/* * net/sched/ematch.c Extended Match API * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Authors: Thomas Graf * * ========================================================================== * * An extended match (ematch) is a small classification tool not worth * writing a full classifier for. Ematches can be interconnected to form * a logic expression and get attached to classifiers to extend their * functionatlity. * * The userspace part transforms the logic expressions into an array * consisting of multiple sequences of interconnected ematches separated * by markers. Precedence is implemented by a special ematch kind * referencing a sequence beyond the marker of the current sequence * causing the current position in the sequence to be pushed onto a stack * to allow the current position to be overwritten by the position referenced * in the special ematch. Matching continues in the new sequence until a * marker is reached causing the position to be restored from the stack. * * Example: * A AND (B1 OR B2) AND C AND D * * ------->-PUSH------- * -->-- / -->-- \ -->-- * / \ / / \ \ / \ * +-------+-------+-------+-------+-------+--------+ * | A AND | B AND | C AND | D END | B1 OR | B2 END | * +-------+-------+-------+-------+-------+--------+ * \ / * --------<-POP--------- * * where B is a virtual ematch referencing to sequence starting with B1. * * ========================================================================== * * How to write an ematch in 60 seconds * ------------------------------------ * * 1) Provide a matcher function: * static int my_match(struct sk_buff *skb, struct tcf_ematch *m, * struct tcf_pkt_info *info) * { * struct mydata *d = (struct mydata *) m->data; * * if (...matching goes here...) * return 1; * else * return 0; * } * * 2) Fill out a struct tcf_ematch_ops: * static struct tcf_ematch_ops my_ops = { * .kind = unique id, * .datalen = sizeof(struct mydata), * .match = my_match, * .owner = THIS_MODULE, * }; * * 3) Register/Unregister your ematch: * static int __init init_my_ematch(void) * { * return tcf_em_register(&my_ops); * } * * static void __exit exit_my_ematch(void) * { * tcf_em_unregister(&my_ops); * } * * module_init(init_my_ematch); * module_exit(exit_my_ematch); * * 4) By now you should have two more seconds left, barely enough to * open up a beer to watch the compilation going. */ #include #include #include #include #include #include #include #include static LIST_HEAD(ematch_ops); static DEFINE_RWLOCK(ematch_mod_lock); static struct tcf_ematch_ops *tcf_em_lookup(u16 kind) { struct tcf_ematch_ops *e = NULL; read_lock(&ematch_mod_lock); list_for_each_entry(e, &ematch_ops, link) { if (kind == e->kind) { if (!try_module_get(e->owner)) e = NULL; read_unlock(&ematch_mod_lock); return e; } } read_unlock(&ematch_mod_lock); return NULL; } /** * tcf_em_register - register an extended match * * @ops: ematch operations lookup table * * This function must be called by ematches to announce their presence. * The given @ops must have kind set to a unique identifier and the * callback match() must be implemented. All other callbacks are optional * and a fallback implementation is used instead. * * Returns -EEXISTS if an ematch of the same kind has already registered. */ int tcf_em_register(struct tcf_ematch_ops *ops) { int err = -EEXIST; struct tcf_ematch_ops *e; if (ops->match == NULL) return -EINVAL; write_lock(&ematch_mod_lock); list_for_each_entry(e, &ematch_ops, link) if (ops->kind == e->kind) goto errout; list_add_tail(&ops->link, &ematch_ops); err = 0; errout: write_unlock(&ematch_mod_lock); return err; } EXPORT_SYMBOL(tcf_em_register); /** * tcf_em_unregister - unregster and extended match * * @ops: ematch operations lookup table * * This function must be called by ematches to announce their disappearance * for examples when the module gets unloaded. The @ops parameter must be * the same as the one used for registration. * * Returns -ENOENT if no matching ematch was found. */ void tcf_em_unregister(struct tcf_ematch_ops *ops) { write_lock(&ematch_mod_lock); list_del(&ops->link); write_unlock(&ematch_mod_lock); } EXPORT_SYMBOL(tcf_em_unregister); static inline struct tcf_ematch *tcf_em_get_match(struct tcf_ematch_tree *tree, int index) { return &tree->matches[index]; } static int tcf_em_validate(struct tcf_proto *tp, struct tcf_ematch_tree_hdr *tree_hdr, struct tcf_ematch *em, struct nlattr *nla, int idx) { int err = -EINVAL; struct tcf_ematch_hdr *em_hdr = nla_data(nla); int data_len = nla_len(nla) - sizeof(*em_hdr); void *data = (void *) em_hdr + sizeof(*em_hdr); struct net *net = tp->chain->block->net; if (!TCF_EM_REL_VALID(em_hdr->flags)) goto errout; if (em_hdr->kind == TCF_EM_CONTAINER) { /* Special ematch called "container", carries an index * referencing an external ematch sequence. */ u32 ref; if (data_len < sizeof(ref)) goto errout; ref = *(u32 *) data; if (ref >= tree_hdr->nmatches) goto errout; /* We do not allow backward jumps to avoid loops and jumps * to our own position are of course illegal. */ if (ref <= idx) goto errout; em->data = ref; } else { /* Note: This lookup will increase the module refcnt * of the ematch module referenced. In case of a failure, * a destroy function is called by the underlying layer * which automatically releases the reference again, therefore * the module MUST not be given back under any circumstances * here. Be aware, the destroy function assumes that the * module is held if the ops field is non zero. */ em->ops = tcf_em_lookup(em_hdr->kind); if (em->ops == NULL) { err = -ENOENT; #ifdef CONFIG_MODULES __rtnl_unlock(); request_module("ematch-kind-%u", em_hdr->kind); rtnl_lock(); em->ops = tcf_em_lookup(em_hdr->kind); if (em->ops) { /* We dropped the RTNL mutex in order to * perform the module load. Tell the caller * to replay the request. */ module_put(em->ops->owner); em->ops = NULL; err = -EAGAIN; } #endif goto errout; } /* ematch module provides expected length of data, so we * can do a basic sanity check. */ if (em->ops->datalen && data_len < em->ops->datalen) goto errout; if (em->ops->change) { err = -EINVAL; if (em_hdr->flags & TCF_EM_SIMPLE) goto errout; err = em->ops->change(net, data, data_len, em); if (err < 0) goto errout; } else if (data_len > 0) { /* ematch module doesn't provide an own change * procedure and expects us to allocate and copy * the ematch data. * * TCF_EM_SIMPLE may be specified stating that the * data only consists of a u32 integer and the module * does not expected a memory reference but rather * the value carried. */ if (em_hdr->flags & TCF_EM_SIMPLE) { if (em->ops->datalen > 0) goto errout; if (data_len < sizeof(u32)) goto errout; em->data = *(u32 *) data; } else { void *v = kmemdup(data, data_len, GFP_KERNEL); if (v == NULL) { err = -ENOBUFS; goto errout; } em->data = (unsigned long) v; } em->datalen = data_len; } } em->matchid = em_hdr->matchid; em->flags = em_hdr->flags; em->net = net; err = 0; errout: return err; } static const struct nla_policy em_policy[TCA_EMATCH_TREE_MAX + 1] = { [TCA_EMATCH_TREE_HDR] = { .len = sizeof(struct tcf_ematch_tree_hdr) }, [TCA_EMATCH_TREE_LIST] = { .type = NLA_NESTED }, }; /** * tcf_em_tree_validate - validate ematch config TLV and build ematch tree * * @tp: classifier kind handle * @nla: ematch tree configuration TLV * @tree: destination ematch tree variable to store the resulting * ematch tree. * * This function validates the given configuration TLV @nla and builds an * ematch tree in @tree. The resulting tree must later be copied into * the private classifier data using tcf_em_tree_change(). You MUST NOT * provide the ematch tree variable of the private classifier data directly, * the changes would not be locked properly. * * Returns a negative error code if the configuration TLV contains errors. */ int tcf_em_tree_validate(struct tcf_proto *tp, struct nlattr *nla, struct tcf_ematch_tree *tree) { int idx, list_len, matches_len, err; struct nlattr *tb[TCA_EMATCH_TREE_MAX + 1]; struct nlattr *rt_match, *rt_hdr, *rt_list; struct tcf_ematch_tree_hdr *tree_hdr; struct tcf_ematch *em; memset(tree, 0, sizeof(*tree)); if (!nla) return 0; err = nla_parse_nested(tb, TCA_EMATCH_TREE_MAX, nla, em_policy, NULL); if (err < 0) goto errout; err = -EINVAL; rt_hdr = tb[TCA_EMATCH_TREE_HDR]; rt_list = tb[TCA_EMATCH_TREE_LIST]; if (rt_hdr == NULL || rt_list == NULL) goto errout; tree_hdr = nla_data(rt_hdr); memcpy(&tree->hdr, tree_hdr, sizeof(*tree_hdr)); rt_match = nla_data(rt_list); list_len = nla_len(rt_list); matches_len = tree_hdr->nmatches * sizeof(*em); tree->matches = kzalloc(matches_len, GFP_KERNEL); if (tree->matches == NULL) goto errout; /* We do not use nla_parse_nested here because the maximum * number of attributes is unknown. This saves us the allocation * for a tb buffer which would serve no purpose at all. * * The array of rt attributes is parsed in the order as they are * provided, their type must be incremental from 1 to n. Even * if it does not serve any real purpose, a failure of sticking * to this policy will result in parsing failure. */ for (idx = 0; nla_ok(rt_match, list_len); idx++) { err = -EINVAL; if (rt_match->nla_type != (idx + 1)) goto errout_abort; if (idx >= tree_hdr->nmatches) goto errout_abort; if (nla_len(rt_match) < sizeof(struct tcf_ematch_hdr)) goto errout_abort; em = tcf_em_get_match(tree, idx); err = tcf_em_validate(tp, tree_hdr, em, rt_match, idx); if (err < 0) goto errout_abort; rt_match = nla_next(rt_match, &list_len); } /* Check if the number of matches provided by userspace actually * complies with the array of matches. The number was used for * the validation of references and a mismatch could lead to * undefined references during the matching process. */ if (idx != tree_hdr->nmatches) { err = -EINVAL; goto errout_abort; } err = 0; errout: return err; errout_abort: tcf_em_tree_destroy(tree); return err; } EXPORT_SYMBOL(tcf_em_tree_validate); /** * tcf_em_tree_destroy - destroy an ematch tree * * @tp: classifier kind handle * @tree: ematch tree to be deleted * * This functions destroys an ematch tree previously created by * tcf_em_tree_validate()/tcf_em_tree_change(). You must ensure that * the ematch tree is not in use before calling this function. */ void tcf_em_tree_destroy(struct tcf_ematch_tree *tree) { int i; if (tree->matches == NULL) return; for (i = 0; i < tree->hdr.nmatches; i++) { struct tcf_ematch *em = tcf_em_get_match(tree, i); if (em->ops) { if (em->ops->destroy) em->ops->destroy(em); else if (!tcf_em_is_simple(em)) kfree((void *) em->data); module_put(em->ops->owner); } } tree->hdr.nmatches = 0; kfree(tree->matches); tree->matches = NULL; } EXPORT_SYMBOL(tcf_em_tree_destroy); /** * tcf_em_tree_dump - dump ematch tree into a rtnl message * * @skb: skb holding the rtnl message * @t: ematch tree to be dumped * @tlv: TLV type to be used to encapsulate the tree * * This function dumps a ematch tree into a rtnl message. It is valid to * call this function while the ematch tree is in use. * * Returns -1 if the skb tailroom is insufficient. */ int tcf_em_tree_dump(struct sk_buff *skb, struct tcf_ematch_tree *tree, int tlv) { int i; u8 *tail; struct nlattr *top_start; struct nlattr *list_start; top_start = nla_nest_start(skb, tlv); if (top_start == NULL) goto nla_put_failure; if (nla_put(skb, TCA_EMATCH_TREE_HDR, sizeof(tree->hdr), &tree->hdr)) goto nla_put_failure; list_start = nla_nest_start(skb, TCA_EMATCH_TREE_LIST); if (list_start == NULL) goto nla_put_failure; tail = skb_tail_pointer(skb); for (i = 0; i < tree->hdr.nmatches; i++) { struct nlattr *match_start = (struct nlattr *)tail; struct tcf_ematch *em = tcf_em_get_match(tree, i); struct tcf_ematch_hdr em_hdr = { .kind = em->ops ? em->ops->kind : TCF_EM_CONTAINER, .matchid = em->matchid, .flags = em->flags }; if (nla_put(skb, i + 1, sizeof(em_hdr), &em_hdr)) goto nla_put_failure; if (em->ops && em->ops->dump) { if (em->ops->dump(skb, em) < 0) goto nla_put_failure; } else if (tcf_em_is_container(em) || tcf_em_is_simple(em)) { u32 u = em->data; nla_put_nohdr(skb, sizeof(u), &u); } else if (em->datalen > 0) nla_put_nohdr(skb, em->datalen, (void *) em->data); tail = skb_tail_pointer(skb); match_start->nla_len = tail - (u8 *)match_start; } nla_nest_end(skb, list_start); nla_nest_end(skb, top_start); return 0; nla_put_failure: return -1; } EXPORT_SYMBOL(tcf_em_tree_dump); static inline int tcf_em_match(struct sk_buff *skb, struct tcf_ematch *em, struct tcf_pkt_info *info) { int r = em->ops->match(skb, em, info); return tcf_em_is_inverted(em) ? !r : r; } /* Do not use this function directly, use tcf_em_tree_match instead */ int __tcf_em_tree_match(struct sk_buff *skb, struct tcf_ematch_tree *tree, struct tcf_pkt_info *info) { int stackp = 0, match_idx = 0, res = 0; struct tcf_ematch *cur_match; int stack[CONFIG_NET_EMATCH_STACK]; proceed: while (match_idx < tree->hdr.nmatches) { cur_match = tcf_em_get_match(tree, match_idx); if (tcf_em_is_container(cur_match)) { if (unlikely(stackp >= CONFIG_NET_EMATCH_STACK)) goto stack_overflow; stack[stackp++] = match_idx; match_idx = cur_match->data; goto proceed; } res = tcf_em_match(skb, cur_match, info); if (tcf_em_early_end(cur_match, res)) break; match_idx++; } pop_stack: if (stackp > 0) { match_idx = stack[--stackp]; cur_match = tcf_em_get_match(tree, match_idx); if (tcf_em_is_inverted(cur_match)) res = !res; if (tcf_em_early_end(cur_match, res)) { goto pop_stack; } else { match_idx++; goto proceed; } } return res; stack_overflow: net_warn_ratelimited("tc ematch: local stack overflow, increase NET_EMATCH_STACK\n"); return -1; } EXPORT_SYMBOL(__tcf_em_tree_match);