1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
|
/*
* Shared part of driver for MMC/SDHC controller on Cavium OCTEON and
* ThunderX SOCs.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2012-2017 Cavium Inc.
* Authors:
* David Daney <david.daney@cavium.com>
* Peter Swain <pswain@cavium.com>
* Steven J. Hill <steven.hill@cavium.com>
* Jan Glauber <jglauber@cavium.com>
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/module.h>
#include <linux/regulator/consumer.h>
#include <linux/scatterlist.h>
#include <linux/time.h>
#include "cavium.h"
const char *cvm_mmc_irq_names[] = {
"MMC Buffer",
"MMC Command",
"MMC DMA",
"MMC Command Error",
"MMC DMA Error",
"MMC Switch",
"MMC Switch Error",
"MMC DMA int Fifo",
"MMC DMA int",
};
/*
* The Cavium MMC host hardware assumes that all commands have fixed
* command and response types. These are correct if MMC devices are
* being used. However, non-MMC devices like SD use command and
* response types that are unexpected by the host hardware.
*
* The command and response types can be overridden by supplying an
* XOR value that is applied to the type. We calculate the XOR value
* from the values in this table and the flags passed from the MMC
* core.
*/
static struct cvm_mmc_cr_type cvm_mmc_cr_types[] = {
{0, 0}, /* CMD0 */
{0, 3}, /* CMD1 */
{0, 2}, /* CMD2 */
{0, 1}, /* CMD3 */
{0, 0}, /* CMD4 */
{0, 1}, /* CMD5 */
{0, 1}, /* CMD6 */
{0, 1}, /* CMD7 */
{1, 1}, /* CMD8 */
{0, 2}, /* CMD9 */
{0, 2}, /* CMD10 */
{1, 1}, /* CMD11 */
{0, 1}, /* CMD12 */
{0, 1}, /* CMD13 */
{1, 1}, /* CMD14 */
{0, 0}, /* CMD15 */
{0, 1}, /* CMD16 */
{1, 1}, /* CMD17 */
{1, 1}, /* CMD18 */
{3, 1}, /* CMD19 */
{2, 1}, /* CMD20 */
{0, 0}, /* CMD21 */
{0, 0}, /* CMD22 */
{0, 1}, /* CMD23 */
{2, 1}, /* CMD24 */
{2, 1}, /* CMD25 */
{2, 1}, /* CMD26 */
{2, 1}, /* CMD27 */
{0, 1}, /* CMD28 */
{0, 1}, /* CMD29 */
{1, 1}, /* CMD30 */
{1, 1}, /* CMD31 */
{0, 0}, /* CMD32 */
{0, 0}, /* CMD33 */
{0, 0}, /* CMD34 */
{0, 1}, /* CMD35 */
{0, 1}, /* CMD36 */
{0, 0}, /* CMD37 */
{0, 1}, /* CMD38 */
{0, 4}, /* CMD39 */
{0, 5}, /* CMD40 */
{0, 0}, /* CMD41 */
{2, 1}, /* CMD42 */
{0, 0}, /* CMD43 */
{0, 0}, /* CMD44 */
{0, 0}, /* CMD45 */
{0, 0}, /* CMD46 */
{0, 0}, /* CMD47 */
{0, 0}, /* CMD48 */
{0, 0}, /* CMD49 */
{0, 0}, /* CMD50 */
{0, 0}, /* CMD51 */
{0, 0}, /* CMD52 */
{0, 0}, /* CMD53 */
{0, 0}, /* CMD54 */
{0, 1}, /* CMD55 */
{0xff, 0xff}, /* CMD56 */
{0, 0}, /* CMD57 */
{0, 0}, /* CMD58 */
{0, 0}, /* CMD59 */
{0, 0}, /* CMD60 */
{0, 0}, /* CMD61 */
{0, 0}, /* CMD62 */
{0, 0} /* CMD63 */
};
static struct cvm_mmc_cr_mods cvm_mmc_get_cr_mods(struct mmc_command *cmd)
{
struct cvm_mmc_cr_type *cr;
u8 hardware_ctype, hardware_rtype;
u8 desired_ctype = 0, desired_rtype = 0;
struct cvm_mmc_cr_mods r;
cr = cvm_mmc_cr_types + (cmd->opcode & 0x3f);
hardware_ctype = cr->ctype;
hardware_rtype = cr->rtype;
if (cmd->opcode == MMC_GEN_CMD)
hardware_ctype = (cmd->arg & 1) ? 1 : 2;
switch (mmc_cmd_type(cmd)) {
case MMC_CMD_ADTC:
desired_ctype = (cmd->data->flags & MMC_DATA_WRITE) ? 2 : 1;
break;
case MMC_CMD_AC:
case MMC_CMD_BC:
case MMC_CMD_BCR:
desired_ctype = 0;
break;
}
switch (mmc_resp_type(cmd)) {
case MMC_RSP_NONE:
desired_rtype = 0;
break;
case MMC_RSP_R1:/* MMC_RSP_R5, MMC_RSP_R6, MMC_RSP_R7 */
case MMC_RSP_R1B:
desired_rtype = 1;
break;
case MMC_RSP_R2:
desired_rtype = 2;
break;
case MMC_RSP_R3: /* MMC_RSP_R4 */
desired_rtype = 3;
break;
}
r.ctype_xor = desired_ctype ^ hardware_ctype;
r.rtype_xor = desired_rtype ^ hardware_rtype;
return r;
}
static void check_switch_errors(struct cvm_mmc_host *host)
{
u64 emm_switch;
emm_switch = readq(host->base + MIO_EMM_SWITCH(host));
if (emm_switch & MIO_EMM_SWITCH_ERR0)
dev_err(host->dev, "Switch power class error\n");
if (emm_switch & MIO_EMM_SWITCH_ERR1)
dev_err(host->dev, "Switch hs timing error\n");
if (emm_switch & MIO_EMM_SWITCH_ERR2)
dev_err(host->dev, "Switch bus width error\n");
}
static void clear_bus_id(u64 *reg)
{
u64 bus_id_mask = GENMASK_ULL(61, 60);
*reg &= ~bus_id_mask;
}
static void set_bus_id(u64 *reg, int bus_id)
{
clear_bus_id(reg);
*reg |= FIELD_PREP(GENMASK(61, 60), bus_id);
}
static int get_bus_id(u64 reg)
{
return FIELD_GET(GENMASK_ULL(61, 60), reg);
}
/*
* We never set the switch_exe bit since that would interfere
* with the commands send by the MMC core.
*/
static void do_switch(struct cvm_mmc_host *host, u64 emm_switch)
{
int retries = 100;
u64 rsp_sts;
int bus_id;
/*
* Modes setting only taken from slot 0. Work around that hardware
* issue by first switching to slot 0.
*/
bus_id = get_bus_id(emm_switch);
clear_bus_id(&emm_switch);
writeq(emm_switch, host->base + MIO_EMM_SWITCH(host));
set_bus_id(&emm_switch, bus_id);
writeq(emm_switch, host->base + MIO_EMM_SWITCH(host));
/* wait for the switch to finish */
do {
rsp_sts = readq(host->base + MIO_EMM_RSP_STS(host));
if (!(rsp_sts & MIO_EMM_RSP_STS_SWITCH_VAL))
break;
udelay(10);
} while (--retries);
check_switch_errors(host);
}
static bool switch_val_changed(struct cvm_mmc_slot *slot, u64 new_val)
{
/* Match BUS_ID, HS_TIMING, BUS_WIDTH, POWER_CLASS, CLK_HI, CLK_LO */
u64 match = 0x3001070fffffffffull;
return (slot->cached_switch & match) != (new_val & match);
}
static void set_wdog(struct cvm_mmc_slot *slot, unsigned int ns)
{
u64 timeout;
if (!slot->clock)
return;
if (ns)
timeout = (slot->clock * ns) / NSEC_PER_SEC;
else
timeout = (slot->clock * 850ull) / 1000ull;
writeq(timeout, slot->host->base + MIO_EMM_WDOG(slot->host));
}
static void cvm_mmc_reset_bus(struct cvm_mmc_slot *slot)
{
struct cvm_mmc_host *host = slot->host;
u64 emm_switch, wdog;
emm_switch = readq(slot->host->base + MIO_EMM_SWITCH(host));
emm_switch &= ~(MIO_EMM_SWITCH_EXE | MIO_EMM_SWITCH_ERR0 |
MIO_EMM_SWITCH_ERR1 | MIO_EMM_SWITCH_ERR2);
set_bus_id(&emm_switch, slot->bus_id);
wdog = readq(slot->host->base + MIO_EMM_WDOG(host));
do_switch(slot->host, emm_switch);
slot->cached_switch = emm_switch;
msleep(20);
writeq(wdog, slot->host->base + MIO_EMM_WDOG(host));
}
/* Switch to another slot if needed */
static void cvm_mmc_switch_to(struct cvm_mmc_slot *slot)
{
struct cvm_mmc_host *host = slot->host;
struct cvm_mmc_slot *old_slot;
u64 emm_sample, emm_switch;
if (slot->bus_id == host->last_slot)
return;
if (host->last_slot >= 0 && host->slot[host->last_slot]) {
old_slot = host->slot[host->last_slot];
old_slot->cached_switch = readq(host->base + MIO_EMM_SWITCH(host));
old_slot->cached_rca = readq(host->base + MIO_EMM_RCA(host));
}
writeq(slot->cached_rca, host->base + MIO_EMM_RCA(host));
emm_switch = slot->cached_switch;
set_bus_id(&emm_switch, slot->bus_id);
do_switch(host, emm_switch);
emm_sample = FIELD_PREP(MIO_EMM_SAMPLE_CMD_CNT, slot->cmd_cnt) |
FIELD_PREP(MIO_EMM_SAMPLE_DAT_CNT, slot->dat_cnt);
writeq(emm_sample, host->base + MIO_EMM_SAMPLE(host));
host->last_slot = slot->bus_id;
}
static void do_read(struct cvm_mmc_host *host, struct mmc_request *req,
u64 dbuf)
{
struct sg_mapping_iter *smi = &host->smi;
int data_len = req->data->blocks * req->data->blksz;
int bytes_xfered, shift = -1;
u64 dat = 0;
/* Auto inc from offset zero */
writeq((0x10000 | (dbuf << 6)), host->base + MIO_EMM_BUF_IDX(host));
for (bytes_xfered = 0; bytes_xfered < data_len;) {
if (smi->consumed >= smi->length) {
if (!sg_miter_next(smi))
break;
smi->consumed = 0;
}
if (shift < 0) {
dat = readq(host->base + MIO_EMM_BUF_DAT(host));
shift = 56;
}
while (smi->consumed < smi->length && shift >= 0) {
((u8 *)smi->addr)[smi->consumed] = (dat >> shift) & 0xff;
bytes_xfered++;
smi->consumed++;
shift -= 8;
}
}
sg_miter_stop(smi);
req->data->bytes_xfered = bytes_xfered;
req->data->error = 0;
}
static void do_write(struct mmc_request *req)
{
req->data->bytes_xfered = req->data->blocks * req->data->blksz;
req->data->error = 0;
}
static void set_cmd_response(struct cvm_mmc_host *host, struct mmc_request *req,
u64 rsp_sts)
{
u64 rsp_hi, rsp_lo;
if (!(rsp_sts & MIO_EMM_RSP_STS_RSP_VAL))
return;
rsp_lo = readq(host->base + MIO_EMM_RSP_LO(host));
switch (FIELD_GET(MIO_EMM_RSP_STS_RSP_TYPE, rsp_sts)) {
case 1:
case 3:
req->cmd->resp[0] = (rsp_lo >> 8) & 0xffffffff;
req->cmd->resp[1] = 0;
req->cmd->resp[2] = 0;
req->cmd->resp[3] = 0;
break;
case 2:
req->cmd->resp[3] = rsp_lo & 0xffffffff;
req->cmd->resp[2] = (rsp_lo >> 32) & 0xffffffff;
rsp_hi = readq(host->base + MIO_EMM_RSP_HI(host));
req->cmd->resp[1] = rsp_hi & 0xffffffff;
req->cmd->resp[0] = (rsp_hi >> 32) & 0xffffffff;
break;
}
}
static int get_dma_dir(struct mmc_data *data)
{
return (data->flags & MMC_DATA_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
}
static int finish_dma_single(struct cvm_mmc_host *host, struct mmc_data *data)
{
data->bytes_xfered = data->blocks * data->blksz;
data->error = 0;
dma_unmap_sg(host->dev, data->sg, data->sg_len, get_dma_dir(data));
return 1;
}
static int finish_dma_sg(struct cvm_mmc_host *host, struct mmc_data *data)
{
u64 fifo_cfg;
int count;
/* Check if there are any pending requests left */
fifo_cfg = readq(host->dma_base + MIO_EMM_DMA_FIFO_CFG(host));
count = FIELD_GET(MIO_EMM_DMA_FIFO_CFG_COUNT, fifo_cfg);
if (count)
dev_err(host->dev, "%u requests still pending\n", count);
data->bytes_xfered = data->blocks * data->blksz;
data->error = 0;
/* Clear and disable FIFO */
writeq(BIT_ULL(16), host->dma_base + MIO_EMM_DMA_FIFO_CFG(host));
dma_unmap_sg(host->dev, data->sg, data->sg_len, get_dma_dir(data));
return 1;
}
static int finish_dma(struct cvm_mmc_host *host, struct mmc_data *data)
{
if (host->use_sg && data->sg_len > 1)
return finish_dma_sg(host, data);
else
return finish_dma_single(host, data);
}
static int check_status(u64 rsp_sts)
{
if (rsp_sts & MIO_EMM_RSP_STS_RSP_BAD_STS ||
rsp_sts & MIO_EMM_RSP_STS_RSP_CRC_ERR ||
rsp_sts & MIO_EMM_RSP_STS_BLK_CRC_ERR)
return -EILSEQ;
if (rsp_sts & MIO_EMM_RSP_STS_RSP_TIMEOUT ||
rsp_sts & MIO_EMM_RSP_STS_BLK_TIMEOUT)
return -ETIMEDOUT;
if (rsp_sts & MIO_EMM_RSP_STS_DBUF_ERR)
return -EIO;
return 0;
}
/* Try to clean up failed DMA. */
static void cleanup_dma(struct cvm_mmc_host *host, u64 rsp_sts)
{
u64 emm_dma;
emm_dma = readq(host->base + MIO_EMM_DMA(host));
emm_dma |= FIELD_PREP(MIO_EMM_DMA_VAL, 1) |
FIELD_PREP(MIO_EMM_DMA_DAT_NULL, 1);
set_bus_id(&emm_dma, get_bus_id(rsp_sts));
writeq(emm_dma, host->base + MIO_EMM_DMA(host));
}
irqreturn_t cvm_mmc_interrupt(int irq, void *dev_id)
{
struct cvm_mmc_host *host = dev_id;
struct mmc_request *req;
unsigned long flags = 0;
u64 emm_int, rsp_sts;
bool host_done;
if (host->need_irq_handler_lock)
spin_lock_irqsave(&host->irq_handler_lock, flags);
else
__acquire(&host->irq_handler_lock);
/* Clear interrupt bits (write 1 clears ). */
emm_int = readq(host->base + MIO_EMM_INT(host));
writeq(emm_int, host->base + MIO_EMM_INT(host));
if (emm_int & MIO_EMM_INT_SWITCH_ERR)
check_switch_errors(host);
req = host->current_req;
if (!req)
goto out;
rsp_sts = readq(host->base + MIO_EMM_RSP_STS(host));
/*
* dma_val set means DMA is still in progress. Don't touch
* the request and wait for the interrupt indicating that
* the DMA is finished.
*/
if ((rsp_sts & MIO_EMM_RSP_STS_DMA_VAL) && host->dma_active)
goto out;
if (!host->dma_active && req->data &&
(emm_int & MIO_EMM_INT_BUF_DONE)) {
unsigned int type = (rsp_sts >> 7) & 3;
if (type == 1)
do_read(host, req, rsp_sts & MIO_EMM_RSP_STS_DBUF);
else if (type == 2)
do_write(req);
}
host_done = emm_int & MIO_EMM_INT_CMD_DONE ||
emm_int & MIO_EMM_INT_DMA_DONE ||
emm_int & MIO_EMM_INT_CMD_ERR ||
emm_int & MIO_EMM_INT_DMA_ERR;
if (!(host_done && req->done))
goto no_req_done;
req->cmd->error = check_status(rsp_sts);
if (host->dma_active && req->data)
if (!finish_dma(host, req->data))
goto no_req_done;
set_cmd_response(host, req, rsp_sts);
if ((emm_int & MIO_EMM_INT_DMA_ERR) &&
(rsp_sts & MIO_EMM_RSP_STS_DMA_PEND))
cleanup_dma(host, rsp_sts);
host->current_req = NULL;
req->done(req);
no_req_done:
if (host->dmar_fixup_done)
host->dmar_fixup_done(host);
if (host_done)
host->release_bus(host);
out:
if (host->need_irq_handler_lock)
spin_unlock_irqrestore(&host->irq_handler_lock, flags);
else
__release(&host->irq_handler_lock);
return IRQ_RETVAL(emm_int != 0);
}
/*
* Program DMA_CFG and if needed DMA_ADR.
* Returns 0 on error, DMA address otherwise.
*/
static u64 prepare_dma_single(struct cvm_mmc_host *host, struct mmc_data *data)
{
u64 dma_cfg, addr;
int count, rw;
count = dma_map_sg(host->dev, data->sg, data->sg_len,
get_dma_dir(data));
if (!count)
return 0;
rw = (data->flags & MMC_DATA_WRITE) ? 1 : 0;
dma_cfg = FIELD_PREP(MIO_EMM_DMA_CFG_EN, 1) |
FIELD_PREP(MIO_EMM_DMA_CFG_RW, rw);
#ifdef __LITTLE_ENDIAN
dma_cfg |= FIELD_PREP(MIO_EMM_DMA_CFG_ENDIAN, 1);
#endif
dma_cfg |= FIELD_PREP(MIO_EMM_DMA_CFG_SIZE,
(sg_dma_len(&data->sg[0]) / 8) - 1);
addr = sg_dma_address(&data->sg[0]);
if (!host->big_dma_addr)
dma_cfg |= FIELD_PREP(MIO_EMM_DMA_CFG_ADR, addr);
writeq(dma_cfg, host->dma_base + MIO_EMM_DMA_CFG(host));
pr_debug("[%s] sg_dma_len: %u total sg_elem: %d\n",
(rw) ? "W" : "R", sg_dma_len(&data->sg[0]), count);
if (host->big_dma_addr)
writeq(addr, host->dma_base + MIO_EMM_DMA_ADR(host));
return addr;
}
/*
* Queue complete sg list into the FIFO.
* Returns 0 on error, 1 otherwise.
*/
static u64 prepare_dma_sg(struct cvm_mmc_host *host, struct mmc_data *data)
{
struct scatterlist *sg;
u64 fifo_cmd, addr;
int count, i, rw;
count = dma_map_sg(host->dev, data->sg, data->sg_len,
get_dma_dir(data));
if (!count)
return 0;
if (count > 16)
goto error;
/* Enable FIFO by removing CLR bit */
writeq(0, host->dma_base + MIO_EMM_DMA_FIFO_CFG(host));
for_each_sg(data->sg, sg, count, i) {
/* Program DMA address */
addr = sg_dma_address(sg);
if (addr & 7)
goto error;
writeq(addr, host->dma_base + MIO_EMM_DMA_FIFO_ADR(host));
/*
* If we have scatter-gather support we also have an extra
* register for the DMA addr, so no need to check
* host->big_dma_addr here.
*/
rw = (data->flags & MMC_DATA_WRITE) ? 1 : 0;
fifo_cmd = FIELD_PREP(MIO_EMM_DMA_FIFO_CMD_RW, rw);
/* enable interrupts on the last element */
fifo_cmd |= FIELD_PREP(MIO_EMM_DMA_FIFO_CMD_INTDIS,
(i + 1 == count) ? 0 : 1);
#ifdef __LITTLE_ENDIAN
fifo_cmd |= FIELD_PREP(MIO_EMM_DMA_FIFO_CMD_ENDIAN, 1);
#endif
fifo_cmd |= FIELD_PREP(MIO_EMM_DMA_FIFO_CMD_SIZE,
sg_dma_len(sg) / 8 - 1);
/*
* The write copies the address and the command to the FIFO
* and increments the FIFO's COUNT field.
*/
writeq(fifo_cmd, host->dma_base + MIO_EMM_DMA_FIFO_CMD(host));
pr_debug("[%s] sg_dma_len: %u sg_elem: %d/%d\n",
(rw) ? "W" : "R", sg_dma_len(sg), i, count);
}
/*
* In difference to prepare_dma_single we don't return the
* address here, as it would not make sense for scatter-gather.
* The dma fixup is only required on models that don't support
* scatter-gather, so that is not a problem.
*/
return 1;
error:
WARN_ON_ONCE(1);
dma_unmap_sg(host->dev, data->sg, data->sg_len, get_dma_dir(data));
/* Disable FIFO */
writeq(BIT_ULL(16), host->dma_base + MIO_EMM_DMA_FIFO_CFG(host));
return 0;
}
static u64 prepare_dma(struct cvm_mmc_host *host, struct mmc_data *data)
{
if (host->use_sg && data->sg_len > 1)
return prepare_dma_sg(host, data);
else
return prepare_dma_single(host, data);
}
static u64 prepare_ext_dma(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct cvm_mmc_slot *slot = mmc_priv(mmc);
u64 emm_dma;
emm_dma = FIELD_PREP(MIO_EMM_DMA_VAL, 1) |
FIELD_PREP(MIO_EMM_DMA_SECTOR,
mmc_card_is_blockaddr(mmc->card) ? 1 : 0) |
FIELD_PREP(MIO_EMM_DMA_RW,
(mrq->data->flags & MMC_DATA_WRITE) ? 1 : 0) |
FIELD_PREP(MIO_EMM_DMA_BLOCK_CNT, mrq->data->blocks) |
FIELD_PREP(MIO_EMM_DMA_CARD_ADDR, mrq->cmd->arg);
set_bus_id(&emm_dma, slot->bus_id);
if (mmc_card_mmc(mmc->card) || (mmc_card_sd(mmc->card) &&
(mmc->card->scr.cmds & SD_SCR_CMD23_SUPPORT)))
emm_dma |= FIELD_PREP(MIO_EMM_DMA_MULTI, 1);
pr_debug("[%s] blocks: %u multi: %d\n",
(emm_dma & MIO_EMM_DMA_RW) ? "W" : "R",
mrq->data->blocks, (emm_dma & MIO_EMM_DMA_MULTI) ? 1 : 0);
return emm_dma;
}
static void cvm_mmc_dma_request(struct mmc_host *mmc,
struct mmc_request *mrq)
{
struct cvm_mmc_slot *slot = mmc_priv(mmc);
struct cvm_mmc_host *host = slot->host;
struct mmc_data *data;
u64 emm_dma, addr;
if (!mrq->data || !mrq->data->sg || !mrq->data->sg_len ||
!mrq->stop || mrq->stop->opcode != MMC_STOP_TRANSMISSION) {
dev_err(&mmc->card->dev,
"Error: cmv_mmc_dma_request no data\n");
goto error;
}
cvm_mmc_switch_to(slot);
data = mrq->data;
pr_debug("DMA request blocks: %d block_size: %d total_size: %d\n",
data->blocks, data->blksz, data->blocks * data->blksz);
if (data->timeout_ns)
set_wdog(slot, data->timeout_ns);
WARN_ON(host->current_req);
host->current_req = mrq;
emm_dma = prepare_ext_dma(mmc, mrq);
addr = prepare_dma(host, data);
if (!addr) {
dev_err(host->dev, "prepare_dma failed\n");
goto error;
}
host->dma_active = true;
host->int_enable(host, MIO_EMM_INT_CMD_ERR | MIO_EMM_INT_DMA_DONE |
MIO_EMM_INT_DMA_ERR);
if (host->dmar_fixup)
host->dmar_fixup(host, mrq->cmd, data, addr);
/*
* If we have a valid SD card in the slot, we set the response
* bit mask to check for CRC errors and timeouts only.
* Otherwise, use the default power reset value.
*/
if (mmc_card_sd(mmc->card))
writeq(0x00b00000ull, host->base + MIO_EMM_STS_MASK(host));
else
writeq(0xe4390080ull, host->base + MIO_EMM_STS_MASK(host));
writeq(emm_dma, host->base + MIO_EMM_DMA(host));
return;
error:
mrq->cmd->error = -EINVAL;
if (mrq->done)
mrq->done(mrq);
host->release_bus(host);
}
static void do_read_request(struct cvm_mmc_host *host, struct mmc_request *mrq)
{
sg_miter_start(&host->smi, mrq->data->sg, mrq->data->sg_len,
SG_MITER_ATOMIC | SG_MITER_TO_SG);
}
static void do_write_request(struct cvm_mmc_host *host, struct mmc_request *mrq)
{
unsigned int data_len = mrq->data->blocks * mrq->data->blksz;
struct sg_mapping_iter *smi = &host->smi;
unsigned int bytes_xfered;
int shift = 56;
u64 dat = 0;
/* Copy data to the xmit buffer before issuing the command. */
sg_miter_start(smi, mrq->data->sg, mrq->data->sg_len, SG_MITER_FROM_SG);
/* Auto inc from offset zero, dbuf zero */
writeq(0x10000ull, host->base + MIO_EMM_BUF_IDX(host));
for (bytes_xfered = 0; bytes_xfered < data_len;) {
if (smi->consumed >= smi->length) {
if (!sg_miter_next(smi))
break;
smi->consumed = 0;
}
while (smi->consumed < smi->length && shift >= 0) {
dat |= (u64)((u8 *)smi->addr)[smi->consumed] << shift;
bytes_xfered++;
smi->consumed++;
shift -= 8;
}
if (shift < 0) {
writeq(dat, host->base + MIO_EMM_BUF_DAT(host));
shift = 56;
dat = 0;
}
}
sg_miter_stop(smi);
}
static void cvm_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct cvm_mmc_slot *slot = mmc_priv(mmc);
struct cvm_mmc_host *host = slot->host;
struct mmc_command *cmd = mrq->cmd;
struct cvm_mmc_cr_mods mods;
u64 emm_cmd, rsp_sts;
int retries = 100;
/*
* Note about locking:
* All MMC devices share the same bus and controller. Allow only a
* single user of the bootbus/MMC bus at a time. The lock is acquired
* on all entry points from the MMC layer.
*
* For requests the lock is only released after the completion
* interrupt!
*/
host->acquire_bus(host);
if (cmd->opcode == MMC_READ_MULTIPLE_BLOCK ||
cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK)
return cvm_mmc_dma_request(mmc, mrq);
cvm_mmc_switch_to(slot);
mods = cvm_mmc_get_cr_mods(cmd);
WARN_ON(host->current_req);
host->current_req = mrq;
if (cmd->data) {
if (cmd->data->flags & MMC_DATA_READ)
do_read_request(host, mrq);
else
do_write_request(host, mrq);
if (cmd->data->timeout_ns)
set_wdog(slot, cmd->data->timeout_ns);
} else
set_wdog(slot, 0);
host->dma_active = false;
host->int_enable(host, MIO_EMM_INT_CMD_DONE | MIO_EMM_INT_CMD_ERR);
emm_cmd = FIELD_PREP(MIO_EMM_CMD_VAL, 1) |
FIELD_PREP(MIO_EMM_CMD_CTYPE_XOR, mods.ctype_xor) |
FIELD_PREP(MIO_EMM_CMD_RTYPE_XOR, mods.rtype_xor) |
FIELD_PREP(MIO_EMM_CMD_IDX, cmd->opcode) |
FIELD_PREP(MIO_EMM_CMD_ARG, cmd->arg);
set_bus_id(&emm_cmd, slot->bus_id);
if (cmd->data && mmc_cmd_type(cmd) == MMC_CMD_ADTC)
emm_cmd |= FIELD_PREP(MIO_EMM_CMD_OFFSET,
64 - ((cmd->data->blocks * cmd->data->blksz) / 8));
writeq(0, host->base + MIO_EMM_STS_MASK(host));
retry:
rsp_sts = readq(host->base + MIO_EMM_RSP_STS(host));
if (rsp_sts & MIO_EMM_RSP_STS_DMA_VAL ||
rsp_sts & MIO_EMM_RSP_STS_CMD_VAL ||
rsp_sts & MIO_EMM_RSP_STS_SWITCH_VAL ||
rsp_sts & MIO_EMM_RSP_STS_DMA_PEND) {
udelay(10);
if (--retries)
goto retry;
}
if (!retries)
dev_err(host->dev, "Bad status: %llx before command write\n", rsp_sts);
writeq(emm_cmd, host->base + MIO_EMM_CMD(host));
}
static void cvm_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct cvm_mmc_slot *slot = mmc_priv(mmc);
struct cvm_mmc_host *host = slot->host;
int clk_period = 0, power_class = 10, bus_width = 0;
u64 clock, emm_switch;
host->acquire_bus(host);
cvm_mmc_switch_to(slot);
/* Set the power state */
switch (ios->power_mode) {
case MMC_POWER_ON:
break;
case MMC_POWER_OFF:
cvm_mmc_reset_bus(slot);
if (host->global_pwr_gpiod)
host->set_shared_power(host, 0);
else if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
break;
case MMC_POWER_UP:
if (host->global_pwr_gpiod)
host->set_shared_power(host, 1);
else if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
break;
}
/* Convert bus width to HW definition */
switch (ios->bus_width) {
case MMC_BUS_WIDTH_8:
bus_width = 2;
break;
case MMC_BUS_WIDTH_4:
bus_width = 1;
break;
case MMC_BUS_WIDTH_1:
bus_width = 0;
break;
}
/* DDR is available for 4/8 bit bus width */
if (ios->bus_width && ios->timing == MMC_TIMING_MMC_DDR52)
bus_width |= 4;
/* Change the clock frequency. */
clock = ios->clock;
if (clock > 52000000)
clock = 52000000;
slot->clock = clock;
if (clock)
clk_period = (host->sys_freq + clock - 1) / (2 * clock);
emm_switch = FIELD_PREP(MIO_EMM_SWITCH_HS_TIMING,
(ios->timing == MMC_TIMING_MMC_HS)) |
FIELD_PREP(MIO_EMM_SWITCH_BUS_WIDTH, bus_width) |
FIELD_PREP(MIO_EMM_SWITCH_POWER_CLASS, power_class) |
FIELD_PREP(MIO_EMM_SWITCH_CLK_HI, clk_period) |
FIELD_PREP(MIO_EMM_SWITCH_CLK_LO, clk_period);
set_bus_id(&emm_switch, slot->bus_id);
if (!switch_val_changed(slot, emm_switch))
goto out;
set_wdog(slot, 0);
do_switch(host, emm_switch);
slot->cached_switch = emm_switch;
out:
host->release_bus(host);
}
static const struct mmc_host_ops cvm_mmc_ops = {
.request = cvm_mmc_request,
.set_ios = cvm_mmc_set_ios,
.get_ro = mmc_gpio_get_ro,
.get_cd = mmc_gpio_get_cd,
};
static void cvm_mmc_set_clock(struct cvm_mmc_slot *slot, unsigned int clock)
{
struct mmc_host *mmc = slot->mmc;
clock = min(clock, mmc->f_max);
clock = max(clock, mmc->f_min);
slot->clock = clock;
}
static int cvm_mmc_init_lowlevel(struct cvm_mmc_slot *slot)
{
struct cvm_mmc_host *host = slot->host;
u64 emm_switch;
/* Enable this bus slot. */
host->emm_cfg |= (1ull << slot->bus_id);
writeq(host->emm_cfg, slot->host->base + MIO_EMM_CFG(host));
udelay(10);
/* Program initial clock speed and power. */
cvm_mmc_set_clock(slot, slot->mmc->f_min);
emm_switch = FIELD_PREP(MIO_EMM_SWITCH_POWER_CLASS, 10);
emm_switch |= FIELD_PREP(MIO_EMM_SWITCH_CLK_HI,
(host->sys_freq / slot->clock) / 2);
emm_switch |= FIELD_PREP(MIO_EMM_SWITCH_CLK_LO,
(host->sys_freq / slot->clock) / 2);
/* Make the changes take effect on this bus slot. */
set_bus_id(&emm_switch, slot->bus_id);
do_switch(host, emm_switch);
slot->cached_switch = emm_switch;
/*
* Set watchdog timeout value and default reset value
* for the mask register. Finally, set the CARD_RCA
* bit so that we can get the card address relative
* to the CMD register for CMD7 transactions.
*/
set_wdog(slot, 0);
writeq(0xe4390080ull, host->base + MIO_EMM_STS_MASK(host));
writeq(1, host->base + MIO_EMM_RCA(host));
return 0;
}
static int cvm_mmc_of_parse(struct device *dev, struct cvm_mmc_slot *slot)
{
u32 id, cmd_skew = 0, dat_skew = 0, bus_width = 0;
struct device_node *node = dev->of_node;
struct mmc_host *mmc = slot->mmc;
u64 clock_period;
int ret;
ret = of_property_read_u32(node, "reg", &id);
if (ret) {
dev_err(dev, "Missing or invalid reg property on %pOF\n", node);
return ret;
}
if (id >= CAVIUM_MAX_MMC || slot->host->slot[id]) {
dev_err(dev, "Invalid reg property on %pOF\n", node);
return -EINVAL;
}
ret = mmc_regulator_get_supply(mmc);
if (ret)
return ret;
/*
* Legacy Octeon firmware has no regulator entry, fall-back to
* a hard-coded voltage to get a sane OCR.
*/
if (IS_ERR(mmc->supply.vmmc))
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
/* Common MMC bindings */
ret = mmc_of_parse(mmc);
if (ret)
return ret;
/* Set bus width */
if (!(mmc->caps & (MMC_CAP_8_BIT_DATA | MMC_CAP_4_BIT_DATA))) {
of_property_read_u32(node, "cavium,bus-max-width", &bus_width);
if (bus_width == 8)
mmc->caps |= MMC_CAP_8_BIT_DATA | MMC_CAP_4_BIT_DATA;
else if (bus_width == 4)
mmc->caps |= MMC_CAP_4_BIT_DATA;
}
/* Set maximum and minimum frequency */
if (!mmc->f_max)
of_property_read_u32(node, "spi-max-frequency", &mmc->f_max);
if (!mmc->f_max || mmc->f_max > 52000000)
mmc->f_max = 52000000;
mmc->f_min = 400000;
/* Sampling register settings, period in picoseconds */
clock_period = 1000000000000ull / slot->host->sys_freq;
of_property_read_u32(node, "cavium,cmd-clk-skew", &cmd_skew);
of_property_read_u32(node, "cavium,dat-clk-skew", &dat_skew);
slot->cmd_cnt = (cmd_skew + clock_period / 2) / clock_period;
slot->dat_cnt = (dat_skew + clock_period / 2) / clock_period;
return id;
}
int cvm_mmc_of_slot_probe(struct device *dev, struct cvm_mmc_host *host)
{
struct cvm_mmc_slot *slot;
struct mmc_host *mmc;
int ret, id;
mmc = mmc_alloc_host(sizeof(struct cvm_mmc_slot), dev);
if (!mmc)
return -ENOMEM;
slot = mmc_priv(mmc);
slot->mmc = mmc;
slot->host = host;
ret = cvm_mmc_of_parse(dev, slot);
if (ret < 0)
goto error;
id = ret;
/* Set up host parameters */
mmc->ops = &cvm_mmc_ops;
/*
* We only have a 3.3v supply, we cannot support any
* of the UHS modes. We do support the high speed DDR
* modes up to 52MHz.
*
* Disable bounce buffers for max_segs = 1
*/
mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
MMC_CAP_ERASE | MMC_CAP_CMD23 | MMC_CAP_POWER_OFF_CARD |
MMC_CAP_3_3V_DDR;
if (host->use_sg)
mmc->max_segs = 16;
else
mmc->max_segs = 1;
/* DMA size field can address up to 8 MB */
mmc->max_seg_size = min_t(unsigned int, 8 * 1024 * 1024,
dma_get_max_seg_size(host->dev));
mmc->max_req_size = mmc->max_seg_size;
/* External DMA is in 512 byte blocks */
mmc->max_blk_size = 512;
/* DMA block count field is 15 bits */
mmc->max_blk_count = 32767;
slot->clock = mmc->f_min;
slot->bus_id = id;
slot->cached_rca = 1;
host->acquire_bus(host);
host->slot[id] = slot;
cvm_mmc_switch_to(slot);
cvm_mmc_init_lowlevel(slot);
host->release_bus(host);
ret = mmc_add_host(mmc);
if (ret) {
dev_err(dev, "mmc_add_host() returned %d\n", ret);
slot->host->slot[id] = NULL;
goto error;
}
return 0;
error:
mmc_free_host(slot->mmc);
return ret;
}
int cvm_mmc_of_slot_remove(struct cvm_mmc_slot *slot)
{
mmc_remove_host(slot->mmc);
slot->host->slot[slot->bus_id] = NULL;
mmc_free_host(slot->mmc);
return 0;
}
|