summaryrefslogtreecommitdiffstats
path: root/umac.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:26:58 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:26:58 +0000
commit999ae6be3243c7b4a815247199447b53c39a3d65 (patch)
tree1f35b42b5e5f462d35ba452e4dcfa188ce0543fd /umac.c
parentInitial commit. (diff)
downloadopenssh-upstream/1%7.9p1.tar.xz
openssh-upstream/1%7.9p1.zip
Adding upstream version 1:7.9p1.upstream/1%7.9p1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'umac.c')
-rw-r--r--umac.c1282
1 files changed, 1282 insertions, 0 deletions
diff --git a/umac.c b/umac.c
new file mode 100644
index 0000000..ccae39f
--- /dev/null
+++ b/umac.c
@@ -0,0 +1,1282 @@
+/* $OpenBSD: umac.c,v 1.17 2018/04/10 00:10:49 djm Exp $ */
+/* -----------------------------------------------------------------------
+ *
+ * umac.c -- C Implementation UMAC Message Authentication
+ *
+ * Version 0.93b of rfc4418.txt -- 2006 July 18
+ *
+ * For a full description of UMAC message authentication see the UMAC
+ * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
+ * Please report bugs and suggestions to the UMAC webpage.
+ *
+ * Copyright (c) 1999-2006 Ted Krovetz
+ *
+ * Permission to use, copy, modify, and distribute this software and
+ * its documentation for any purpose and with or without fee, is hereby
+ * granted provided that the above copyright notice appears in all copies
+ * and in supporting documentation, and that the name of the copyright
+ * holder not be used in advertising or publicity pertaining to
+ * distribution of the software without specific, written prior permission.
+ *
+ * Comments should be directed to Ted Krovetz (tdk@acm.org)
+ *
+ * ---------------------------------------------------------------------- */
+
+ /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
+ *
+ * 1) This version does not work properly on messages larger than 16MB
+ *
+ * 2) If you set the switch to use SSE2, then all data must be 16-byte
+ * aligned
+ *
+ * 3) When calling the function umac(), it is assumed that msg is in
+ * a writable buffer of length divisible by 32 bytes. The message itself
+ * does not have to fill the entire buffer, but bytes beyond msg may be
+ * zeroed.
+ *
+ * 4) Three free AES implementations are supported by this implementation of
+ * UMAC. Paulo Barreto's version is in the public domain and can be found
+ * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
+ * "Barreto"). The only two files needed are rijndael-alg-fst.c and
+ * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
+ * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
+ * includes a fast IA-32 assembly version. The OpenSSL crypo library is
+ * the third.
+ *
+ * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
+ * produced under gcc with optimizations set -O3 or higher. Dunno why.
+ *
+ /////////////////////////////////////////////////////////////////////// */
+
+/* ---------------------------------------------------------------------- */
+/* --- User Switches ---------------------------------------------------- */
+/* ---------------------------------------------------------------------- */
+
+#ifndef UMAC_OUTPUT_LEN
+#define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */
+#endif
+
+#if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \
+ UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16
+# error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16
+#endif
+
+/* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */
+/* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */
+/* #define SSE2 0 Is SSE2 is available? */
+/* #define RUN_TESTS 0 Run basic correctness/speed tests */
+/* #define UMAC_AE_SUPPORT 0 Enable authenticated encryption */
+
+/* ---------------------------------------------------------------------- */
+/* -- Global Includes --------------------------------------------------- */
+/* ---------------------------------------------------------------------- */
+
+#include "includes.h"
+#include <sys/types.h>
+#include <string.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <stddef.h>
+
+#include "xmalloc.h"
+#include "umac.h"
+#include "misc.h"
+
+/* ---------------------------------------------------------------------- */
+/* --- Primitive Data Types --- */
+/* ---------------------------------------------------------------------- */
+
+/* The following assumptions may need change on your system */
+typedef u_int8_t UINT8; /* 1 byte */
+typedef u_int16_t UINT16; /* 2 byte */
+typedef u_int32_t UINT32; /* 4 byte */
+typedef u_int64_t UINT64; /* 8 bytes */
+typedef unsigned int UWORD; /* Register */
+
+/* ---------------------------------------------------------------------- */
+/* --- Constants -------------------------------------------------------- */
+/* ---------------------------------------------------------------------- */
+
+#define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */
+
+/* Message "words" are read from memory in an endian-specific manner. */
+/* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */
+/* be set true if the host computer is little-endian. */
+
+#if BYTE_ORDER == LITTLE_ENDIAN
+#define __LITTLE_ENDIAN__ 1
+#else
+#define __LITTLE_ENDIAN__ 0
+#endif
+
+/* ---------------------------------------------------------------------- */
+/* ---------------------------------------------------------------------- */
+/* ----- Architecture Specific ------------------------------------------ */
+/* ---------------------------------------------------------------------- */
+/* ---------------------------------------------------------------------- */
+
+
+/* ---------------------------------------------------------------------- */
+/* ---------------------------------------------------------------------- */
+/* ----- Primitive Routines --------------------------------------------- */
+/* ---------------------------------------------------------------------- */
+/* ---------------------------------------------------------------------- */
+
+
+/* ---------------------------------------------------------------------- */
+/* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
+/* ---------------------------------------------------------------------- */
+
+#define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
+
+/* ---------------------------------------------------------------------- */
+/* --- Endian Conversion --- Forcing assembly on some platforms */
+/* ---------------------------------------------------------------------- */
+
+#if (__LITTLE_ENDIAN__)
+#define LOAD_UINT32_REVERSED(p) get_u32(p)
+#define STORE_UINT32_REVERSED(p,v) put_u32(p,v)
+#else
+#define LOAD_UINT32_REVERSED(p) get_u32_le(p)
+#define STORE_UINT32_REVERSED(p,v) put_u32_le(p,v)
+#endif
+
+#define LOAD_UINT32_LITTLE(p) (get_u32_le(p))
+#define STORE_UINT32_BIG(p,v) put_u32(p, v)
+
+/* ---------------------------------------------------------------------- */
+/* ---------------------------------------------------------------------- */
+/* ----- Begin KDF & PDF Section ---------------------------------------- */
+/* ---------------------------------------------------------------------- */
+/* ---------------------------------------------------------------------- */
+
+/* UMAC uses AES with 16 byte block and key lengths */
+#define AES_BLOCK_LEN 16
+
+/* OpenSSL's AES */
+#ifdef WITH_OPENSSL
+#include "openbsd-compat/openssl-compat.h"
+#ifndef USE_BUILTIN_RIJNDAEL
+# include <openssl/aes.h>
+#endif
+typedef AES_KEY aes_int_key[1];
+#define aes_encryption(in,out,int_key) \
+ AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
+#define aes_key_setup(key,int_key) \
+ AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
+#else
+#include "rijndael.h"
+#define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
+typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */
+#define aes_encryption(in,out,int_key) \
+ rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
+#define aes_key_setup(key,int_key) \
+ rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
+ UMAC_KEY_LEN*8)
+#endif
+
+/* The user-supplied UMAC key is stretched using AES in a counter
+ * mode to supply all random bits needed by UMAC. The kdf function takes
+ * an AES internal key representation 'key' and writes a stream of
+ * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct
+ * 'ndx' causes a distinct byte stream.
+ */
+static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes)
+{
+ UINT8 in_buf[AES_BLOCK_LEN] = {0};
+ UINT8 out_buf[AES_BLOCK_LEN];
+ UINT8 *dst_buf = (UINT8 *)bufp;
+ int i;
+
+ /* Setup the initial value */
+ in_buf[AES_BLOCK_LEN-9] = ndx;
+ in_buf[AES_BLOCK_LEN-1] = i = 1;
+
+ while (nbytes >= AES_BLOCK_LEN) {
+ aes_encryption(in_buf, out_buf, key);
+ memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
+ in_buf[AES_BLOCK_LEN-1] = ++i;
+ nbytes -= AES_BLOCK_LEN;
+ dst_buf += AES_BLOCK_LEN;
+ }
+ if (nbytes) {
+ aes_encryption(in_buf, out_buf, key);
+ memcpy(dst_buf,out_buf,nbytes);
+ }
+ explicit_bzero(in_buf, sizeof(in_buf));
+ explicit_bzero(out_buf, sizeof(out_buf));
+}
+
+/* The final UHASH result is XOR'd with the output of a pseudorandom
+ * function. Here, we use AES to generate random output and
+ * xor the appropriate bytes depending on the last bits of nonce.
+ * This scheme is optimized for sequential, increasing big-endian nonces.
+ */
+
+typedef struct {
+ UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */
+ UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */
+ aes_int_key prf_key; /* Expanded AES key for PDF */
+} pdf_ctx;
+
+static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
+{
+ UINT8 buf[UMAC_KEY_LEN];
+
+ kdf(buf, prf_key, 0, UMAC_KEY_LEN);
+ aes_key_setup(buf, pc->prf_key);
+
+ /* Initialize pdf and cache */
+ memset(pc->nonce, 0, sizeof(pc->nonce));
+ aes_encryption(pc->nonce, pc->cache, pc->prf_key);
+ explicit_bzero(buf, sizeof(buf));
+}
+
+static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
+{
+ /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
+ * of the AES output. If last time around we returned the ndx-1st
+ * element, then we may have the result in the cache already.
+ */
+
+#if (UMAC_OUTPUT_LEN == 4)
+#define LOW_BIT_MASK 3
+#elif (UMAC_OUTPUT_LEN == 8)
+#define LOW_BIT_MASK 1
+#elif (UMAC_OUTPUT_LEN > 8)
+#define LOW_BIT_MASK 0
+#endif
+ union {
+ UINT8 tmp_nonce_lo[4];
+ UINT32 align;
+ } t;
+#if LOW_BIT_MASK != 0
+ int ndx = nonce[7] & LOW_BIT_MASK;
+#endif
+ *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
+ t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
+
+ if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
+ (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
+ {
+ ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
+ ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
+ aes_encryption(pc->nonce, pc->cache, pc->prf_key);
+ }
+
+#if (UMAC_OUTPUT_LEN == 4)
+ *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
+#elif (UMAC_OUTPUT_LEN == 8)
+ *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
+#elif (UMAC_OUTPUT_LEN == 12)
+ ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
+ ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
+#elif (UMAC_OUTPUT_LEN == 16)
+ ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
+ ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
+#endif
+}
+
+/* ---------------------------------------------------------------------- */
+/* ---------------------------------------------------------------------- */
+/* ----- Begin NH Hash Section ------------------------------------------ */
+/* ---------------------------------------------------------------------- */
+/* ---------------------------------------------------------------------- */
+
+/* The NH-based hash functions used in UMAC are described in the UMAC paper
+ * and specification, both of which can be found at the UMAC website.
+ * The interface to this implementation has two
+ * versions, one expects the entire message being hashed to be passed
+ * in a single buffer and returns the hash result immediately. The second
+ * allows the message to be passed in a sequence of buffers. In the
+ * muliple-buffer interface, the client calls the routine nh_update() as
+ * many times as necessary. When there is no more data to be fed to the
+ * hash, the client calls nh_final() which calculates the hash output.
+ * Before beginning another hash calculation the nh_reset() routine
+ * must be called. The single-buffer routine, nh(), is equivalent to
+ * the sequence of calls nh_update() and nh_final(); however it is
+ * optimized and should be preferred whenever the multiple-buffer interface
+ * is not necessary. When using either interface, it is the client's
+ * responsibility to pass no more than L1_KEY_LEN bytes per hash result.
+ *
+ * The routine nh_init() initializes the nh_ctx data structure and
+ * must be called once, before any other PDF routine.
+ */
+
+ /* The "nh_aux" routines do the actual NH hashing work. They
+ * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
+ * produce output for all STREAMS NH iterations in one call,
+ * allowing the parallel implementation of the streams.
+ */
+
+#define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */
+#define L1_KEY_LEN 1024 /* Internal key bytes */
+#define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */
+#define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */
+#define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */
+#define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */
+
+typedef struct {
+ UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
+ UINT8 data [HASH_BUF_BYTES]; /* Incoming data buffer */
+ int next_data_empty; /* Bookkeeping variable for data buffer. */
+ int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorporated. */
+ UINT64 state[STREAMS]; /* on-line state */
+} nh_ctx;
+
+
+#if (UMAC_OUTPUT_LEN == 4)
+
+static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
+/* NH hashing primitive. Previous (partial) hash result is loaded and
+* then stored via hp pointer. The length of the data pointed at by "dp",
+* "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key
+* is expected to be endian compensated in memory at key setup.
+*/
+{
+ UINT64 h;
+ UWORD c = dlen / 32;
+ UINT32 *k = (UINT32 *)kp;
+ const UINT32 *d = (const UINT32 *)dp;
+ UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
+ UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
+
+ h = *((UINT64 *)hp);
+ do {
+ d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
+ d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
+ d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
+ d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
+ k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
+ k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
+ h += MUL64((k0 + d0), (k4 + d4));
+ h += MUL64((k1 + d1), (k5 + d5));
+ h += MUL64((k2 + d2), (k6 + d6));
+ h += MUL64((k3 + d3), (k7 + d7));
+
+ d += 8;
+ k += 8;
+ } while (--c);
+ *((UINT64 *)hp) = h;
+}
+
+#elif (UMAC_OUTPUT_LEN == 8)
+
+static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
+/* Same as previous nh_aux, but two streams are handled in one pass,
+ * reading and writing 16 bytes of hash-state per call.
+ */
+{
+ UINT64 h1,h2;
+ UWORD c = dlen / 32;
+ UINT32 *k = (UINT32 *)kp;
+ const UINT32 *d = (const UINT32 *)dp;
+ UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
+ UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
+ k8,k9,k10,k11;
+
+ h1 = *((UINT64 *)hp);
+ h2 = *((UINT64 *)hp + 1);
+ k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
+ do {
+ d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
+ d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
+ d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
+ d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
+ k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
+ k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
+
+ h1 += MUL64((k0 + d0), (k4 + d4));
+ h2 += MUL64((k4 + d0), (k8 + d4));
+
+ h1 += MUL64((k1 + d1), (k5 + d5));
+ h2 += MUL64((k5 + d1), (k9 + d5));
+
+ h1 += MUL64((k2 + d2), (k6 + d6));
+ h2 += MUL64((k6 + d2), (k10 + d6));
+
+ h1 += MUL64((k3 + d3), (k7 + d7));
+ h2 += MUL64((k7 + d3), (k11 + d7));
+
+ k0 = k8; k1 = k9; k2 = k10; k3 = k11;
+
+ d += 8;
+ k += 8;
+ } while (--c);
+ ((UINT64 *)hp)[0] = h1;
+ ((UINT64 *)hp)[1] = h2;
+}
+
+#elif (UMAC_OUTPUT_LEN == 12)
+
+static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
+/* Same as previous nh_aux, but two streams are handled in one pass,
+ * reading and writing 24 bytes of hash-state per call.
+*/
+{
+ UINT64 h1,h2,h3;
+ UWORD c = dlen / 32;
+ UINT32 *k = (UINT32 *)kp;
+ const UINT32 *d = (const UINT32 *)dp;
+ UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
+ UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
+ k8,k9,k10,k11,k12,k13,k14,k15;
+
+ h1 = *((UINT64 *)hp);
+ h2 = *((UINT64 *)hp + 1);
+ h3 = *((UINT64 *)hp + 2);
+ k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
+ k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
+ do {
+ d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
+ d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
+ d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
+ d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
+ k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
+ k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
+
+ h1 += MUL64((k0 + d0), (k4 + d4));
+ h2 += MUL64((k4 + d0), (k8 + d4));
+ h3 += MUL64((k8 + d0), (k12 + d4));
+
+ h1 += MUL64((k1 + d1), (k5 + d5));
+ h2 += MUL64((k5 + d1), (k9 + d5));
+ h3 += MUL64((k9 + d1), (k13 + d5));
+
+ h1 += MUL64((k2 + d2), (k6 + d6));
+ h2 += MUL64((k6 + d2), (k10 + d6));
+ h3 += MUL64((k10 + d2), (k14 + d6));
+
+ h1 += MUL64((k3 + d3), (k7 + d7));
+ h2 += MUL64((k7 + d3), (k11 + d7));
+ h3 += MUL64((k11 + d3), (k15 + d7));
+
+ k0 = k8; k1 = k9; k2 = k10; k3 = k11;
+ k4 = k12; k5 = k13; k6 = k14; k7 = k15;
+
+ d += 8;
+ k += 8;
+ } while (--c);
+ ((UINT64 *)hp)[0] = h1;
+ ((UINT64 *)hp)[1] = h2;
+ ((UINT64 *)hp)[2] = h3;
+}
+
+#elif (UMAC_OUTPUT_LEN == 16)
+
+static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
+/* Same as previous nh_aux, but two streams are handled in one pass,
+ * reading and writing 24 bytes of hash-state per call.
+*/
+{
+ UINT64 h1,h2,h3,h4;
+ UWORD c = dlen / 32;
+ UINT32 *k = (UINT32 *)kp;
+ const UINT32 *d = (const UINT32 *)dp;
+ UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
+ UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
+ k8,k9,k10,k11,k12,k13,k14,k15,
+ k16,k17,k18,k19;
+
+ h1 = *((UINT64 *)hp);
+ h2 = *((UINT64 *)hp + 1);
+ h3 = *((UINT64 *)hp + 2);
+ h4 = *((UINT64 *)hp + 3);
+ k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
+ k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
+ do {
+ d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
+ d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
+ d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
+ d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
+ k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
+ k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
+ k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
+
+ h1 += MUL64((k0 + d0), (k4 + d4));
+ h2 += MUL64((k4 + d0), (k8 + d4));
+ h3 += MUL64((k8 + d0), (k12 + d4));
+ h4 += MUL64((k12 + d0), (k16 + d4));
+
+ h1 += MUL64((k1 + d1), (k5 + d5));
+ h2 += MUL64((k5 + d1), (k9 + d5));
+ h3 += MUL64((k9 + d1), (k13 + d5));
+ h4 += MUL64((k13 + d1), (k17 + d5));
+
+ h1 += MUL64((k2 + d2), (k6 + d6));
+ h2 += MUL64((k6 + d2), (k10 + d6));
+ h3 += MUL64((k10 + d2), (k14 + d6));
+ h4 += MUL64((k14 + d2), (k18 + d6));
+
+ h1 += MUL64((k3 + d3), (k7 + d7));
+ h2 += MUL64((k7 + d3), (k11 + d7));
+ h3 += MUL64((k11 + d3), (k15 + d7));
+ h4 += MUL64((k15 + d3), (k19 + d7));
+
+ k0 = k8; k1 = k9; k2 = k10; k3 = k11;
+ k4 = k12; k5 = k13; k6 = k14; k7 = k15;
+ k8 = k16; k9 = k17; k10 = k18; k11 = k19;
+
+ d += 8;
+ k += 8;
+ } while (--c);
+ ((UINT64 *)hp)[0] = h1;
+ ((UINT64 *)hp)[1] = h2;
+ ((UINT64 *)hp)[2] = h3;
+ ((UINT64 *)hp)[3] = h4;
+}
+
+/* ---------------------------------------------------------------------- */
+#endif /* UMAC_OUTPUT_LENGTH */
+/* ---------------------------------------------------------------------- */
+
+
+/* ---------------------------------------------------------------------- */
+
+static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
+/* This function is a wrapper for the primitive NH hash functions. It takes
+ * as argument "hc" the current hash context and a buffer which must be a
+ * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
+ * appropriately according to how much message has been hashed already.
+ */
+{
+ UINT8 *key;
+
+ key = hc->nh_key + hc->bytes_hashed;
+ nh_aux(key, buf, hc->state, nbytes);
+}
+
+/* ---------------------------------------------------------------------- */
+
+#if (__LITTLE_ENDIAN__)
+static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
+/* We endian convert the keys on little-endian computers to */
+/* compensate for the lack of big-endian memory reads during hashing. */
+{
+ UWORD iters = num_bytes / bpw;
+ if (bpw == 4) {
+ UINT32 *p = (UINT32 *)buf;
+ do {
+ *p = LOAD_UINT32_REVERSED(p);
+ p++;
+ } while (--iters);
+ } else if (bpw == 8) {
+ UINT32 *p = (UINT32 *)buf;
+ UINT32 t;
+ do {
+ t = LOAD_UINT32_REVERSED(p+1);
+ p[1] = LOAD_UINT32_REVERSED(p);
+ p[0] = t;
+ p += 2;
+ } while (--iters);
+ }
+}
+#define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
+#else
+#define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */
+#endif
+
+/* ---------------------------------------------------------------------- */
+
+static void nh_reset(nh_ctx *hc)
+/* Reset nh_ctx to ready for hashing of new data */
+{
+ hc->bytes_hashed = 0;
+ hc->next_data_empty = 0;
+ hc->state[0] = 0;
+#if (UMAC_OUTPUT_LEN >= 8)
+ hc->state[1] = 0;
+#endif
+#if (UMAC_OUTPUT_LEN >= 12)
+ hc->state[2] = 0;
+#endif
+#if (UMAC_OUTPUT_LEN == 16)
+ hc->state[3] = 0;
+#endif
+
+}
+
+/* ---------------------------------------------------------------------- */
+
+static void nh_init(nh_ctx *hc, aes_int_key prf_key)
+/* Generate nh_key, endian convert and reset to be ready for hashing. */
+{
+ kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
+ endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
+ nh_reset(hc);
+}
+
+/* ---------------------------------------------------------------------- */
+
+static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
+/* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */
+/* even multiple of HASH_BUF_BYTES. */
+{
+ UINT32 i,j;
+
+ j = hc->next_data_empty;
+ if ((j + nbytes) >= HASH_BUF_BYTES) {
+ if (j) {
+ i = HASH_BUF_BYTES - j;
+ memcpy(hc->data+j, buf, i);
+ nh_transform(hc,hc->data,HASH_BUF_BYTES);
+ nbytes -= i;
+ buf += i;
+ hc->bytes_hashed += HASH_BUF_BYTES;
+ }
+ if (nbytes >= HASH_BUF_BYTES) {
+ i = nbytes & ~(HASH_BUF_BYTES - 1);
+ nh_transform(hc, buf, i);
+ nbytes -= i;
+ buf += i;
+ hc->bytes_hashed += i;
+ }
+ j = 0;
+ }
+ memcpy(hc->data + j, buf, nbytes);
+ hc->next_data_empty = j + nbytes;
+}
+
+/* ---------------------------------------------------------------------- */
+
+static void zero_pad(UINT8 *p, int nbytes)
+{
+/* Write "nbytes" of zeroes, beginning at "p" */
+ if (nbytes >= (int)sizeof(UWORD)) {
+ while ((ptrdiff_t)p % sizeof(UWORD)) {
+ *p = 0;
+ nbytes--;
+ p++;
+ }
+ while (nbytes >= (int)sizeof(UWORD)) {
+ *(UWORD *)p = 0;
+ nbytes -= sizeof(UWORD);
+ p += sizeof(UWORD);
+ }
+ }
+ while (nbytes) {
+ *p = 0;
+ nbytes--;
+ p++;
+ }
+}
+
+/* ---------------------------------------------------------------------- */
+
+static void nh_final(nh_ctx *hc, UINT8 *result)
+/* After passing some number of data buffers to nh_update() for integration
+ * into an NH context, nh_final is called to produce a hash result. If any
+ * bytes are in the buffer hc->data, incorporate them into the
+ * NH context. Finally, add into the NH accumulation "state" the total number
+ * of bits hashed. The resulting numbers are written to the buffer "result".
+ * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
+ */
+{
+ int nh_len, nbits;
+
+ if (hc->next_data_empty != 0) {
+ nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
+ ~(L1_PAD_BOUNDARY - 1));
+ zero_pad(hc->data + hc->next_data_empty,
+ nh_len - hc->next_data_empty);
+ nh_transform(hc, hc->data, nh_len);
+ hc->bytes_hashed += hc->next_data_empty;
+ } else if (hc->bytes_hashed == 0) {
+ nh_len = L1_PAD_BOUNDARY;
+ zero_pad(hc->data, L1_PAD_BOUNDARY);
+ nh_transform(hc, hc->data, nh_len);
+ }
+
+ nbits = (hc->bytes_hashed << 3);
+ ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
+#if (UMAC_OUTPUT_LEN >= 8)
+ ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
+#endif
+#if (UMAC_OUTPUT_LEN >= 12)
+ ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
+#endif
+#if (UMAC_OUTPUT_LEN == 16)
+ ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
+#endif
+ nh_reset(hc);
+}
+
+/* ---------------------------------------------------------------------- */
+
+static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
+ UINT32 unpadded_len, UINT8 *result)
+/* All-in-one nh_update() and nh_final() equivalent.
+ * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
+ * well aligned
+ */
+{
+ UINT32 nbits;
+
+ /* Initialize the hash state */
+ nbits = (unpadded_len << 3);
+
+ ((UINT64 *)result)[0] = nbits;
+#if (UMAC_OUTPUT_LEN >= 8)
+ ((UINT64 *)result)[1] = nbits;
+#endif
+#if (UMAC_OUTPUT_LEN >= 12)
+ ((UINT64 *)result)[2] = nbits;
+#endif
+#if (UMAC_OUTPUT_LEN == 16)
+ ((UINT64 *)result)[3] = nbits;
+#endif
+
+ nh_aux(hc->nh_key, buf, result, padded_len);
+}
+
+/* ---------------------------------------------------------------------- */
+/* ---------------------------------------------------------------------- */
+/* ----- Begin UHASH Section -------------------------------------------- */
+/* ---------------------------------------------------------------------- */
+/* ---------------------------------------------------------------------- */
+
+/* UHASH is a multi-layered algorithm. Data presented to UHASH is first
+ * hashed by NH. The NH output is then hashed by a polynomial-hash layer
+ * unless the initial data to be hashed is short. After the polynomial-
+ * layer, an inner-product hash is used to produce the final UHASH output.
+ *
+ * UHASH provides two interfaces, one all-at-once and another where data
+ * buffers are presented sequentially. In the sequential interface, the
+ * UHASH client calls the routine uhash_update() as many times as necessary.
+ * When there is no more data to be fed to UHASH, the client calls
+ * uhash_final() which
+ * calculates the UHASH output. Before beginning another UHASH calculation
+ * the uhash_reset() routine must be called. The all-at-once UHASH routine,
+ * uhash(), is equivalent to the sequence of calls uhash_update() and
+ * uhash_final(); however it is optimized and should be
+ * used whenever the sequential interface is not necessary.
+ *
+ * The routine uhash_init() initializes the uhash_ctx data structure and
+ * must be called once, before any other UHASH routine.
+ */
+
+/* ---------------------------------------------------------------------- */
+/* ----- Constants and uhash_ctx ---------------------------------------- */
+/* ---------------------------------------------------------------------- */
+
+/* ---------------------------------------------------------------------- */
+/* ----- Poly hash and Inner-Product hash Constants --------------------- */
+/* ---------------------------------------------------------------------- */
+
+/* Primes and masks */
+#define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */
+#define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */
+#define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */
+
+
+/* ---------------------------------------------------------------------- */
+
+typedef struct uhash_ctx {
+ nh_ctx hash; /* Hash context for L1 NH hash */
+ UINT64 poly_key_8[STREAMS]; /* p64 poly keys */
+ UINT64 poly_accum[STREAMS]; /* poly hash result */
+ UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */
+ UINT32 ip_trans[STREAMS]; /* Inner-product translation */
+ UINT32 msg_len; /* Total length of data passed */
+ /* to uhash */
+} uhash_ctx;
+typedef struct uhash_ctx *uhash_ctx_t;
+
+/* ---------------------------------------------------------------------- */
+
+
+/* The polynomial hashes use Horner's rule to evaluate a polynomial one
+ * word at a time. As described in the specification, poly32 and poly64
+ * require keys from special domains. The following implementations exploit
+ * the special domains to avoid overflow. The results are not guaranteed to
+ * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
+ * patches any errant values.
+ */
+
+static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
+{
+ UINT32 key_hi = (UINT32)(key >> 32),
+ key_lo = (UINT32)key,
+ cur_hi = (UINT32)(cur >> 32),
+ cur_lo = (UINT32)cur,
+ x_lo,
+ x_hi;
+ UINT64 X,T,res;
+
+ X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
+ x_lo = (UINT32)X;
+ x_hi = (UINT32)(X >> 32);
+
+ res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
+
+ T = ((UINT64)x_lo << 32);
+ res += T;
+ if (res < T)
+ res += 59;
+
+ res += data;
+ if (res < data)
+ res += 59;
+
+ return res;
+}
+
+
+/* Although UMAC is specified to use a ramped polynomial hash scheme, this
+ * implementation does not handle all ramp levels. Because we don't handle
+ * the ramp up to p128 modulus in this implementation, we are limited to
+ * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
+ * bytes input to UMAC per tag, ie. 16MB).
+ */
+static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
+{
+ int i;
+ UINT64 *data=(UINT64*)data_in;
+
+ for (i = 0; i < STREAMS; i++) {
+ if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
+ hc->poly_accum[i] = poly64(hc->poly_accum[i],
+ hc->poly_key_8[i], p64 - 1);
+ hc->poly_accum[i] = poly64(hc->poly_accum[i],
+ hc->poly_key_8[i], (data[i] - 59));
+ } else {
+ hc->poly_accum[i] = poly64(hc->poly_accum[i],
+ hc->poly_key_8[i], data[i]);
+ }
+ }
+}
+
+
+/* ---------------------------------------------------------------------- */
+
+
+/* The final step in UHASH is an inner-product hash. The poly hash
+ * produces a result not necessarily WORD_LEN bytes long. The inner-
+ * product hash breaks the polyhash output into 16-bit chunks and
+ * multiplies each with a 36 bit key.
+ */
+
+static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
+{
+ t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
+ t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
+ t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
+ t = t + ipkp[3] * (UINT64)(UINT16)(data);
+
+ return t;
+}
+
+static UINT32 ip_reduce_p36(UINT64 t)
+{
+/* Divisionless modular reduction */
+ UINT64 ret;
+
+ ret = (t & m36) + 5 * (t >> 36);
+ if (ret >= p36)
+ ret -= p36;
+
+ /* return least significant 32 bits */
+ return (UINT32)(ret);
+}
+
+
+/* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
+ * the polyhash stage is skipped and ip_short is applied directly to the
+ * NH output.
+ */
+static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
+{
+ UINT64 t;
+ UINT64 *nhp = (UINT64 *)nh_res;
+
+ t = ip_aux(0,ahc->ip_keys, nhp[0]);
+ STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
+#if (UMAC_OUTPUT_LEN >= 8)
+ t = ip_aux(0,ahc->ip_keys+4, nhp[1]);
+ STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
+#endif
+#if (UMAC_OUTPUT_LEN >= 12)
+ t = ip_aux(0,ahc->ip_keys+8, nhp[2]);
+ STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
+#endif
+#if (UMAC_OUTPUT_LEN == 16)
+ t = ip_aux(0,ahc->ip_keys+12, nhp[3]);
+ STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
+#endif
+}
+
+/* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
+ * the polyhash stage is not skipped and ip_long is applied to the
+ * polyhash output.
+ */
+static void ip_long(uhash_ctx_t ahc, u_char *res)
+{
+ int i;
+ UINT64 t;
+
+ for (i = 0; i < STREAMS; i++) {
+ /* fix polyhash output not in Z_p64 */
+ if (ahc->poly_accum[i] >= p64)
+ ahc->poly_accum[i] -= p64;
+ t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
+ STORE_UINT32_BIG((UINT32 *)res+i,
+ ip_reduce_p36(t) ^ ahc->ip_trans[i]);
+ }
+}
+
+
+/* ---------------------------------------------------------------------- */
+
+/* ---------------------------------------------------------------------- */
+
+/* Reset uhash context for next hash session */
+static int uhash_reset(uhash_ctx_t pc)
+{
+ nh_reset(&pc->hash);
+ pc->msg_len = 0;
+ pc->poly_accum[0] = 1;
+#if (UMAC_OUTPUT_LEN >= 8)
+ pc->poly_accum[1] = 1;
+#endif
+#if (UMAC_OUTPUT_LEN >= 12)
+ pc->poly_accum[2] = 1;
+#endif
+#if (UMAC_OUTPUT_LEN == 16)
+ pc->poly_accum[3] = 1;
+#endif
+ return 1;
+}
+
+/* ---------------------------------------------------------------------- */
+
+/* Given a pointer to the internal key needed by kdf() and a uhash context,
+ * initialize the NH context and generate keys needed for poly and inner-
+ * product hashing. All keys are endian adjusted in memory so that native
+ * loads cause correct keys to be in registers during calculation.
+ */
+static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
+{
+ int i;
+ UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
+
+ /* Zero the entire uhash context */
+ memset(ahc, 0, sizeof(uhash_ctx));
+
+ /* Initialize the L1 hash */
+ nh_init(&ahc->hash, prf_key);
+
+ /* Setup L2 hash variables */
+ kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */
+ for (i = 0; i < STREAMS; i++) {
+ /* Fill keys from the buffer, skipping bytes in the buffer not
+ * used by this implementation. Endian reverse the keys if on a
+ * little-endian computer.
+ */
+ memcpy(ahc->poly_key_8+i, buf+24*i, 8);
+ endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
+ /* Mask the 64-bit keys to their special domain */
+ ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
+ ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */
+ }
+
+ /* Setup L3-1 hash variables */
+ kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
+ for (i = 0; i < STREAMS; i++)
+ memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
+ 4*sizeof(UINT64));
+ endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
+ sizeof(ahc->ip_keys));
+ for (i = 0; i < STREAMS*4; i++)
+ ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */
+
+ /* Setup L3-2 hash variables */
+ /* Fill buffer with index 4 key */
+ kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
+ endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
+ STREAMS * sizeof(UINT32));
+ explicit_bzero(buf, sizeof(buf));
+}
+
+/* ---------------------------------------------------------------------- */
+
+#if 0
+static uhash_ctx_t uhash_alloc(u_char key[])
+{
+/* Allocate memory and force to a 16-byte boundary. */
+ uhash_ctx_t ctx;
+ u_char bytes_to_add;
+ aes_int_key prf_key;
+
+ ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
+ if (ctx) {
+ if (ALLOC_BOUNDARY) {
+ bytes_to_add = ALLOC_BOUNDARY -
+ ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
+ ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
+ *((u_char *)ctx - 1) = bytes_to_add;
+ }
+ aes_key_setup(key,prf_key);
+ uhash_init(ctx, prf_key);
+ }
+ return (ctx);
+}
+#endif
+
+/* ---------------------------------------------------------------------- */
+
+#if 0
+static int uhash_free(uhash_ctx_t ctx)
+{
+/* Free memory allocated by uhash_alloc */
+ u_char bytes_to_sub;
+
+ if (ctx) {
+ if (ALLOC_BOUNDARY) {
+ bytes_to_sub = *((u_char *)ctx - 1);
+ ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
+ }
+ free(ctx);
+ }
+ return (1);
+}
+#endif
+/* ---------------------------------------------------------------------- */
+
+static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
+/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
+ * hash each one with NH, calling the polyhash on each NH output.
+ */
+{
+ UWORD bytes_hashed, bytes_remaining;
+ UINT64 result_buf[STREAMS];
+ UINT8 *nh_result = (UINT8 *)&result_buf;
+
+ if (ctx->msg_len + len <= L1_KEY_LEN) {
+ nh_update(&ctx->hash, (const UINT8 *)input, len);
+ ctx->msg_len += len;
+ } else {
+
+ bytes_hashed = ctx->msg_len % L1_KEY_LEN;
+ if (ctx->msg_len == L1_KEY_LEN)
+ bytes_hashed = L1_KEY_LEN;
+
+ if (bytes_hashed + len >= L1_KEY_LEN) {
+
+ /* If some bytes have been passed to the hash function */
+ /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
+ /* bytes to complete the current nh_block. */
+ if (bytes_hashed) {
+ bytes_remaining = (L1_KEY_LEN - bytes_hashed);
+ nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
+ nh_final(&ctx->hash, nh_result);
+ ctx->msg_len += bytes_remaining;
+ poly_hash(ctx,(UINT32 *)nh_result);
+ len -= bytes_remaining;
+ input += bytes_remaining;
+ }
+
+ /* Hash directly from input stream if enough bytes */
+ while (len >= L1_KEY_LEN) {
+ nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
+ L1_KEY_LEN, nh_result);
+ ctx->msg_len += L1_KEY_LEN;
+ len -= L1_KEY_LEN;
+ input += L1_KEY_LEN;
+ poly_hash(ctx,(UINT32 *)nh_result);
+ }
+ }
+
+ /* pass remaining < L1_KEY_LEN bytes of input data to NH */
+ if (len) {
+ nh_update(&ctx->hash, (const UINT8 *)input, len);
+ ctx->msg_len += len;
+ }
+ }
+
+ return (1);
+}
+
+/* ---------------------------------------------------------------------- */
+
+static int uhash_final(uhash_ctx_t ctx, u_char *res)
+/* Incorporate any pending data, pad, and generate tag */
+{
+ UINT64 result_buf[STREAMS];
+ UINT8 *nh_result = (UINT8 *)&result_buf;
+
+ if (ctx->msg_len > L1_KEY_LEN) {
+ if (ctx->msg_len % L1_KEY_LEN) {
+ nh_final(&ctx->hash, nh_result);
+ poly_hash(ctx,(UINT32 *)nh_result);
+ }
+ ip_long(ctx, res);
+ } else {
+ nh_final(&ctx->hash, nh_result);
+ ip_short(ctx,nh_result, res);
+ }
+ uhash_reset(ctx);
+ return (1);
+}
+
+/* ---------------------------------------------------------------------- */
+
+#if 0
+static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
+/* assumes that msg is in a writable buffer of length divisible by */
+/* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */
+{
+ UINT8 nh_result[STREAMS*sizeof(UINT64)];
+ UINT32 nh_len;
+ int extra_zeroes_needed;
+
+ /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
+ * the polyhash.
+ */
+ if (len <= L1_KEY_LEN) {
+ if (len == 0) /* If zero length messages will not */
+ nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */
+ else
+ nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
+ extra_zeroes_needed = nh_len - len;
+ zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
+ nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
+ ip_short(ahc,nh_result, res);
+ } else {
+ /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
+ * output to poly_hash().
+ */
+ do {
+ nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
+ poly_hash(ahc,(UINT32 *)nh_result);
+ len -= L1_KEY_LEN;
+ msg += L1_KEY_LEN;
+ } while (len >= L1_KEY_LEN);
+ if (len) {
+ nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
+ extra_zeroes_needed = nh_len - len;
+ zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
+ nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
+ poly_hash(ahc,(UINT32 *)nh_result);
+ }
+
+ ip_long(ahc, res);
+ }
+
+ uhash_reset(ahc);
+ return 1;
+}
+#endif
+
+/* ---------------------------------------------------------------------- */
+/* ---------------------------------------------------------------------- */
+/* ----- Begin UMAC Section --------------------------------------------- */
+/* ---------------------------------------------------------------------- */
+/* ---------------------------------------------------------------------- */
+
+/* The UMAC interface has two interfaces, an all-at-once interface where
+ * the entire message to be authenticated is passed to UMAC in one buffer,
+ * and a sequential interface where the message is presented a little at a
+ * time. The all-at-once is more optimaized than the sequential version and
+ * should be preferred when the sequential interface is not required.
+ */
+struct umac_ctx {
+ uhash_ctx hash; /* Hash function for message compression */
+ pdf_ctx pdf; /* PDF for hashed output */
+ void *free_ptr; /* Address to free this struct via */
+} umac_ctx;
+
+/* ---------------------------------------------------------------------- */
+
+#if 0
+int umac_reset(struct umac_ctx *ctx)
+/* Reset the hash function to begin a new authentication. */
+{
+ uhash_reset(&ctx->hash);
+ return (1);
+}
+#endif
+
+/* ---------------------------------------------------------------------- */
+
+int umac_delete(struct umac_ctx *ctx)
+/* Deallocate the ctx structure */
+{
+ if (ctx) {
+ if (ALLOC_BOUNDARY)
+ ctx = (struct umac_ctx *)ctx->free_ptr;
+ explicit_bzero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY);
+ free(ctx);
+ }
+ return (1);
+}
+
+/* ---------------------------------------------------------------------- */
+
+struct umac_ctx *umac_new(const u_char key[])
+/* Dynamically allocate a umac_ctx struct, initialize variables,
+ * generate subkeys from key. Align to 16-byte boundary.
+ */
+{
+ struct umac_ctx *ctx, *octx;
+ size_t bytes_to_add;
+ aes_int_key prf_key;
+
+ octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
+ if (ctx) {
+ if (ALLOC_BOUNDARY) {
+ bytes_to_add = ALLOC_BOUNDARY -
+ ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
+ ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
+ }
+ ctx->free_ptr = octx;
+ aes_key_setup(key, prf_key);
+ pdf_init(&ctx->pdf, prf_key);
+ uhash_init(&ctx->hash, prf_key);
+ explicit_bzero(prf_key, sizeof(prf_key));
+ }
+
+ return (ctx);
+}
+
+/* ---------------------------------------------------------------------- */
+
+int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
+/* Incorporate any pending data, pad, and generate tag */
+{
+ uhash_final(&ctx->hash, (u_char *)tag);
+ pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
+
+ return (1);
+}
+
+/* ---------------------------------------------------------------------- */
+
+int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
+/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */
+/* hash each one, calling the PDF on the hashed output whenever the hash- */
+/* output buffer is full. */
+{
+ uhash_update(&ctx->hash, input, len);
+ return (1);
+}
+
+/* ---------------------------------------------------------------------- */
+
+#if 0
+int umac(struct umac_ctx *ctx, u_char *input,
+ long len, u_char tag[],
+ u_char nonce[8])
+/* All-in-one version simply calls umac_update() and umac_final(). */
+{
+ uhash(&ctx->hash, input, len, (u_char *)tag);
+ pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
+
+ return (1);
+}
+#endif
+
+/* ---------------------------------------------------------------------- */
+/* ---------------------------------------------------------------------- */
+/* ----- End UMAC Section ----------------------------------------------- */
+/* ---------------------------------------------------------------------- */
+/* ---------------------------------------------------------------------- */