1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
|
/*
* Driver for Broadcom BRCMSTB, NSP, NS2, Cygnus SPI Controllers
*
* Copyright 2016 Broadcom
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation (the "GPL").
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License version 2 (GPLv2) for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 (GPLv2) along with this source code.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include "spi-bcm-qspi.h"
#define DRIVER_NAME "bcm_qspi"
/* BSPI register offsets */
#define BSPI_REVISION_ID 0x000
#define BSPI_SCRATCH 0x004
#define BSPI_MAST_N_BOOT_CTRL 0x008
#define BSPI_BUSY_STATUS 0x00c
#define BSPI_INTR_STATUS 0x010
#define BSPI_B0_STATUS 0x014
#define BSPI_B0_CTRL 0x018
#define BSPI_B1_STATUS 0x01c
#define BSPI_B1_CTRL 0x020
#define BSPI_STRAP_OVERRIDE_CTRL 0x024
#define BSPI_FLEX_MODE_ENABLE 0x028
#define BSPI_BITS_PER_CYCLE 0x02c
#define BSPI_BITS_PER_PHASE 0x030
#define BSPI_CMD_AND_MODE_BYTE 0x034
#define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038
#define BSPI_BSPI_XOR_VALUE 0x03c
#define BSPI_BSPI_XOR_ENABLE 0x040
#define BSPI_BSPI_PIO_MODE_ENABLE 0x044
#define BSPI_BSPI_PIO_IODIR 0x048
#define BSPI_BSPI_PIO_DATA 0x04c
/* RAF register offsets */
#define BSPI_RAF_START_ADDR 0x100
#define BSPI_RAF_NUM_WORDS 0x104
#define BSPI_RAF_CTRL 0x108
#define BSPI_RAF_FULLNESS 0x10c
#define BSPI_RAF_WATERMARK 0x110
#define BSPI_RAF_STATUS 0x114
#define BSPI_RAF_READ_DATA 0x118
#define BSPI_RAF_WORD_CNT 0x11c
#define BSPI_RAF_CURR_ADDR 0x120
/* Override mode masks */
#define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE BIT(0)
#define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL BIT(1)
#define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE BIT(2)
#define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD BIT(3)
#define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE BIT(4)
#define BSPI_ADDRLEN_3BYTES 3
#define BSPI_ADDRLEN_4BYTES 4
#define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1)
#define BSPI_RAF_CTRL_START_MASK BIT(0)
#define BSPI_RAF_CTRL_CLEAR_MASK BIT(1)
#define BSPI_BPP_MODE_SELECT_MASK BIT(8)
#define BSPI_BPP_ADDR_SELECT_MASK BIT(16)
#define BSPI_READ_LENGTH 256
/* MSPI register offsets */
#define MSPI_SPCR0_LSB 0x000
#define MSPI_SPCR0_MSB 0x004
#define MSPI_SPCR1_LSB 0x008
#define MSPI_SPCR1_MSB 0x00c
#define MSPI_NEWQP 0x010
#define MSPI_ENDQP 0x014
#define MSPI_SPCR2 0x018
#define MSPI_MSPI_STATUS 0x020
#define MSPI_CPTQP 0x024
#define MSPI_SPCR3 0x028
#define MSPI_TXRAM 0x040
#define MSPI_RXRAM 0x0c0
#define MSPI_CDRAM 0x140
#define MSPI_WRITE_LOCK 0x180
#define MSPI_MASTER_BIT BIT(7)
#define MSPI_NUM_CDRAM 16
#define MSPI_CDRAM_CONT_BIT BIT(7)
#define MSPI_CDRAM_BITSE_BIT BIT(6)
#define MSPI_CDRAM_PCS 0xf
#define MSPI_SPCR2_SPE BIT(6)
#define MSPI_SPCR2_CONT_AFTER_CMD BIT(7)
#define MSPI_MSPI_STATUS_SPIF BIT(0)
#define INTR_BASE_BIT_SHIFT 0x02
#define INTR_COUNT 0x07
#define NUM_CHIPSELECT 4
#define QSPI_SPBR_MIN 8U
#define QSPI_SPBR_MAX 255U
#define OPCODE_DIOR 0xBB
#define OPCODE_QIOR 0xEB
#define OPCODE_DIOR_4B 0xBC
#define OPCODE_QIOR_4B 0xEC
#define MAX_CMD_SIZE 6
#define ADDR_4MB_MASK GENMASK(22, 0)
/* stop at end of transfer, no other reason */
#define TRANS_STATUS_BREAK_NONE 0
/* stop at end of spi_message */
#define TRANS_STATUS_BREAK_EOM 1
/* stop at end of spi_transfer if delay */
#define TRANS_STATUS_BREAK_DELAY 2
/* stop at end of spi_transfer if cs_change */
#define TRANS_STATUS_BREAK_CS_CHANGE 4
/* stop if we run out of bytes */
#define TRANS_STATUS_BREAK_NO_BYTES 8
/* events that make us stop filling TX slots */
#define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM | \
TRANS_STATUS_BREAK_DELAY | \
TRANS_STATUS_BREAK_CS_CHANGE)
/* events that make us deassert CS */
#define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM | \
TRANS_STATUS_BREAK_CS_CHANGE)
struct bcm_qspi_parms {
u32 speed_hz;
u8 mode;
u8 bits_per_word;
};
struct bcm_xfer_mode {
bool flex_mode;
unsigned int width;
unsigned int addrlen;
unsigned int hp;
};
enum base_type {
MSPI,
BSPI,
CHIP_SELECT,
BASEMAX,
};
enum irq_source {
SINGLE_L2,
MUXED_L1,
};
struct bcm_qspi_irq {
const char *irq_name;
const irq_handler_t irq_handler;
int irq_source;
u32 mask;
};
struct bcm_qspi_dev_id {
const struct bcm_qspi_irq *irqp;
void *dev;
};
struct qspi_trans {
struct spi_transfer *trans;
int byte;
bool mspi_last_trans;
};
struct bcm_qspi {
struct platform_device *pdev;
struct spi_master *master;
struct clk *clk;
u32 base_clk;
u32 max_speed_hz;
void __iomem *base[BASEMAX];
/* Some SoCs provide custom interrupt status register(s) */
struct bcm_qspi_soc_intc *soc_intc;
struct bcm_qspi_parms last_parms;
struct qspi_trans trans_pos;
int curr_cs;
int bspi_maj_rev;
int bspi_min_rev;
int bspi_enabled;
const struct spi_mem_op *bspi_rf_op;
u32 bspi_rf_op_idx;
u32 bspi_rf_op_len;
u32 bspi_rf_op_status;
struct bcm_xfer_mode xfer_mode;
u32 s3_strap_override_ctrl;
bool bspi_mode;
bool big_endian;
int num_irqs;
struct bcm_qspi_dev_id *dev_ids;
struct completion mspi_done;
struct completion bspi_done;
};
static inline bool has_bspi(struct bcm_qspi *qspi)
{
return qspi->bspi_mode;
}
/* Read qspi controller register*/
static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
unsigned int offset)
{
return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
}
/* Write qspi controller register*/
static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
unsigned int offset, unsigned int data)
{
bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
}
/* BSPI helpers */
static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
{
int i;
/* this should normally finish within 10us */
for (i = 0; i < 1000; i++) {
if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
return 0;
udelay(1);
}
dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
return -EIO;
}
static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
{
if (qspi->bspi_maj_rev < 4)
return true;
return false;
}
static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
{
bcm_qspi_bspi_busy_poll(qspi);
/* Force rising edge for the b0/b1 'flush' field */
bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
}
static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
{
return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
}
static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
{
u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
/* BSPI v3 LR is LE only, convert data to host endianness */
if (bcm_qspi_bspi_ver_three(qspi))
data = le32_to_cpu(data);
return data;
}
static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
{
bcm_qspi_bspi_busy_poll(qspi);
bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
BSPI_RAF_CTRL_START_MASK);
}
static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
{
bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
BSPI_RAF_CTRL_CLEAR_MASK);
bcm_qspi_bspi_flush_prefetch_buffers(qspi);
}
static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
{
u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in;
u32 data = 0;
dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op,
qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len);
while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
data = bcm_qspi_bspi_lr_read_fifo(qspi);
if (likely(qspi->bspi_rf_op_len >= 4) &&
IS_ALIGNED((uintptr_t)buf, 4)) {
buf[qspi->bspi_rf_op_idx++] = data;
qspi->bspi_rf_op_len -= 4;
} else {
/* Read out remaining bytes, make sure*/
u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx];
data = cpu_to_le32(data);
while (qspi->bspi_rf_op_len) {
*cbuf++ = (u8)data;
data >>= 8;
qspi->bspi_rf_op_len--;
}
}
}
}
static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
int bpp, int bpc, int flex_mode)
{
bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
}
static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
const struct spi_mem_op *op, int hp)
{
int bpc = 0, bpp = 0;
u8 command = op->cmd.opcode;
int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
int addrlen = op->addr.nbytes;
int flex_mode = 1;
dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
width, addrlen, hp);
if (addrlen == BSPI_ADDRLEN_4BYTES)
bpp = BSPI_BPP_ADDR_SELECT_MASK;
bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth;
switch (width) {
case SPI_NBITS_SINGLE:
if (addrlen == BSPI_ADDRLEN_3BYTES)
/* default mode, does not need flex_cmd */
flex_mode = 0;
break;
case SPI_NBITS_DUAL:
bpc = 0x00000001;
if (hp) {
bpc |= 0x00010100; /* address and mode are 2-bit */
bpp = BSPI_BPP_MODE_SELECT_MASK;
}
break;
case SPI_NBITS_QUAD:
bpc = 0x00000002;
if (hp) {
bpc |= 0x00020200; /* address and mode are 4-bit */
bpp |= BSPI_BPP_MODE_SELECT_MASK;
}
break;
default:
return -EINVAL;
}
bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
return 0;
}
static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
const struct spi_mem_op *op, int hp)
{
int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
int addrlen = op->addr.nbytes;
u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
width, addrlen, hp);
switch (width) {
case SPI_NBITS_SINGLE:
/* clear quad/dual mode */
data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
break;
case SPI_NBITS_QUAD:
/* clear dual mode and set quad mode */
data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
break;
case SPI_NBITS_DUAL:
/* clear quad mode set dual mode */
data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
break;
default:
return -EINVAL;
}
if (addrlen == BSPI_ADDRLEN_4BYTES)
/* set 4byte mode*/
data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
else
/* clear 4 byte mode */
data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
/* set the override mode */
data |= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0);
return 0;
}
static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
const struct spi_mem_op *op, int hp)
{
int error = 0;
int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
int addrlen = op->addr.nbytes;
/* default mode */
qspi->xfer_mode.flex_mode = true;
if (!bcm_qspi_bspi_ver_three(qspi)) {
u32 val, mask;
val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
if (val & mask || qspi->s3_strap_override_ctrl & mask) {
qspi->xfer_mode.flex_mode = false;
bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
error = bcm_qspi_bspi_set_override(qspi, op, hp);
}
}
if (qspi->xfer_mode.flex_mode)
error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp);
if (error) {
dev_warn(&qspi->pdev->dev,
"INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
width, addrlen, hp);
} else if (qspi->xfer_mode.width != width ||
qspi->xfer_mode.addrlen != addrlen ||
qspi->xfer_mode.hp != hp) {
qspi->xfer_mode.width = width;
qspi->xfer_mode.addrlen = addrlen;
qspi->xfer_mode.hp = hp;
dev_dbg(&qspi->pdev->dev,
"cs:%d %d-lane output, %d-byte address%s\n",
qspi->curr_cs,
qspi->xfer_mode.width,
qspi->xfer_mode.addrlen,
qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
}
return error;
}
static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
{
if (!has_bspi(qspi))
return;
qspi->bspi_enabled = 1;
if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
return;
bcm_qspi_bspi_flush_prefetch_buffers(qspi);
udelay(1);
bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
udelay(1);
}
static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
{
if (!has_bspi(qspi))
return;
qspi->bspi_enabled = 0;
if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
return;
bcm_qspi_bspi_busy_poll(qspi);
bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
udelay(1);
}
static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
{
u32 rd = 0;
u32 wr = 0;
if (cs >= 0 && qspi->base[CHIP_SELECT]) {
rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
wr = (rd & ~0xff) | (1 << cs);
if (rd == wr)
return;
bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
usleep_range(10, 20);
}
dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
qspi->curr_cs = cs;
}
/* MSPI helpers */
static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
const struct bcm_qspi_parms *xp)
{
u32 spcr, spbr = 0;
if (xp->speed_hz)
spbr = qspi->base_clk / (2 * xp->speed_hz);
spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX);
bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
spcr = MSPI_MASTER_BIT;
/* for 16 bit the data should be zero */
if (xp->bits_per_word != 16)
spcr |= xp->bits_per_word << 2;
spcr |= xp->mode & 3;
bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
qspi->last_parms = *xp;
}
static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
struct spi_device *spi,
struct spi_transfer *trans)
{
struct bcm_qspi_parms xp;
xp.speed_hz = trans->speed_hz;
xp.bits_per_word = trans->bits_per_word;
xp.mode = spi->mode;
bcm_qspi_hw_set_parms(qspi, &xp);
}
static int bcm_qspi_setup(struct spi_device *spi)
{
struct bcm_qspi_parms *xp;
if (spi->bits_per_word > 16)
return -EINVAL;
xp = spi_get_ctldata(spi);
if (!xp) {
xp = kzalloc(sizeof(*xp), GFP_KERNEL);
if (!xp)
return -ENOMEM;
spi_set_ctldata(spi, xp);
}
xp->speed_hz = spi->max_speed_hz;
xp->mode = spi->mode;
if (spi->bits_per_word)
xp->bits_per_word = spi->bits_per_word;
else
xp->bits_per_word = 8;
return 0;
}
static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
struct qspi_trans *qt)
{
if (qt->mspi_last_trans &&
spi_transfer_is_last(qspi->master, qt->trans))
return true;
else
return false;
}
static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
struct qspi_trans *qt, int flags)
{
int ret = TRANS_STATUS_BREAK_NONE;
/* count the last transferred bytes */
if (qt->trans->bits_per_word <= 8)
qt->byte++;
else
qt->byte += 2;
if (qt->byte >= qt->trans->len) {
/* we're at the end of the spi_transfer */
/* in TX mode, need to pause for a delay or CS change */
if (qt->trans->delay_usecs &&
(flags & TRANS_STATUS_BREAK_DELAY))
ret |= TRANS_STATUS_BREAK_DELAY;
if (qt->trans->cs_change &&
(flags & TRANS_STATUS_BREAK_CS_CHANGE))
ret |= TRANS_STATUS_BREAK_CS_CHANGE;
if (ret)
goto done;
dev_dbg(&qspi->pdev->dev, "advance msg exit\n");
if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
ret = TRANS_STATUS_BREAK_EOM;
else
ret = TRANS_STATUS_BREAK_NO_BYTES;
qt->trans = NULL;
}
done:
dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
return ret;
}
static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
{
u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
/* mask out reserved bits */
return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
}
static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
{
u32 reg_offset = MSPI_RXRAM;
u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
u32 msb_offset = reg_offset + (slot << 3);
return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
}
static void read_from_hw(struct bcm_qspi *qspi, int slots)
{
struct qspi_trans tp;
int slot;
bcm_qspi_disable_bspi(qspi);
if (slots > MSPI_NUM_CDRAM) {
/* should never happen */
dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
return;
}
tp = qspi->trans_pos;
for (slot = 0; slot < slots; slot++) {
if (tp.trans->bits_per_word <= 8) {
u8 *buf = tp.trans->rx_buf;
if (buf)
buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
dev_dbg(&qspi->pdev->dev, "RD %02x\n",
buf ? buf[tp.byte] : 0x0);
} else {
u16 *buf = tp.trans->rx_buf;
if (buf)
buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
slot);
dev_dbg(&qspi->pdev->dev, "RD %04x\n",
buf ? buf[tp.byte / 2] : 0x0);
}
update_qspi_trans_byte_count(qspi, &tp,
TRANS_STATUS_BREAK_NONE);
}
qspi->trans_pos = tp;
}
static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
u8 val)
{
u32 reg_offset = MSPI_TXRAM + (slot << 3);
/* mask out reserved bits */
bcm_qspi_write(qspi, MSPI, reg_offset, val);
}
static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
u16 val)
{
u32 reg_offset = MSPI_TXRAM;
u32 msb_offset = reg_offset + (slot << 3);
u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
}
static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
{
return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
}
static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
{
bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
}
/* Return number of slots written */
static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
{
struct qspi_trans tp;
int slot = 0, tstatus = 0;
u32 mspi_cdram = 0;
bcm_qspi_disable_bspi(qspi);
tp = qspi->trans_pos;
bcm_qspi_update_parms(qspi, spi, tp.trans);
/* Run until end of transfer or reached the max data */
while (!tstatus && slot < MSPI_NUM_CDRAM) {
if (tp.trans->bits_per_word <= 8) {
const u8 *buf = tp.trans->tx_buf;
u8 val = buf ? buf[tp.byte] : 0x00;
write_txram_slot_u8(qspi, slot, val);
dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
} else {
const u16 *buf = tp.trans->tx_buf;
u16 val = buf ? buf[tp.byte / 2] : 0x0000;
write_txram_slot_u16(qspi, slot, val);
dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
}
mspi_cdram = MSPI_CDRAM_CONT_BIT;
if (has_bspi(qspi))
mspi_cdram &= ~1;
else
mspi_cdram |= (~(1 << spi->chip_select) &
MSPI_CDRAM_PCS);
mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
MSPI_CDRAM_BITSE_BIT);
write_cdram_slot(qspi, slot, mspi_cdram);
tstatus = update_qspi_trans_byte_count(qspi, &tp,
TRANS_STATUS_BREAK_TX);
slot++;
}
if (!slot) {
dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
goto done;
}
dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
if (tstatus & TRANS_STATUS_BREAK_DESELECT) {
mspi_cdram = read_cdram_slot(qspi, slot - 1) &
~MSPI_CDRAM_CONT_BIT;
write_cdram_slot(qspi, slot - 1, mspi_cdram);
}
if (has_bspi(qspi))
bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
/* Must flush previous writes before starting MSPI operation */
mb();
/* Set cont | spe | spifie */
bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
done:
return slot;
}
static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
const struct spi_mem_op *op)
{
struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
u32 addr = 0, len, rdlen, len_words, from = 0;
int ret = 0;
unsigned long timeo = msecs_to_jiffies(100);
struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
if (bcm_qspi_bspi_ver_three(qspi))
if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES)
return -EIO;
from = op->addr.val;
bcm_qspi_chip_select(qspi, spi->chip_select);
bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
/*
* when using flex mode we need to send
* the upper address byte to bspi
*/
if (bcm_qspi_bspi_ver_three(qspi) == false) {
addr = from & 0xff000000;
bcm_qspi_write(qspi, BSPI,
BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
}
if (!qspi->xfer_mode.flex_mode)
addr = from;
else
addr = from & 0x00ffffff;
if (bcm_qspi_bspi_ver_three(qspi) == true)
addr = (addr + 0xc00000) & 0xffffff;
/*
* read into the entire buffer by breaking the reads
* into RAF buffer read lengths
*/
len = op->data.nbytes;
qspi->bspi_rf_op_idx = 0;
do {
if (len > BSPI_READ_LENGTH)
rdlen = BSPI_READ_LENGTH;
else
rdlen = len;
reinit_completion(&qspi->bspi_done);
bcm_qspi_enable_bspi(qspi);
len_words = (rdlen + 3) >> 2;
qspi->bspi_rf_op = op;
qspi->bspi_rf_op_status = 0;
qspi->bspi_rf_op_len = rdlen;
dev_dbg(&qspi->pdev->dev,
"bspi xfr addr 0x%x len 0x%x", addr, rdlen);
bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
if (qspi->soc_intc) {
/*
* clear soc MSPI and BSPI interrupts and enable
* BSPI interrupts.
*/
soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
}
/* Must flush previous writes before starting BSPI operation */
mb();
bcm_qspi_bspi_lr_start(qspi);
if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
ret = -ETIMEDOUT;
break;
}
/* set msg return length */
addr += rdlen;
len -= rdlen;
} while (len);
return ret;
}
static int bcm_qspi_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *trans)
{
struct bcm_qspi *qspi = spi_master_get_devdata(master);
int slots;
unsigned long timeo = msecs_to_jiffies(100);
bcm_qspi_chip_select(qspi, spi->chip_select);
qspi->trans_pos.trans = trans;
qspi->trans_pos.byte = 0;
while (qspi->trans_pos.byte < trans->len) {
reinit_completion(&qspi->mspi_done);
slots = write_to_hw(qspi, spi);
if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
return -ETIMEDOUT;
}
read_from_hw(qspi, slots);
}
return 0;
}
static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi,
const struct spi_mem_op *op)
{
struct spi_master *master = spi->master;
struct bcm_qspi *qspi = spi_master_get_devdata(master);
struct spi_transfer t[2];
u8 cmd[6] = { };
int ret, i;
memset(cmd, 0, sizeof(cmd));
memset(t, 0, sizeof(t));
/* tx */
/* opcode is in cmd[0] */
cmd[0] = op->cmd.opcode;
for (i = 0; i < op->addr.nbytes; i++)
cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
t[0].tx_buf = cmd;
t[0].len = op->addr.nbytes + op->dummy.nbytes + 1;
t[0].bits_per_word = spi->bits_per_word;
t[0].tx_nbits = op->cmd.buswidth;
/* lets mspi know that this is not last transfer */
qspi->trans_pos.mspi_last_trans = false;
ret = bcm_qspi_transfer_one(master, spi, &t[0]);
/* rx */
qspi->trans_pos.mspi_last_trans = true;
if (!ret) {
/* rx */
t[1].rx_buf = op->data.buf.in;
t[1].len = op->data.nbytes;
t[1].rx_nbits = op->data.buswidth;
t[1].bits_per_word = spi->bits_per_word;
ret = bcm_qspi_transfer_one(master, spi, &t[1]);
}
return ret;
}
static int bcm_qspi_exec_mem_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct spi_device *spi = mem->spi;
struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
int ret = 0;
bool mspi_read = false;
u32 addr = 0, len;
u_char *buf;
if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 ||
op->data.dir != SPI_MEM_DATA_IN)
return -ENOTSUPP;
buf = op->data.buf.in;
addr = op->addr.val;
len = op->data.nbytes;
if (has_bspi(qspi) && bcm_qspi_bspi_ver_three(qspi) == true) {
/*
* The address coming into this function is a raw flash offset.
* But for BSPI <= V3, we need to convert it to a remapped BSPI
* address. If it crosses a 4MB boundary, just revert back to
* using MSPI.
*/
addr = (addr + 0xc00000) & 0xffffff;
if ((~ADDR_4MB_MASK & addr) ^
(~ADDR_4MB_MASK & (addr + len - 1)))
mspi_read = true;
}
/* non-aligned and very short transfers are handled by MSPI */
if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
len < 4)
mspi_read = true;
if (!has_bspi(qspi) || mspi_read)
return bcm_qspi_mspi_exec_mem_op(spi, op);
ret = bcm_qspi_bspi_set_mode(qspi, op, 0);
if (!ret)
ret = bcm_qspi_bspi_exec_mem_op(spi, op);
return ret;
}
static void bcm_qspi_cleanup(struct spi_device *spi)
{
struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
kfree(xp);
}
static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
{
struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
struct bcm_qspi *qspi = qspi_dev_id->dev;
u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
if (status & MSPI_MSPI_STATUS_SPIF) {
struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
/* clear interrupt */
status &= ~MSPI_MSPI_STATUS_SPIF;
bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
if (qspi->soc_intc)
soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
complete(&qspi->mspi_done);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
{
struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
struct bcm_qspi *qspi = qspi_dev_id->dev;
struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
u32 status = qspi_dev_id->irqp->mask;
if (qspi->bspi_enabled && qspi->bspi_rf_op) {
bcm_qspi_bspi_lr_data_read(qspi);
if (qspi->bspi_rf_op_len == 0) {
qspi->bspi_rf_op = NULL;
if (qspi->soc_intc) {
/* disable soc BSPI interrupt */
soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
false);
/* indicate done */
status = INTR_BSPI_LR_SESSION_DONE_MASK;
}
if (qspi->bspi_rf_op_status)
bcm_qspi_bspi_lr_clear(qspi);
else
bcm_qspi_bspi_flush_prefetch_buffers(qspi);
}
if (qspi->soc_intc)
/* clear soc BSPI interrupt */
soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
}
status &= INTR_BSPI_LR_SESSION_DONE_MASK;
if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0)
complete(&qspi->bspi_done);
return IRQ_HANDLED;
}
static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
{
struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
struct bcm_qspi *qspi = qspi_dev_id->dev;
struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
dev_err(&qspi->pdev->dev, "BSPI INT error\n");
qspi->bspi_rf_op_status = -EIO;
if (qspi->soc_intc)
/* clear soc interrupt */
soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
complete(&qspi->bspi_done);
return IRQ_HANDLED;
}
static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
{
struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
struct bcm_qspi *qspi = qspi_dev_id->dev;
struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
irqreturn_t ret = IRQ_NONE;
if (soc_intc) {
u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
if (status & MSPI_DONE)
ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
else if (status & BSPI_DONE)
ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
else if (status & BSPI_ERR)
ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
}
return ret;
}
static const struct bcm_qspi_irq qspi_irq_tab[] = {
{
.irq_name = "spi_lr_fullness_reached",
.irq_handler = bcm_qspi_bspi_lr_l2_isr,
.mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
},
{
.irq_name = "spi_lr_session_aborted",
.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
.mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
},
{
.irq_name = "spi_lr_impatient",
.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
.mask = INTR_BSPI_LR_IMPATIENT_MASK,
},
{
.irq_name = "spi_lr_session_done",
.irq_handler = bcm_qspi_bspi_lr_l2_isr,
.mask = INTR_BSPI_LR_SESSION_DONE_MASK,
},
#ifdef QSPI_INT_DEBUG
/* this interrupt is for debug purposes only, dont request irq */
{
.irq_name = "spi_lr_overread",
.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
.mask = INTR_BSPI_LR_OVERREAD_MASK,
},
#endif
{
.irq_name = "mspi_done",
.irq_handler = bcm_qspi_mspi_l2_isr,
.mask = INTR_MSPI_DONE_MASK,
},
{
.irq_name = "mspi_halted",
.irq_handler = bcm_qspi_mspi_l2_isr,
.mask = INTR_MSPI_HALTED_MASK,
},
{
/* single muxed L1 interrupt source */
.irq_name = "spi_l1_intr",
.irq_handler = bcm_qspi_l1_isr,
.irq_source = MUXED_L1,
.mask = QSPI_INTERRUPTS_ALL,
},
};
static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
{
u32 val = 0;
val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
qspi->bspi_maj_rev = (val >> 8) & 0xff;
qspi->bspi_min_rev = val & 0xff;
if (!(bcm_qspi_bspi_ver_three(qspi))) {
/* Force mapping of BSPI address -> flash offset */
bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
}
qspi->bspi_enabled = 1;
bcm_qspi_disable_bspi(qspi);
bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
}
static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
{
struct bcm_qspi_parms parms;
bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
parms.mode = SPI_MODE_3;
parms.bits_per_word = 8;
parms.speed_hz = qspi->max_speed_hz;
bcm_qspi_hw_set_parms(qspi, &parms);
if (has_bspi(qspi))
bcm_qspi_bspi_init(qspi);
}
static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
{
bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
if (has_bspi(qspi))
bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
}
static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
.exec_op = bcm_qspi_exec_mem_op,
};
static const struct of_device_id bcm_qspi_of_match[] = {
{ .compatible = "brcm,spi-bcm-qspi" },
{},
};
MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
int bcm_qspi_probe(struct platform_device *pdev,
struct bcm_qspi_soc_intc *soc_intc)
{
struct device *dev = &pdev->dev;
struct bcm_qspi *qspi;
struct spi_master *master;
struct resource *res;
int irq, ret = 0, num_ints = 0;
u32 val;
const char *name = NULL;
int num_irqs = ARRAY_SIZE(qspi_irq_tab);
/* We only support device-tree instantiation */
if (!dev->of_node)
return -ENODEV;
if (!of_match_node(bcm_qspi_of_match, dev->of_node))
return -ENODEV;
master = devm_spi_alloc_master(dev, sizeof(struct bcm_qspi));
if (!master) {
dev_err(dev, "error allocating spi_master\n");
return -ENOMEM;
}
qspi = spi_master_get_devdata(master);
qspi->pdev = pdev;
qspi->trans_pos.trans = NULL;
qspi->trans_pos.byte = 0;
qspi->trans_pos.mspi_last_trans = true;
qspi->master = master;
master->bus_num = -1;
master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
master->setup = bcm_qspi_setup;
master->transfer_one = bcm_qspi_transfer_one;
master->mem_ops = &bcm_qspi_mem_ops;
master->cleanup = bcm_qspi_cleanup;
master->dev.of_node = dev->of_node;
master->num_chipselect = NUM_CHIPSELECT;
qspi->big_endian = of_device_is_big_endian(dev->of_node);
if (!of_property_read_u32(dev->of_node, "num-cs", &val))
master->num_chipselect = val;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
if (!res)
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"mspi");
qspi->base[MSPI] = devm_ioremap_resource(dev, res);
if (IS_ERR(qspi->base[MSPI]))
return PTR_ERR(qspi->base[MSPI]);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
if (res) {
qspi->base[BSPI] = devm_ioremap_resource(dev, res);
if (IS_ERR(qspi->base[BSPI]))
return PTR_ERR(qspi->base[BSPI]);
qspi->bspi_mode = true;
} else {
qspi->bspi_mode = false;
}
dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
if (res) {
qspi->base[CHIP_SELECT] = devm_ioremap_resource(dev, res);
if (IS_ERR(qspi->base[CHIP_SELECT]))
return PTR_ERR(qspi->base[CHIP_SELECT]);
}
qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
GFP_KERNEL);
if (!qspi->dev_ids)
return -ENOMEM;
for (val = 0; val < num_irqs; val++) {
irq = -1;
name = qspi_irq_tab[val].irq_name;
if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
/* get the l2 interrupts */
irq = platform_get_irq_byname(pdev, name);
} else if (!num_ints && soc_intc) {
/* all mspi, bspi intrs muxed to one L1 intr */
irq = platform_get_irq(pdev, 0);
}
if (irq >= 0) {
ret = devm_request_irq(&pdev->dev, irq,
qspi_irq_tab[val].irq_handler, 0,
name,
&qspi->dev_ids[val]);
if (ret < 0) {
dev_err(&pdev->dev, "IRQ %s not found\n", name);
goto qspi_unprepare_err;
}
qspi->dev_ids[val].dev = qspi;
qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
num_ints++;
dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
qspi_irq_tab[val].irq_name,
irq);
}
}
if (!num_ints) {
dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
ret = -EINVAL;
goto qspi_unprepare_err;
}
/*
* Some SoCs integrate spi controller (e.g., its interrupt bits)
* in specific ways
*/
if (soc_intc) {
qspi->soc_intc = soc_intc;
soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
} else {
qspi->soc_intc = NULL;
}
qspi->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(qspi->clk)) {
dev_warn(dev, "unable to get clock\n");
ret = PTR_ERR(qspi->clk);
goto qspi_probe_err;
}
ret = clk_prepare_enable(qspi->clk);
if (ret) {
dev_err(dev, "failed to prepare clock\n");
goto qspi_probe_err;
}
qspi->base_clk = clk_get_rate(qspi->clk);
qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2);
bcm_qspi_hw_init(qspi);
init_completion(&qspi->mspi_done);
init_completion(&qspi->bspi_done);
qspi->curr_cs = -1;
platform_set_drvdata(pdev, qspi);
qspi->xfer_mode.width = -1;
qspi->xfer_mode.addrlen = -1;
qspi->xfer_mode.hp = -1;
ret = spi_register_master(master);
if (ret < 0) {
dev_err(dev, "can't register master\n");
goto qspi_reg_err;
}
return 0;
qspi_reg_err:
bcm_qspi_hw_uninit(qspi);
qspi_unprepare_err:
clk_disable_unprepare(qspi->clk);
qspi_probe_err:
kfree(qspi->dev_ids);
return ret;
}
/* probe function to be called by SoC specific platform driver probe */
EXPORT_SYMBOL_GPL(bcm_qspi_probe);
int bcm_qspi_remove(struct platform_device *pdev)
{
struct bcm_qspi *qspi = platform_get_drvdata(pdev);
spi_unregister_master(qspi->master);
bcm_qspi_hw_uninit(qspi);
clk_disable_unprepare(qspi->clk);
kfree(qspi->dev_ids);
return 0;
}
/* function to be called by SoC specific platform driver remove() */
EXPORT_SYMBOL_GPL(bcm_qspi_remove);
static int __maybe_unused bcm_qspi_suspend(struct device *dev)
{
struct bcm_qspi *qspi = dev_get_drvdata(dev);
/* store the override strap value */
if (!bcm_qspi_bspi_ver_three(qspi))
qspi->s3_strap_override_ctrl =
bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
spi_master_suspend(qspi->master);
clk_disable(qspi->clk);
bcm_qspi_hw_uninit(qspi);
return 0;
};
static int __maybe_unused bcm_qspi_resume(struct device *dev)
{
struct bcm_qspi *qspi = dev_get_drvdata(dev);
int ret = 0;
bcm_qspi_hw_init(qspi);
bcm_qspi_chip_select(qspi, qspi->curr_cs);
if (qspi->soc_intc)
/* enable MSPI interrupt */
qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
true);
ret = clk_enable(qspi->clk);
if (!ret)
spi_master_resume(qspi->master);
return ret;
}
SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
/* pm_ops to be called by SoC specific platform driver */
EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
MODULE_AUTHOR("Kamal Dasu");
MODULE_DESCRIPTION("Broadcom QSPI driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" DRIVER_NAME);
|