/* * fs/kernfs/dir.c - kernfs directory implementation * * Copyright (c) 2001-3 Patrick Mochel * Copyright (c) 2007 SUSE Linux Products GmbH * Copyright (c) 2007, 2013 Tejun Heo * * This file is released under the GPLv2. */ #include #include #include #include #include #include #include #include "kernfs-internal.h" DEFINE_MUTEX(kernfs_mutex); static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */ /* * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to * call pr_cont() while holding rename_lock. Because sometimes pr_cont() * will perform wakeups when releasing console_sem. Holding rename_lock * will introduce deadlock if the scheduler reads the kernfs_name in the * wakeup path. */ static DEFINE_SPINLOCK(kernfs_pr_cont_lock); static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */ static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */ #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) static bool kernfs_active(struct kernfs_node *kn) { lockdep_assert_held(&kernfs_mutex); return atomic_read(&kn->active) >= 0; } static bool kernfs_lockdep(struct kernfs_node *kn) { #ifdef CONFIG_DEBUG_LOCK_ALLOC return kn->flags & KERNFS_LOCKDEP; #else return false; #endif } static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) { if (!kn) return strlcpy(buf, "(null)", buflen); return strlcpy(buf, kn->parent ? kn->name : "/", buflen); } /* kernfs_node_depth - compute depth from @from to @to */ static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) { size_t depth = 0; while (to->parent && to != from) { depth++; to = to->parent; } return depth; } static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, struct kernfs_node *b) { size_t da, db; struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); if (ra != rb) return NULL; da = kernfs_depth(ra->kn, a); db = kernfs_depth(rb->kn, b); while (da > db) { a = a->parent; da--; } while (db > da) { b = b->parent; db--; } /* worst case b and a will be the same at root */ while (b != a) { b = b->parent; a = a->parent; } return a; } /** * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, * where kn_from is treated as root of the path. * @kn_from: kernfs node which should be treated as root for the path * @kn_to: kernfs node to which path is needed * @buf: buffer to copy the path into * @buflen: size of @buf * * We need to handle couple of scenarios here: * [1] when @kn_from is an ancestor of @kn_to at some level * kn_from: /n1/n2/n3 * kn_to: /n1/n2/n3/n4/n5 * result: /n4/n5 * * [2] when @kn_from is on a different hierarchy and we need to find common * ancestor between @kn_from and @kn_to. * kn_from: /n1/n2/n3/n4 * kn_to: /n1/n2/n5 * result: /../../n5 * OR * kn_from: /n1/n2/n3/n4/n5 [depth=5] * kn_to: /n1/n2/n3 [depth=3] * result: /../.. * * [3] when @kn_to is NULL result will be "(null)" * * Returns the length of the full path. If the full length is equal to or * greater than @buflen, @buf contains the truncated path with the trailing * '\0'. On error, -errno is returned. */ static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, struct kernfs_node *kn_from, char *buf, size_t buflen) { struct kernfs_node *kn, *common; const char parent_str[] = "/.."; size_t depth_from, depth_to, len = 0; int i, j; if (!kn_to) return strlcpy(buf, "(null)", buflen); if (!kn_from) kn_from = kernfs_root(kn_to)->kn; if (kn_from == kn_to) return strlcpy(buf, "/", buflen); common = kernfs_common_ancestor(kn_from, kn_to); if (WARN_ON(!common)) return -EINVAL; depth_to = kernfs_depth(common, kn_to); depth_from = kernfs_depth(common, kn_from); if (buf) buf[0] = '\0'; for (i = 0; i < depth_from; i++) len += strlcpy(buf + len, parent_str, len < buflen ? buflen - len : 0); /* Calculate how many bytes we need for the rest */ for (i = depth_to - 1; i >= 0; i--) { for (kn = kn_to, j = 0; j < i; j++) kn = kn->parent; len += strlcpy(buf + len, "/", len < buflen ? buflen - len : 0); len += strlcpy(buf + len, kn->name, len < buflen ? buflen - len : 0); } return len; } /** * kernfs_name - obtain the name of a given node * @kn: kernfs_node of interest * @buf: buffer to copy @kn's name into * @buflen: size of @buf * * Copies the name of @kn into @buf of @buflen bytes. The behavior is * similar to strlcpy(). It returns the length of @kn's name and if @buf * isn't long enough, it's filled upto @buflen-1 and nul terminated. * * Fills buffer with "(null)" if @kn is NULL. * * This function can be called from any context. */ int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) { unsigned long flags; int ret; spin_lock_irqsave(&kernfs_rename_lock, flags); ret = kernfs_name_locked(kn, buf, buflen); spin_unlock_irqrestore(&kernfs_rename_lock, flags); return ret; } /** * kernfs_path_from_node - build path of node @to relative to @from. * @from: parent kernfs_node relative to which we need to build the path * @to: kernfs_node of interest * @buf: buffer to copy @to's path into * @buflen: size of @buf * * Builds @to's path relative to @from in @buf. @from and @to must * be on the same kernfs-root. If @from is not parent of @to, then a relative * path (which includes '..'s) as needed to reach from @from to @to is * returned. * * Returns the length of the full path. If the full length is equal to or * greater than @buflen, @buf contains the truncated path with the trailing * '\0'. On error, -errno is returned. */ int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, char *buf, size_t buflen) { unsigned long flags; int ret; spin_lock_irqsave(&kernfs_rename_lock, flags); ret = kernfs_path_from_node_locked(to, from, buf, buflen); spin_unlock_irqrestore(&kernfs_rename_lock, flags); return ret; } EXPORT_SYMBOL_GPL(kernfs_path_from_node); /** * pr_cont_kernfs_name - pr_cont name of a kernfs_node * @kn: kernfs_node of interest * * This function can be called from any context. */ void pr_cont_kernfs_name(struct kernfs_node *kn) { unsigned long flags; spin_lock_irqsave(&kernfs_pr_cont_lock, flags); kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); pr_cont("%s", kernfs_pr_cont_buf); spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); } /** * pr_cont_kernfs_path - pr_cont path of a kernfs_node * @kn: kernfs_node of interest * * This function can be called from any context. */ void pr_cont_kernfs_path(struct kernfs_node *kn) { unsigned long flags; int sz; spin_lock_irqsave(&kernfs_pr_cont_lock, flags); sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); if (sz < 0) { pr_cont("(error)"); goto out; } if (sz >= sizeof(kernfs_pr_cont_buf)) { pr_cont("(name too long)"); goto out; } pr_cont("%s", kernfs_pr_cont_buf); out: spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); } /** * kernfs_get_parent - determine the parent node and pin it * @kn: kernfs_node of interest * * Determines @kn's parent, pins and returns it. This function can be * called from any context. */ struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) { struct kernfs_node *parent; unsigned long flags; spin_lock_irqsave(&kernfs_rename_lock, flags); parent = kn->parent; kernfs_get(parent); spin_unlock_irqrestore(&kernfs_rename_lock, flags); return parent; } /** * kernfs_name_hash * @name: Null terminated string to hash * @ns: Namespace tag to hash * * Returns 31 bit hash of ns + name (so it fits in an off_t ) */ static unsigned int kernfs_name_hash(const char *name, const void *ns) { unsigned long hash = init_name_hash(ns); unsigned int len = strlen(name); while (len--) hash = partial_name_hash(*name++, hash); hash = end_name_hash(hash); hash &= 0x7fffffffU; /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ if (hash < 2) hash += 2; if (hash >= INT_MAX) hash = INT_MAX - 1; return hash; } static int kernfs_name_compare(unsigned int hash, const char *name, const void *ns, const struct kernfs_node *kn) { if (hash < kn->hash) return -1; if (hash > kn->hash) return 1; if (ns < kn->ns) return -1; if (ns > kn->ns) return 1; return strcmp(name, kn->name); } static int kernfs_sd_compare(const struct kernfs_node *left, const struct kernfs_node *right) { return kernfs_name_compare(left->hash, left->name, left->ns, right); } /** * kernfs_link_sibling - link kernfs_node into sibling rbtree * @kn: kernfs_node of interest * * Link @kn into its sibling rbtree which starts from * @kn->parent->dir.children. * * Locking: * mutex_lock(kernfs_mutex) * * RETURNS: * 0 on susccess -EEXIST on failure. */ static int kernfs_link_sibling(struct kernfs_node *kn) { struct rb_node **node = &kn->parent->dir.children.rb_node; struct rb_node *parent = NULL; while (*node) { struct kernfs_node *pos; int result; pos = rb_to_kn(*node); parent = *node; result = kernfs_sd_compare(kn, pos); if (result < 0) node = &pos->rb.rb_left; else if (result > 0) node = &pos->rb.rb_right; else return -EEXIST; } /* add new node and rebalance the tree */ rb_link_node(&kn->rb, parent, node); rb_insert_color(&kn->rb, &kn->parent->dir.children); /* successfully added, account subdir number */ if (kernfs_type(kn) == KERNFS_DIR) kn->parent->dir.subdirs++; return 0; } /** * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree * @kn: kernfs_node of interest * * Try to unlink @kn from its sibling rbtree which starts from * kn->parent->dir.children. Returns %true if @kn was actually * removed, %false if @kn wasn't on the rbtree. * * Locking: * mutex_lock(kernfs_mutex) */ static bool kernfs_unlink_sibling(struct kernfs_node *kn) { if (RB_EMPTY_NODE(&kn->rb)) return false; if (kernfs_type(kn) == KERNFS_DIR) kn->parent->dir.subdirs--; rb_erase(&kn->rb, &kn->parent->dir.children); RB_CLEAR_NODE(&kn->rb); return true; } /** * kernfs_get_active - get an active reference to kernfs_node * @kn: kernfs_node to get an active reference to * * Get an active reference of @kn. This function is noop if @kn * is NULL. * * RETURNS: * Pointer to @kn on success, NULL on failure. */ struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) { if (unlikely(!kn)) return NULL; if (!atomic_inc_unless_negative(&kn->active)) return NULL; if (kernfs_lockdep(kn)) rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); return kn; } /** * kernfs_put_active - put an active reference to kernfs_node * @kn: kernfs_node to put an active reference to * * Put an active reference to @kn. This function is noop if @kn * is NULL. */ void kernfs_put_active(struct kernfs_node *kn) { struct kernfs_root *root = kernfs_root(kn); int v; if (unlikely(!kn)) return; if (kernfs_lockdep(kn)) rwsem_release(&kn->dep_map, 1, _RET_IP_); v = atomic_dec_return(&kn->active); if (likely(v != KN_DEACTIVATED_BIAS)) return; wake_up_all(&root->deactivate_waitq); } /** * kernfs_drain - drain kernfs_node * @kn: kernfs_node to drain * * Drain existing usages and nuke all existing mmaps of @kn. Mutiple * removers may invoke this function concurrently on @kn and all will * return after draining is complete. */ static void kernfs_drain(struct kernfs_node *kn) __releases(&kernfs_mutex) __acquires(&kernfs_mutex) { struct kernfs_root *root = kernfs_root(kn); lockdep_assert_held(&kernfs_mutex); WARN_ON_ONCE(kernfs_active(kn)); mutex_unlock(&kernfs_mutex); if (kernfs_lockdep(kn)) { rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) lock_contended(&kn->dep_map, _RET_IP_); } /* but everyone should wait for draining */ wait_event(root->deactivate_waitq, atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); if (kernfs_lockdep(kn)) { lock_acquired(&kn->dep_map, _RET_IP_); rwsem_release(&kn->dep_map, 1, _RET_IP_); } kernfs_drain_open_files(kn); mutex_lock(&kernfs_mutex); } /** * kernfs_get - get a reference count on a kernfs_node * @kn: the target kernfs_node */ void kernfs_get(struct kernfs_node *kn) { if (kn) { WARN_ON(!atomic_read(&kn->count)); atomic_inc(&kn->count); } } EXPORT_SYMBOL_GPL(kernfs_get); /** * kernfs_put - put a reference count on a kernfs_node * @kn: the target kernfs_node * * Put a reference count of @kn and destroy it if it reached zero. */ void kernfs_put(struct kernfs_node *kn) { struct kernfs_node *parent; struct kernfs_root *root; /* * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino * depends on this to filter reused stale node */ if (!kn || !atomic_dec_and_test(&kn->count)) return; root = kernfs_root(kn); repeat: /* * Moving/renaming is always done while holding reference. * kn->parent won't change beneath us. */ parent = kn->parent; WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, "kernfs_put: %s/%s: released with incorrect active_ref %d\n", parent ? parent->name : "", kn->name, atomic_read(&kn->active)); if (kernfs_type(kn) == KERNFS_LINK) kernfs_put(kn->symlink.target_kn); kfree_const(kn->name); if (kn->iattr) { if (kn->iattr->ia_secdata) security_release_secctx(kn->iattr->ia_secdata, kn->iattr->ia_secdata_len); simple_xattrs_free(&kn->iattr->xattrs); } kfree(kn->iattr); spin_lock(&kernfs_idr_lock); idr_remove(&root->ino_idr, kn->id.ino); spin_unlock(&kernfs_idr_lock); kmem_cache_free(kernfs_node_cache, kn); kn = parent; if (kn) { if (atomic_dec_and_test(&kn->count)) goto repeat; } else { /* just released the root kn, free @root too */ idr_destroy(&root->ino_idr); kfree(root); } } EXPORT_SYMBOL_GPL(kernfs_put); static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) { struct kernfs_node *kn; if (flags & LOOKUP_RCU) return -ECHILD; /* Always perform fresh lookup for negatives */ if (d_really_is_negative(dentry)) goto out_bad_unlocked; kn = kernfs_dentry_node(dentry); mutex_lock(&kernfs_mutex); /* The kernfs node has been deactivated */ if (!kernfs_active(kn)) goto out_bad; /* The kernfs node has been moved? */ if (kernfs_dentry_node(dentry->d_parent) != kn->parent) goto out_bad; /* The kernfs node has been renamed */ if (strcmp(dentry->d_name.name, kn->name) != 0) goto out_bad; /* The kernfs node has been moved to a different namespace */ if (kn->parent && kernfs_ns_enabled(kn->parent) && kernfs_info(dentry->d_sb)->ns != kn->ns) goto out_bad; mutex_unlock(&kernfs_mutex); return 1; out_bad: mutex_unlock(&kernfs_mutex); out_bad_unlocked: return 0; } const struct dentry_operations kernfs_dops = { .d_revalidate = kernfs_dop_revalidate, }; /** * kernfs_node_from_dentry - determine kernfs_node associated with a dentry * @dentry: the dentry in question * * Return the kernfs_node associated with @dentry. If @dentry is not a * kernfs one, %NULL is returned. * * While the returned kernfs_node will stay accessible as long as @dentry * is accessible, the returned node can be in any state and the caller is * fully responsible for determining what's accessible. */ struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) { if (dentry->d_sb->s_op == &kernfs_sops && !d_really_is_negative(dentry)) return kernfs_dentry_node(dentry); return NULL; } static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, const char *name, umode_t mode, kuid_t uid, kgid_t gid, unsigned flags) { struct kernfs_node *kn; u32 gen; int ret; name = kstrdup_const(name, GFP_KERNEL); if (!name) return NULL; kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); if (!kn) goto err_out1; idr_preload(GFP_KERNEL); spin_lock(&kernfs_idr_lock); ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); if (ret >= 0 && ret < root->last_ino) root->next_generation++; gen = root->next_generation; root->last_ino = ret; spin_unlock(&kernfs_idr_lock); idr_preload_end(); if (ret < 0) goto err_out2; kn->id.ino = ret; kn->id.generation = gen; /* * set ino first. This RELEASE is paired with atomic_inc_not_zero in * kernfs_find_and_get_node_by_ino */ atomic_set_release(&kn->count, 1); atomic_set(&kn->active, KN_DEACTIVATED_BIAS); RB_CLEAR_NODE(&kn->rb); kn->name = name; kn->mode = mode; kn->flags = flags; if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) { struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, .ia_uid = uid, .ia_gid = gid, }; ret = __kernfs_setattr(kn, &iattr); if (ret < 0) goto err_out3; } return kn; err_out3: idr_remove(&root->ino_idr, kn->id.ino); err_out2: kmem_cache_free(kernfs_node_cache, kn); err_out1: kfree_const(name); return NULL; } struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, const char *name, umode_t mode, kuid_t uid, kgid_t gid, unsigned flags) { struct kernfs_node *kn; kn = __kernfs_new_node(kernfs_root(parent), name, mode, uid, gid, flags); if (kn) { kernfs_get(parent); kn->parent = parent; } return kn; } /* * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number * @root: the kernfs root * @ino: inode number * * RETURNS: * NULL on failure. Return a kernfs node with reference counter incremented */ struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root, unsigned int ino) { struct kernfs_node *kn; rcu_read_lock(); kn = idr_find(&root->ino_idr, ino); if (!kn) goto out; /* * Since kernfs_node is freed in RCU, it's possible an old node for ino * is freed, but reused before RCU grace period. But a freed node (see * kernfs_put) or an incompletedly initialized node (see * __kernfs_new_node) should have 'count' 0. We can use this fact to * filter out such node. */ if (!atomic_inc_not_zero(&kn->count)) { kn = NULL; goto out; } /* * The node could be a new node or a reused node. If it's a new node, * we are ok. If it's reused because of RCU (because of * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino' * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate, * hence we can use 'ino' to filter stale node. */ if (kn->id.ino != ino) goto out; rcu_read_unlock(); return kn; out: rcu_read_unlock(); kernfs_put(kn); return NULL; } /** * kernfs_add_one - add kernfs_node to parent without warning * @kn: kernfs_node to be added * * The caller must already have initialized @kn->parent. This * function increments nlink of the parent's inode if @kn is a * directory and link into the children list of the parent. * * RETURNS: * 0 on success, -EEXIST if entry with the given name already * exists. */ int kernfs_add_one(struct kernfs_node *kn) { struct kernfs_node *parent = kn->parent; struct kernfs_iattrs *ps_iattr; bool has_ns; int ret; mutex_lock(&kernfs_mutex); ret = -EINVAL; has_ns = kernfs_ns_enabled(parent); if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", has_ns ? "required" : "invalid", parent->name, kn->name)) goto out_unlock; if (kernfs_type(parent) != KERNFS_DIR) goto out_unlock; ret = -ENOENT; if (parent->flags & KERNFS_EMPTY_DIR) goto out_unlock; if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent)) goto out_unlock; kn->hash = kernfs_name_hash(kn->name, kn->ns); ret = kernfs_link_sibling(kn); if (ret) goto out_unlock; /* Update timestamps on the parent */ ps_iattr = parent->iattr; if (ps_iattr) { struct iattr *ps_iattrs = &ps_iattr->ia_iattr; ktime_get_real_ts64(&ps_iattrs->ia_ctime); ps_iattrs->ia_mtime = ps_iattrs->ia_ctime; } mutex_unlock(&kernfs_mutex); /* * Activate the new node unless CREATE_DEACTIVATED is requested. * If not activated here, the kernfs user is responsible for * activating the node with kernfs_activate(). A node which hasn't * been activated is not visible to userland and its removal won't * trigger deactivation. */ if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) kernfs_activate(kn); return 0; out_unlock: mutex_unlock(&kernfs_mutex); return ret; } /** * kernfs_find_ns - find kernfs_node with the given name * @parent: kernfs_node to search under * @name: name to look for * @ns: the namespace tag to use * * Look for kernfs_node with name @name under @parent. Returns pointer to * the found kernfs_node on success, %NULL on failure. */ static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, const unsigned char *name, const void *ns) { struct rb_node *node = parent->dir.children.rb_node; bool has_ns = kernfs_ns_enabled(parent); unsigned int hash; lockdep_assert_held(&kernfs_mutex); if (has_ns != (bool)ns) { WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", has_ns ? "required" : "invalid", parent->name, name); return NULL; } hash = kernfs_name_hash(name, ns); while (node) { struct kernfs_node *kn; int result; kn = rb_to_kn(node); result = kernfs_name_compare(hash, name, ns, kn); if (result < 0) node = node->rb_left; else if (result > 0) node = node->rb_right; else return kn; } return NULL; } static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, const unsigned char *path, const void *ns) { size_t len; char *p, *name; lockdep_assert_held(&kernfs_mutex); spin_lock_irq(&kernfs_pr_cont_lock); len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); if (len >= sizeof(kernfs_pr_cont_buf)) { spin_unlock_irq(&kernfs_pr_cont_lock); return NULL; } p = kernfs_pr_cont_buf; while ((name = strsep(&p, "/")) && parent) { if (*name == '\0') continue; parent = kernfs_find_ns(parent, name, ns); } spin_unlock_irq(&kernfs_pr_cont_lock); return parent; } /** * kernfs_find_and_get_ns - find and get kernfs_node with the given name * @parent: kernfs_node to search under * @name: name to look for * @ns: the namespace tag to use * * Look for kernfs_node with name @name under @parent and get a reference * if found. This function may sleep and returns pointer to the found * kernfs_node on success, %NULL on failure. */ struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, const char *name, const void *ns) { struct kernfs_node *kn; mutex_lock(&kernfs_mutex); kn = kernfs_find_ns(parent, name, ns); kernfs_get(kn); mutex_unlock(&kernfs_mutex); return kn; } EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); /** * kernfs_walk_and_get_ns - find and get kernfs_node with the given path * @parent: kernfs_node to search under * @path: path to look for * @ns: the namespace tag to use * * Look for kernfs_node with path @path under @parent and get a reference * if found. This function may sleep and returns pointer to the found * kernfs_node on success, %NULL on failure. */ struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, const char *path, const void *ns) { struct kernfs_node *kn; mutex_lock(&kernfs_mutex); kn = kernfs_walk_ns(parent, path, ns); kernfs_get(kn); mutex_unlock(&kernfs_mutex); return kn; } /** * kernfs_create_root - create a new kernfs hierarchy * @scops: optional syscall operations for the hierarchy * @flags: KERNFS_ROOT_* flags * @priv: opaque data associated with the new directory * * Returns the root of the new hierarchy on success, ERR_PTR() value on * failure. */ struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, unsigned int flags, void *priv) { struct kernfs_root *root; struct kernfs_node *kn; root = kzalloc(sizeof(*root), GFP_KERNEL); if (!root) return ERR_PTR(-ENOMEM); idr_init(&root->ino_idr); INIT_LIST_HEAD(&root->supers); root->next_generation = 1; kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); if (!kn) { idr_destroy(&root->ino_idr); kfree(root); return ERR_PTR(-ENOMEM); } kn->priv = priv; kn->dir.root = root; root->syscall_ops = scops; root->flags = flags; root->kn = kn; init_waitqueue_head(&root->deactivate_waitq); if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) kernfs_activate(kn); return root; } /** * kernfs_destroy_root - destroy a kernfs hierarchy * @root: root of the hierarchy to destroy * * Destroy the hierarchy anchored at @root by removing all existing * directories and destroying @root. */ void kernfs_destroy_root(struct kernfs_root *root) { kernfs_remove(root->kn); /* will also free @root */ } /** * kernfs_create_dir_ns - create a directory * @parent: parent in which to create a new directory * @name: name of the new directory * @mode: mode of the new directory * @uid: uid of the new directory * @gid: gid of the new directory * @priv: opaque data associated with the new directory * @ns: optional namespace tag of the directory * * Returns the created node on success, ERR_PTR() value on failure. */ struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, const char *name, umode_t mode, kuid_t uid, kgid_t gid, void *priv, const void *ns) { struct kernfs_node *kn; int rc; /* allocate */ kn = kernfs_new_node(parent, name, mode | S_IFDIR, uid, gid, KERNFS_DIR); if (!kn) return ERR_PTR(-ENOMEM); kn->dir.root = parent->dir.root; kn->ns = ns; kn->priv = priv; /* link in */ rc = kernfs_add_one(kn); if (!rc) return kn; kernfs_put(kn); return ERR_PTR(rc); } /** * kernfs_create_empty_dir - create an always empty directory * @parent: parent in which to create a new directory * @name: name of the new directory * * Returns the created node on success, ERR_PTR() value on failure. */ struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, const char *name) { struct kernfs_node *kn; int rc; /* allocate */ kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); if (!kn) return ERR_PTR(-ENOMEM); kn->flags |= KERNFS_EMPTY_DIR; kn->dir.root = parent->dir.root; kn->ns = NULL; kn->priv = NULL; /* link in */ rc = kernfs_add_one(kn); if (!rc) return kn; kernfs_put(kn); return ERR_PTR(rc); } static struct dentry *kernfs_iop_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { struct dentry *ret; struct kernfs_node *parent = dir->i_private; struct kernfs_node *kn; struct inode *inode; const void *ns = NULL; mutex_lock(&kernfs_mutex); if (kernfs_ns_enabled(parent)) ns = kernfs_info(dir->i_sb)->ns; kn = kernfs_find_ns(parent, dentry->d_name.name, ns); /* no such entry */ if (!kn || !kernfs_active(kn)) { ret = NULL; goto out_unlock; } /* attach dentry and inode */ inode = kernfs_get_inode(dir->i_sb, kn); if (!inode) { ret = ERR_PTR(-ENOMEM); goto out_unlock; } /* instantiate and hash dentry */ ret = d_splice_alias(inode, dentry); out_unlock: mutex_unlock(&kernfs_mutex); return ret; } static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) { struct kernfs_node *parent = dir->i_private; struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; int ret; if (!scops || !scops->mkdir) return -EPERM; if (!kernfs_get_active(parent)) return -ENODEV; ret = scops->mkdir(parent, dentry->d_name.name, mode); kernfs_put_active(parent); return ret; } static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) { struct kernfs_node *kn = kernfs_dentry_node(dentry); struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; int ret; if (!scops || !scops->rmdir) return -EPERM; if (!kernfs_get_active(kn)) return -ENODEV; ret = scops->rmdir(kn); kernfs_put_active(kn); return ret; } static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { struct kernfs_node *kn = kernfs_dentry_node(old_dentry); struct kernfs_node *new_parent = new_dir->i_private; struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; int ret; if (flags) return -EINVAL; if (!scops || !scops->rename) return -EPERM; if (!kernfs_get_active(kn)) return -ENODEV; if (!kernfs_get_active(new_parent)) { kernfs_put_active(kn); return -ENODEV; } ret = scops->rename(kn, new_parent, new_dentry->d_name.name); kernfs_put_active(new_parent); kernfs_put_active(kn); return ret; } const struct inode_operations kernfs_dir_iops = { .lookup = kernfs_iop_lookup, .permission = kernfs_iop_permission, .setattr = kernfs_iop_setattr, .getattr = kernfs_iop_getattr, .listxattr = kernfs_iop_listxattr, .mkdir = kernfs_iop_mkdir, .rmdir = kernfs_iop_rmdir, .rename = kernfs_iop_rename, }; static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) { struct kernfs_node *last; while (true) { struct rb_node *rbn; last = pos; if (kernfs_type(pos) != KERNFS_DIR) break; rbn = rb_first(&pos->dir.children); if (!rbn) break; pos = rb_to_kn(rbn); } return last; } /** * kernfs_next_descendant_post - find the next descendant for post-order walk * @pos: the current position (%NULL to initiate traversal) * @root: kernfs_node whose descendants to walk * * Find the next descendant to visit for post-order traversal of @root's * descendants. @root is included in the iteration and the last node to be * visited. */ static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, struct kernfs_node *root) { struct rb_node *rbn; lockdep_assert_held(&kernfs_mutex); /* if first iteration, visit leftmost descendant which may be root */ if (!pos) return kernfs_leftmost_descendant(root); /* if we visited @root, we're done */ if (pos == root) return NULL; /* if there's an unvisited sibling, visit its leftmost descendant */ rbn = rb_next(&pos->rb); if (rbn) return kernfs_leftmost_descendant(rb_to_kn(rbn)); /* no sibling left, visit parent */ return pos->parent; } /** * kernfs_activate - activate a node which started deactivated * @kn: kernfs_node whose subtree is to be activated * * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node * needs to be explicitly activated. A node which hasn't been activated * isn't visible to userland and deactivation is skipped during its * removal. This is useful to construct atomic init sequences where * creation of multiple nodes should either succeed or fail atomically. * * The caller is responsible for ensuring that this function is not called * after kernfs_remove*() is invoked on @kn. */ void kernfs_activate(struct kernfs_node *kn) { struct kernfs_node *pos; mutex_lock(&kernfs_mutex); pos = NULL; while ((pos = kernfs_next_descendant_post(pos, kn))) { if (!pos || (pos->flags & KERNFS_ACTIVATED)) continue; WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb)); WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS); atomic_sub(KN_DEACTIVATED_BIAS, &pos->active); pos->flags |= KERNFS_ACTIVATED; } mutex_unlock(&kernfs_mutex); } static void __kernfs_remove(struct kernfs_node *kn) { struct kernfs_node *pos; lockdep_assert_held(&kernfs_mutex); /* * Short-circuit if non-root @kn has already finished removal. * This is for kernfs_remove_self() which plays with active ref * after removal. */ if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb))) return; pr_debug("kernfs %s: removing\n", kn->name); /* prevent any new usage under @kn by deactivating all nodes */ pos = NULL; while ((pos = kernfs_next_descendant_post(pos, kn))) if (kernfs_active(pos)) atomic_add(KN_DEACTIVATED_BIAS, &pos->active); /* deactivate and unlink the subtree node-by-node */ do { pos = kernfs_leftmost_descendant(kn); /* * kernfs_drain() drops kernfs_mutex temporarily and @pos's * base ref could have been put by someone else by the time * the function returns. Make sure it doesn't go away * underneath us. */ kernfs_get(pos); /* * Drain iff @kn was activated. This avoids draining and * its lockdep annotations for nodes which have never been * activated and allows embedding kernfs_remove() in create * error paths without worrying about draining. */ if (kn->flags & KERNFS_ACTIVATED) kernfs_drain(pos); else WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); /* * kernfs_unlink_sibling() succeeds once per node. Use it * to decide who's responsible for cleanups. */ if (!pos->parent || kernfs_unlink_sibling(pos)) { struct kernfs_iattrs *ps_iattr = pos->parent ? pos->parent->iattr : NULL; /* update timestamps on the parent */ if (ps_iattr) { ktime_get_real_ts64(&ps_iattr->ia_iattr.ia_ctime); ps_iattr->ia_iattr.ia_mtime = ps_iattr->ia_iattr.ia_ctime; } kernfs_put(pos); } kernfs_put(pos); } while (pos != kn); } /** * kernfs_remove - remove a kernfs_node recursively * @kn: the kernfs_node to remove * * Remove @kn along with all its subdirectories and files. */ void kernfs_remove(struct kernfs_node *kn) { mutex_lock(&kernfs_mutex); __kernfs_remove(kn); mutex_unlock(&kernfs_mutex); } /** * kernfs_break_active_protection - break out of active protection * @kn: the self kernfs_node * * The caller must be running off of a kernfs operation which is invoked * with an active reference - e.g. one of kernfs_ops. Each invocation of * this function must also be matched with an invocation of * kernfs_unbreak_active_protection(). * * This function releases the active reference of @kn the caller is * holding. Once this function is called, @kn may be removed at any point * and the caller is solely responsible for ensuring that the objects it * dereferences are accessible. */ void kernfs_break_active_protection(struct kernfs_node *kn) { /* * Take out ourself out of the active ref dependency chain. If * we're called without an active ref, lockdep will complain. */ kernfs_put_active(kn); } /** * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() * @kn: the self kernfs_node * * If kernfs_break_active_protection() was called, this function must be * invoked before finishing the kernfs operation. Note that while this * function restores the active reference, it doesn't and can't actually * restore the active protection - @kn may already or be in the process of * being removed. Once kernfs_break_active_protection() is invoked, that * protection is irreversibly gone for the kernfs operation instance. * * While this function may be called at any point after * kernfs_break_active_protection() is invoked, its most useful location * would be right before the enclosing kernfs operation returns. */ void kernfs_unbreak_active_protection(struct kernfs_node *kn) { /* * @kn->active could be in any state; however, the increment we do * here will be undone as soon as the enclosing kernfs operation * finishes and this temporary bump can't break anything. If @kn * is alive, nothing changes. If @kn is being deactivated, the * soon-to-follow put will either finish deactivation or restore * deactivated state. If @kn is already removed, the temporary * bump is guaranteed to be gone before @kn is released. */ atomic_inc(&kn->active); if (kernfs_lockdep(kn)) rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); } /** * kernfs_remove_self - remove a kernfs_node from its own method * @kn: the self kernfs_node to remove * * The caller must be running off of a kernfs operation which is invoked * with an active reference - e.g. one of kernfs_ops. This can be used to * implement a file operation which deletes itself. * * For example, the "delete" file for a sysfs device directory can be * implemented by invoking kernfs_remove_self() on the "delete" file * itself. This function breaks the circular dependency of trying to * deactivate self while holding an active ref itself. It isn't necessary * to modify the usual removal path to use kernfs_remove_self(). The * "delete" implementation can simply invoke kernfs_remove_self() on self * before proceeding with the usual removal path. kernfs will ignore later * kernfs_remove() on self. * * kernfs_remove_self() can be called multiple times concurrently on the * same kernfs_node. Only the first one actually performs removal and * returns %true. All others will wait until the kernfs operation which * won self-removal finishes and return %false. Note that the losers wait * for the completion of not only the winning kernfs_remove_self() but also * the whole kernfs_ops which won the arbitration. This can be used to * guarantee, for example, all concurrent writes to a "delete" file to * finish only after the whole operation is complete. */ bool kernfs_remove_self(struct kernfs_node *kn) { bool ret; mutex_lock(&kernfs_mutex); kernfs_break_active_protection(kn); /* * SUICIDAL is used to arbitrate among competing invocations. Only * the first one will actually perform removal. When the removal * is complete, SUICIDED is set and the active ref is restored * while holding kernfs_mutex. The ones which lost arbitration * waits for SUICDED && drained which can happen only after the * enclosing kernfs operation which executed the winning instance * of kernfs_remove_self() finished. */ if (!(kn->flags & KERNFS_SUICIDAL)) { kn->flags |= KERNFS_SUICIDAL; __kernfs_remove(kn); kn->flags |= KERNFS_SUICIDED; ret = true; } else { wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; DEFINE_WAIT(wait); while (true) { prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); if ((kn->flags & KERNFS_SUICIDED) && atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) break; mutex_unlock(&kernfs_mutex); schedule(); mutex_lock(&kernfs_mutex); } finish_wait(waitq, &wait); WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); ret = false; } /* * This must be done while holding kernfs_mutex; otherwise, waiting * for SUICIDED && deactivated could finish prematurely. */ kernfs_unbreak_active_protection(kn); mutex_unlock(&kernfs_mutex); return ret; } /** * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it * @parent: parent of the target * @name: name of the kernfs_node to remove * @ns: namespace tag of the kernfs_node to remove * * Look for the kernfs_node with @name and @ns under @parent and remove it. * Returns 0 on success, -ENOENT if such entry doesn't exist. */ int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, const void *ns) { struct kernfs_node *kn; if (!parent) { WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", name); return -ENOENT; } mutex_lock(&kernfs_mutex); kn = kernfs_find_ns(parent, name, ns); if (kn) __kernfs_remove(kn); mutex_unlock(&kernfs_mutex); if (kn) return 0; else return -ENOENT; } /** * kernfs_rename_ns - move and rename a kernfs_node * @kn: target node * @new_parent: new parent to put @sd under * @new_name: new name * @new_ns: new namespace tag */ int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, const char *new_name, const void *new_ns) { struct kernfs_node *old_parent; const char *old_name = NULL; int error; /* can't move or rename root */ if (!kn->parent) return -EINVAL; mutex_lock(&kernfs_mutex); error = -ENOENT; if (!kernfs_active(kn) || !kernfs_active(new_parent) || (new_parent->flags & KERNFS_EMPTY_DIR)) goto out; error = 0; if ((kn->parent == new_parent) && (kn->ns == new_ns) && (strcmp(kn->name, new_name) == 0)) goto out; /* nothing to rename */ error = -EEXIST; if (kernfs_find_ns(new_parent, new_name, new_ns)) goto out; /* rename kernfs_node */ if (strcmp(kn->name, new_name) != 0) { error = -ENOMEM; new_name = kstrdup_const(new_name, GFP_KERNEL); if (!new_name) goto out; } else { new_name = NULL; } /* * Move to the appropriate place in the appropriate directories rbtree. */ kernfs_unlink_sibling(kn); kernfs_get(new_parent); /* rename_lock protects ->parent and ->name accessors */ spin_lock_irq(&kernfs_rename_lock); old_parent = kn->parent; kn->parent = new_parent; kn->ns = new_ns; if (new_name) { old_name = kn->name; kn->name = new_name; } spin_unlock_irq(&kernfs_rename_lock); kn->hash = kernfs_name_hash(kn->name, kn->ns); kernfs_link_sibling(kn); kernfs_put(old_parent); kfree_const(old_name); error = 0; out: mutex_unlock(&kernfs_mutex); return error; } /* Relationship between s_mode and the DT_xxx types */ static inline unsigned char dt_type(struct kernfs_node *kn) { return (kn->mode >> 12) & 15; } static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) { kernfs_put(filp->private_data); return 0; } static struct kernfs_node *kernfs_dir_pos(const void *ns, struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) { if (pos) { int valid = kernfs_active(pos) && pos->parent == parent && hash == pos->hash; kernfs_put(pos); if (!valid) pos = NULL; } if (!pos && (hash > 1) && (hash < INT_MAX)) { struct rb_node *node = parent->dir.children.rb_node; while (node) { pos = rb_to_kn(node); if (hash < pos->hash) node = node->rb_left; else if (hash > pos->hash) node = node->rb_right; else break; } } /* Skip over entries which are dying/dead or in the wrong namespace */ while (pos && (!kernfs_active(pos) || pos->ns != ns)) { struct rb_node *node = rb_next(&pos->rb); if (!node) pos = NULL; else pos = rb_to_kn(node); } return pos; } static struct kernfs_node *kernfs_dir_next_pos(const void *ns, struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) { pos = kernfs_dir_pos(ns, parent, ino, pos); if (pos) { do { struct rb_node *node = rb_next(&pos->rb); if (!node) pos = NULL; else pos = rb_to_kn(node); } while (pos && (!kernfs_active(pos) || pos->ns != ns)); } return pos; } static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) { struct dentry *dentry = file->f_path.dentry; struct kernfs_node *parent = kernfs_dentry_node(dentry); struct kernfs_node *pos = file->private_data; const void *ns = NULL; if (!dir_emit_dots(file, ctx)) return 0; mutex_lock(&kernfs_mutex); if (kernfs_ns_enabled(parent)) ns = kernfs_info(dentry->d_sb)->ns; for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); pos; pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { const char *name = pos->name; unsigned int type = dt_type(pos); int len = strlen(name); ino_t ino = pos->id.ino; ctx->pos = pos->hash; file->private_data = pos; kernfs_get(pos); mutex_unlock(&kernfs_mutex); if (!dir_emit(ctx, name, len, ino, type)) return 0; mutex_lock(&kernfs_mutex); } mutex_unlock(&kernfs_mutex); file->private_data = NULL; ctx->pos = INT_MAX; return 0; } const struct file_operations kernfs_dir_fops = { .read = generic_read_dir, .iterate_shared = kernfs_fop_readdir, .release = kernfs_dir_fop_release, .llseek = generic_file_llseek, };