1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
|
/*++
/* NAME
/* tls_dane 3
/* SUMMARY
/* Support for RFC 6698, 7671, 7672 (DANE) certificate matching
/* SYNOPSIS
/* #include <tls.h>
/*
/* int tls_dane_avail()
/*
/* void tls_dane_flush()
/*
/* void tls_dane_verbose(on)
/* int on;
/*
/* TLS_DANE *tls_dane_alloc()
/*
/* void tls_dane_free(dane)
/* TLS_DANE *dane;
/*
/* void tls_dane_add_ee_digests(dane, mdalg, digest, delim)
/* TLS_DANE *dane;
/* const char *mdalg;
/* const char *digest;
/* const char *delim;
/*
/* int tls_dane_load_trustfile(dane, tafile)
/* TLS_DANE *dane;
/* const char *tafile;
/*
/* int tls_dane_match(TLSContext, usage, cert, depth)
/* TLS_SESS_STATE *TLScontext;
/* int usage;
/* X509 *cert;
/* int depth;
/*
/* void tls_dane_set_callback(ssl_ctx, TLScontext)
/* SSL_CTX *ssl_ctx;
/* TLS_SESS_STATE *TLScontext;
/*
/* TLS_DANE *tls_dane_resolve(port, proto, hostrr, forcetlsa)
/* unsigned port;
/* const char *proto;
/* DNS_RR *hostrr;
/* int forcetlsa;
/*
/* int tls_dane_unusable(dane)
/* const TLS_DANE *dane;
/*
/* int tls_dane_notfound(dane)
/* const TLS_DANE *dane;
/* DESCRIPTION
/* tls_dane_avail() returns true if the features required to support DANE
/* are present in OpenSSL's libcrypto and in libresolv. Since OpenSSL's
/* libcrypto is not initialized until we call tls_client_init(), calls
/* to tls_dane_avail() must be deferred until this initialization is
/* completed successufully.
/*
/* tls_dane_flush() flushes all entries from the cache, and deletes
/* the cache.
/*
/* tls_dane_verbose() turns on verbose logging of TLSA record lookups.
/*
/* tls_dane_alloc() returns a pointer to a newly allocated TLS_DANE
/* structure with null ta and ee digest sublists.
/*
/* tls_dane_free() frees the structure allocated by tls_dane_alloc().
/*
/* tls_dane_add_ee_digests() splits "digest" using the characters in
/* "delim" as delimiters and stores the results on the EE match list
/* to match either a certificate or a public key. This is an incremental
/* interface, that builds a TLS_DANE structure outside the cache by
/* manually adding entries.
/*
/* tls_dane_load_trustfile() imports trust-anchor certificates and
/* public keys from a file (rather than DNS TLSA records).
/*
/* tls_dane_match() matches the full and/or public key digest of
/* "cert" against each candidate digest in TLScontext->dane. If usage
/* is TLS_DANE_EE, the match is against end-entity digests, otherwise
/* it is against trust-anchor digests. Returns true if a match is found,
/* false otherwise.
/*
/* tls_dane_set_callback() wraps the SSL certificate verification logic
/* in a function that modifies the input trust chain and trusted
/* certificate store to map DANE TA validation onto the existing PKI
/* verification model. When TLScontext is NULL the callback is
/* cleared, otherwise it is set. This callback should only be set
/* when out-of-band trust-anchors (via DNSSEC DANE TLSA records or
/* per-destination local configuration) are provided. Such trust
/* anchors always override the legacy public CA PKI. Otherwise, the
/* callback MUST be cleared.
/*
/* tls_dane_resolve() maps a (port, protocol, hostrr) tuple to a
/* corresponding TLS_DANE policy structure found in the DNS. The port
/* argument is in network byte order. A null pointer is returned when
/* the DNS query for the TLSA record tempfailed. In all other cases the
/* return value is a pointer to the corresponding TLS_DANE structure.
/* The caller must free the structure via tls_dane_free().
/*
/* tls_dane_unusable() checks whether a cached TLS_DANE record is
/* the result of a validated RRset, with no usable elements. In
/* this case, TLS is mandatory, but certificate verification is
/* not DANE-based.
/*
/* tls_dane_notfound() checks whether a cached TLS_DANE record is
/* the result of a validated DNS lookup returning NODATA. In
/* this case, TLS is not required by RFC, though users may elect
/* a mandatory TLS fallback policy.
/*
/* Arguments:
/* .IP dane
/* Pointer to a TLS_DANE structure that lists the valid trust-anchor
/* and end-entity full-certificate and/or public-key digests.
/* .IP port
/* The TCP port in network byte order.
/* .IP proto
/* Almost certainly "tcp".
/* .IP hostrr
/* DNS_RR pointer to TLSA base domain data.
/* .IP forcetlsa
/* When true, TLSA lookups are performed even when the qname and rname
/* are insecure. This is only useful in the unlikely case that DLV is
/* used to secure the TLSA RRset in an otherwise insecure zone.
/* .IP TLScontext
/* Client context with TA/EE matching data and related state.
/* .IP usage
/* Trust anchor (TLS_DANE_TA) or end-entity (TLS_DANE_EE) digests?
/* .IP cert
/* Certificate from peer trust chain (CA or leaf server).
/* .IP depth
/* The certificate depth for logging.
/* .IP ssl_ctx
/* The global SSL_CTX structure used to initialize child SSL
/* conenctions.
/* .IP mdalg
/* Name of a message digest algorithm suitable for computing secure
/* (1st pre-image resistant) message digests of certificates. For now,
/* md5, sha1, or member of SHA-2 family if supported by OpenSSL.
/* .IP digest
/* The digest (or list of digests concatenated with characters from
/* "delim") to be added to the TLS_DANE record.
/* .IP delim
/* The set of delimiter characters used above.
/* LICENSE
/* .ad
/* .fi
/* This software is free. You can do with it whatever you want.
/* The original author kindly requests that you acknowledge
/* the use of his software.
/* AUTHOR(S)
/* Wietse Venema
/* IBM T.J. Watson Research
/* P.O. Box 704
/* Yorktown Heights, NY 10598, USA
/*
/* Wietse Venema
/* Google, Inc.
/* 111 8th Avenue
/* New York, NY 10011, USA
/*
/* Viktor Dukhovni
/*--*/
/* System library. */
#include <sys_defs.h>
#include <ctype.h>
#ifdef STRCASECMP_IN_STRINGS_H
#include <strings.h>
#endif
#ifdef USE_TLS
#include <string.h>
/* Utility library. */
#include <msg.h>
#include <mymalloc.h>
#include <stringops.h>
#include <vstring.h>
#include <events.h> /* event_time() */
#include <timecmp.h>
#include <ctable.h>
#include <hex_code.h>
#include <safe_ultostr.h>
#include <split_at.h>
#include <name_code.h>
#define STR(x) vstring_str(x)
/* Global library */
#include <mail_params.h>
/* DNS library. */
#include <dns.h>
/* TLS library. */
#define TLS_INTERNAL
#include <tls.h>
/* Application-specific. */
#undef DANE_TLSA_SUPPORT
#if defined(TLSEXT_MAXLEN_host_name) && RES_USE_DNSSEC && RES_USE_EDNS0
#define DANE_TLSA_SUPPORT
static int dane_tlsa_support = 1;
#else
static int dane_tlsa_support = 0;
#endif
static const char *signalg;
static ASN1_OBJECT *serverAuth;
/*
* https://www.iana.org/assignments/dane-parameters/dane-parameters.xhtml
*/
typedef struct {
const char *mdalg;
uint8_t dane_id;
} iana_digest;
static iana_digest iana_table[] = {
{"", DNS_TLSA_MATCHING_TYPE_NO_HASH_USED},
{"sha256", DNS_TLSA_MATCHING_TYPE_SHA256},
{"sha512", DNS_TLSA_MATCHING_TYPE_SHA512},
{0, 0}
};
typedef struct dane_digest {
struct dane_digest *next; /* linkage */
const char *mdalg; /* OpenSSL name */
const EVP_MD *md; /* OpenSSL EVP handle */
int len; /* digest octet length */
int pref; /* tls_dane_digests index or -1 */
uint8_t dane_id; /* IANA id */
} dane_digest;
#define MAXDIGESTS 256 /* RFC limit */
static dane_digest *digest_list;
/*
* This is not intended to be a long-term cache of pre-parsed TLSA data,
* rather we primarily want to avoid fetching and parsing the TLSA records
* for a single multi-homed MX host more than once per delivery. Therefore,
* we keep the table reasonably small.
*/
#define CACHE_SIZE 20
static CTABLE *dane_cache;
static int dane_initialized;
static int dane_verbose;
/* tls_dane_verbose - enable/disable verbose logging */
void tls_dane_verbose(int on)
{
dane_verbose = on;
}
/* add_digest - validate and append digest to digest list */
static dane_digest *add_digest(char *mdalg, int pref)
{
iana_digest *i;
dane_digest *d;
int dane_id = -1;
const char *dane_mdalg = mdalg;
char *value = split_at(mdalg, '=');
const EVP_MD *md = 0;
size_t mdlen = 0;
if (value && *value) {
unsigned long l;
char *endcp;
/*
* XXX: safe_strtoul() does not flag empty or white-space only input.
* Since we get idbuf by splitting white-space/comma delimited
* tokens, this is not a problem here. Fixed as of 210131209.
*/
l = safe_strtoul(value, &endcp, 10);
if ((l == 0 && (errno == EINVAL || endcp == value))
|| l >= MAXDIGESTS
|| *endcp) {
msg_warn("Invalid matching type number in %s: %s=%s",
VAR_TLS_DANE_DIGESTS, mdalg, value);
return (0);
}
dane_id = l;
}
/*
* Check for known IANA conflicts
*/
for (i = iana_table; i->mdalg; ++i) {
if (*mdalg && strcasecmp(i->mdalg, mdalg) == 0) {
if (dane_id >= 0 && i->dane_id != dane_id) {
msg_warn("Non-standard value in %s: %s%s%s",
VAR_TLS_DANE_DIGESTS, mdalg,
value ? "=" : "", value ? value : "");
return (0);
}
dane_id = i->dane_id;
} else if (i->dane_id == dane_id) {
if (*mdalg) {
msg_warn("Non-standard algorithm in %s: %s%s%s",
VAR_TLS_DANE_DIGESTS, mdalg,
value ? "=" : "", value ? value : "");
return (0);
}
dane_mdalg = i->mdalg;
}
}
/*
* Check for unknown implicit digest or value
*/
if (dane_id < 0 || (dane_id > 0 && !*dane_mdalg)) {
msg_warn("Unknown incompletely specified element in %s: %s%s%s",
VAR_TLS_DANE_DIGESTS, mdalg,
value ? "=" : "", value ? value : "");
return 0;
}
/*
* Check for duplicate entries
*/
for (d = digest_list; d; d = d->next) {
if (strcasecmp(d->mdalg, dane_mdalg) == 0
|| d->dane_id == dane_id) {
msg_warn("Duplicate element in %s: %s%s%s",
VAR_TLS_DANE_DIGESTS, mdalg,
value ? "=" : "", value ? value : "");
return (0);
}
}
if (*dane_mdalg
&& ((md = EVP_get_digestbyname(dane_mdalg)) == 0
|| (mdlen = EVP_MD_size(md)) <= 0
|| mdlen > EVP_MAX_MD_SIZE)) {
msg_warn("Unimplemented digest algorithm in %s: %s%s%s",
VAR_TLS_DANE_DIGESTS, mdalg,
value ? "=" : "", value ? value : "");
return (0);
}
d = (dane_digest *) mymalloc(sizeof(*d));
d->next = digest_list;
d->mdalg = mystrdup(dane_mdalg);
d->md = md;
d->len = mdlen;
d->pref = pref;
d->dane_id = dane_id;
return (digest_list = d);
}
/* digest_byid - locate digest_table entry for given IANA id */
static dane_digest *digest_byid(uint8_t dane_id)
{
dane_digest *d;
for (d = digest_list; d; d = d->next)
if (d->dane_id == dane_id)
return (d);
return (0);
}
/* digest_pref_byid - digest preference by IANA id */
static int digest_pref_byid(uint8_t dane_id)
{
dane_digest *d = digest_byid(dane_id);
return (d ? (d->pref) : (MAXDIGESTS + dane_id));
}
/* dane_init - initialize DANE parameters */
static void dane_init(void)
{
int digest_pref = 0;
char *cp;
char *save;
char *tok;
static char fullmtype[] = "=0";
dane_digest *d;
/*
* Add the full matching type at highest preference and then the users
* configured list.
*
* The most preferred digest will be used for hashing full values for
* comparison.
*/
if (add_digest(fullmtype, 0)) {
save = cp = mystrdup(var_tls_dane_digests);
while ((tok = mystrtok(&cp, CHARS_COMMA_SP)) != 0) {
if ((d = add_digest(tok, ++digest_pref)) == 0) {
signalg = 0;
break;
}
if (digest_pref == 1) {
signalg = d->mdalg;
}
}
myfree(save);
}
/* Don't report old news */
ERR_clear_error();
/*
* DANE TLSA support requires working DANE digests.
*/
if ((serverAuth = OBJ_nid2obj(NID_server_auth)) == 0) {
msg_warn("cannot designate intermediate TA certificates, "
"no DANE support");
tls_print_errors();
dane_tlsa_support = 0;
} else if (signalg == 0) {
msg_warn("digest algorithm initializaton failed, no DANE support");
tls_print_errors();
dane_tlsa_support = 0;
}
dane_initialized = 1;
}
/* tls_dane_avail - check for availability of dane required digests */
int tls_dane_avail(void)
{
if (!dane_initialized)
dane_init();
return (dane_tlsa_support);
}
/* tls_dane_flush - flush the cache */
void tls_dane_flush(void)
{
if (dane_cache)
ctable_free(dane_cache);
dane_cache = 0;
}
/* tls_dane_alloc - allocate a TLS_DANE structure */
TLS_DANE *tls_dane_alloc(void)
{
TLS_DANE *dane = (TLS_DANE *) mymalloc(sizeof(*dane));
dane->ta = 0;
dane->ee = 0;
dane->certs = 0;
dane->pkeys = 0;
dane->base_domain = 0;
dane->flags = 0;
dane->expires = 0;
dane->refs = 1;
return (dane);
}
static void ta_cert_insert(TLS_DANE *d, X509 *x)
{
TLS_CERTS *new = (TLS_CERTS *) mymalloc(sizeof(*new));
X509_up_ref(x);
new->cert = x;
new->next = d->certs;
d->certs = new;
}
static void free_ta_certs(TLS_DANE *d)
{
TLS_CERTS *head;
TLS_CERTS *next;
for (head = d->certs; head; head = next) {
next = head->next;
X509_free(head->cert);
myfree((void *) head);
}
}
static void ta_pkey_insert(TLS_DANE *d, EVP_PKEY *k)
{
TLS_PKEYS *new = (TLS_PKEYS *) mymalloc(sizeof(*new));
EVP_PKEY_up_ref(k);
new->pkey = k;
new->next = d->pkeys;
d->pkeys = new;
}
static void free_ta_pkeys(TLS_DANE *d)
{
TLS_PKEYS *head;
TLS_PKEYS *next;
for (head = d->pkeys; head; head = next) {
next = head->next;
EVP_PKEY_free(head->pkey);
myfree((void *) head);
}
}
static void tlsa_free(TLS_TLSA *tlsa)
{
myfree(tlsa->mdalg);
if (tlsa->certs)
argv_free(tlsa->certs);
if (tlsa->pkeys)
argv_free(tlsa->pkeys);
myfree((void *) tlsa);
}
/* tls_dane_free - free a TLS_DANE structure */
void tls_dane_free(TLS_DANE *dane)
{
TLS_TLSA *tlsa;
TLS_TLSA *next;
if (--dane->refs > 0)
return;
/* De-allocate TA and EE lists */
for (tlsa = dane->ta; tlsa; tlsa = next) {
next = tlsa->next;
tlsa_free(tlsa);
}
for (tlsa = dane->ee; tlsa; tlsa = next) {
next = tlsa->next;
tlsa_free(tlsa);
}
/* De-allocate full trust-anchor certs and pkeys */
free_ta_certs(dane);
free_ta_pkeys(dane);
if (dane->base_domain)
myfree(dane->base_domain);
myfree((void *) dane);
}
/* dane_free - ctable style */
static void dane_free(void *dane, void *unused_context)
{
tls_dane_free((TLS_DANE *) dane);
}
/* dane_locate - list head address of TLSA sublist for given algorithm */
static TLS_TLSA **dane_locate(TLS_TLSA **tlsap, const char *mdalg)
{
TLS_TLSA *new;
/*
* Correct computation of the session cache serverid requires a TLSA
* digest list that is sorted by algorithm name. Below we maintain the
* sort order (by algorithm name canonicalized to lowercase).
*/
for (; *tlsap; tlsap = &(*tlsap)->next) {
int cmp = strcasecmp(mdalg, (*tlsap)->mdalg);
if (cmp == 0)
return (tlsap);
if (cmp < 0)
break;
}
new = (TLS_TLSA *) mymalloc(sizeof(*new));
new->mdalg = lowercase(mystrdup(mdalg));
new->certs = 0;
new->pkeys = 0;
new->next = *tlsap;
*tlsap = new;
return (tlsap);
}
/* tls_dane_add_ee_digests - split and append digests */
void tls_dane_add_ee_digests(TLS_DANE *dane, const char *mdalg,
const char *digest, const char *delim)
{
TLS_TLSA **tlsap = dane_locate(&dane->ee, mdalg);
TLS_TLSA *tlsa = *tlsap;
/* Delimited append, may append nothing */
if (tlsa->pkeys == 0)
tlsa->pkeys = argv_split(digest, delim);
else
argv_split_append(tlsa->pkeys, digest, delim);
/* Remove empty elements from the list */
if (tlsa->pkeys->argc == 0) {
argv_free(tlsa->pkeys);
tlsa->pkeys = 0;
if (tlsa->certs == 0) {
*tlsap = tlsa->next;
tlsa_free(tlsa);
}
return;
}
/*
* At the "fingerprint" security level certificate digests and public key
* digests are interchangeable. Each leaf certificate is matched via
* either the public key digest or full certificate digest. The DER
* encoding of a certificate is not a valid public key, and conversely,
* the DER encoding of a public key is not a valid certificate. An
* attacker would need a 2nd-preimage that is feasible across types
* (given cert digest == some pkey digest) and yet presumably difficult
* within a type (e.g. given cert digest == some other cert digest). No
* such attacks are known at this time, and it is expected that if any
* are found they would work within as well as across the cert/pkey data
* types.
*/
if (tlsa->certs == 0)
tlsa->certs = argv_split(digest, delim);
else
argv_split_append(tlsa->certs, digest, delim);
}
/* dane_add - add a digest entry */
static void dane_add(TLS_DANE *dane, int certusage, int selector,
const char *mdalg, char *digest)
{
TLS_TLSA **tlsap;
TLS_TLSA *tlsa;
ARGV **argvp;
switch (certusage) {
case DNS_TLSA_USAGE_TRUST_ANCHOR_ASSERTION:
certusage = TLS_DANE_TA;
break;
case DNS_TLSA_USAGE_DOMAIN_ISSUED_CERTIFICATE:
certusage = TLS_DANE_EE; /* Collapse 1/3 -> 3 */
break;
default:
msg_panic("Unsupported DANE certificate usage: %d", certusage);
}
switch (selector) {
case DNS_TLSA_SELECTOR_FULL_CERTIFICATE:
selector = TLS_DANE_CERT;
break;
case DNS_TLSA_SELECTOR_SUBJECTPUBLICKEYINFO:
selector = TLS_DANE_PKEY;
break;
default:
msg_panic("Unsupported DANE selector: %d", selector);
}
tlsap = (certusage == TLS_DANE_EE) ? &dane->ee : &dane->ta;
tlsa = *(tlsap = dane_locate(tlsap, mdalg));
argvp = (selector == TLS_DANE_PKEY) ? &tlsa->pkeys : &tlsa->certs;
if (*argvp == 0)
*argvp = argv_alloc(1);
argv_add(*argvp, digest, ARGV_END);
}
#define FILTER_CTX_AGILITY_OK (1<<0)
#define FILTER_CTX_APPLY_AGILITY (1<<1)
#define FILTER_CTX_PARSE_DATA (1<<2)
#define FILTER_RR_DROP 0
#define FILTER_RR_KEEP 1
typedef struct filter_ctx {
TLS_DANE *dane; /* Parsed result */
int count; /* Digest mtype count */
int target; /* Digest mtype target count */
int flags; /* Action/result bitmask */
} filter_ctx;
typedef int (*tlsa_filter) (DNS_RR *, filter_ctx *);
/* tlsa_apply - apply filter to each rr in turn */
static DNS_RR *tlsa_apply(DNS_RR *rr, tlsa_filter filter, filter_ctx *ctx)
{
DNS_RR *head = 0; /* First retained RR */
DNS_RR *tail = 0; /* Last retained RR */
DNS_RR *next;
/*
* XXX Code that modifies or destroys DNS_RR lists or entries belongs in
* the DNS library, not here.
*/
for ( /* nop */ ; rr; rr = next) {
next = rr->next;
if (filter(rr, ctx) == FILTER_RR_KEEP) {
tail = rr;
if (!head)
head = rr;
} else {
if (tail)
tail->next = rr->next;
rr->next = 0;
dns_rr_free(rr);
}
}
return (head);
}
/* usmdelta - packed usage/selector/mtype bits changing in next record */
static unsigned int usmdelta(uint8_t u, uint8_t s, uint8_t m, DNS_RR *next)
{
uint8_t *ip = (next && next->data_len >= 3) ? (uint8_t *) next->data : 0;
uint8_t nu = ip ? *ip++ : ~u;
uint8_t ns = ip ? *ip++ : ~s;
uint8_t nm = ip ? *ip++ : ~m;
return (((u ^ nu) << 16) | ((s ^ ns) << 8) | (m ^ nm));
}
/* tlsa_rr_cmp - qsort TLSA rrs in case shuffled by name server */
static int tlsa_rr_cmp(DNS_RR *a, DNS_RR *b)
{
int cmp;
/*
* Sort in ascending order, by usage, selector, matching type preference
* and payload. The usage, selector and matching type are the first
* three unsigned octets of the RR data.
*/
if (a->data_len > 2 && b->data_len > 2) {
uint8_t *ai = (uint8_t *) a->data;
uint8_t *bi = (uint8_t *) b->data;
#define signedcmp(x, y) (((int)(x)) - ((int)(y)))
if ((cmp = signedcmp(ai[0], bi[0])) != 0
|| (cmp = signedcmp(ai[1], bi[1])) != 0
|| (cmp = digest_pref_byid(ai[2]) -
digest_pref_byid(bi[2])) != 0)
return (cmp);
}
if ((cmp = a->data_len - b->data_len) != 0)
return (cmp);
return (memcmp(a->data, b->data, a->data_len));
}
/* parse_tlsa_rr - parse a validated TLSA RRset */
static int parse_tlsa_rr(DNS_RR *rr, filter_ctx *ctx)
{
uint8_t *ip;
uint8_t usage;
uint8_t selector;
uint8_t mtype;
ssize_t dlen;
const unsigned char *data;
const unsigned char *p;
int iscname = strcasecmp(rr->rname, rr->qname);
const char *q = (iscname) ? (rr)->qname : "";
const char *a = (iscname) ? " -> " : "";
const char *r = rr->rname;
unsigned int change;
if (rr->type != T_TLSA)
msg_panic("unexpected non-TLSA RR type %u for %s%s%s", rr->type,
q, a, r);
/* Drop truncated records */
if ((dlen = rr->data_len - 3) < 0) {
msg_warn("truncated length %u RR: %s%s%s IN TLSA ...",
(unsigned) rr->data_len, q, a, r);
ctx->flags &= ~FILTER_CTX_AGILITY_OK;
return (FILTER_RR_DROP);
}
ip = (uint8_t *) rr->data;
usage = *ip++;
selector = *ip++;
mtype = *ip++;
change = usmdelta(usage, selector, mtype, rr->next);
p = data = (const unsigned char *) ip;
/*
* Handle digest agility for non-zero matching types.
*/
if (mtype) {
if (ctx->count && (ctx->flags & FILTER_CTX_APPLY_AGILITY)) {
if (change & 0xffff00) /* New usage/selector, */
ctx->count = 0; /* disable drop */
return (FILTER_RR_DROP);
}
}
/*-
* Drop unsupported usages.
* Note: NO SUPPORT for usages 0/1 which do not apply to SMTP.
*/
switch (usage) {
case DNS_TLSA_USAGE_TRUST_ANCHOR_ASSERTION:
case DNS_TLSA_USAGE_DOMAIN_ISSUED_CERTIFICATE:
break;
default:
msg_warn("unsupported certificate usage %u in RR: "
"%s%s%s IN TLSA %u ...", usage,
q, a, r, usage);
return (FILTER_RR_DROP);
}
/*
* Drop unsupported selectors
*/
switch (selector) {
case DNS_TLSA_SELECTOR_FULL_CERTIFICATE:
case DNS_TLSA_SELECTOR_SUBJECTPUBLICKEYINFO:
break;
default:
msg_warn("unsupported selector %u in RR: "
"%s%s%s IN TLSA %u %u ...", selector,
q, a, r, usage, selector);
return (FILTER_RR_DROP);
}
if (mtype) {
dane_digest *d = digest_byid(mtype);
if (d == 0) {
msg_warn("unsupported matching type %u in RR: "
"%s%s%s IN TLSA %u %u %u ...", mtype,
q, a, r, usage, selector, mtype);
return (FILTER_RR_DROP);
}
if (dlen != d->len) {
msg_warn("malformed %s digest, length %lu, in RR: "
"%s%s%s IN TLSA %u %u %u ...",
d->mdalg, (unsigned long) dlen,
q, a, r, usage, selector, mtype);
ctx->flags &= ~FILTER_CTX_AGILITY_OK;
return (FILTER_RR_DROP);
}
/* New digest mtype next? Prepare to drop following RRs */
if (change && (change & 0xffff00) == 0
&& (ctx->flags & FILTER_CTX_APPLY_AGILITY))
++ctx->count;
if (ctx->flags & FILTER_CTX_PARSE_DATA) {
char *digest = tls_digest_encode(data, dlen);
dane_add(ctx->dane, usage, selector, d->mdalg, digest);
if (msg_verbose || dane_verbose)
msg_info("using DANE RR: %s%s%s IN TLSA %u %u %u %s",
q, a, r, usage, selector, mtype, digest);
myfree(digest);
}
} else {
X509 *x = 0; /* OpenSSL re-uses *x if x!=0 */
EVP_PKEY *k = 0; /* OpenSSL re-uses *k if k!=0 */
/* Validate the cert or public key via d2i_mumble() */
switch (selector) {
case DNS_TLSA_SELECTOR_FULL_CERTIFICATE:
if (!d2i_X509(&x, &p, dlen) || dlen != p - data) {
msg_warn("malformed %s in RR: "
"%s%s%s IN TLSA %u %u %u ...", "certificate",
q, a, r, usage, selector, mtype);
if (x)
X509_free(x);
return (FILTER_RR_DROP);
}
/* Also unusable if public key is malformed or unsupported */
k = X509_get_pubkey(x);
EVP_PKEY_free(k);
if (k == 0) {
msg_warn("malformed %s in RR: %s%s%s IN TLSA %u %u %u ...",
"or unsupported certificate public key",
q, a, r, usage, selector, mtype);
X509_free(x);
return (FILTER_RR_DROP);
}
/*
* When a full trust-anchor certificate is published via DNS, we
* may need to use it to validate the server trust chain. Store
* it away for later use.
*/
if (usage == DNS_TLSA_USAGE_TRUST_ANCHOR_ASSERTION
&& (ctx->flags & FILTER_CTX_PARSE_DATA))
ta_cert_insert(ctx->dane, x);
X509_free(x);
break;
case DNS_TLSA_SELECTOR_SUBJECTPUBLICKEYINFO:
if (!d2i_PUBKEY(&k, &p, dlen) || dlen != p - data) {
msg_warn("malformed %s in RR: %s%s%s IN TLSA %u %u %u ...",
"public key", q, a, r, usage, selector, mtype);
if (k)
EVP_PKEY_free(k);
return (FILTER_RR_DROP);
}
/*
* When a full trust-anchor public key is published via DNS, we
* may need to use it to validate the server trust chain. Store
* it away for later use.
*/
if (usage == DNS_TLSA_USAGE_TRUST_ANCHOR_ASSERTION
&& (ctx->flags & FILTER_CTX_PARSE_DATA))
ta_pkey_insert(ctx->dane, k);
EVP_PKEY_free(k);
break;
}
/*
* The cert or key was valid, just digest the raw object, and encode
* the digest value.
*/
if (ctx->flags & FILTER_CTX_PARSE_DATA) {
char *digest = tls_data_fprint((char *) data, dlen, signalg);
dane_add(ctx->dane, usage, selector, signalg, digest);
if (msg_verbose || dane_verbose)
msg_info("using DANE RR: %s%s%s IN TLSA %u %u %u <%s>; "
"%s digest %s", q, a, r, usage, selector, mtype,
(selector == DNS_TLSA_SELECTOR_FULL_CERTIFICATE) ?
"certificate" : "public key", signalg, digest);
myfree(digest);
}
}
return (FILTER_RR_KEEP);
}
/* process_rrs - filter and parse the TLSA RRset */
static DNS_RR *process_rrs(TLS_DANE *dane, DNS_RR *rrset)
{
filter_ctx ctx;
ctx.dane = dane;
ctx.count = ctx.target = 0;
ctx.flags = FILTER_CTX_APPLY_AGILITY | FILTER_CTX_PARSE_DATA;
rrset = tlsa_apply(rrset, parse_tlsa_rr, &ctx);
if (dane->ta == 0 && dane->ee == 0)
dane->flags |= TLS_DANE_FLAG_EMPTY;
return (rrset);
}
/* dane_lookup - TLSA record lookup, ctable style */
static void *dane_lookup(const char *tlsa_fqdn, void *unused_ctx)
{
static VSTRING *why = 0;
int ret;
DNS_RR *rrs = 0;
TLS_DANE *dane;
if (why == 0)
why = vstring_alloc(10);
dane = tls_dane_alloc();
ret = dns_lookup(tlsa_fqdn, T_TLSA, RES_USE_DNSSEC, &rrs, 0, why);
switch (ret) {
case DNS_OK:
if (TLS_DANE_CACHE_TTL_MIN && rrs->ttl < TLS_DANE_CACHE_TTL_MIN)
rrs->ttl = TLS_DANE_CACHE_TTL_MIN;
if (TLS_DANE_CACHE_TTL_MAX && rrs->ttl > TLS_DANE_CACHE_TTL_MAX)
rrs->ttl = TLS_DANE_CACHE_TTL_MAX;
/* One more second to account for discrete time */
dane->expires = 1 + event_time() + rrs->ttl;
if (rrs->dnssec_valid) {
/*
* Sort for deterministic digest in session cache lookup key. In
* addition we must arrange for more preferred matching types
* (full value or digest) to precede less preferred ones for the
* same usage and selector.
*/
rrs = dns_rr_sort(rrs, tlsa_rr_cmp);
rrs = process_rrs(dane, rrs);
} else
dane->flags |= TLS_DANE_FLAG_NORRS;
if (rrs)
dns_rr_free(rrs);
break;
case DNS_NOTFOUND:
dane->flags |= TLS_DANE_FLAG_NORRS;
dane->expires = 1 + event_time() + TLS_DANE_CACHE_TTL_MIN;
break;
default:
msg_warn("DANE TLSA lookup problem: %s", STR(why));
dane->flags |= TLS_DANE_FLAG_ERROR;
break;
}
return (void *) dane;
}
/* resolve_host - resolve TLSA RRs for hostname (rname or qname) */
static TLS_DANE *resolve_host(const char *host, const char *proto,
unsigned port)
{
static VSTRING *query_domain;
TLS_DANE *dane;
if (query_domain == 0)
query_domain = vstring_alloc(64);
vstring_sprintf(query_domain, "_%u._%s.%s", ntohs(port), proto, host);
dane = (TLS_DANE *) ctable_locate(dane_cache, STR(query_domain));
if (timecmp(event_time(), dane->expires) > 0)
dane = (TLS_DANE *) ctable_refresh(dane_cache, STR(query_domain));
if (dane->base_domain == 0)
dane->base_domain = mystrdup(host);
/* Increment ref-count of cached entry */
++dane->refs;
return (dane);
}
/* qname_secure - Lookup qname DNSSEC status */
static int qname_secure(const char *qname)
{
static VSTRING *why;
int ret = 0;
DNS_RR *rrs;
if (!why)
why = vstring_alloc(10);
/*
* We assume that qname is already an fqdn, and does not need any
* suffixes from RES_DEFNAME or RES_DNSRCH. This is typically the name
* of an MX host, and must be a complete DNS name. DANE initialization
* code in the SMTP client is responsible for checking that the default
* resolver flags do not include RES_DEFNAME and RES_DNSRCH.
*/
ret = dns_lookup(qname, T_CNAME, RES_USE_DNSSEC, &rrs, 0, why);
if (ret == DNS_OK) {
ret = rrs->dnssec_valid;
dns_rr_free(rrs);
return (ret);
}
if (ret == DNS_NOTFOUND)
vstring_sprintf(why, "no longer a CNAME");
msg_warn("DNSSEC status lookup error for %s: %s", qname, STR(why));
return (-1);
}
/* tls_dane_resolve - cached map: (name, proto, port) -> TLS_DANE */
TLS_DANE *tls_dane_resolve(unsigned port, const char *proto, DNS_RR *hostrr,
int forcetlsa)
{
TLS_DANE *dane = 0;
int iscname = strcasecmp(hostrr->rname, hostrr->qname);
int isvalid = 1;
if (!tls_dane_avail())
return (0); /* Error */
/*
* By default suppress TLSA lookups for hosts in non-DNSSEC zones. If
* the host zone is not DNSSEC validated, the TLSA qname sub-domain is
* safely assumed to not be in a DNSSEC Look-aside Validation child zone.
*/
if (!forcetlsa && !hostrr->dnssec_valid) {
isvalid = iscname ? qname_secure(hostrr->qname) : 0;
if (isvalid < 0)
return (0); /* Error */
}
if (!isvalid) {
dane = tls_dane_alloc();
dane->flags = TLS_DANE_FLAG_NORRS;
} else {
if (!dane_cache)
dane_cache = ctable_create(CACHE_SIZE, dane_lookup, dane_free, 0);
/*
* Try the rname first if secure, if nothing there, try the qname if
* different. Note, lookup errors are distinct from success with
* nothing found. If the rname lookup fails we don't try the qname.
*/
if (hostrr->dnssec_valid) {
dane = resolve_host(hostrr->rname, proto, port);
if (tls_dane_notfound(dane) && iscname) {
tls_dane_free(dane);
dane = 0;
}
}
if (!dane)
dane = resolve_host(hostrr->qname, proto, port);
if (dane->flags & TLS_DANE_FLAG_ERROR) {
/* We don't return this object. */
tls_dane_free(dane);
dane = 0;
}
}
return (dane);
}
/* tls_dane_load_trustfile - load trust anchor certs or keys from file */
int tls_dane_load_trustfile(TLS_DANE *dane, const char *tafile)
{
BIO *bp;
char *name = 0;
char *header = 0;
unsigned char *data = 0;
long len;
int tacount;
char *errtype = 0; /* if error: cert or pkey? */
const char *mdalg;
/* nop */
if (tafile == 0 || *tafile == 0)
return (1);
if (!dane_initialized)
dane_init();
/* Per-destination TA support is available even when DANE is not */
mdalg = signalg ? signalg : "sha1";
/*
* On each call, PEM_read() wraps a stdio file in a BIO_NOCLOSE bio,
* calls PEM_read_bio() and then frees the bio. It is just as easy to
* open a BIO as a stdio file, so we use BIOs and call PEM_read_bio()
* directly.
*/
if ((bp = BIO_new_file(tafile, "r")) == NULL) {
msg_warn("error opening trust anchor file: %s: %m", tafile);
return (0);
}
/* Don't report old news */
ERR_clear_error();
for (tacount = 0;
errtype == 0 && PEM_read_bio(bp, &name, &header, &data, &len);
++tacount) {
const unsigned char *p = data;
int usage = DNS_TLSA_USAGE_TRUST_ANCHOR_ASSERTION;
int selector;
char *digest;
if (strcmp(name, PEM_STRING_X509) == 0
|| strcmp(name, PEM_STRING_X509_OLD) == 0) {
X509 *cert = d2i_X509(0, &p, len);
if (cert && (p - data) == len) {
selector = DNS_TLSA_SELECTOR_FULL_CERTIFICATE;
digest = tls_data_fprint((char *) data, len, mdalg);
dane_add(dane, usage, selector, mdalg, digest);
myfree(digest);
ta_cert_insert(dane, cert);
} else
errtype = "certificate";
if (cert)
X509_free(cert);
} else if (strcmp(name, PEM_STRING_PUBLIC) == 0) {
EVP_PKEY *pkey = d2i_PUBKEY(0, &p, len);
if (pkey && (p - data) == len) {
selector = DNS_TLSA_SELECTOR_SUBJECTPUBLICKEYINFO;
digest = tls_data_fprint((char *) data, len, mdalg);
dane_add(dane, usage, selector, mdalg, digest);
myfree(digest);
ta_pkey_insert(dane, pkey);
} else
errtype = "public key";
if (pkey)
EVP_PKEY_free(pkey);
}
/*
* If any of these were null, PEM_read() would have failed.
*/
OPENSSL_free(name);
OPENSSL_free(header);
OPENSSL_free(data);
}
BIO_free(bp);
if (errtype) {
tls_print_errors();
msg_warn("error reading: %s: malformed trust-anchor %s",
tafile, errtype);
return (0);
}
if (ERR_GET_REASON(ERR_peek_last_error()) == PEM_R_NO_START_LINE) {
/* Reached end of PEM file */
ERR_clear_error();
return (tacount > 0);
}
/* Some other PEM read error */
tls_print_errors();
return (0);
}
/* tls_dane_match - match cert against given list of TA or EE digests */
int tls_dane_match(TLS_SESS_STATE *TLScontext, int usage,
X509 *cert, int depth)
{
const TLS_DANE *dane = TLScontext->dane;
TLS_TLSA *tlsa = (usage == TLS_DANE_EE) ? dane->ee : dane->ta;
const char *namaddr = TLScontext->namaddr;
const char *ustr = (usage == TLS_DANE_EE) ? "end entity" : "trust anchor";
int matched;
for (matched = 0; tlsa && !matched; tlsa = tlsa->next) {
char **dgst;
/*
* Note, set_trust() needs to know whether the match was for a pkey
* digest or a certificate digest. We return MATCHED_PKEY or
* MATCHED_CERT accordingly.
*/
#define MATCHED_CERT 1
#define MATCHED_PKEY 2
if (tlsa->pkeys) {
char *pkey_dgst = tls_pkey_fprint(cert, tlsa->mdalg);
for (dgst = tlsa->pkeys->argv; !matched && *dgst; ++dgst)
if (strcasecmp(pkey_dgst, *dgst) == 0)
matched = MATCHED_PKEY;
if (TLScontext->log_mask & (TLS_LOG_VERBOSE | TLS_LOG_CERTMATCH)
&& matched)
msg_info("%s: depth=%d matched %s public-key %s digest=%s",
namaddr, depth, ustr, tlsa->mdalg, pkey_dgst);
myfree(pkey_dgst);
}
if (tlsa->certs != 0 && !matched) {
char *cert_dgst = tls_cert_fprint(cert, tlsa->mdalg);
for (dgst = tlsa->certs->argv; !matched && *dgst; ++dgst)
if (strcasecmp(cert_dgst, *dgst) == 0)
matched = MATCHED_CERT;
if (TLScontext->log_mask & (TLS_LOG_VERBOSE | TLS_LOG_CERTMATCH)
&& matched)
msg_info("%s: depth=%d matched %s certificate %s digest %s",
namaddr, depth, ustr, tlsa->mdalg, cert_dgst);
myfree(cert_dgst);
}
}
return (matched);
}
/* add_ext - add simple extension (no config section references) */
static int add_ext(X509 *issuer, X509 *subject, int ext_nid, char *ext_val)
{
int ret = 0;
X509V3_CTX v3ctx;
X509_EXTENSION *ext;
X509V3_set_ctx(&v3ctx, issuer, subject, 0, 0, 0);
if ((ext = X509V3_EXT_conf_nid(0, &v3ctx, ext_nid, ext_val)) != 0) {
ret = X509_add_ext(subject, ext, -1);
X509_EXTENSION_free(ext);
}
return ret;
}
/* set_serial - set serial number to match akid or use subject's plus 1 */
static int set_serial(X509 *cert, AUTHORITY_KEYID *akid, X509 *subject)
{
int ret = 0;
BIGNUM *bn;
if (akid && akid->serial)
return (X509_set_serialNumber(cert, akid->serial));
/*
* Add one to subject's serial to avoid collisions between TA serial and
* serial of signing root.
*/
if ((bn = ASN1_INTEGER_to_BN(X509_get_serialNumber(subject), 0)) != 0
&& BN_add_word(bn, 1)
&& BN_to_ASN1_INTEGER(bn, X509_get_serialNumber(cert)))
ret = 1;
if (bn)
BN_free(bn);
return (ret);
}
/* add_akid - add authority key identifier */
static int add_akid(X509 *cert, AUTHORITY_KEYID *akid)
{
ASN1_OCTET_STRING *id;
unsigned char c = 0;
int nid = NID_authority_key_identifier;
int ret = 0;
/*
* 0 will never be our subject keyid from a SHA-1 hash, but it could be
* our subject keyid if forced from child's akid. If so, set our
* authority keyid to 1. This way we are never self-signed, and thus
* exempt from any potential (off by default for now in OpenSSL)
* self-signature checks!
*/
id = ((akid && akid->keyid) ? akid->keyid : 0);
if (id && ASN1_STRING_length(id) == 1 && *ASN1_STRING_get0_data(id) == c)
c = 1;
if ((akid = AUTHORITY_KEYID_new()) != 0
&& (akid->keyid = ASN1_OCTET_STRING_new()) != 0
&& ASN1_OCTET_STRING_set(akid->keyid, (void *) &c, 1)
&& X509_add1_ext_i2d(cert, nid, akid, 0, X509V3_ADD_DEFAULT) > 0)
ret = 1;
if (akid)
AUTHORITY_KEYID_free(akid);
return (ret);
}
/* add_skid - add subject key identifier to match child's akid */
static int add_skid(X509 *cert, AUTHORITY_KEYID *akid)
{
int nid = NID_subject_key_identifier;
if (!akid || !akid->keyid)
return (add_ext(0, cert, nid, "hash"));
else
return (X509_add1_ext_i2d(cert, nid, akid->keyid, 0,
X509V3_ADD_DEFAULT) > 0);
}
/* akid_issuer_name - get akid issuer directory name */
static X509_NAME *akid_issuer_name(AUTHORITY_KEYID *akid)
{
if (akid && akid->issuer) {
int i;
general_name_stack_t *gens = akid->issuer;
for (i = 0; i < sk_GENERAL_NAME_num(gens); ++i) {
GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i);
if (gn->type == GEN_DIRNAME)
return (gn->d.dirn);
}
}
return (0);
}
/* set_issuer - set issuer DN to match akid if specified */
static int set_issuer_name(X509 *cert, AUTHORITY_KEYID *akid, X509_NAME *subj)
{
X509_NAME *name = akid_issuer_name(akid);
/*
* If subject's akid specifies an authority key identifier issuer name,
* we must use that.
*/
if (name)
return (X509_set_issuer_name(cert, name));
return (X509_set_issuer_name(cert, subj));
}
/* grow_chain - add certificate to trusted or untrusted chain */
static void grow_chain(TLS_SESS_STATE *TLScontext, int trusted, X509 *cert)
{
x509_stack_t **xs = trusted ? &TLScontext->trusted : &TLScontext->untrusted;
#define UNTRUSTED 0
#define TRUSTED 1
if (!*xs && (*xs = sk_X509_new_null()) == 0)
msg_fatal("out of memory");
if (cert) {
if (trusted && !X509_add1_trust_object(cert, serverAuth))
msg_fatal("out of memory");
X509_up_ref(cert);
if (!sk_X509_push(*xs, cert))
msg_fatal("out of memory");
}
}
/* wrap_key - wrap TA "key" as issuer of "subject" */
static void wrap_key(TLS_SESS_STATE *TLScontext, int depth,
EVP_PKEY *key, X509 *subject)
{
X509 *cert = 0;
AUTHORITY_KEYID *akid;
X509_NAME *name = X509_get_issuer_name(subject);
/*
* The subject name is never a NULL object unless we run out of memory.
* It may be an empty sequence, but the containing object always exists
* and its storage is owned by the certificate itself.
*/
if (name == 0 || (cert = X509_new()) == 0)
msg_fatal("Out of memory");
/*
* Record the depth of the intermediate wrapper certificate, logged in
* the verify callback.
*/
if (TLScontext->tadepth < 0) {
TLScontext->tadepth = depth + 1;
if (TLScontext->log_mask & (TLS_LOG_VERBOSE | TLS_LOG_CERTMATCH))
msg_info("%s: depth=%d chain is trust-anchor signed",
TLScontext->namaddr, depth);
}
akid = X509_get_ext_d2i(subject, NID_authority_key_identifier, 0, 0);
ERR_clear_error();
/* CA cert valid for +/- 30 days. */
if (!X509_set_version(cert, 2)
|| !set_serial(cert, akid, subject)
|| !set_issuer_name(cert, akid, name)
|| !X509_gmtime_adj(X509_getm_notBefore(cert), -30 * 86400L)
|| !X509_gmtime_adj(X509_getm_notAfter(cert), 30 * 86400L)
|| !X509_set_subject_name(cert, name)
|| !X509_set_pubkey(cert, key)
|| !add_ext(0, cert, NID_basic_constraints, "CA:TRUE")
|| (key && !add_akid(cert, akid))
|| !add_skid(cert, akid)) {
tls_print_errors();
msg_fatal("error generating DANE wrapper certificate");
}
if (akid)
AUTHORITY_KEYID_free(akid);
grow_chain(TLScontext, TRUSTED, cert);
if (cert)
X509_free(cert);
}
/* wrap_cert - wrap "tacert" as trust-anchor. */
static void wrap_cert(TLS_SESS_STATE *TLScontext, X509 *tacert, int depth)
{
if (TLScontext->tadepth < 0)
TLScontext->tadepth = depth + 1;
if (TLScontext->log_mask & (TLS_LOG_VERBOSE | TLS_LOG_CERTMATCH))
msg_info("%s: depth=%d trust-anchor certificate",
TLScontext->namaddr, depth);
grow_chain(TLScontext, TRUSTED, tacert);
return;
}
/* ta_signed - is certificate signed by a TLSA cert or pkey */
static int ta_signed(TLS_SESS_STATE *TLScontext, X509 *cert, int depth)
{
const TLS_DANE *dane = TLScontext->dane;
EVP_PKEY *pk;
TLS_PKEYS *k;
TLS_CERTS *x;
int done = 0;
/*
* First check whether issued and signed by a TA cert, this is cheaper
* than the bare-public key checks below, since we can determine whether
* the candidate TA certificate issued the certificate to be checked
* first (name comparisons), before we bother with signature checks
* (public key operations).
*/
for (x = dane->certs; !done && x; x = x->next) {
if (X509_check_issued(x->cert, cert) == X509_V_OK) {
if ((pk = X509_get_pubkey(x->cert)) == 0)
continue;
/* Check signature, since some other TA may work if not this. */
if ((done = (X509_verify(cert, pk) > 0)) != 0)
wrap_cert(TLScontext, x->cert, depth);
EVP_PKEY_free(pk);
}
}
/*
* With bare TA public keys, we can't check whether the trust chain is
* issued by the key, but we can determine whether it is signed by the
* key, so we go with that.
*
* Ideally, the corresponding certificate was presented in the chain, and we
* matched it by its public key digest one level up. This code is here
* to handle adverse conditions imposed by sloppy administrators of
* receiving systems with poorly constructed chains.
*
* We'd like to optimize out keys that should not match when the cert's
* authority key id does not match the key id of this key computed via
* the RFC keyid algorithm (SHA-1 digest of public key bit-string sans
* ASN1 tag and length thus also excluding the unused bits field that is
* logically part of the length). However, some CAs have a non-standard
* authority keyid, so we lose. Too bad.
*
* This may push errors onto the stack when the certificate signature is not
* of the right type or length, throw these away.
*/
for (k = dane->pkeys; !done && k; k = k->next)
if ((done = (X509_verify(cert, k->pkey) > 0)) != 0)
wrap_key(TLScontext, depth, k->pkey, cert);
else
ERR_clear_error();
return (done);
}
/* set_trust - configure for DANE validation */
static void set_trust(TLS_SESS_STATE *TLScontext, X509_STORE_CTX *ctx)
{
int n;
int i;
int match;
int depth = 0;
EVP_PKEY *takey;
X509 *ca;
X509 *cert = X509_STORE_CTX_get0_cert(ctx);
x509_stack_t *in = X509_STORE_CTX_get0_untrusted(ctx);
/* shallow copy */
if ((in = sk_X509_dup(in)) == 0)
msg_fatal("out of memory");
/*
* At each iteration we consume the issuer of the current cert. This
* reduces the length of the "in" chain by one. If no issuer is found,
* we are done. We also stop when a certificate matches a TA in the
* peer's TLSA RRset.
*
* Caller ensures that the initial certificate is not self-signed.
*/
for (n = sk_X509_num(in); n > 0; --n, ++depth) {
for (i = 0; i < n; ++i)
if (X509_check_issued(sk_X509_value(in, i), cert) == X509_V_OK)
break;
/*
* Final untrusted element with no issuer in the peer's chain, it may
* however be signed by a pkey or cert obtained via a TLSA RR.
*/
if (i == n)
break;
/* Peer's chain contains an issuer ca. */
ca = sk_X509_delete(in, i);
/* Is it a trust anchor? */
match = tls_dane_match(TLScontext, TLS_DANE_TA, ca, depth + 1);
if (match) {
switch (match) {
case MATCHED_CERT:
wrap_cert(TLScontext, ca, depth);
break;
case MATCHED_PKEY:
if ((takey = X509_get_pubkey(ca)) == 0)
msg_panic("trust-anchor certificate has null pkey");
wrap_key(TLScontext, depth, takey, cert);
EVP_PKEY_free(takey);
break;
default:
msg_panic("unexpected tls_dane_match result: %d", match);
}
cert = 0;
break;
}
/* Add untrusted ca. */
grow_chain(TLScontext, UNTRUSTED, ca);
/* Final untrusted self-signed element? */
if (X509_check_issued(ca, ca) == X509_V_OK) {
cert = 0;
break;
}
/* Restart with issuer as subject */
cert = ca;
}
/*
* When the loop exits, if "cert" is set, it is not self-signed and has
* no issuer in the chain, we check for a possible signature via a DNS
* obtained TA cert or public key. Otherwise, we found no TAs and no
* issuer, so set an empty list of TAs.
*/
if (!cert || !ta_signed(TLScontext, cert, depth)) {
/* Create empty trust list if null, else NOP */
grow_chain(TLScontext, TRUSTED, 0);
}
/* shallow free */
if (in)
sk_X509_free(in);
}
/* dane_cb - wrap chain verification for DANE */
static int dane_cb(X509_STORE_CTX *ctx, void *app_ctx)
{
const char *myname = "dane_cb";
TLS_SESS_STATE *TLScontext = (TLS_SESS_STATE *) app_ctx;
X509 *cert = X509_STORE_CTX_get0_cert(ctx);
/*
* Degenerate case: depth 0 self-signed cert.
*
* XXX: Should we suppress name checks, ... when the leaf certificate is a
* TA. After all they could sign any name they want. However, this
* requires a bit of additional code. For now we allow depth 0 TAs, but
* then the peer name has to match.
*/
if (X509_check_issued(cert, cert) == X509_V_OK) {
/*
* Empty untrusted chain, could be NULL, but then ABI check less
* reliable, we may zero some other field, ...
*/
grow_chain(TLScontext, UNTRUSTED, 0);
if (tls_dane_match(TLScontext, TLS_DANE_TA, cert, 0)) {
TLScontext->tadepth = 0;
grow_chain(TLScontext, TRUSTED, cert);
} else
grow_chain(TLScontext, TRUSTED, 0);
} else {
set_trust(TLScontext, ctx);
}
/*
* Check that setting the untrusted chain updates the expected structure
* member at the expected offset.
*/
X509_STORE_CTX_set0_trusted_stack(ctx, TLScontext->trusted);
X509_STORE_CTX_set0_untrusted(ctx, TLScontext->untrusted);
if (X509_STORE_CTX_get0_untrusted(ctx) != TLScontext->untrusted)
msg_panic("%s: OpenSSL ABI change", myname);
return X509_verify_cert(ctx);
}
/* tls_dane_set_callback - set or clear verification wrapper callback */
void tls_dane_set_callback(SSL_CTX *ctx, TLS_SESS_STATE *TLScontext)
{
if (TLS_DANE_HASTA(TLScontext->dane))
SSL_CTX_set_cert_verify_callback(ctx, dane_cb, (void *) TLScontext);
else
SSL_CTX_set_cert_verify_callback(ctx, 0, 0);
}
#ifdef TEST
#include <unistd.h>
#include <stdarg.h>
#include <mail_params.h>
#include <mail_conf.h>
#include <msg_vstream.h>
static int verify_chain(SSL *ssl, x509_stack_t *chain, TLS_SESS_STATE *tctx)
{
int ret;
X509 *cert;
X509_STORE_CTX *store_ctx;
SSL_CTX *ssl_ctx = SSL_get_SSL_CTX(ssl);
X509_STORE *store = SSL_CTX_get_cert_store(ssl_ctx);
int store_ctx_idx = SSL_get_ex_data_X509_STORE_CTX_idx();
cert = sk_X509_value(chain, 0);
if ((store_ctx = X509_STORE_CTX_new()) == NULL) {
SSLerr(SSL_F_SSL_VERIFY_CERT_CHAIN, ERR_R_MALLOC_FAILURE);
return 0;
}
if (!X509_STORE_CTX_init(store_ctx, store, cert, chain)) {
X509_STORE_CTX_free(store_ctx);
return 0;
}
X509_STORE_CTX_set_ex_data(store_ctx, store_ctx_idx, ssl);
X509_STORE_CTX_set_default(store_ctx, "ssl_server");
X509_VERIFY_PARAM_set1(X509_STORE_CTX_get0_param(store_ctx),
SSL_get0_param(ssl));
if (SSL_get_verify_callback(ssl))
X509_STORE_CTX_set_verify_cb(store_ctx, SSL_get_verify_callback(ssl));
ret = dane_cb(store_ctx, tctx);
SSL_set_verify_result(ssl, X509_STORE_CTX_get_error(store_ctx));
X509_STORE_CTX_free(store_ctx);
return (ret);
}
static void add_tlsa(TLS_DANE *dane, char *argv[])
{
char *digest;
X509 *cert = 0;
BIO *bp;
unsigned char *buf;
unsigned char *buf2;
int len;
uint8_t u = atoi(argv[1]);
uint8_t s = atoi(argv[2]);
const char *mdname = argv[3];
EVP_PKEY *pkey;
/* Unsupported usages are fatal */
switch (u) {
case DNS_TLSA_USAGE_TRUST_ANCHOR_ASSERTION:
case DNS_TLSA_USAGE_DOMAIN_ISSUED_CERTIFICATE:
break;
default:
msg_fatal("unsupported certificate usage %u", u);
}
/* Unsupported selectors are fatal */
switch (s) {
case DNS_TLSA_SELECTOR_FULL_CERTIFICATE:
case DNS_TLSA_SELECTOR_SUBJECTPUBLICKEYINFO:
break;
default:
msg_fatal("unsupported selector %u", s);
}
/* Unsupported digests are fatal */
if (*mdname && !tls_validate_digest(mdname))
msg_fatal("unsupported digest algorithm: %s", mdname);
if ((bp = BIO_new_file(argv[4], "r")) == NULL)
msg_fatal("error opening %s: %m", argv[4]);
if (!PEM_read_bio_X509(bp, &cert, 0, 0)) {
tls_print_errors();
msg_fatal("error loading certificate from %s: %m", argv[4]);
}
BIO_free(bp);
/*
* Extract ASN.1 DER form of certificate or public key.
*/
switch (s) {
case DNS_TLSA_SELECTOR_FULL_CERTIFICATE:
len = i2d_X509(cert, NULL);
buf2 = buf = (unsigned char *) mymalloc(len);
i2d_X509(cert, &buf2);
if (!*mdname)
ta_cert_insert(dane, cert);
break;
case DNS_TLSA_SELECTOR_SUBJECTPUBLICKEYINFO:
pkey = X509_get_pubkey(cert);
len = i2d_PUBKEY(pkey, NULL);
buf2 = buf = (unsigned char *) mymalloc(len);
i2d_PUBKEY(pkey, &buf2);
if (!*mdname)
ta_pkey_insert(dane, pkey);
EVP_PKEY_free(pkey);
break;
}
OPENSSL_assert(buf2 - buf == len);
digest = tls_data_fprint((char *) buf, len, *mdname ? mdname : signalg);
dane_add(dane, u, s, *mdname ? mdname : signalg, digest);
myfree((void *) digest);
myfree((void *) buf);
}
static x509_stack_t *load_chain(const char *chainfile)
{
BIO *bp;
char *name = 0;
char *header = 0;
unsigned char *data = 0;
long len;
int count;
char *errtype = 0; /* if error: cert or pkey? */
x509_stack_t *chain;
typedef X509 *(*d2i_X509_t) (X509 **, const unsigned char **, long);
if ((chain = sk_X509_new_null()) == 0) {
perror("malloc");
exit(1);
}
/*
* On each call, PEM_read() wraps a stdio file in a BIO_NOCLOSE bio,
* calls PEM_read_bio() and then frees the bio. It is just as easy to
* open a BIO as a stdio file, so we use BIOs and call PEM_read_bio()
* directly.
*/
if ((bp = BIO_new_file(chainfile, "r")) == NULL) {
fprintf(stderr, "error opening chainfile: %s: %m\n", chainfile);
exit(1);
}
/* Don't report old news */
ERR_clear_error();
for (count = 0;
errtype == 0 && PEM_read_bio(bp, &name, &header, &data, &len);
++count) {
const unsigned char *p = data;
if (strcmp(name, PEM_STRING_X509) == 0
|| strcmp(name, PEM_STRING_X509_TRUSTED) == 0
|| strcmp(name, PEM_STRING_X509_OLD) == 0) {
d2i_X509_t d;
X509 *cert;
d = strcmp(name, PEM_STRING_X509_TRUSTED) ? d2i_X509_AUX : d2i_X509;
if ((cert = d(0, &p, len)) == 0 || (p - data) != len)
errtype = "certificate";
else if (sk_X509_push(chain, cert) == 0) {
perror("malloc");
exit(1);
}
} else {
fprintf(stderr, "unexpected chain file object: %s\n", name);
exit(1);
}
/*
* If any of these were null, PEM_read() would have failed.
*/
OPENSSL_free(name);
OPENSSL_free(header);
OPENSSL_free(data);
}
BIO_free(bp);
if (errtype) {
tls_print_errors();
fprintf(stderr, "error reading: %s: malformed %s", chainfile, errtype);
exit(1);
}
if (ERR_GET_REASON(ERR_peek_last_error()) == PEM_R_NO_START_LINE) {
/* Reached end of PEM file */
ERR_clear_error();
if (count > 0)
return chain;
fprintf(stderr, "no certificates found in: %s\n", chainfile);
exit(1);
}
/* Some other PEM read error */
tls_print_errors();
fprintf(stderr, "error reading: %s\n", chainfile);
exit(1);
}
static void usage(const char *progname)
{
fprintf(stderr, "Usage: %s certificate-usage selector matching-type"
" certfile \\\n\t\tCAfile chainfile hostname [certname ...]\n",
progname);
fprintf(stderr, " where, certificate-usage = TLSA certificate usage,\n");
fprintf(stderr, "\t selector = TLSA selector,\n");
fprintf(stderr, "\t matching-type = empty string or OpenSSL digest algorithm name,\n");
fprintf(stderr, "\t PEM certfile provides certificate association data,\n");
fprintf(stderr, "\t PEM CAfile contains any usage 0/1 trusted roots,\n");
fprintf(stderr, "\t PEM chainfile = server chain file to verify\n");
fprintf(stderr, "\t hostname = destination hostname,\n");
fprintf(stderr, "\t each certname augments the hostname for name checks.\n");
exit(1);
}
/* match_servername - match servername against pattern */
static int match_servername(const char *certid, ARGV *margv)
{
const char *domain;
const char *parent;
int match_subdomain;
int i;
int idlen;
int domlen;
/*
* XXX EAI support.
*/
/*
* Match the certid against each pattern until we find a match.
*/
for (i = 0; i < margv->argc; ++i) {
match_subdomain = 0;
domain = margv->argv[i];
if (*domain == '.' && domain[1] != '\0') {
++domain;
match_subdomain = 1;
}
/*
* Sub-domain match: certid is any sub-domain of hostname.
*/
if (match_subdomain) {
if ((idlen = strlen(certid)) > (domlen = strlen(domain)) + 1
&& certid[idlen - domlen - 1] == '.'
&& !strcasecmp(certid + (idlen - domlen), domain))
return (1);
else
continue;
}
/*
* Exact match and initial "*" match. The initial "*" in a certid
* matches one (if var_tls_multi_label is false) or more hostname
* components under the condition that the certid contains multiple
* hostname components.
*/
if (!strcasecmp(certid, domain)
|| (certid[0] == '*' && certid[1] == '.' && certid[2] != 0
&& (parent = strchr(domain, '.')) != 0
&& (idlen = strlen(certid + 1)) <= (domlen = strlen(parent))
&& strcasecmp(var_tls_multi_wildcard == 0 ? parent :
parent + domlen - idlen,
certid + 1) == 0))
return (1);
}
return (0);
}
static void check_name(TLS_SESS_STATE *tctx, X509 *cert, ARGV *margs)
{
char *cn;
int matched = 0;
general_name_stack_t *gens;
if (SSL_get_verify_result(tctx->con) != X509_V_OK)
return;
tctx->peer_status |= TLS_CERT_FLAG_TRUSTED;
gens = X509_get_ext_d2i(cert, NID_subject_alt_name, 0, 0);
if (gens) {
int has_dnsname = 0;
int num_gens = sk_GENERAL_NAME_num(gens);
int i;
for (i = 0; !matched && i < num_gens; ++i) {
const GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i);
const char *dnsname;
if (gn->type != GEN_DNS)
continue;
has_dnsname = 1;
tctx->peer_status |= TLS_CERT_FLAG_ALTNAME;
dnsname = tls_dns_name(gn, tctx);
if (dnsname && *dnsname
&& (matched = match_servername(dnsname, margs)) != 0)
tctx->peer_status |= TLS_CERT_FLAG_MATCHED;
}
sk_GENERAL_NAME_pop_free(gens, GENERAL_NAME_free);
if (has_dnsname)
return;
}
cn = tls_peer_CN(cert, tctx);
if (match_servername(cn, margs))
tctx->peer_status |= TLS_CERT_FLAG_MATCHED;
myfree(cn);
}
static void check_print(TLS_SESS_STATE *tctx, X509 *cert)
{
if (TLS_DANE_HASEE(tctx->dane)
&& tls_dane_match(tctx, TLS_DANE_EE, cert, 0))
tctx->peer_status |= TLS_CERT_FLAG_TRUSTED | TLS_CERT_FLAG_MATCHED;
}
static void check_peer(TLS_SESS_STATE *tctx, X509 *cert, int argc, char **argv)
{
ARGV match;
tctx->peer_status |= TLS_CERT_FLAG_PRESENT;
check_print(tctx, cert);
if (!TLS_CERT_IS_MATCHED(tctx)) {
match.argc = argc;
match.argv = argv;
check_name(tctx, cert, &match);
}
}
static SSL_CTX *ctx_init(const char *CAfile)
{
SSL_CTX *client_ctx;
tls_param_init();
tls_check_version();
#if OPENSSL_VERSION_NUMBER < 0x10100000L
SSL_load_error_strings();
SSL_library_init();
#endif
if (!tls_validate_digest(LN_sha1))
msg_fatal("%s digest algorithm not available", LN_sha1);
if (TLScontext_index < 0)
if ((TLScontext_index = SSL_get_ex_new_index(0, 0, 0, 0, 0)) < 0)
msg_fatal("Cannot allocate SSL application data index");
ERR_clear_error();
if ((client_ctx = SSL_CTX_new(TLS_client_method())) == 0)
msg_fatal("cannot allocate client SSL_CTX");
SSL_CTX_set_verify_depth(client_ctx, 5);
if (tls_set_ca_certificate_info(client_ctx, CAfile, "") < 0) {
tls_print_errors();
msg_fatal("cannot load CAfile: %s", CAfile);
}
SSL_CTX_set_verify(client_ctx, SSL_VERIFY_NONE,
tls_verify_certificate_callback);
return (client_ctx);
}
int main(int argc, char *argv[])
{
SSL_CTX *ssl_ctx;
TLS_SESS_STATE *tctx;
x509_stack_t *chain;
var_procname = mystrdup(basename(argv[0]));
set_mail_conf_str(VAR_PROCNAME, var_procname);
msg_vstream_init(var_procname, VSTREAM_OUT);
if (argc < 8)
usage(argv[0]);
ssl_ctx = ctx_init(argv[5]);
if (!tls_dane_avail())
msg_fatal("DANE TLSA support not available");
tctx = tls_alloc_sess_context(TLS_LOG_NONE, argv[7]);
tctx->namaddr = argv[7];
tctx->mdalg = LN_sha1;
tctx->dane = tls_dane_alloc();
if ((tctx->con = SSL_new(ssl_ctx)) == 0
|| !SSL_set_ex_data(tctx->con, TLScontext_index, tctx)) {
tls_print_errors();
msg_fatal("Error allocating SSL connection");
}
SSL_set_connect_state(tctx->con);
add_tlsa((TLS_DANE *) tctx->dane, argv);
tls_dane_set_callback(ssl_ctx, tctx);
/* Verify saved server chain */
chain = load_chain(argv[6]);
verify_chain(tctx->con, chain, tctx);
check_peer(tctx, sk_X509_value(chain, 0), argc - 7, argv + 7);
tls_print_errors();
msg_info("%s %s", TLS_CERT_IS_MATCHED(tctx) ? "Verified" :
TLS_CERT_IS_TRUSTED(tctx) ? "Trusted" : "Untrusted", argv[7]);
return (TLS_CERT_IS_MATCHED(tctx) ? 0 : 1);
}
#endif /* TEST */
#endif /* USE_TLS */
|