOURCE; goto out; } DBF_DEV_EVENT(DBF_ERR, basedev, "CCW creation failed (rc=%ld) on request %p", PTR_ERR(cqr), req); rc = BLK_STS_IOERR; goto out; } /* * Note: callback is set to dasd_return_cqr_cb in * __dasd_block_start_head to cover erp requests as well */ cqr->callback_data = req; cqr->status = DASD_CQR_FILLED; cqr->dq = dq; blk_mq_start_request(req); spin_lock(&block->queue_lock); list_add_tail(&cqr->blocklist, &block->ccw_queue); INIT_LIST_HEAD(&cqr->devlist); dasd_profile_start(block, cqr, req); dasd_schedule_block_bh(block); spin_unlock(&block->queue_lock); out: spin_unlock_irq(&dq->lock); return rc; } /* * Block timeout callback, called from the block layer * * Return values: * BLK_EH_RESET_TIMER if the request should be left running * BLK_EH_DONE if the request is handled or terminated * by the driver. */ enum blk_eh_timer_return dasd_times_out(struct request *req, bool reserved) { struct dasd_block *block = req->q->queuedata; struct dasd_device *device; struct dasd_ccw_req *cqr; unsigned long flags; int rc = 0; cqr = blk_mq_rq_to_pdu(req); if (!cqr) return BLK_EH_DONE; spin_lock_irqsave(&cqr->dq->lock, flags); device = cqr->startdev ? cqr->startdev : block->base; if (!device->blk_timeout) { spin_unlock_irqrestore(&cqr->dq->lock, flags); return BLK_EH_RESET_TIMER; } DBF_DEV_EVENT(DBF_WARNING, device, " dasd_times_out cqr %p status %x", cqr, cqr->status); spin_lock(&block->queue_lock); spin_lock(get_ccwdev_lock(device->cdev)); cqr->retries = -1; cqr->intrc = -ETIMEDOUT; if (cqr->status >= DASD_CQR_QUEUED) { rc = __dasd_cancel_req(cqr); } else if (cqr->status == DASD_CQR_FILLED || cqr->status == DASD_CQR_NEED_ERP) { cqr->status = DASD_CQR_TERMINATED; } else if (cqr->status == DASD_CQR_IN_ERP) { struct dasd_ccw_req *searchcqr, *nextcqr, *tmpcqr; list_for_each_entry_safe(searchcqr, nextcqr, &block->ccw_queue, blocklist) { tmpcqr = searchcqr; while (tmpcqr->refers) tmpcqr = tmpcqr->refers; if (tmpcqr != cqr) continue; /* searchcqr is an ERP request for cqr */ searchcqr->retries = -1; searchcqr->intrc = -ETIMEDOUT; if (searchcqr->status >= DASD_CQR_QUEUED) { rc = __dasd_cancel_req(searchcqr); } else if ((searchcqr->status == DASD_CQR_FILLED) || (searchcqr->status == DASD_CQR_NEED_ERP)) { searchcqr->status = DASD_CQR_TERMINATED; rc = 0; } else if (searchcqr->status == DASD_CQR_IN_ERP) { /* * Shouldn't happen; most recent ERP * request is at the front of queue */ continue; } break; } } spin_unlock(get_ccwdev_lock(device->cdev)); dasd_schedule_block_bh(block); spin_unlock(&block->queue_lock); spin_unlock_irqrestore(&cqr->dq->lock, flags); return rc ? BLK_EH_RESET_TIMER : BLK_EH_DONE; } static int dasd_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int idx) { struct dasd_queue *dq = kzalloc(sizeof(*dq), GFP_KERNEL); if (!dq) return -ENOMEM; spin_lock_init(&dq->lock); hctx->driver_data = dq; return 0; } static void dasd_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int idx) { kfree(hctx->driver_data); hctx->driver_data = NULL; } static void dasd_request_done(struct request *req) { blk_mq_end_request(req, 0); blk_mq_run_hw_queues(req->q, true); } static struct blk_mq_ops dasd_mq_ops = { .queue_rq = do_dasd_request, .complete = dasd_request_done, .timeout = dasd_times_out, .init_hctx = dasd_init_hctx, .exit_hctx = dasd_exit_hctx, }; /* * Allocate and initialize request queue and default I/O scheduler. */ static int dasd_alloc_queue(struct dasd_block *block) { int rc; block->tag_set.ops = &dasd_mq_ops; block->tag_set.cmd_size = sizeof(struct dasd_ccw_req); block->tag_set.nr_hw_queues = nr_hw_queues; block->tag_set.queue_depth = queue_depth; block->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; block->tag_set.numa_node = NUMA_NO_NODE; rc = blk_mq_alloc_tag_set(&block->tag_set); if (rc) return rc; block->request_queue = blk_mq_init_queue(&block->tag_set); if (IS_ERR(block->request_queue)) return PTR_ERR(block->request_queue); block->request_queue->queuedata = block; return 0; } /* * Allocate and initialize request queue. */ static void dasd_setup_queue(struct dasd_block *block) { unsigned int logical_block_size = block->bp_block; struct request_queue *q = block->request_queue; unsigned int max_bytes, max_discard_sectors; int max; if (block->base->features & DASD_FEATURE_USERAW) { /* * the max_blocks value for raw_track access is 256 * it is higher than the native ECKD value because we * only need one ccw per track * so the max_hw_sectors are * 2048 x 512B = 1024kB = 16 tracks */ max = 2048; } else { max = block->base->discipline->max_blocks << block->s2b_shift; } blk_queue_flag_set(QUEUE_FLAG_NONROT, q); q->limits.max_dev_sectors = max; blk_queue_logical_block_size(q, logical_block_size); blk_queue_max_hw_sectors(q, max); blk_queue_max_segments(q, USHRT_MAX); /* with page sized segments we can translate each segement into * one idaw/tidaw */ blk_queue_max_segment_size(q, PAGE_SIZE); blk_queue_segment_boundary(q, PAGE_SIZE - 1); /* Only activate blocklayer discard support for devices that support it */ if (block->base->features & DASD_FEATURE_DISCARD) { q->limits.discard_granularity = logical_block_size; q->limits.discard_alignment = PAGE_SIZE; /* Calculate max_discard_sectors and make it PAGE aligned */ max_bytes = USHRT_MAX * logical_block_size; max_bytes = ALIGN(max_bytes, PAGE_SIZE) - PAGE_SIZE; max_discard_sectors = max_bytes / logical_block_size; blk_queue_max_discard_sectors(q, max_discard_sectors); blk_queue_max_write_zeroes_sectors(q, max_discard_sectors); blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); } } /* * Deactivate and free request queue. */ static void dasd_free_queue(struct dasd_block *block) { if (block->request_queue) { blk_cleanup_queue(block->request_queue); blk_mq_free_tag_set(&block->tag_set); block->request_queue = NULL; } } static int dasd_open(struct block_device *bdev, fmode_t mode) { struct dasd_device *base; int rc; base = dasd_device_from_gendisk(bdev->bd_disk); if (!base) return -ENODEV; atomic_inc(&base->block->open_count); if (test_bit(DASD_FLAG_OFFLINE, &base->flags)) { rc = -ENODEV; goto unlock; } if (!try_module_get(base->discipline->owner)) { rc = -EINVAL; goto unlock; } if (dasd_probeonly) { dev_info(&base->cdev->dev, "Accessing the DASD failed because it is in " "probeonly mode\n"); rc = -EPERM; goto out; } if (base->state <= DASD_STATE_BASIC) { DBF_DEV_EVENT(DBF_ERR, base, " %s", " Cannot open unrecognized device"); rc = -ENODEV; goto out; } if ((mode & FMODE_WRITE) && (test_bit(DASD_FLAG_DEVICE_RO, &base->flags) || (base->features & DASD_FEATURE_READONLY))) { rc = -EROFS; goto out; } dasd_put_device(base); return 0; out: module_put(base->discipline->owner); unlock: atomic_dec(&base->block->open_count); dasd_put_device(base); return rc; } static void dasd_release(struct gendisk *disk, fmode_t mode) { struct dasd_device *base = dasd_device_from_gendisk(disk); if (base) { atomic_dec(&base->block->open_count); module_put(base->discipline->owner); dasd_put_device(base); } } /* * Return disk geometry. */ static int dasd_getgeo(struct block_device *bdev, struct hd_geometry *geo) { struct dasd_device *base; base = dasd_device_from_gendisk(bdev->bd_disk); if (!base) return -ENODEV; if (!base->discipline || !base->discipline->fill_geometry) { dasd_put_device(base); return -EINVAL; } base->discipline->fill_geometry(base->block, geo); geo->start = get_start_sect(bdev) >> base->block->s2b_shift; dasd_put_device(base); return 0; } const struct block_device_operations dasd_device_operations = { .owner = THIS_MODULE, .open = dasd_open, .release = dasd_release, .ioctl = dasd_ioctl, .compat_ioctl = dasd_ioctl, .getgeo = dasd_getgeo, }; /******************************************************************************* * end of block device operations */ static void dasd_exit(void) { #ifdef CONFIG_PROC_FS dasd_proc_exit(); #endif dasd_eer_exit(); if (dasd_page_cache != NULL) { kmem_cache_destroy(dasd_page_cache); dasd_page_cache = NULL; } dasd_gendisk_exit(); dasd_devmap_exit(); if (dasd_debug_area != NULL) { debug_unregister(dasd_debug_area); dasd_debug_area = NULL; } dasd_statistics_removeroot(); } /* * SECTION: common functions for ccw_driver use */ /* * Is the device read-only? * Note that this function does not report the setting of the * readonly device attribute, but how it is configured in z/VM. */ int dasd_device_is_ro(struct dasd_device *device) { struct ccw_dev_id dev_id; struct diag210 diag_data; int rc; if (!MACHINE_IS_VM) return 0; ccw_device_get_id(device->cdev, &dev_id); memset(&diag_data, 0, sizeof(diag_data)); diag_data.vrdcdvno = dev_id.devno; diag_data.vrdclen = sizeof(diag_data); rc = diag210(&diag_data); if (rc == 0 || rc == 2) { return diag_data.vrdcvfla & 0x80; } else { DBF_EVENT(DBF_WARNING, "diag210 failed for dev=%04x with rc=%d", dev_id.devno, rc); return 0; } } EXPORT_SYMBOL_GPL(dasd_device_is_ro); static void dasd_generic_auto_online(void *data, async_cookie_t cookie) { struct ccw_device *cdev = data; int ret; ret = ccw_device_set_online(cdev); if (ret) pr_warn("%s: Setting the DASD online failed with rc=%d\n", dev_name(&cdev->dev), ret); } /* * Initial attempt at a probe function. this can be simplified once * the other detection code is gone. */ int dasd_generic_probe(struct ccw_device *cdev, struct dasd_discipline *discipline) { int ret; ret = dasd_add_sysfs_files(cdev); if (ret) { DBF_EVENT_DEVID(DBF_WARNING, cdev, "%s", "dasd_generic_probe: could not add " "sysfs entries"); return ret; } cdev->handler = &dasd_int_handler; /* * Automatically online either all dasd devices (dasd_autodetect) * or all devices specified with dasd= parameters during * initial probe. */ if ((dasd_get_feature(cdev, DASD_FEATURE_INITIAL_ONLINE) > 0 ) || (dasd_autodetect && dasd_busid_known(dev_name(&cdev->dev)) != 0)) async_schedule(dasd_generic_auto_online, cdev); return 0; } EXPORT_SYMBOL_GPL(dasd_generic_probe); void dasd_generic_free_discipline(struct dasd_device *device) { /* Forget the discipline information. */ if (device->discipline) { if (device->discipline->uncheck_device) device->discipline->uncheck_device(device); module_put(device->discipline->owner); device->discipline = NULL; } if (device->base_discipline) { module_put(device->base_discipline->owner); device->base_discipline = NULL; } } EXPORT_SYMBOL_GPL(dasd_generic_free_discipline); /* * This will one day be called from a global not_oper handler. * It is also used by driver_unregister during module unload. */ void dasd_generic_remove(struct ccw_device *cdev) { struct dasd_device *device; struct dasd_block *block; device = dasd_device_from_cdev(cdev); if (IS_ERR(device)) { dasd_remove_sysfs_files(cdev); return; } if (test_and_set_bit(DASD_FLAG_OFFLINE, &device->flags) && !test_bit(DASD_FLAG_SAFE_OFFLINE_RUNNING, &device->flags)) { /* Already doing offline processing */ dasd_put_device(device); dasd_remove_sysfs_files(cdev); return; } /* * This device is removed unconditionally. Set offline * flag to prevent dasd_open from opening it while it is * no quite down yet. */ dasd_set_target_state(device, DASD_STATE_NEW); cdev->handler = NULL; /* dasd_delete_device destroys the device reference. */ block = device->block; dasd_delete_device(device); /* * life cycle of block is bound to device, so delete it after * device was safely removed */ if (block) dasd_free_block(block); dasd_remove_sysfs_files(cdev); } EXPORT_SYMBOL_GPL(dasd_generic_remove); /* * Activate a device. This is called from dasd_{eckd,fba}_probe() when either * the device is detected for the first time and is supposed to be used * or the user has started activation through sysfs. */ int dasd_generic_set_online(struct ccw_device *cdev, struct dasd_discipline *base_discipline) { struct dasd_discipline *discipline; struct dasd_device *device; int rc; /* first online clears initial online feature flag */ dasd_set_feature(cdev, DASD_FEATURE_INITIAL_ONLINE, 0); device = dasd_create_device(cdev); if (IS_ERR(device)) return PTR_ERR(device); discipline = base_discipline; if (device->features & DASD_FEATURE_USEDIAG) { if (!dasd_diag_discipline_pointer) { /* Try to load the required module. */ rc = request_module(DASD_DIAG_MOD); if (rc) { pr_warn("%s Setting the DASD online failed " "because the required module %s " "could not be loaded (rc=%d)\n", dev_name(&cdev->dev), DASD_DIAG_MOD, rc); dasd_delete_device(device); return -ENODEV; } } /* Module init could have failed, so check again here after * request_module(). */ if (!dasd_diag_discipline_pointer) { pr_warn("%s Setting the DASD online failed because of missing DIAG discipline\n", dev_name(&cdev->dev)); dasd_delete_device(device); return -ENODEV; } discipline = dasd_diag_discipline_pointer; } if (!try_module_get(base_discipline->owner)) { dasd_delete_device(device); return -EINVAL; } if (!try_module_get(discipline->owner)) { module_put(base_discipline->owner); dasd_delete_device(device); return -EINVAL; } device->base_discipline = base_discipline; device->discipline = discipline; /* check_device will allocate block device if necessary */ rc = discipline->check_device(device); if (rc) { pr_warn("%s Setting the DASD online with discipline %s failed with rc=%i\n", dev_name(&cdev->dev), discipline->name, rc); module_put(discipline->owner); module_put(base_discipline->owner); dasd_delete_device(device); return rc; } dasd_set_target_state(device, DASD_STATE_ONLINE); if (device->state <= DASD_STATE_KNOWN) { pr_warn("%s Setting the DASD online failed because of a missing discipline\n", dev_name(&cdev->dev)); rc = -ENODEV; dasd_set_target_state(device, DASD_STATE_NEW); if (device->block) dasd_free_block(device->block); dasd_delete_device(device); } else pr_debug("dasd_generic device %s found\n", dev_name(&cdev->dev)); wait_event(dasd_init_waitq, _wait_for_device(device)); dasd_put_device(device); return rc; } EXPORT_SYMBOL_GPL(dasd_generic_set_online); int dasd_generic_set_offline(struct ccw_device *cdev) { struct dasd_device *device; struct dasd_block *block; int max_count, open_count, rc; unsigned long flags; rc = 0; spin_lock_irqsave(get_ccwdev_lock(cdev), flags); device = dasd_device_from_cdev_locked(cdev); if (IS_ERR(device)) { spin_unlock_irqrestore(get_ccwdev_lock(cdev), flags); return PTR_ERR(device); } /* * We must make sure that this device is currently not in use. * The open_count is increased for every opener, that includes * the blkdev_get in dasd_scan_partitions. We are only interested * in the other openers. */ if (device->block) { max_count = device->block->bdev ? 0 : -1; open_count = atomic_read(&device->block->open_count); if (open_count > max_count) { if (open_count > 0) pr_warn("%s: The DASD cannot be set offline with open count %i\n", dev_name(&cdev->dev), open_count); else pr_warn("%s: The DASD cannot be set offline while it is in use\n", dev_name(&cdev->dev)); rc = -EBUSY; goto out_err; } } /* * Test if the offline processing is already running and exit if so. * If a safe offline is being processed this could only be a normal * offline that should be able to overtake the safe offline and * cancel any I/O we do not want to wait for any longer */ if (test_bit(DASD_FLAG_OFFLINE, &device->flags)) { if (test_bit(DASD_FLAG_SAFE_OFFLINE_RUNNING, &device->flags)) { clear_bit(DASD_FLAG_SAFE_OFFLINE_RUNNING, &device->flags); } else { rc = -EBUSY; goto out_err; } } set_bit(DASD_FLAG_OFFLINE, &device->flags); /* * if safe_offline is called set safe_offline_running flag and * clear safe_offline so that a call to normal offline * can overrun safe_offline processing */ if (test_and_clear_bit(DASD_FLAG_SAFE_OFFLINE, &device->flags) && !test_and_set_bit(DASD_FLAG_SAFE_OFFLINE_RUNNING, &device->flags)) { /* need to unlock here to wait for outstanding I/O */ spin_unlock_irqrestore(get_ccwdev_lock(cdev), flags); /* * If we want to set the device safe offline all IO operations * should be finished before continuing the offline process * so sync bdev first and then wait for our queues to become * empty */ if (device->block) { rc = fsync_bdev(device->block->bdev); if (rc != 0) goto interrupted; } dasd_schedule_device_bh(device); rc = wait_event_interruptible(shutdown_waitq, _wait_for_empty_queues(device)); if (rc != 0) goto interrupted; /* * check if a normal offline process overtook the offline * processing in this case simply do nothing beside returning * that we got interrupted * otherwise mark safe offline as not running any longer and * continue with normal offline */ spin_lock_irqsave(get_ccwdev_lock(cdev), flags); if (!test_bit(DASD_FLAG_SAFE_OFFLINE_RUNNING, &device->flags)) { rc = -ERESTARTSYS; goto out_err; } clear_bit(DASD_FLAG_SAFE_OFFLINE_RUNNING, &device->flags); } spin_unlock_irqrestore(get_ccwdev_lock(cdev), flags); dasd_set_target_state(device, DASD_STATE_NEW); /* dasd_delete_device destroys the device reference. */ block = device->block; dasd_delete_device(device); /* * life cycle of block is bound to device, so delete it after * device was safely removed */ if (block) dasd_free_block(block); return 0; interrupted: /* interrupted by signal */ spin_lock_irqsave(get_ccwdev_lock(cdev), flags); clear_bit(DASD_FLAG_SAFE_OFFLINE_RUNNING, &device->flags); clear_bit(DASD_FLAG_OFFLINE, &device->flags); out_err: dasd_put_device(device); spin_unlock_irqrestore(get_ccwdev_lock(cdev), flags); return rc; } EXPORT_SYMBOL_GPL(dasd_generic_set_offline); int dasd_generic_last_path_gone(struct dasd_device *device) { struct dasd_ccw_req *cqr; dev_warn(&device->cdev->dev, "No operational channel path is left " "for the device\n"); DBF_DEV_EVENT(DBF_WARNING, device, "%s", "last path gone"); /* First of all call extended error reporting. */ dasd_eer_write(device, NULL, DASD_EER_NOPATH); if (device->state < DASD_STATE_BASIC) return 0; /* Device is active. We want to keep it. */ list_for_each_entry(cqr, &device->ccw_queue, devlist) if ((cqr->status == DASD_CQR_IN_IO) || (cqr->status == DASD_CQR_CLEAR_PENDING)) { cqr->status = DASD_CQR_QUEUED; cqr->retries++; } dasd_device_set_stop_bits(device, DASD_STOPPED_DC_WAIT); dasd_device_clear_timer(device); dasd_schedule_device_bh(device); return 1; } EXPORT_SYMBOL_GPL(dasd_generic_last_path_gone); int dasd_generic_path_operational(struct dasd_device *device) { dev_info(&device->cdev->dev, "A channel path to the device has become " "operational\n"); DBF_DEV_EVENT(DBF_WARNING, device, "%s", "path operational"); dasd_device_remove_stop_bits(device, DASD_STOPPED_DC_WAIT); if (device->stopped & DASD_UNRESUMED_PM) { dasd_device_remove_stop_bits(device, DASD_UNRESUMED_PM); dasd_restore_device(device); return 1; } dasd_schedule_device_bh(device); if (device->block) { dasd_schedule_block_bh(device->block); if (device->block->request_queue) blk_mq_run_hw_queues(device->block->request_queue, true); } if (!device->stopped) wake_up(&generic_waitq); return 1; } EXPORT_SYMBOL_GPL(dasd_generic_path_operational); int dasd_generic_notify(struct ccw_device *cdev, int event) { struct dasd_device *device; int ret; device = dasd_device_from_cdev_locked(cdev); if (IS_ERR(device)) return 0; ret = 0; switch (event) { case CIO_GONE: case CIO_BOXED: case CIO_NO_PATH: dasd_path_no_path(device); ret = dasd_generic_last_path_gone(device); break; case CIO_OPER: ret = 1; if (dasd_path_get_opm(device)) ret = dasd_generic_path_operational(device); break; } dasd_put_device(device); return ret; } EXPORT_SYMBOL_GPL(dasd_generic_notify); void dasd_generic_path_event(struct ccw_device *cdev, int *path_event) { struct dasd_device *device; int chp, oldopm, hpfpm, ifccpm; device = dasd_device_from_cdev_locked(cdev); if (IS_ERR(device)) return; oldopm = dasd_path_get_opm(device); for (chp = 0; chp < 8; chp++) { if (path_event[chp] & PE_PATH_GONE) { dasd_path_notoper(device, chp); } if (path_event[chp] & PE_PATH_AVAILABLE) { dasd_path_available(device, chp); dasd_schedule_device_bh(device); } if (path_event[chp] & PE_PATHGROUP_ESTABLISHED) { if (!dasd_path_is_operational(device, chp) && !dasd_path_need_verify(device, chp)) { /* * we can not establish a pathgroup on an * unavailable path, so trigger a path * verification first */ dasd_path_available(device, chp); dasd_schedule_device_bh(device); } DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Pathgroup re-established\n"); if (device->discipline->kick_validate) device->discipline->kick_validate(device); } } hpfpm = dasd_path_get_hpfpm(device); ifccpm = dasd_path_get_ifccpm(device); if (!dasd_path_get_opm(device) && hpfpm) { /* * device has no operational paths but at least one path is * disabled due to HPF errors * disable HPF at all and use the path(s) again */ if (device->discipline->disable_hpf) device->discipline->disable_hpf(device); dasd_device_set_stop_bits(device, DASD_STOPPED_NOT_ACC); dasd_path_set_tbvpm(device, hpfpm); dasd_schedule_device_bh(device); dasd_schedule_requeue(device); } else if (!dasd_path_get_opm(device) && ifccpm) { /* * device has no operational paths but at least one path is * disabled due to IFCC errors * trigger path verification on paths with IFCC errors */ dasd_path_set_tbvpm(device, ifccpm); dasd_schedule_device_bh(device); } if (oldopm && !dasd_path_get_opm(device) && !hpfpm && !ifccpm) { dev_warn(&device->cdev->dev, "No verified channel paths remain for the device\n"); DBF_DEV_EVENT(DBF_WARNING, device, "%s", "last verified path gone"); dasd_eer_write(device, NULL, DASD_EER_NOPATH); dasd_device_set_stop_bits(device, DASD_STOPPED_DC_WAIT); } dasd_put_device(device); } EXPORT_SYMBOL_GPL(dasd_generic_path_event); int dasd_generic_verify_path(struct dasd_device *device, __u8 lpm) { if (!dasd_path_get_opm(device) && lpm) { dasd_path_set_opm(device, lpm); dasd_generic_path_operational(device); } else dasd_path_add_opm(device, lpm); return 0; } EXPORT_SYMBOL_GPL(dasd_generic_verify_path); /* * clear active requests and requeue them to block layer if possible */ static int dasd_generic_requeue_all_requests(struct dasd_device *device) { struct list_head requeue_queue; struct dasd_ccw_req *cqr, *n; struct dasd_ccw_req *refers; int rc; INIT_LIST_HEAD(&requeue_queue); spin_lock_irq(get_ccwdev_lock(device->cdev)); rc = 0; list_for_each_entry_safe(cqr, n, &device->ccw_queue, devlist) { /* Check status and move request to flush_queue */ if (cqr->status == DASD_CQR_IN_IO) { rc = device->discipline->term_IO(cqr); if (rc) { /* unable to terminate requeust */ dev_err(&device->cdev->dev, "Unable to terminate request %p " "on suspend\n", cqr); spin_unlock_irq(get_ccwdev_lock(device->cdev)); dasd_put_device(device); return rc; } } list_move_tail(&cqr->devlist, &requeue_queue); } spin_unlock_irq(get_ccwdev_lock(device->cdev)); list_for_each_entry_safe(cqr, n, &requeue_queue, devlist) { wait_event(dasd_flush_wq, (cqr->status != DASD_CQR_CLEAR_PENDING)); /* * requeue requests to blocklayer will only work * for block device requests */ if (_dasd_requeue_request(cqr)) continue; /* remove requests from device and block queue */ list_del_init(&cqr->devlist); while (cqr->refers != NULL) { refers = cqr->refers; /* remove the request from the block queue */ list_del(&cqr->blocklist); /* free the finished erp request */ dasd_free_erp_request(cqr, cqr->memdev); cqr = refers; } /* * _dasd_requeue_request already checked for a valid * blockdevice, no need to check again * all erp requests (cqr->refers) have a cqr->block * pointer copy from the original cqr */ list_del_init(&cqr->blocklist); cqr->block->base->discipline->free_cp( cqr, (struct request *) cqr->callback_data); } /* * if requests remain then they are internal request * and go back to the device queue */ if (!list_empty(&requeue_queue)) { /* move freeze_queue to start of the ccw_queue */ spin_lock_irq(get_ccwdev_lock(device->cdev)); list_splice_tail(&requeue_queue, &device->ccw_queue); spin_unlock_irq(get_ccwdev_lock(device->cdev)); } dasd_schedule_device_bh(device); return rc; } static void do_requeue_requests(struct work_struct *work) { struct dasd_device *device = container_of(work, struct dasd_device, requeue_requests); dasd_generic_requeue_all_requests(device); dasd_device_remove_stop_bits(device, DASD_STOPPED_NOT_ACC); if (device->block) dasd_schedule_block_bh(device->block); dasd_put_device(device); } void dasd_schedule_requeue(struct dasd_device *device) { dasd_get_device(device); /* queue call to dasd_reload_device to the kernel event daemon. */ if (!schedule_work(&device->requeue_requests)) dasd_put_device(device); } EXPORT_SYMBOL(dasd_schedule_requeue); int dasd_generic_pm_freeze(struct ccw_device *cdev) { struct dasd_device *device = dasd_device_from_cdev(cdev); if (IS_ERR(device)) return PTR_ERR(device); /* mark device as suspended */ set_bit(DASD_FLAG_SUSPENDED, &device->flags); if (device->discipline->freeze) device->discipline->freeze(device); /* disallow new I/O */ dasd_device_set_stop_bits(device, DASD_STOPPED_PM); return dasd_generic_requeue_all_requests(device); } EXPORT_SYMBOL_GPL(dasd_generic_pm_freeze); int dasd_generic_restore_device(struct ccw_device *cdev) { struct dasd_device *device = dasd_device_from_cdev(cdev); int rc = 0; if (IS_ERR(device)) return PTR_ERR(device); /* allow new IO again */ dasd_device_remove_stop_bits(device, (DASD_STOPPED_PM | DASD_UNRESUMED_PM)); dasd_schedule_device_bh(device); /* * call discipline restore function * if device is stopped do nothing e.g. for disconnected devices */ if (device->discipline->restore && !(device->stopped)) rc = device->discipline->restore(device); if (rc || device->stopped) /* * if the resume failed for the DASD we put it in * an UNRESUMED stop state */ device->stopped |= DASD_UNRESUMED_PM; if (device->block) { dasd_schedule_block_bh(device->block); if (device->block->request_queue) blk_mq_run_hw_queues(device->block->request_queue, true); } clear_bit(DASD_FLAG_SUSPENDED, &device->flags); dasd_put_device(device); return 0; } EXPORT_SYMBOL_GPL(dasd_generic_restore_device); static struct dasd_ccw_req *dasd_generic_build_rdc(struct dasd_device *device, void *rdc_buffer, int rdc_buffer_size, int magic) { struct dasd_ccw_req *cqr; struct ccw1 *ccw; unsigned long *idaw; cqr = dasd_smalloc_request(magic, 1 /* RDC */, rdc_buffer_size, device, NULL); if (IS_ERR(cqr)) { /* internal error 13 - Allocating the RDC request failed*/ dev_err(&device->cdev->dev, "An error occurred in the DASD device driver, " "reason=%s\n", "13"); return cqr; } ccw = cqr->cpaddr; ccw->cmd_code = CCW_CMD_RDC; if (idal_is_needed(rdc_buffer, rdc_buffer_size)) { idaw = (unsigned long *) (cqr->data); ccw->cda = (__u32)(addr_t) idaw; ccw->flags = CCW_FLAG_IDA; idaw = idal_create_words(idaw, rdc_buffer, rdc_buffer_size); } else { ccw->cda = (__u32)(addr_t) rdc_buffer; ccw->flags = 0; } ccw->count = rdc_buffer_size; cqr->startdev = device; cqr->memdev = device; cqr->expires = 10*HZ; cqr->retries = 256; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; return cqr; } int dasd_generic_read_dev_chars(struct dasd_device *device, int magic, void *rdc_buffer, int rdc_buffer_size) { int ret; struct dasd_ccw_req *cqr; cqr = dasd_generic_build_rdc(device, rdc_buffer, rdc_buffer_size, magic); if (IS_ERR(cqr)) return PTR_ERR(cqr); ret = dasd_sleep_on(cqr); dasd_sfree_request(cqr, cqr->memdev); return ret; } EXPORT_SYMBOL_GPL(dasd_generic_read_dev_chars); /* * In command mode and transport mode we need to look for sense * data in different places. The sense data itself is allways * an array of 32 bytes, so we can unify the sense data access * for both modes. */ char *dasd_get_sense(struct irb *irb) { struct tsb *tsb = NULL; char *sense = NULL; if (scsw_is_tm(&irb->scsw) && (irb->scsw.tm.fcxs == 0x01)) { if (irb->scsw.tm.tcw) tsb = tcw_get_tsb((struct tcw *)(unsigned long) irb->scsw.tm.tcw); if (tsb && tsb->length == 64 && tsb->flags) switch (tsb->flags & 0x07) { case 1: /* tsa_iostat */ sense = tsb->tsa.iostat.sense; break; case 2: /* tsa_ddpc */ sense = tsb->tsa.ddpc.sense; break; default: /* currently we don't use interrogate data */ break; } } else if (irb->esw.esw0.erw.cons) { sense = irb->ecw; } return sense; } EXPORT_SYMBOL_GPL(dasd_get_sense); void dasd_generic_shutdown(struct ccw_device *cdev) { struct dasd_device *device; device = dasd_device_from_cdev(cdev); if (IS_ERR(device)) return; if (device->block) dasd_schedule_block_bh(device->block); dasd_schedule_device_bh(device); wait_event(shutdown_waitq, _wait_for_empty_queues(device)); } EXPORT_SYMBOL_GPL(dasd_generic_shutdown); static int __init dasd_init(void) { int rc; init_waitqueue_head(&dasd_init_waitq); init_waitqueue_head(&dasd_flush_wq); init_waitqueue_head(&generic_waitq); init_waitqueue_head(&shutdown_waitq); /* register 'common' DASD debug area, used for all DBF_XXX calls */ dasd_debug_area = debug_register("dasd", 1, 1, 8 * sizeof(long)); if (dasd_debug_area == NULL) { rc = -ENOMEM; goto failed; } debug_register_view(dasd_debug_area, &debug_sprintf_view); debug_set_level(dasd_debug_area, DBF_WARNING); DBF_EVENT(DBF_EMERG, "%s", "debug area created"); dasd_diag_discipline_pointer = NULL; dasd_statistics_createroot(); rc = dasd_devmap_init(); if (rc) goto failed; rc = dasd_gendisk_init(); if (rc) goto failed; rc = dasd_parse(); if (rc) goto failed; rc = dasd_eer_init(); if (rc) goto failed; #ifdef CONFIG_PROC_FS rc = dasd_proc_init(); if (rc) goto failed; #endif return 0; failed: pr_info("The DASD device driver could not be initialized\n"); dasd_exit(); return rc; } module_init(dasd_init); module_exit(dasd_exit);