summaryrefslogtreecommitdiffstats
path: root/fe25519.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:26:58 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:26:58 +0000
commit999ae6be3243c7b4a815247199447b53c39a3d65 (patch)
tree1f35b42b5e5f462d35ba452e4dcfa188ce0543fd /fe25519.c
parentInitial commit. (diff)
downloadopenssh-999ae6be3243c7b4a815247199447b53c39a3d65.tar.xz
openssh-999ae6be3243c7b4a815247199447b53c39a3d65.zip
Adding upstream version 1:7.9p1.upstream/1%7.9p1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'fe25519.c')
-rw-r--r--fe25519.c337
1 files changed, 337 insertions, 0 deletions
diff --git a/fe25519.c b/fe25519.c
new file mode 100644
index 0000000..e54fd15
--- /dev/null
+++ b/fe25519.c
@@ -0,0 +1,337 @@
+/* $OpenBSD: fe25519.c,v 1.3 2013/12/09 11:03:45 markus Exp $ */
+
+/*
+ * Public Domain, Authors: Daniel J. Bernstein, Niels Duif, Tanja Lange,
+ * Peter Schwabe, Bo-Yin Yang.
+ * Copied from supercop-20130419/crypto_sign/ed25519/ref/fe25519.c
+ */
+
+#include "includes.h"
+
+#define WINDOWSIZE 1 /* Should be 1,2, or 4 */
+#define WINDOWMASK ((1<<WINDOWSIZE)-1)
+
+#include "fe25519.h"
+
+static crypto_uint32 equal(crypto_uint32 a,crypto_uint32 b) /* 16-bit inputs */
+{
+ crypto_uint32 x = a ^ b; /* 0: yes; 1..65535: no */
+ x -= 1; /* 4294967295: yes; 0..65534: no */
+ x >>= 31; /* 1: yes; 0: no */
+ return x;
+}
+
+static crypto_uint32 ge(crypto_uint32 a,crypto_uint32 b) /* 16-bit inputs */
+{
+ unsigned int x = a;
+ x -= (unsigned int) b; /* 0..65535: yes; 4294901761..4294967295: no */
+ x >>= 31; /* 0: yes; 1: no */
+ x ^= 1; /* 1: yes; 0: no */
+ return x;
+}
+
+static crypto_uint32 times19(crypto_uint32 a)
+{
+ return (a << 4) + (a << 1) + a;
+}
+
+static crypto_uint32 times38(crypto_uint32 a)
+{
+ return (a << 5) + (a << 2) + (a << 1);
+}
+
+static void reduce_add_sub(fe25519 *r)
+{
+ crypto_uint32 t;
+ int i,rep;
+
+ for(rep=0;rep<4;rep++)
+ {
+ t = r->v[31] >> 7;
+ r->v[31] &= 127;
+ t = times19(t);
+ r->v[0] += t;
+ for(i=0;i<31;i++)
+ {
+ t = r->v[i] >> 8;
+ r->v[i+1] += t;
+ r->v[i] &= 255;
+ }
+ }
+}
+
+static void reduce_mul(fe25519 *r)
+{
+ crypto_uint32 t;
+ int i,rep;
+
+ for(rep=0;rep<2;rep++)
+ {
+ t = r->v[31] >> 7;
+ r->v[31] &= 127;
+ t = times19(t);
+ r->v[0] += t;
+ for(i=0;i<31;i++)
+ {
+ t = r->v[i] >> 8;
+ r->v[i+1] += t;
+ r->v[i] &= 255;
+ }
+ }
+}
+
+/* reduction modulo 2^255-19 */
+void fe25519_freeze(fe25519 *r)
+{
+ int i;
+ crypto_uint32 m = equal(r->v[31],127);
+ for(i=30;i>0;i--)
+ m &= equal(r->v[i],255);
+ m &= ge(r->v[0],237);
+
+ m = -m;
+
+ r->v[31] -= m&127;
+ for(i=30;i>0;i--)
+ r->v[i] -= m&255;
+ r->v[0] -= m&237;
+}
+
+void fe25519_unpack(fe25519 *r, const unsigned char x[32])
+{
+ int i;
+ for(i=0;i<32;i++) r->v[i] = x[i];
+ r->v[31] &= 127;
+}
+
+/* Assumes input x being reduced below 2^255 */
+void fe25519_pack(unsigned char r[32], const fe25519 *x)
+{
+ int i;
+ fe25519 y = *x;
+ fe25519_freeze(&y);
+ for(i=0;i<32;i++)
+ r[i] = y.v[i];
+}
+
+int fe25519_iszero(const fe25519 *x)
+{
+ int i;
+ int r;
+ fe25519 t = *x;
+ fe25519_freeze(&t);
+ r = equal(t.v[0],0);
+ for(i=1;i<32;i++)
+ r &= equal(t.v[i],0);
+ return r;
+}
+
+int fe25519_iseq_vartime(const fe25519 *x, const fe25519 *y)
+{
+ int i;
+ fe25519 t1 = *x;
+ fe25519 t2 = *y;
+ fe25519_freeze(&t1);
+ fe25519_freeze(&t2);
+ for(i=0;i<32;i++)
+ if(t1.v[i] != t2.v[i]) return 0;
+ return 1;
+}
+
+void fe25519_cmov(fe25519 *r, const fe25519 *x, unsigned char b)
+{
+ int i;
+ crypto_uint32 mask = b;
+ mask = -mask;
+ for(i=0;i<32;i++) r->v[i] ^= mask & (x->v[i] ^ r->v[i]);
+}
+
+unsigned char fe25519_getparity(const fe25519 *x)
+{
+ fe25519 t = *x;
+ fe25519_freeze(&t);
+ return t.v[0] & 1;
+}
+
+void fe25519_setone(fe25519 *r)
+{
+ int i;
+ r->v[0] = 1;
+ for(i=1;i<32;i++) r->v[i]=0;
+}
+
+void fe25519_setzero(fe25519 *r)
+{
+ int i;
+ for(i=0;i<32;i++) r->v[i]=0;
+}
+
+void fe25519_neg(fe25519 *r, const fe25519 *x)
+{
+ fe25519 t;
+ int i;
+ for(i=0;i<32;i++) t.v[i]=x->v[i];
+ fe25519_setzero(r);
+ fe25519_sub(r, r, &t);
+}
+
+void fe25519_add(fe25519 *r, const fe25519 *x, const fe25519 *y)
+{
+ int i;
+ for(i=0;i<32;i++) r->v[i] = x->v[i] + y->v[i];
+ reduce_add_sub(r);
+}
+
+void fe25519_sub(fe25519 *r, const fe25519 *x, const fe25519 *y)
+{
+ int i;
+ crypto_uint32 t[32];
+ t[0] = x->v[0] + 0x1da;
+ t[31] = x->v[31] + 0xfe;
+ for(i=1;i<31;i++) t[i] = x->v[i] + 0x1fe;
+ for(i=0;i<32;i++) r->v[i] = t[i] - y->v[i];
+ reduce_add_sub(r);
+}
+
+void fe25519_mul(fe25519 *r, const fe25519 *x, const fe25519 *y)
+{
+ int i,j;
+ crypto_uint32 t[63];
+ for(i=0;i<63;i++)t[i] = 0;
+
+ for(i=0;i<32;i++)
+ for(j=0;j<32;j++)
+ t[i+j] += x->v[i] * y->v[j];
+
+ for(i=32;i<63;i++)
+ r->v[i-32] = t[i-32] + times38(t[i]);
+ r->v[31] = t[31]; /* result now in r[0]...r[31] */
+
+ reduce_mul(r);
+}
+
+void fe25519_square(fe25519 *r, const fe25519 *x)
+{
+ fe25519_mul(r, x, x);
+}
+
+void fe25519_invert(fe25519 *r, const fe25519 *x)
+{
+ fe25519 z2;
+ fe25519 z9;
+ fe25519 z11;
+ fe25519 z2_5_0;
+ fe25519 z2_10_0;
+ fe25519 z2_20_0;
+ fe25519 z2_50_0;
+ fe25519 z2_100_0;
+ fe25519 t0;
+ fe25519 t1;
+ int i;
+
+ /* 2 */ fe25519_square(&z2,x);
+ /* 4 */ fe25519_square(&t1,&z2);
+ /* 8 */ fe25519_square(&t0,&t1);
+ /* 9 */ fe25519_mul(&z9,&t0,x);
+ /* 11 */ fe25519_mul(&z11,&z9,&z2);
+ /* 22 */ fe25519_square(&t0,&z11);
+ /* 2^5 - 2^0 = 31 */ fe25519_mul(&z2_5_0,&t0,&z9);
+
+ /* 2^6 - 2^1 */ fe25519_square(&t0,&z2_5_0);
+ /* 2^7 - 2^2 */ fe25519_square(&t1,&t0);
+ /* 2^8 - 2^3 */ fe25519_square(&t0,&t1);
+ /* 2^9 - 2^4 */ fe25519_square(&t1,&t0);
+ /* 2^10 - 2^5 */ fe25519_square(&t0,&t1);
+ /* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t0,&z2_5_0);
+
+ /* 2^11 - 2^1 */ fe25519_square(&t0,&z2_10_0);
+ /* 2^12 - 2^2 */ fe25519_square(&t1,&t0);
+ /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
+ /* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t1,&z2_10_0);
+
+ /* 2^21 - 2^1 */ fe25519_square(&t0,&z2_20_0);
+ /* 2^22 - 2^2 */ fe25519_square(&t1,&t0);
+ /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
+ /* 2^40 - 2^0 */ fe25519_mul(&t0,&t1,&z2_20_0);
+
+ /* 2^41 - 2^1 */ fe25519_square(&t1,&t0);
+ /* 2^42 - 2^2 */ fe25519_square(&t0,&t1);
+ /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); }
+ /* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t0,&z2_10_0);
+
+ /* 2^51 - 2^1 */ fe25519_square(&t0,&z2_50_0);
+ /* 2^52 - 2^2 */ fe25519_square(&t1,&t0);
+ /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
+ /* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t1,&z2_50_0);
+
+ /* 2^101 - 2^1 */ fe25519_square(&t1,&z2_100_0);
+ /* 2^102 - 2^2 */ fe25519_square(&t0,&t1);
+ /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); }
+ /* 2^200 - 2^0 */ fe25519_mul(&t1,&t0,&z2_100_0);
+
+ /* 2^201 - 2^1 */ fe25519_square(&t0,&t1);
+ /* 2^202 - 2^2 */ fe25519_square(&t1,&t0);
+ /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
+ /* 2^250 - 2^0 */ fe25519_mul(&t0,&t1,&z2_50_0);
+
+ /* 2^251 - 2^1 */ fe25519_square(&t1,&t0);
+ /* 2^252 - 2^2 */ fe25519_square(&t0,&t1);
+ /* 2^253 - 2^3 */ fe25519_square(&t1,&t0);
+ /* 2^254 - 2^4 */ fe25519_square(&t0,&t1);
+ /* 2^255 - 2^5 */ fe25519_square(&t1,&t0);
+ /* 2^255 - 21 */ fe25519_mul(r,&t1,&z11);
+}
+
+void fe25519_pow2523(fe25519 *r, const fe25519 *x)
+{
+ fe25519 z2;
+ fe25519 z9;
+ fe25519 z11;
+ fe25519 z2_5_0;
+ fe25519 z2_10_0;
+ fe25519 z2_20_0;
+ fe25519 z2_50_0;
+ fe25519 z2_100_0;
+ fe25519 t;
+ int i;
+
+ /* 2 */ fe25519_square(&z2,x);
+ /* 4 */ fe25519_square(&t,&z2);
+ /* 8 */ fe25519_square(&t,&t);
+ /* 9 */ fe25519_mul(&z9,&t,x);
+ /* 11 */ fe25519_mul(&z11,&z9,&z2);
+ /* 22 */ fe25519_square(&t,&z11);
+ /* 2^5 - 2^0 = 31 */ fe25519_mul(&z2_5_0,&t,&z9);
+
+ /* 2^6 - 2^1 */ fe25519_square(&t,&z2_5_0);
+ /* 2^10 - 2^5 */ for (i = 1;i < 5;i++) { fe25519_square(&t,&t); }
+ /* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t,&z2_5_0);
+
+ /* 2^11 - 2^1 */ fe25519_square(&t,&z2_10_0);
+ /* 2^20 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); }
+ /* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t,&z2_10_0);
+
+ /* 2^21 - 2^1 */ fe25519_square(&t,&z2_20_0);
+ /* 2^40 - 2^20 */ for (i = 1;i < 20;i++) { fe25519_square(&t,&t); }
+ /* 2^40 - 2^0 */ fe25519_mul(&t,&t,&z2_20_0);
+
+ /* 2^41 - 2^1 */ fe25519_square(&t,&t);
+ /* 2^50 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); }
+ /* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t,&z2_10_0);
+
+ /* 2^51 - 2^1 */ fe25519_square(&t,&z2_50_0);
+ /* 2^100 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); }
+ /* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t,&z2_50_0);
+
+ /* 2^101 - 2^1 */ fe25519_square(&t,&z2_100_0);
+ /* 2^200 - 2^100 */ for (i = 1;i < 100;i++) { fe25519_square(&t,&t); }
+ /* 2^200 - 2^0 */ fe25519_mul(&t,&t,&z2_100_0);
+
+ /* 2^201 - 2^1 */ fe25519_square(&t,&t);
+ /* 2^250 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); }
+ /* 2^250 - 2^0 */ fe25519_mul(&t,&t,&z2_50_0);
+
+ /* 2^251 - 2^1 */ fe25519_square(&t,&t);
+ /* 2^252 - 2^2 */ fe25519_square(&t,&t);
+ /* 2^252 - 3 */ fe25519_mul(r,&t,x);
+}