summaryrefslogtreecommitdiffstats
path: root/lib/util/sha2.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/util/sha2.c')
-rw-r--r--lib/util/sha2.c522
1 files changed, 522 insertions, 0 deletions
diff --git a/lib/util/sha2.c b/lib/util/sha2.c
new file mode 100644
index 0000000..9a172e3
--- /dev/null
+++ b/lib/util/sha2.c
@@ -0,0 +1,522 @@
+/*
+ * Copyright (c) 2013-2015 Todd C. Miller <Todd.Miller@sudo.ws>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+/*
+ * This is an open source non-commercial project. Dear PVS-Studio, please check it.
+ * PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
+ */
+
+/*
+ * Implementation of SHA-224, SHA-256, SHA-384 and SHA-512
+ * as per FIPS 180-4: Secure Hash Standard (SHS)
+ * http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
+ *
+ * Derived from the public domain SHA-1 and SHA-2 implementations
+ * by Steve Reid and Wei Dai respectively.
+ */
+
+#include <config.h>
+
+#include <sys/types.h>
+#include <stdio.h>
+#include <stdlib.h>
+#ifdef HAVE_STRING_H
+# include <string.h>
+#endif /* HAVE_STRING_H */
+#ifdef HAVE_STRINGS_H
+# include <strings.h>
+#endif /* HAVE_STRINGS_H */
+#if defined(HAVE_STDINT_H)
+# include <stdint.h>
+#elif defined(HAVE_INTTYPES_H)
+# include <inttypes.h>
+#endif
+#if defined(HAVE_ENDIAN_H)
+# include <endian.h>
+#elif defined(HAVE_SYS_ENDIAN_H)
+# include <sys/endian.h>
+#elif defined(HAVE_MACHINE_ENDIAN_H)
+# include <machine/endian.h>
+#else
+# include "compat/endian.h"
+#endif
+
+#include "sudo_compat.h"
+#include "compat/sha2.h"
+
+/*
+ * SHA-2 operates on 32-bit and 64-bit words in big endian byte order.
+ * The following macros convert between character arrays and big endian words.
+ */
+#define BE8TO32(x, y) do { \
+ (x) = (((uint32_t)((y)[0] & 255) << 24) | \
+ ((uint32_t)((y)[1] & 255) << 16) | \
+ ((uint32_t)((y)[2] & 255) << 8) | \
+ ((uint32_t)((y)[3] & 255))); \
+} while (0)
+
+#define BE8TO64(x, y) do { \
+ (x) = (((uint64_t)((y)[0] & 255) << 56) | \
+ ((uint64_t)((y)[1] & 255) << 48) | \
+ ((uint64_t)((y)[2] & 255) << 40) | \
+ ((uint64_t)((y)[3] & 255) << 32) | \
+ ((uint64_t)((y)[4] & 255) << 24) | \
+ ((uint64_t)((y)[5] & 255) << 16) | \
+ ((uint64_t)((y)[6] & 255) << 8) | \
+ ((uint64_t)((y)[7] & 255))); \
+} while (0)
+
+#define BE32TO8(x, y) do { \
+ (x)[0] = (uint8_t)(((y) >> 24) & 255); \
+ (x)[1] = (uint8_t)(((y) >> 16) & 255); \
+ (x)[2] = (uint8_t)(((y) >> 8) & 255); \
+ (x)[3] = (uint8_t)((y) & 255); \
+} while (0)
+
+#define BE64TO8(x, y) do { \
+ (x)[0] = (uint8_t)(((y) >> 56) & 255); \
+ (x)[1] = (uint8_t)(((y) >> 48) & 255); \
+ (x)[2] = (uint8_t)(((y) >> 40) & 255); \
+ (x)[3] = (uint8_t)(((y) >> 32) & 255); \
+ (x)[4] = (uint8_t)(((y) >> 24) & 255); \
+ (x)[5] = (uint8_t)(((y) >> 16) & 255); \
+ (x)[6] = (uint8_t)(((y) >> 8) & 255); \
+ (x)[7] = (uint8_t)((y) & 255); \
+} while (0)
+
+#define rotrFixed(x,y) (y ? ((x>>y) | (x<<(sizeof(x)*8-y))) : x)
+
+#define blk0(i) (W[i])
+#define blk2(i) (W[i&15]+=s1(W[(i-2)&15])+W[(i-7)&15]+s0(W[(i-15)&15]))
+
+#define Ch(x,y,z) (z^(x&(y^z)))
+#define Maj(x,y,z) (y^((x^y)&(y^z)))
+
+#define a(i) T[(0-i)&7]
+#define b(i) T[(1-i)&7]
+#define c(i) T[(2-i)&7]
+#define d(i) T[(3-i)&7]
+#define e(i) T[(4-i)&7]
+#define f(i) T[(5-i)&7]
+#define g(i) T[(6-i)&7]
+#define h(i) T[(7-i)&7]
+
+void
+SHA224Init(SHA2_CTX *ctx)
+{
+ memset(ctx, 0, sizeof(*ctx));
+ ctx->state.st32[0] = 0xc1059ed8UL;
+ ctx->state.st32[1] = 0x367cd507UL;
+ ctx->state.st32[2] = 0x3070dd17UL;
+ ctx->state.st32[3] = 0xf70e5939UL;
+ ctx->state.st32[4] = 0xffc00b31UL;
+ ctx->state.st32[5] = 0x68581511UL;
+ ctx->state.st32[6] = 0x64f98fa7UL;
+ ctx->state.st32[7] = 0xbefa4fa4UL;
+}
+
+void
+SHA224Transform(uint32_t state[8], const uint8_t buffer[SHA224_BLOCK_LENGTH])
+{
+ SHA256Transform(state, buffer);
+}
+
+void
+SHA224Update(SHA2_CTX *ctx, const uint8_t *data, size_t len)
+{
+ SHA256Update(ctx, data, len);
+}
+
+void
+SHA224Pad(SHA2_CTX *ctx)
+{
+ SHA256Pad(ctx);
+}
+
+void
+SHA224Final(uint8_t digest[SHA224_DIGEST_LENGTH], SHA2_CTX *ctx)
+{
+ SHA256Pad(ctx);
+ if (digest != NULL) {
+#if BYTE_ORDER == BIG_ENDIAN
+ memcpy(digest, ctx->state.st32, SHA224_DIGEST_LENGTH);
+#else
+ unsigned int i;
+
+ for (i = 0; i < 7; i++)
+ BE32TO8(digest + (i * 4), ctx->state.st32[i]);
+#endif
+ memset(ctx, 0, sizeof(*ctx));
+ }
+}
+
+static const uint32_t SHA256_K[64] = {
+ 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
+ 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
+ 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
+ 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
+ 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
+ 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
+ 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
+ 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
+ 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
+ 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
+ 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
+ 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
+ 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
+ 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
+ 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
+ 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
+};
+
+void
+SHA256Init(SHA2_CTX *ctx)
+{
+ memset(ctx, 0, sizeof(*ctx));
+ ctx->state.st32[0] = 0x6a09e667UL;
+ ctx->state.st32[1] = 0xbb67ae85UL;
+ ctx->state.st32[2] = 0x3c6ef372UL;
+ ctx->state.st32[3] = 0xa54ff53aUL;
+ ctx->state.st32[4] = 0x510e527fUL;
+ ctx->state.st32[5] = 0x9b05688cUL;
+ ctx->state.st32[6] = 0x1f83d9abUL;
+ ctx->state.st32[7] = 0x5be0cd19UL;
+}
+
+/* Round macros for SHA256 */
+#define R(i) do { \
+ h(i)+=S1(e(i))+Ch(e(i),f(i),g(i))+SHA256_K[i+j]+(j?blk2(i):blk0(i)); \
+ d(i)+=h(i); \
+ h(i)+=S0(a(i))+Maj(a(i),b(i),c(i)); \
+} while (0)
+
+#define S0(x) (rotrFixed(x,2)^rotrFixed(x,13)^rotrFixed(x,22))
+#define S1(x) (rotrFixed(x,6)^rotrFixed(x,11)^rotrFixed(x,25))
+#define s0(x) (rotrFixed(x,7)^rotrFixed(x,18)^(x>>3))
+#define s1(x) (rotrFixed(x,17)^rotrFixed(x,19)^(x>>10))
+
+void
+SHA256Transform(uint32_t state[8], const uint8_t data[SHA256_BLOCK_LENGTH])
+{
+ uint32_t W[16];
+ uint32_t T[8];
+ unsigned int j;
+
+ /* Copy context state to working vars. */
+ memcpy(T, state, sizeof(T));
+ /* Copy data to W in big endian format. */
+#if BYTE_ORDER == BIG_ENDIAN
+ memcpy(W, data, sizeof(W));
+#else
+ for (j = 0; j < 16; j++) {
+ BE8TO32(W[j], data);
+ data += 4;
+ }
+#endif
+ /* 64 operations, partially loop unrolled. */
+ for (j = 0; j < 64; j += 16)
+ {
+ R( 0); R( 1); R( 2); R( 3);
+ R( 4); R( 5); R( 6); R( 7);
+ R( 8); R( 9); R(10); R(11);
+ R(12); R(13); R(14); R(15);
+ }
+ /* Add the working vars back into context state. */
+ state[0] += a(0);
+ state[1] += b(0);
+ state[2] += c(0);
+ state[3] += d(0);
+ state[4] += e(0);
+ state[5] += f(0);
+ state[6] += g(0);
+ state[7] += h(0);
+ /* Cleanup */
+ memset_s(T, sizeof(T), 0, sizeof(T));
+ memset_s(W, sizeof(W), 0, sizeof(W));
+}
+
+#undef S0
+#undef S1
+#undef s0
+#undef s1
+#undef R
+
+void
+SHA256Update(SHA2_CTX *ctx, const uint8_t *data, size_t len)
+{
+ size_t i = 0, j;
+
+ j = (size_t)((ctx->count[0] >> 3) & (SHA256_BLOCK_LENGTH - 1));
+ ctx->count[0] += ((uint64_t)len << 3);
+ if ((j + len) > SHA256_BLOCK_LENGTH - 1) {
+ memcpy(&ctx->buffer[j], data, (i = SHA256_BLOCK_LENGTH - j));
+ SHA256Transform(ctx->state.st32, ctx->buffer);
+ for ( ; i + SHA256_BLOCK_LENGTH - 1 < len; i += SHA256_BLOCK_LENGTH)
+ SHA256Transform(ctx->state.st32, (uint8_t *)&data[i]);
+ j = 0;
+ }
+ memcpy(&ctx->buffer[j], &data[i], len - i);
+}
+
+void
+SHA256Pad(SHA2_CTX *ctx)
+{
+ uint8_t finalcount[8];
+
+ /* Store unpadded message length in bits in big endian format. */
+ BE64TO8(finalcount, ctx->count[0]);
+
+ /* Append a '1' bit (0x80) to the message. */
+ SHA256Update(ctx, (uint8_t *)"\200", 1);
+
+ /* Pad message such that the resulting length modulo 512 is 448. */
+ while ((ctx->count[0] & 504) != 448)
+ SHA256Update(ctx, (uint8_t *)"\0", 1);
+
+ /* Append length of message in bits and do final SHA256Transform(). */
+ SHA256Update(ctx, finalcount, sizeof(finalcount));
+}
+
+void
+SHA256Final(uint8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *ctx)
+{
+ SHA256Pad(ctx);
+ if (digest != NULL) {
+#if BYTE_ORDER == BIG_ENDIAN
+ memcpy(digest, ctx->state.st32, SHA256_DIGEST_LENGTH);
+#else
+ unsigned int i;
+
+ for (i = 0; i < 8; i++)
+ BE32TO8(digest + (i * 4), ctx->state.st32[i]);
+#endif
+ memset(ctx, 0, sizeof(*ctx));
+ }
+}
+
+void
+SHA384Init(SHA2_CTX *ctx)
+{
+ memset(ctx, 0, sizeof(*ctx));
+ ctx->state.st64[0] = 0xcbbb9d5dc1059ed8ULL;
+ ctx->state.st64[1] = 0x629a292a367cd507ULL;
+ ctx->state.st64[2] = 0x9159015a3070dd17ULL;
+ ctx->state.st64[3] = 0x152fecd8f70e5939ULL;
+ ctx->state.st64[4] = 0x67332667ffc00b31ULL;
+ ctx->state.st64[5] = 0x8eb44a8768581511ULL;
+ ctx->state.st64[6] = 0xdb0c2e0d64f98fa7ULL;
+ ctx->state.st64[7] = 0x47b5481dbefa4fa4ULL;
+}
+
+void
+SHA384Transform(uint64_t state[8], const uint8_t data[SHA384_BLOCK_LENGTH])
+{
+ SHA512Transform(state, data);
+}
+
+void
+SHA384Update(SHA2_CTX *ctx, const uint8_t *data, size_t len)
+{
+ SHA512Update(ctx, data, len);
+}
+
+void
+SHA384Pad(SHA2_CTX *ctx)
+{
+ SHA512Pad(ctx);
+}
+
+void
+SHA384Final(uint8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *ctx)
+{
+ SHA384Pad(ctx);
+ if (digest != NULL) {
+#if BYTE_ORDER == BIG_ENDIAN
+ memcpy(digest, ctx->state.st64, SHA384_DIGEST_LENGTH);
+#else
+ unsigned int i;
+
+ for (i = 0; i < 6; i++)
+ BE64TO8(digest + (i * 8), ctx->state.st64[i]);
+#endif
+ memset(ctx, 0, sizeof(*ctx));
+ }
+}
+
+static const uint64_t SHA512_K[80] = {
+ 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
+ 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
+ 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
+ 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
+ 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
+ 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
+ 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
+ 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
+ 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
+ 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
+ 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
+ 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
+ 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
+ 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
+ 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
+ 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
+ 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
+ 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
+ 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
+ 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
+ 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
+ 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
+ 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
+ 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
+ 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
+ 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
+ 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
+ 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
+ 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
+ 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
+ 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
+ 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
+ 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
+ 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
+ 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
+ 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
+ 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
+ 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
+ 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
+ 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
+};
+
+void
+SHA512Init(SHA2_CTX *ctx)
+{
+ memset(ctx, 0, sizeof(*ctx));
+ ctx->state.st64[0] = 0x6a09e667f3bcc908ULL;
+ ctx->state.st64[1] = 0xbb67ae8584caa73bULL;
+ ctx->state.st64[2] = 0x3c6ef372fe94f82bULL;
+ ctx->state.st64[3] = 0xa54ff53a5f1d36f1ULL;
+ ctx->state.st64[4] = 0x510e527fade682d1ULL;
+ ctx->state.st64[5] = 0x9b05688c2b3e6c1fULL;
+ ctx->state.st64[6] = 0x1f83d9abfb41bd6bULL;
+ ctx->state.st64[7] = 0x5be0cd19137e2179ULL;
+}
+
+/* Round macros for SHA512 */
+#define R(i) do { \
+ h(i)+=S1(e(i))+Ch(e(i),f(i),g(i))+SHA512_K[i+j]+(j?blk2(i):blk0(i)); \
+ d(i)+=h(i); \
+ h(i)+=S0(a(i))+Maj(a(i),b(i),c(i)); \
+} while (0)
+
+#define S0(x) (rotrFixed(x,28)^rotrFixed(x,34)^rotrFixed(x,39))
+#define S1(x) (rotrFixed(x,14)^rotrFixed(x,18)^rotrFixed(x,41))
+#define s0(x) (rotrFixed(x,1)^rotrFixed(x,8)^(x>>7))
+#define s1(x) (rotrFixed(x,19)^rotrFixed(x,61)^(x>>6))
+
+void
+SHA512Transform(uint64_t state[8], const uint8_t data[SHA512_BLOCK_LENGTH])
+{
+ uint64_t W[16];
+ uint64_t T[8];
+ unsigned int j;
+
+ /* Copy context state to working vars. */
+ memcpy(T, state, sizeof(T));
+ /* Copy data to W in big endian format. */
+#if BYTE_ORDER == BIG_ENDIAN
+ memcpy(W, data, sizeof(W));
+#else
+ for (j = 0; j < 16; j++) {
+ BE8TO64(W[j], data);
+ data += 8;
+ }
+#endif
+ /* 80 operations, partially loop unrolled. */
+ for (j = 0; j < 80; j += 16)
+ {
+ R( 0); R( 1); R( 2); R( 3);
+ R( 4); R( 5); R( 6); R( 7);
+ R( 8); R( 9); R(10); R(11);
+ R(12); R(13); R(14); R(15);
+ }
+ /* Add the working vars back into context state. */
+ state[0] += a(0);
+ state[1] += b(0);
+ state[2] += c(0);
+ state[3] += d(0);
+ state[4] += e(0);
+ state[5] += f(0);
+ state[6] += g(0);
+ state[7] += h(0);
+ /* Cleanup. */
+ memset_s(T, sizeof(T), 0, sizeof(T));
+ memset_s(W, sizeof(W), 0, sizeof(W));
+}
+
+void
+SHA512Update(SHA2_CTX *ctx, const uint8_t *data, size_t len)
+{
+ size_t i = 0, j;
+
+ j = (size_t)((ctx->count[0] >> 3) & (SHA512_BLOCK_LENGTH - 1));
+ ctx->count[0] += ((uint64_t)len << 3);
+ if (ctx->count[0] < ((uint64_t)len << 3))
+ ctx->count[1]++;
+ if ((j + len) > SHA512_BLOCK_LENGTH - 1) {
+ memcpy(&ctx->buffer[j], data, (i = SHA512_BLOCK_LENGTH - j));
+ SHA512Transform(ctx->state.st64, ctx->buffer);
+ for ( ; i + SHA512_BLOCK_LENGTH - 1 < len; i += SHA512_BLOCK_LENGTH)
+ SHA512Transform(ctx->state.st64, (uint8_t *)&data[i]);
+ j = 0;
+ }
+ memcpy(&ctx->buffer[j], &data[i], len - i);
+}
+
+void
+SHA512Pad(SHA2_CTX *ctx)
+{
+ uint8_t finalcount[16];
+
+ /* Store unpadded message length in bits in big endian format. */
+ BE64TO8(finalcount, ctx->count[1]);
+ BE64TO8(finalcount + 8, ctx->count[0]);
+
+ /* Append a '1' bit (0x80) to the message. */
+ SHA512Update(ctx, (uint8_t *)"\200", 1);
+
+ /* Pad message such that the resulting length modulo 1024 is 896. */
+ while ((ctx->count[0] & 1008) != 896)
+ SHA512Update(ctx, (uint8_t *)"\0", 1);
+
+ /* Append length of message in bits and do final SHA512Transform(). */
+ SHA512Update(ctx, finalcount, sizeof(finalcount));
+}
+
+void
+SHA512Final(uint8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *ctx)
+{
+ SHA512Pad(ctx);
+ if (digest != NULL) {
+#if BYTE_ORDER == BIG_ENDIAN
+ memcpy(digest, ctx->state.st64, SHA512_DIGEST_LENGTH);
+#else
+ unsigned int i;
+
+ for (i = 0; i < 8; i++)
+ BE64TO8(digest + (i * 8), ctx->state.st64[i]);
+#endif
+ memset(ctx, 0, sizeof(*ctx));
+ }
+}