// SPDX-License-Identifier: GPL-2.0 /* * Based on meson_uart.c, by AMLOGIC, INC. * * Copyright (C) 2014 Carlo Caione */ #if defined(CONFIG_SERIAL_MESON_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) #define SUPPORT_SYSRQ #endif #include #include #include #include #include #include #include #include #include #include #include #include #include /* Register offsets */ #define AML_UART_WFIFO 0x00 #define AML_UART_RFIFO 0x04 #define AML_UART_CONTROL 0x08 #define AML_UART_STATUS 0x0c #define AML_UART_MISC 0x10 #define AML_UART_REG5 0x14 /* AML_UART_CONTROL bits */ #define AML_UART_TX_EN BIT(12) #define AML_UART_RX_EN BIT(13) #define AML_UART_TWO_WIRE_EN BIT(15) #define AML_UART_STOP_BIT_LEN_MASK (0x03 << 16) #define AML_UART_STOP_BIT_1SB (0x00 << 16) #define AML_UART_STOP_BIT_2SB (0x01 << 16) #define AML_UART_PARITY_TYPE BIT(18) #define AML_UART_PARITY_EN BIT(19) #define AML_UART_TX_RST BIT(22) #define AML_UART_RX_RST BIT(23) #define AML_UART_CLEAR_ERR BIT(24) #define AML_UART_RX_INT_EN BIT(27) #define AML_UART_TX_INT_EN BIT(28) #define AML_UART_DATA_LEN_MASK (0x03 << 20) #define AML_UART_DATA_LEN_8BIT (0x00 << 20) #define AML_UART_DATA_LEN_7BIT (0x01 << 20) #define AML_UART_DATA_LEN_6BIT (0x02 << 20) #define AML_UART_DATA_LEN_5BIT (0x03 << 20) /* AML_UART_STATUS bits */ #define AML_UART_PARITY_ERR BIT(16) #define AML_UART_FRAME_ERR BIT(17) #define AML_UART_TX_FIFO_WERR BIT(18) #define AML_UART_RX_EMPTY BIT(20) #define AML_UART_TX_FULL BIT(21) #define AML_UART_TX_EMPTY BIT(22) #define AML_UART_XMIT_BUSY BIT(25) #define AML_UART_ERR (AML_UART_PARITY_ERR | \ AML_UART_FRAME_ERR | \ AML_UART_TX_FIFO_WERR) /* AML_UART_MISC bits */ #define AML_UART_XMIT_IRQ(c) (((c) & 0xff) << 8) #define AML_UART_RECV_IRQ(c) ((c) & 0xff) /* AML_UART_REG5 bits */ #define AML_UART_BAUD_MASK 0x7fffff #define AML_UART_BAUD_USE BIT(23) #define AML_UART_BAUD_XTAL BIT(24) #define AML_UART_PORT_NUM 6 #define AML_UART_DEV_NAME "ttyAML" static struct uart_driver meson_uart_driver; static struct uart_port *meson_ports[AML_UART_PORT_NUM]; static void meson_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) { } static unsigned int meson_uart_get_mctrl(struct uart_port *port) { return TIOCM_CTS; } static unsigned int meson_uart_tx_empty(struct uart_port *port) { u32 val; val = readl(port->membase + AML_UART_STATUS); val &= (AML_UART_TX_EMPTY | AML_UART_XMIT_BUSY); return (val == AML_UART_TX_EMPTY) ? TIOCSER_TEMT : 0; } static void meson_uart_stop_tx(struct uart_port *port) { u32 val; val = readl(port->membase + AML_UART_CONTROL); val &= ~AML_UART_TX_INT_EN; writel(val, port->membase + AML_UART_CONTROL); } static void meson_uart_stop_rx(struct uart_port *port) { u32 val; val = readl(port->membase + AML_UART_CONTROL); val &= ~AML_UART_RX_EN; writel(val, port->membase + AML_UART_CONTROL); } static void meson_uart_shutdown(struct uart_port *port) { unsigned long flags; u32 val; free_irq(port->irq, port); spin_lock_irqsave(&port->lock, flags); val = readl(port->membase + AML_UART_CONTROL); val &= ~AML_UART_RX_EN; val &= ~(AML_UART_RX_INT_EN | AML_UART_TX_INT_EN); writel(val, port->membase + AML_UART_CONTROL); spin_unlock_irqrestore(&port->lock, flags); } static void meson_uart_start_tx(struct uart_port *port) { struct circ_buf *xmit = &port->state->xmit; unsigned int ch; u32 val; if (uart_tx_stopped(port)) { meson_uart_stop_tx(port); return; } while (!(readl(port->membase + AML_UART_STATUS) & AML_UART_TX_FULL)) { if (port->x_char) { writel(port->x_char, port->membase + AML_UART_WFIFO); port->icount.tx++; port->x_char = 0; continue; } if (uart_circ_empty(xmit)) break; ch = xmit->buf[xmit->tail]; writel(ch, port->membase + AML_UART_WFIFO); xmit->tail = (xmit->tail+1) & (SERIAL_XMIT_SIZE - 1); port->icount.tx++; } if (!uart_circ_empty(xmit)) { val = readl(port->membase + AML_UART_CONTROL); val |= AML_UART_TX_INT_EN; writel(val, port->membase + AML_UART_CONTROL); } if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(port); } static void meson_receive_chars(struct uart_port *port) { struct tty_port *tport = &port->state->port; char flag; u32 ostatus, status, ch, mode; do { flag = TTY_NORMAL; port->icount.rx++; ostatus = status = readl(port->membase + AML_UART_STATUS); if (status & AML_UART_ERR) { if (status & AML_UART_TX_FIFO_WERR) port->icount.overrun++; else if (status & AML_UART_FRAME_ERR) port->icount.frame++; else if (status & AML_UART_PARITY_ERR) port->icount.frame++; mode = readl(port->membase + AML_UART_CONTROL); mode |= AML_UART_CLEAR_ERR; writel(mode, port->membase + AML_UART_CONTROL); /* It doesn't clear to 0 automatically */ mode &= ~AML_UART_CLEAR_ERR; writel(mode, port->membase + AML_UART_CONTROL); status &= port->read_status_mask; if (status & AML_UART_FRAME_ERR) flag = TTY_FRAME; else if (status & AML_UART_PARITY_ERR) flag = TTY_PARITY; } ch = readl(port->membase + AML_UART_RFIFO); ch &= 0xff; if ((ostatus & AML_UART_FRAME_ERR) && (ch == 0)) { port->icount.brk++; flag = TTY_BREAK; if (uart_handle_break(port)) continue; } if (uart_handle_sysrq_char(port, ch)) continue; if ((status & port->ignore_status_mask) == 0) tty_insert_flip_char(tport, ch, flag); if (status & AML_UART_TX_FIFO_WERR) tty_insert_flip_char(tport, 0, TTY_OVERRUN); } while (!(readl(port->membase + AML_UART_STATUS) & AML_UART_RX_EMPTY)); spin_unlock(&port->lock); tty_flip_buffer_push(tport); spin_lock(&port->lock); } static irqreturn_t meson_uart_interrupt(int irq, void *dev_id) { struct uart_port *port = (struct uart_port *)dev_id; spin_lock(&port->lock); if (!(readl(port->membase + AML_UART_STATUS) & AML_UART_RX_EMPTY)) meson_receive_chars(port); if (!(readl(port->membase + AML_UART_STATUS) & AML_UART_TX_FULL)) { if (readl(port->membase + AML_UART_CONTROL) & AML_UART_TX_INT_EN) meson_uart_start_tx(port); } spin_unlock(&port->lock); return IRQ_HANDLED; } static const char *meson_uart_type(struct uart_port *port) { return (port->type == PORT_MESON) ? "meson_uart" : NULL; } /* * This function is called only from probe() using a temporary io mapping * in order to perform a reset before setting up the device. Since the * temporarily mapped region was successfully requested, there can be no * console on this port at this time. Hence it is not necessary for this * function to acquire the port->lock. (Since there is no console on this * port at this time, the port->lock is not initialized yet.) */ static void meson_uart_reset(struct uart_port *port) { u32 val; val = readl(port->membase + AML_UART_CONTROL); val |= (AML_UART_RX_RST | AML_UART_TX_RST | AML_UART_CLEAR_ERR); writel(val, port->membase + AML_UART_CONTROL); val &= ~(AML_UART_RX_RST | AML_UART_TX_RST | AML_UART_CLEAR_ERR); writel(val, port->membase + AML_UART_CONTROL); } static int meson_uart_startup(struct uart_port *port) { unsigned long flags; u32 val; int ret = 0; spin_lock_irqsave(&port->lock, flags); val = readl(port->membase + AML_UART_CONTROL); val |= AML_UART_CLEAR_ERR; writel(val, port->membase + AML_UART_CONTROL); val &= ~AML_UART_CLEAR_ERR; writel(val, port->membase + AML_UART_CONTROL); val |= (AML_UART_RX_EN | AML_UART_TX_EN); writel(val, port->membase + AML_UART_CONTROL); val |= (AML_UART_RX_INT_EN | AML_UART_TX_INT_EN); writel(val, port->membase + AML_UART_CONTROL); val = (AML_UART_RECV_IRQ(1) | AML_UART_XMIT_IRQ(port->fifosize / 2)); writel(val, port->membase + AML_UART_MISC); spin_unlock_irqrestore(&port->lock, flags); ret = request_irq(port->irq, meson_uart_interrupt, 0, port->name, port); return ret; } static void meson_uart_change_speed(struct uart_port *port, unsigned long baud) { u32 val; while (!meson_uart_tx_empty(port)) cpu_relax(); if (port->uartclk == 24000000) { val = ((port->uartclk / 3) / baud) - 1; val |= AML_UART_BAUD_XTAL; } else { val = ((port->uartclk * 10 / (baud * 4) + 5) / 10) - 1; } val |= AML_UART_BAUD_USE; writel(val, port->membase + AML_UART_REG5); } static void meson_uart_set_termios(struct uart_port *port, struct ktermios *termios, struct ktermios *old) { unsigned int cflags, iflags, baud; unsigned long flags; u32 val; spin_lock_irqsave(&port->lock, flags); cflags = termios->c_cflag; iflags = termios->c_iflag; val = readl(port->membase + AML_UART_CONTROL); val &= ~AML_UART_DATA_LEN_MASK; switch (cflags & CSIZE) { case CS8: val |= AML_UART_DATA_LEN_8BIT; break; case CS7: val |= AML_UART_DATA_LEN_7BIT; break; case CS6: val |= AML_UART_DATA_LEN_6BIT; break; case CS5: val |= AML_UART_DATA_LEN_5BIT; break; } if (cflags & PARENB) val |= AML_UART_PARITY_EN; else val &= ~AML_UART_PARITY_EN; if (cflags & PARODD) val |= AML_UART_PARITY_TYPE; else val &= ~AML_UART_PARITY_TYPE; val &= ~AML_UART_STOP_BIT_LEN_MASK; if (cflags & CSTOPB) val |= AML_UART_STOP_BIT_2SB; else val |= AML_UART_STOP_BIT_1SB; if (cflags & CRTSCTS) val &= ~AML_UART_TWO_WIRE_EN; else val |= AML_UART_TWO_WIRE_EN; writel(val, port->membase + AML_UART_CONTROL); baud = uart_get_baud_rate(port, termios, old, 50, 4000000); meson_uart_change_speed(port, baud); port->read_status_mask = AML_UART_TX_FIFO_WERR; if (iflags & INPCK) port->read_status_mask |= AML_UART_PARITY_ERR | AML_UART_FRAME_ERR; port->ignore_status_mask = 0; if (iflags & IGNPAR) port->ignore_status_mask |= AML_UART_PARITY_ERR | AML_UART_FRAME_ERR; uart_update_timeout(port, termios->c_cflag, baud); spin_unlock_irqrestore(&port->lock, flags); } static int meson_uart_verify_port(struct uart_port *port, struct serial_struct *ser) { int ret = 0; if (port->type != PORT_MESON) ret = -EINVAL; if (port->irq != ser->irq) ret = -EINVAL; if (ser->baud_base < 9600) ret = -EINVAL; return ret; } static void meson_uart_release_port(struct uart_port *port) { devm_iounmap(port->dev, port->membase); port->membase = NULL; devm_release_mem_region(port->dev, port->mapbase, port->mapsize); } static int meson_uart_request_port(struct uart_port *port) { if (!devm_request_mem_region(port->dev, port->mapbase, port->mapsize, dev_name(port->dev))) { dev_err(port->dev, "Memory region busy\n"); return -EBUSY; } port->membase = devm_ioremap_nocache(port->dev, port->mapbase, port->mapsize); if (!port->membase) return -ENOMEM; return 0; } static void meson_uart_config_port(struct uart_port *port, int flags) { if (flags & UART_CONFIG_TYPE) { port->type = PORT_MESON; meson_uart_request_port(port); } } static const struct uart_ops meson_uart_ops = { .set_mctrl = meson_uart_set_mctrl, .get_mctrl = meson_uart_get_mctrl, .tx_empty = meson_uart_tx_empty, .start_tx = meson_uart_start_tx, .stop_tx = meson_uart_stop_tx, .stop_rx = meson_uart_stop_rx, .startup = meson_uart_startup, .shutdown = meson_uart_shutdown, .set_termios = meson_uart_set_termios, .type = meson_uart_type, .config_port = meson_uart_config_port, .request_port = meson_uart_request_port, .release_port = meson_uart_release_port, .verify_port = meson_uart_verify_port, }; #ifdef CONFIG_SERIAL_MESON_CONSOLE static void meson_uart_enable_tx_engine(struct uart_port *port) { u32 val; val = readl(port->membase + AML_UART_CONTROL); val |= AML_UART_TX_EN; writel(val, port->membase + AML_UART_CONTROL); } static void meson_console_putchar(struct uart_port *port, int ch) { if (!port->membase) return; while (readl(port->membase + AML_UART_STATUS) & AML_UART_TX_FULL) cpu_relax(); writel(ch, port->membase + AML_UART_WFIFO); } static void meson_serial_port_write(struct uart_port *port, const char *s, u_int count) { unsigned long flags; int locked; u32 val, tmp; local_irq_save(flags); if (port->sysrq) { locked = 0; } else if (oops_in_progress) { locked = spin_trylock(&port->lock); } else { spin_lock(&port->lock); locked = 1; } val = readl(port->membase + AML_UART_CONTROL); tmp = val & ~(AML_UART_TX_INT_EN | AML_UART_RX_INT_EN); writel(tmp, port->membase + AML_UART_CONTROL); uart_console_write(port, s, count, meson_console_putchar); writel(val, port->membase + AML_UART_CONTROL); if (locked) spin_unlock(&port->lock); local_irq_restore(flags); } static void meson_serial_console_write(struct console *co, const char *s, u_int count) { struct uart_port *port; port = meson_ports[co->index]; if (!port) return; meson_serial_port_write(port, s, count); } static int meson_serial_console_setup(struct console *co, char *options) { struct uart_port *port; int baud = 115200; int bits = 8; int parity = 'n'; int flow = 'n'; if (co->index < 0 || co->index >= AML_UART_PORT_NUM) return -EINVAL; port = meson_ports[co->index]; if (!port || !port->membase) return -ENODEV; meson_uart_enable_tx_engine(port); if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); return uart_set_options(port, co, baud, parity, bits, flow); } static struct console meson_serial_console = { .name = AML_UART_DEV_NAME, .write = meson_serial_console_write, .device = uart_console_device, .setup = meson_serial_console_setup, .flags = CON_PRINTBUFFER, .index = -1, .data = &meson_uart_driver, }; static int __init meson_serial_console_init(void) { register_console(&meson_serial_console); return 0; } console_initcall(meson_serial_console_init); static void meson_serial_early_console_write(struct console *co, const char *s, u_int count) { struct earlycon_device *dev = co->data; meson_serial_port_write(&dev->port, s, count); } static int __init meson_serial_early_console_setup(struct earlycon_device *device, const char *opt) { if (!device->port.membase) return -ENODEV; meson_uart_enable_tx_engine(&device->port); device->con->write = meson_serial_early_console_write; return 0; } /* Legacy bindings, should be removed when no more used */ OF_EARLYCON_DECLARE(meson, "amlogic,meson-uart", meson_serial_early_console_setup); /* Stable bindings */ OF_EARLYCON_DECLARE(meson, "amlogic,meson-ao-uart", meson_serial_early_console_setup); #define MESON_SERIAL_CONSOLE (&meson_serial_console) #else #define MESON_SERIAL_CONSOLE NULL #endif static struct uart_driver meson_uart_driver = { .owner = THIS_MODULE, .driver_name = "meson_uart", .dev_name = AML_UART_DEV_NAME, .nr = AML_UART_PORT_NUM, .cons = MESON_SERIAL_CONSOLE, }; static inline struct clk *meson_uart_probe_clock(struct device *dev, const char *id) { struct clk *clk = NULL; int ret; clk = devm_clk_get(dev, id); if (IS_ERR(clk)) return clk; ret = clk_prepare_enable(clk); if (ret) { dev_err(dev, "couldn't enable clk\n"); return ERR_PTR(ret); } devm_add_action_or_reset(dev, (void(*)(void *))clk_disable_unprepare, clk); return clk; } /* * This function gets clocks in the legacy non-stable DT bindings. * This code will be remove once all the platforms switch to the * new DT bindings. */ static int meson_uart_probe_clocks_legacy(struct platform_device *pdev, struct uart_port *port) { struct clk *clk = NULL; clk = meson_uart_probe_clock(&pdev->dev, NULL); if (IS_ERR(clk)) return PTR_ERR(clk); port->uartclk = clk_get_rate(clk); return 0; } static int meson_uart_probe_clocks(struct platform_device *pdev, struct uart_port *port) { struct clk *clk_xtal = NULL; struct clk *clk_pclk = NULL; struct clk *clk_baud = NULL; clk_pclk = meson_uart_probe_clock(&pdev->dev, "pclk"); if (IS_ERR(clk_pclk)) return PTR_ERR(clk_pclk); clk_xtal = meson_uart_probe_clock(&pdev->dev, "xtal"); if (IS_ERR(clk_xtal)) return PTR_ERR(clk_xtal); clk_baud = meson_uart_probe_clock(&pdev->dev, "baud"); if (IS_ERR(clk_baud)) return PTR_ERR(clk_baud); port->uartclk = clk_get_rate(clk_baud); return 0; } static int meson_uart_probe(struct platform_device *pdev) { struct resource *res_mem, *res_irq; struct uart_port *port; int ret = 0; if (pdev->dev.of_node) pdev->id = of_alias_get_id(pdev->dev.of_node, "serial"); if (pdev->id < 0 || pdev->id >= AML_UART_PORT_NUM) return -EINVAL; res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res_mem) return -ENODEV; res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (!res_irq) return -ENODEV; if (meson_ports[pdev->id]) { dev_err(&pdev->dev, "port %d already allocated\n", pdev->id); return -EBUSY; } port = devm_kzalloc(&pdev->dev, sizeof(struct uart_port), GFP_KERNEL); if (!port) return -ENOMEM; /* Use legacy way until all platforms switch to new bindings */ if (of_device_is_compatible(pdev->dev.of_node, "amlogic,meson-uart")) ret = meson_uart_probe_clocks_legacy(pdev, port); else ret = meson_uart_probe_clocks(pdev, port); if (ret) return ret; port->iotype = UPIO_MEM; port->mapbase = res_mem->start; port->mapsize = resource_size(res_mem); port->irq = res_irq->start; port->flags = UPF_BOOT_AUTOCONF | UPF_LOW_LATENCY; port->dev = &pdev->dev; port->line = pdev->id; port->type = PORT_MESON; port->x_char = 0; port->ops = &meson_uart_ops; port->fifosize = 64; meson_ports[pdev->id] = port; platform_set_drvdata(pdev, port); /* reset port before registering (and possibly registering console) */ if (meson_uart_request_port(port) >= 0) { meson_uart_reset(port); meson_uart_release_port(port); } ret = uart_add_one_port(&meson_uart_driver, port); if (ret) meson_ports[pdev->id] = NULL; return ret; } static int meson_uart_remove(struct platform_device *pdev) { struct uart_port *port; port = platform_get_drvdata(pdev); uart_remove_one_port(&meson_uart_driver, port); meson_ports[pdev->id] = NULL; return 0; } static const struct of_device_id meson_uart_dt_match[] = { /* Legacy bindings, should be removed when no more used */ { .compatible = "amlogic,meson-uart" }, /* Stable bindings */ { .compatible = "amlogic,meson6-uart" }, { .compatible = "amlogic,meson8-uart" }, { .compatible = "amlogic,meson8b-uart" }, { .compatible = "amlogic,meson-gx-uart" }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, meson_uart_dt_match); static struct platform_driver meson_uart_platform_driver = { .probe = meson_uart_probe, .remove = meson_uart_remove, .driver = { .name = "meson_uart", .of_match_table = meson_uart_dt_match, }, }; static int __init meson_uart_init(void) { int ret; ret = uart_register_driver(&meson_uart_driver); if (ret) return ret; ret = platform_driver_register(&meson_uart_platform_driver); if (ret) uart_unregister_driver(&meson_uart_driver); return ret; } static void __exit meson_uart_exit(void) { platform_driver_unregister(&meson_uart_platform_driver); uart_unregister_driver(&meson_uart_driver); } module_init(meson_uart_init); module_exit(meson_uart_exit); MODULE_AUTHOR("Carlo Caione "); MODULE_DESCRIPTION("Amlogic Meson serial port driver"); MODULE_LICENSE("GPL v2");