diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 02:25:50 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 02:25:50 +0000 |
commit | 19f4f86bfed21c5326ed2acebe1163f3a83e832b (patch) | |
tree | d59b9989ce55ed23693e80974d94c856f1c2c8b1 /src/journal/lookup3.c | |
parent | Initial commit. (diff) | |
download | systemd-19f4f86bfed21c5326ed2acebe1163f3a83e832b.tar.xz systemd-19f4f86bfed21c5326ed2acebe1163f3a83e832b.zip |
Adding upstream version 241.upstream/241upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/journal/lookup3.c')
-rw-r--r-- | src/journal/lookup3.c | 1005 |
1 files changed, 1005 insertions, 0 deletions
diff --git a/src/journal/lookup3.c b/src/journal/lookup3.c new file mode 100644 index 0000000..6c61f17 --- /dev/null +++ b/src/journal/lookup3.c @@ -0,0 +1,1005 @@ +/* Slightly modified by Lennart Poettering, to avoid name clashes, and + * unexport a few functions. */ + +#include "lookup3.h" + +/* +------------------------------------------------------------------------------- +lookup3.c, by Bob Jenkins, May 2006, Public Domain. + +These are functions for producing 32-bit hashes for hash table lookup. +hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() +are externally useful functions. Routines to test the hash are included +if SELF_TEST is defined. You can use this free for any purpose. It's in +the public domain. It has no warranty. + +You probably want to use hashlittle(). hashlittle() and hashbig() +hash byte arrays. hashlittle() is faster than hashbig() on +little-endian machines. Intel and AMD are little-endian machines. +On second thought, you probably want hashlittle2(), which is identical to +hashlittle() except it returns two 32-bit hashes for the price of one. +You could implement hashbig2() if you wanted but I haven't bothered here. + +If you want to find a hash of, say, exactly 7 integers, do + a = i1; b = i2; c = i3; + mix(a,b,c); + a += i4; b += i5; c += i6; + mix(a,b,c); + a += i7; + final(a,b,c); +then use c as the hash value. If you have a variable length array of +4-byte integers to hash, use hashword(). If you have a byte array (like +a character string), use hashlittle(). If you have several byte arrays, or +a mix of things, see the comments above hashlittle(). + +Why is this so big? I read 12 bytes at a time into 3 4-byte integers, +then mix those integers. This is fast (you can do a lot more thorough +mixing with 12*3 instructions on 3 integers than you can with 3 instructions +on 1 byte), but shoehorning those bytes into integers efficiently is messy. +------------------------------------------------------------------------------- +*/ +/* #define SELF_TEST 1 */ + +#include <stdint.h> /* defines uint32_t etc */ +#include <stdio.h> /* defines printf for tests */ +#include <sys/param.h> /* attempt to define endianness */ +#include <time.h> /* defines time_t for timings in the test */ +#ifdef linux +# include <endian.h> /* attempt to define endianness */ +#endif + +#if __GNUC__ >= 7 +_Pragma("GCC diagnostic ignored \"-Wimplicit-fallthrough\"") +#endif + +/* + * My best guess at if you are big-endian or little-endian. This may + * need adjustment. + */ +#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \ + __BYTE_ORDER == __LITTLE_ENDIAN) || \ + (defined(i386) || defined(__i386__) || defined(__i486__) || \ + defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL)) +# define HASH_LITTLE_ENDIAN 1 +# define HASH_BIG_ENDIAN 0 +#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \ + __BYTE_ORDER == __BIG_ENDIAN) || \ + (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel)) +# define HASH_LITTLE_ENDIAN 0 +# define HASH_BIG_ENDIAN 1 +#else +# define HASH_LITTLE_ENDIAN 0 +# define HASH_BIG_ENDIAN 0 +#endif + +#define hashsize(n) ((uint32_t)1<<(n)) +#define hashmask(n) (hashsize(n)-1) +#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) + +/* +------------------------------------------------------------------------------- +mix -- mix 3 32-bit values reversibly. + +This is reversible, so any information in (a,b,c) before mix() is +still in (a,b,c) after mix(). + +If four pairs of (a,b,c) inputs are run through mix(), or through +mix() in reverse, there are at least 32 bits of the output that +are sometimes the same for one pair and different for another pair. +This was tested for: +* pairs that differed by one bit, by two bits, in any combination + of top bits of (a,b,c), or in any combination of bottom bits of + (a,b,c). +* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed + the output delta to a Gray code (a^(a>>1)) so a string of 1's (as + is commonly produced by subtraction) look like a single 1-bit + difference. +* the base values were pseudorandom, all zero but one bit set, or + all zero plus a counter that starts at zero. + +Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that +satisfy this are + 4 6 8 16 19 4 + 9 15 3 18 27 15 + 14 9 3 7 17 3 +Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing +for "differ" defined as + with a one-bit base and a two-bit delta. I +used http://burtleburtle.net/bob/hash/avalanche.html to choose +the operations, constants, and arrangements of the variables. + +This does not achieve avalanche. There are input bits of (a,b,c) +that fail to affect some output bits of (a,b,c), especially of a. The +most thoroughly mixed value is c, but it doesn't really even achieve +avalanche in c. + +This allows some parallelism. Read-after-writes are good at doubling +the number of bits affected, so the goal of mixing pulls in the opposite +direction as the goal of parallelism. I did what I could. Rotates +seem to cost as much as shifts on every machine I could lay my hands +on, and rotates are much kinder to the top and bottom bits, so I used +rotates. +------------------------------------------------------------------------------- +*/ +#define mix(a,b,c) \ +{ \ + a -= c; a ^= rot(c, 4); c += b; \ + b -= a; b ^= rot(a, 6); a += c; \ + c -= b; c ^= rot(b, 8); b += a; \ + a -= c; a ^= rot(c,16); c += b; \ + b -= a; b ^= rot(a,19); a += c; \ + c -= b; c ^= rot(b, 4); b += a; \ +} + +/* +------------------------------------------------------------------------------- +final -- final mixing of 3 32-bit values (a,b,c) into c + +Pairs of (a,b,c) values differing in only a few bits will usually +produce values of c that look totally different. This was tested for +* pairs that differed by one bit, by two bits, in any combination + of top bits of (a,b,c), or in any combination of bottom bits of + (a,b,c). +* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed + the output delta to a Gray code (a^(a>>1)) so a string of 1's (as + is commonly produced by subtraction) look like a single 1-bit + difference. +* the base values were pseudorandom, all zero but one bit set, or + all zero plus a counter that starts at zero. + +These constants passed: + 14 11 25 16 4 14 24 + 12 14 25 16 4 14 24 +and these came close: + 4 8 15 26 3 22 24 + 10 8 15 26 3 22 24 + 11 8 15 26 3 22 24 +------------------------------------------------------------------------------- +*/ +#define final(a,b,c) \ +{ \ + c ^= b; c -= rot(b,14); \ + a ^= c; a -= rot(c,11); \ + b ^= a; b -= rot(a,25); \ + c ^= b; c -= rot(b,16); \ + a ^= c; a -= rot(c,4); \ + b ^= a; b -= rot(a,14); \ + c ^= b; c -= rot(b,24); \ +} + +/* +-------------------------------------------------------------------- + This works on all machines. To be useful, it requires + -- that the key be an array of uint32_t's, and + -- that the length be the number of uint32_t's in the key + + The function hashword() is identical to hashlittle() on little-endian + machines, and identical to hashbig() on big-endian machines, + except that the length has to be measured in uint32_ts rather than in + bytes. hashlittle() is more complicated than hashword() only because + hashlittle() has to dance around fitting the key bytes into registers. +-------------------------------------------------------------------- +*/ +uint32_t jenkins_hashword( +const uint32_t *k, /* the key, an array of uint32_t values */ +size_t length, /* the length of the key, in uint32_ts */ +uint32_t initval) /* the previous hash, or an arbitrary value */ +{ + uint32_t a,b,c; + + /* Set up the internal state */ + a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval; + + /*------------------------------------------------- handle most of the key */ + while (length > 3) + { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a,b,c); + length -= 3; + k += 3; + } + + /*------------------------------------------- handle the last 3 uint32_t's */ + switch(length) /* all the case statements fall through */ + { + case 3 : c+=k[2]; + case 2 : b+=k[1]; + case 1 : a+=k[0]; + final(a,b,c); + case 0: /* case 0: nothing left to add */ + break; + } + /*------------------------------------------------------ report the result */ + return c; +} + +/* +-------------------------------------------------------------------- +hashword2() -- same as hashword(), but take two seeds and return two +32-bit values. pc and pb must both be nonnull, and *pc and *pb must +both be initialized with seeds. If you pass in (*pb)==0, the output +(*pc) will be the same as the return value from hashword(). +-------------------------------------------------------------------- +*/ +void jenkins_hashword2 ( +const uint32_t *k, /* the key, an array of uint32_t values */ +size_t length, /* the length of the key, in uint32_ts */ +uint32_t *pc, /* IN: seed OUT: primary hash value */ +uint32_t *pb) /* IN: more seed OUT: secondary hash value */ +{ + uint32_t a,b,c; + + /* Set up the internal state */ + a = b = c = 0xdeadbeef + ((uint32_t)(length<<2)) + *pc; + c += *pb; + + /*------------------------------------------------- handle most of the key */ + while (length > 3) + { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a,b,c); + length -= 3; + k += 3; + } + + /*------------------------------------------- handle the last 3 uint32_t's */ + switch(length) /* all the case statements fall through */ + { + case 3 : c+=k[2]; + case 2 : b+=k[1]; + case 1 : a+=k[0]; + final(a,b,c); + case 0: /* case 0: nothing left to add */ + break; + } + /*------------------------------------------------------ report the result */ + *pc=c; *pb=b; +} + +/* +------------------------------------------------------------------------------- +hashlittle() -- hash a variable-length key into a 32-bit value + k : the key (the unaligned variable-length array of bytes) + length : the length of the key, counting by bytes + initval : can be any 4-byte value +Returns a 32-bit value. Every bit of the key affects every bit of +the return value. Two keys differing by one or two bits will have +totally different hash values. + +The best hash table sizes are powers of 2. There is no need to do +mod a prime (mod is sooo slow!). If you need less than 32 bits, +use a bitmask. For example, if you need only 10 bits, do + h = (h & hashmask(10)); +In which case, the hash table should have hashsize(10) elements. + +If you are hashing n strings (uint8_t **)k, do it like this: + for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h); + +By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this +code any way you wish, private, educational, or commercial. It's free. + +Use for hash table lookup, or anything where one collision in 2^^32 is +acceptable. Do NOT use for cryptographic purposes. +------------------------------------------------------------------------------- +*/ + +uint32_t jenkins_hashlittle( const void *key, size_t length, uint32_t initval) +{ + uint32_t a,b,c; /* internal state */ + union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ + + /* Set up the internal state */ + a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; + + u.ptr = key; + if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { + const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ + + /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ + while (length > 12) + { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a,b,c); + length -= 12; + k += 3; + } + + /*----------------------------- handle the last (probably partial) block */ + /* + * "k[2]&0xffffff" actually reads beyond the end of the string, but + * then masks off the part it's not allowed to read. Because the + * string is aligned, the masked-off tail is in the same word as the + * rest of the string. Every machine with memory protection I've seen + * does it on word boundaries, so is OK with this. But valgrind will + * still catch it and complain. The masking trick does make the hash + * noticeably faster for short strings (like English words). + */ +#if !VALGRIND && !HAS_FEATURE_ADDRESS_SANITIZER + + switch(length) + { + case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; + case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; + case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; + case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; + case 8 : b+=k[1]; a+=k[0]; break; + case 7 : b+=k[1]&0xffffff; a+=k[0]; break; + case 6 : b+=k[1]&0xffff; a+=k[0]; break; + case 5 : b+=k[1]&0xff; a+=k[0]; break; + case 4 : a+=k[0]; break; + case 3 : a+=k[0]&0xffffff; break; + case 2 : a+=k[0]&0xffff; break; + case 1 : a+=k[0]&0xff; break; + case 0 : return c; /* zero length strings require no mixing */ + } + +#else /* make valgrind happy */ + { + const uint8_t *k8 = (const uint8_t *) k; + + switch(length) + { + case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; + case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ + case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ + case 9 : c+=k8[8]; /* fall through */ + case 8 : b+=k[1]; a+=k[0]; break; + case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ + case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ + case 5 : b+=k8[4]; /* fall through */ + case 4 : a+=k[0]; break; + case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ + case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ + case 1 : a+=k8[0]; break; + case 0 : return c; + } + } + +#endif /* !valgrind */ + + } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { + const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ + const uint8_t *k8; + + /*--------------- all but last block: aligned reads and different mixing */ + while (length > 12) + { + a += k[0] + (((uint32_t)k[1])<<16); + b += k[2] + (((uint32_t)k[3])<<16); + c += k[4] + (((uint32_t)k[5])<<16); + mix(a,b,c); + length -= 12; + k += 6; + } + + /*----------------------------- handle the last (probably partial) block */ + k8 = (const uint8_t *)k; + switch(length) + { + case 12: c+=k[4]+(((uint32_t)k[5])<<16); + b+=k[2]+(((uint32_t)k[3])<<16); + a+=k[0]+(((uint32_t)k[1])<<16); + break; + case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ + case 10: c+=k[4]; + b+=k[2]+(((uint32_t)k[3])<<16); + a+=k[0]+(((uint32_t)k[1])<<16); + break; + case 9 : c+=k8[8]; /* fall through */ + case 8 : b+=k[2]+(((uint32_t)k[3])<<16); + a+=k[0]+(((uint32_t)k[1])<<16); + break; + case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ + case 6 : b+=k[2]; + a+=k[0]+(((uint32_t)k[1])<<16); + break; + case 5 : b+=k8[4]; /* fall through */ + case 4 : a+=k[0]+(((uint32_t)k[1])<<16); + break; + case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ + case 2 : a+=k[0]; + break; + case 1 : a+=k8[0]; + break; + case 0 : return c; /* zero length requires no mixing */ + } + + } else { /* need to read the key one byte at a time */ + const uint8_t *k = (const uint8_t *)key; + + /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ + while (length > 12) + { + a += k[0]; + a += ((uint32_t)k[1])<<8; + a += ((uint32_t)k[2])<<16; + a += ((uint32_t)k[3])<<24; + b += k[4]; + b += ((uint32_t)k[5])<<8; + b += ((uint32_t)k[6])<<16; + b += ((uint32_t)k[7])<<24; + c += k[8]; + c += ((uint32_t)k[9])<<8; + c += ((uint32_t)k[10])<<16; + c += ((uint32_t)k[11])<<24; + mix(a,b,c); + length -= 12; + k += 12; + } + + /*-------------------------------- last block: affect all 32 bits of (c) */ + switch(length) /* all the case statements fall through */ + { + case 12: c+=((uint32_t)k[11])<<24; + case 11: c+=((uint32_t)k[10])<<16; + case 10: c+=((uint32_t)k[9])<<8; + case 9 : c+=k[8]; + case 8 : b+=((uint32_t)k[7])<<24; + case 7 : b+=((uint32_t)k[6])<<16; + case 6 : b+=((uint32_t)k[5])<<8; + case 5 : b+=k[4]; + case 4 : a+=((uint32_t)k[3])<<24; + case 3 : a+=((uint32_t)k[2])<<16; + case 2 : a+=((uint32_t)k[1])<<8; + case 1 : a+=k[0]; + break; + case 0 : return c; + } + } + + final(a,b,c); + return c; +} + +/* + * hashlittle2: return 2 32-bit hash values + * + * This is identical to hashlittle(), except it returns two 32-bit hash + * values instead of just one. This is good enough for hash table + * lookup with 2^^64 buckets, or if you want a second hash if you're not + * happy with the first, or if you want a probably-unique 64-bit ID for + * the key. *pc is better mixed than *pb, so use *pc first. If you want + * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)". + */ +void jenkins_hashlittle2( + const void *key, /* the key to hash */ + size_t length, /* length of the key */ + uint32_t *pc, /* IN: primary initval, OUT: primary hash */ + uint32_t *pb) /* IN: secondary initval, OUT: secondary hash */ +{ + uint32_t a,b,c; /* internal state */ + union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ + + /* Set up the internal state */ + a = b = c = 0xdeadbeef + ((uint32_t)length) + *pc; + c += *pb; + + u.ptr = key; + if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { + const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ + + /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ + while (length > 12) + { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a,b,c); + length -= 12; + k += 3; + } + + /*----------------------------- handle the last (probably partial) block */ + /* + * "k[2]&0xffffff" actually reads beyond the end of the string, but + * then masks off the part it's not allowed to read. Because the + * string is aligned, the masked-off tail is in the same word as the + * rest of the string. Every machine with memory protection I've seen + * does it on word boundaries, so is OK with this. But valgrind will + * still catch it and complain. The masking trick does make the hash + * noticeably faster for short strings (like English words). + */ +#if !VALGRIND && !HAS_FEATURE_ADDRESS_SANITIZER + + switch(length) + { + case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; + case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; + case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; + case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; + case 8 : b+=k[1]; a+=k[0]; break; + case 7 : b+=k[1]&0xffffff; a+=k[0]; break; + case 6 : b+=k[1]&0xffff; a+=k[0]; break; + case 5 : b+=k[1]&0xff; a+=k[0]; break; + case 4 : a+=k[0]; break; + case 3 : a+=k[0]&0xffffff; break; + case 2 : a+=k[0]&0xffff; break; + case 1 : a+=k[0]&0xff; break; + case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ + } + +#else /* make valgrind happy */ + + { + const uint8_t *k8 = (const uint8_t *)k; + switch(length) + { + case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; + case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ + case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ + case 9 : c+=k8[8]; /* fall through */ + case 8 : b+=k[1]; a+=k[0]; break; + case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ + case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ + case 5 : b+=k8[4]; /* fall through */ + case 4 : a+=k[0]; break; + case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ + case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ + case 1 : a+=k8[0]; break; + case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ + } + } + +#endif /* !valgrind */ + + } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { + const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ + const uint8_t *k8; + + /*--------------- all but last block: aligned reads and different mixing */ + while (length > 12) + { + a += k[0] + (((uint32_t)k[1])<<16); + b += k[2] + (((uint32_t)k[3])<<16); + c += k[4] + (((uint32_t)k[5])<<16); + mix(a,b,c); + length -= 12; + k += 6; + } + + /*----------------------------- handle the last (probably partial) block */ + k8 = (const uint8_t *)k; + switch(length) + { + case 12: c+=k[4]+(((uint32_t)k[5])<<16); + b+=k[2]+(((uint32_t)k[3])<<16); + a+=k[0]+(((uint32_t)k[1])<<16); + break; + case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ + case 10: c+=k[4]; + b+=k[2]+(((uint32_t)k[3])<<16); + a+=k[0]+(((uint32_t)k[1])<<16); + break; + case 9 : c+=k8[8]; /* fall through */ + case 8 : b+=k[2]+(((uint32_t)k[3])<<16); + a+=k[0]+(((uint32_t)k[1])<<16); + break; + case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ + case 6 : b+=k[2]; + a+=k[0]+(((uint32_t)k[1])<<16); + break; + case 5 : b+=k8[4]; /* fall through */ + case 4 : a+=k[0]+(((uint32_t)k[1])<<16); + break; + case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ + case 2 : a+=k[0]; + break; + case 1 : a+=k8[0]; + break; + case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ + } + + } else { /* need to read the key one byte at a time */ + const uint8_t *k = (const uint8_t *)key; + + /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ + while (length > 12) + { + a += k[0]; + a += ((uint32_t)k[1])<<8; + a += ((uint32_t)k[2])<<16; + a += ((uint32_t)k[3])<<24; + b += k[4]; + b += ((uint32_t)k[5])<<8; + b += ((uint32_t)k[6])<<16; + b += ((uint32_t)k[7])<<24; + c += k[8]; + c += ((uint32_t)k[9])<<8; + c += ((uint32_t)k[10])<<16; + c += ((uint32_t)k[11])<<24; + mix(a,b,c); + length -= 12; + k += 12; + } + + /*-------------------------------- last block: affect all 32 bits of (c) */ + switch(length) /* all the case statements fall through */ + { + case 12: c+=((uint32_t)k[11])<<24; + case 11: c+=((uint32_t)k[10])<<16; + case 10: c+=((uint32_t)k[9])<<8; + case 9 : c+=k[8]; + case 8 : b+=((uint32_t)k[7])<<24; + case 7 : b+=((uint32_t)k[6])<<16; + case 6 : b+=((uint32_t)k[5])<<8; + case 5 : b+=k[4]; + case 4 : a+=((uint32_t)k[3])<<24; + case 3 : a+=((uint32_t)k[2])<<16; + case 2 : a+=((uint32_t)k[1])<<8; + case 1 : a+=k[0]; + break; + case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ + } + } + + final(a,b,c); + *pc=c; *pb=b; +} + +/* + * hashbig(): + * This is the same as hashword() on big-endian machines. It is different + * from hashlittle() on all machines. hashbig() takes advantage of + * big-endian byte ordering. + */ +uint32_t jenkins_hashbig( const void *key, size_t length, uint32_t initval) +{ + uint32_t a,b,c; + union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */ + + /* Set up the internal state */ + a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; + + u.ptr = key; + if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) { + const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ + + /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ + while (length > 12) + { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a,b,c); + length -= 12; + k += 3; + } + + /*----------------------------- handle the last (probably partial) block */ + /* + * "k[2]<<8" actually reads beyond the end of the string, but + * then shifts out the part it's not allowed to read. Because the + * string is aligned, the illegal read is in the same word as the + * rest of the string. Every machine with memory protection I've seen + * does it on word boundaries, so is OK with this. But valgrind will + * still catch it and complain. The masking trick does make the hash + * noticeably faster for short strings (like English words). + */ +#if !VALGRIND && !HAS_FEATURE_ADDRESS_SANITIZER + + switch(length) + { + case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; + case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break; + case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break; + case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break; + case 8 : b+=k[1]; a+=k[0]; break; + case 7 : b+=k[1]&0xffffff00; a+=k[0]; break; + case 6 : b+=k[1]&0xffff0000; a+=k[0]; break; + case 5 : b+=k[1]&0xff000000; a+=k[0]; break; + case 4 : a+=k[0]; break; + case 3 : a+=k[0]&0xffffff00; break; + case 2 : a+=k[0]&0xffff0000; break; + case 1 : a+=k[0]&0xff000000; break; + case 0 : return c; /* zero length strings require no mixing */ + } + +#else /* make valgrind happy */ + + { + const uint8_t *k8 = (const uint8_t *)k; + switch(length) /* all the case statements fall through */ + { + case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; + case 11: c+=((uint32_t)k8[10])<<8; /* fall through */ + case 10: c+=((uint32_t)k8[9])<<16; /* fall through */ + case 9 : c+=((uint32_t)k8[8])<<24; /* fall through */ + case 8 : b+=k[1]; a+=k[0]; break; + case 7 : b+=((uint32_t)k8[6])<<8; /* fall through */ + case 6 : b+=((uint32_t)k8[5])<<16; /* fall through */ + case 5 : b+=((uint32_t)k8[4])<<24; /* fall through */ + case 4 : a+=k[0]; break; + case 3 : a+=((uint32_t)k8[2])<<8; /* fall through */ + case 2 : a+=((uint32_t)k8[1])<<16; /* fall through */ + case 1 : a+=((uint32_t)k8[0])<<24; break; + case 0 : return c; + } + } + +#endif /* !VALGRIND */ + + } else { /* need to read the key one byte at a time */ + const uint8_t *k = (const uint8_t *)key; + + /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ + while (length > 12) + { + a += ((uint32_t)k[0])<<24; + a += ((uint32_t)k[1])<<16; + a += ((uint32_t)k[2])<<8; + a += ((uint32_t)k[3]); + b += ((uint32_t)k[4])<<24; + b += ((uint32_t)k[5])<<16; + b += ((uint32_t)k[6])<<8; + b += ((uint32_t)k[7]); + c += ((uint32_t)k[8])<<24; + c += ((uint32_t)k[9])<<16; + c += ((uint32_t)k[10])<<8; + c += ((uint32_t)k[11]); + mix(a,b,c); + length -= 12; + k += 12; + } + + /*-------------------------------- last block: affect all 32 bits of (c) */ + switch(length) /* all the case statements fall through */ + { + case 12: c+=k[11]; + case 11: c+=((uint32_t)k[10])<<8; + case 10: c+=((uint32_t)k[9])<<16; + case 9 : c+=((uint32_t)k[8])<<24; + case 8 : b+=k[7]; + case 7 : b+=((uint32_t)k[6])<<8; + case 6 : b+=((uint32_t)k[5])<<16; + case 5 : b+=((uint32_t)k[4])<<24; + case 4 : a+=k[3]; + case 3 : a+=((uint32_t)k[2])<<8; + case 2 : a+=((uint32_t)k[1])<<16; + case 1 : a+=((uint32_t)k[0])<<24; + break; + case 0 : return c; + } + } + + final(a,b,c); + return c; +} + +#ifdef SELF_TEST + +/* used for timings */ +void driver1() +{ + uint8_t buf[256]; + uint32_t i; + uint32_t h=0; + time_t a,z; + + time(&a); + for (i=0; i<256; ++i) buf[i] = 'x'; + for (i=0; i<1; ++i) + { + h = hashlittle(&buf[0],1,h); + } + time(&z); + if (z-a > 0) printf("time %d %.8x\n", z-a, h); +} + +/* check that every input bit changes every output bit half the time */ +#define HASHSTATE 1 +#define HASHLEN 1 +#define MAXPAIR 60 +#define MAXLEN 70 +void driver2() +{ + uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1]; + uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z; + uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE]; + uint32_t x[HASHSTATE],y[HASHSTATE]; + uint32_t hlen; + + printf("No more than %d trials should ever be needed \n",MAXPAIR/2); + for (hlen=0; hlen < MAXLEN; ++hlen) + { + z=0; + for (i=0; i<hlen; ++i) /*----------------------- for each input byte, */ + { + for (j=0; j<8; ++j) /*------------------------ for each input bit, */ + { + for (m=1; m<8; ++m) /*------------ for serveral possible initvals, */ + { + for (l=0; l<HASHSTATE; ++l) + e[l]=f[l]=g[l]=h[l]=x[l]=y[l]=~((uint32_t)0); + + /*---- check that every output bit is affected by that input bit */ + for (k=0; k<MAXPAIR; k+=2) + { + uint32_t finished=1; + /* keys have one bit different */ + for (l=0; l<hlen+1; ++l) {a[l] = b[l] = (uint8_t)0;} + /* have a and b be two keys differing in only one bit */ + a[i] ^= (k<<j); + a[i] ^= (k>>(8-j)); + c[0] = hashlittle(a, hlen, m); + b[i] ^= ((k+1)<<j); + b[i] ^= ((k+1)>>(8-j)); + d[0] = hashlittle(b, hlen, m); + /* check every bit is 1, 0, set, and not set at least once */ + for (l=0; l<HASHSTATE; ++l) + { + e[l] &= (c[l]^d[l]); + f[l] &= ~(c[l]^d[l]); + g[l] &= c[l]; + h[l] &= ~c[l]; + x[l] &= d[l]; + y[l] &= ~d[l]; + if (e[l]|f[l]|g[l]|h[l]|x[l]|y[l]) finished=0; + } + if (finished) break; + } + if (k>z) z=k; + if (k==MAXPAIR) + { + printf("Some bit didn't change: "); + printf("%.8x %.8x %.8x %.8x %.8x %.8x ", + e[0],f[0],g[0],h[0],x[0],y[0]); + printf("i %d j %d m %d len %d\n", i, j, m, hlen); + } + if (z==MAXPAIR) goto done; + } + } + } + done: + if (z < MAXPAIR) + { + printf("Mix success %2d bytes %2d initvals ",i,m); + printf("required %d trials\n", z/2); + } + } + printf("\n"); +} + +/* Check for reading beyond the end of the buffer and alignment problems */ +void driver3() +{ + uint8_t buf[MAXLEN+20], *b; + uint32_t len; + uint8_t q[] = "This is the time for all good men to come to the aid of their country..."; + uint32_t h; + uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country..."; + uint32_t i; + uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country..."; + uint32_t j; + uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country..."; + uint32_t ref,x,y; + uint8_t *p; + + printf("Endianness. These lines should all be the same (for values filled in):\n"); + printf("%.8x %.8x %.8x\n", + hashword((const uint32_t *)q, (sizeof(q)-1)/4, 13), + hashword((const uint32_t *)q, (sizeof(q)-5)/4, 13), + hashword((const uint32_t *)q, (sizeof(q)-9)/4, 13)); + p = q; + printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", + hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), + hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), + hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), + hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), + hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), + hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); + p = &qq[1]; + printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", + hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), + hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), + hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), + hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), + hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), + hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); + p = &qqq[2]; + printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", + hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), + hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), + hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), + hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), + hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), + hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); + p = &qqqq[3]; + printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", + hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), + hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), + hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), + hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), + hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), + hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); + printf("\n"); + + /* check that hashlittle2 and hashlittle produce the same results */ + i=47; j=0; + hashlittle2(q, sizeof(q), &i, &j); + if (hashlittle(q, sizeof(q), 47) != i) + printf("hashlittle2 and hashlittle mismatch\n"); + + /* check that hashword2 and hashword produce the same results */ + len = 0xdeadbeef; + i=47, j=0; + hashword2(&len, 1, &i, &j); + if (hashword(&len, 1, 47) != i) + printf("hashword2 and hashword mismatch %x %x\n", + i, hashword(&len, 1, 47)); + + /* check hashlittle doesn't read before or after the ends of the string */ + for (h=0, b=buf+1; h<8; ++h, ++b) + { + for (i=0; i<MAXLEN; ++i) + { + len = i; + for (j=0; j<i; ++j) *(b+j)=0; + + /* these should all be equal */ + ref = hashlittle(b, len, (uint32_t)1); + *(b+i)=(uint8_t)~0; + *(b-1)=(uint8_t)~0; + x = hashlittle(b, len, (uint32_t)1); + y = hashlittle(b, len, (uint32_t)1); + if ((ref != x) || (ref != y)) + { + printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y, + h, i); + } + } + } +} + +/* check for problems with nulls */ + void driver4() +{ + uint8_t buf[1]; + uint32_t h,i,state[HASHSTATE]; + + buf[0] = ~0; + for (i=0; i<HASHSTATE; ++i) state[i] = 1; + printf("These should all be different\n"); + for (i=0, h=0; i<8; ++i) + { + h = hashlittle(buf, 0, h); + printf("%2ld 0-byte strings, hash is %.8x\n", i, h); + } +} + +void driver5() +{ + uint32_t b,c; + b=0, c=0, hashlittle2("", 0, &c, &b); + printf("hash is %.8lx %.8lx\n", c, b); /* deadbeef deadbeef */ + b=0xdeadbeef, c=0, hashlittle2("", 0, &c, &b); + printf("hash is %.8lx %.8lx\n", c, b); /* bd5b7dde deadbeef */ + b=0xdeadbeef, c=0xdeadbeef, hashlittle2("", 0, &c, &b); + printf("hash is %.8lx %.8lx\n", c, b); /* 9c093ccd bd5b7dde */ + b=0, c=0, hashlittle2("Four score and seven years ago", 30, &c, &b); + printf("hash is %.8lx %.8lx\n", c, b); /* 17770551 ce7226e6 */ + b=1, c=0, hashlittle2("Four score and seven years ago", 30, &c, &b); + printf("hash is %.8lx %.8lx\n", c, b); /* e3607cae bd371de4 */ + b=0, c=1, hashlittle2("Four score and seven years ago", 30, &c, &b); + printf("hash is %.8lx %.8lx\n", c, b); /* cd628161 6cbea4b3 */ + c = hashlittle("Four score and seven years ago", 30, 0); + printf("hash is %.8lx\n", c); /* 17770551 */ + c = hashlittle("Four score and seven years ago", 30, 1); + printf("hash is %.8lx\n", c); /* cd628161 */ +} + +int main() +{ + driver1(); /* test that the key is hashed: used for timings */ + driver2(); /* test that whole key is hashed thoroughly */ + driver3(); /* test that nothing but the key is hashed */ + driver4(); /* test hashing multiple buffers (all buffers are null) */ + driver5(); /* test the hash against known vectors */ + return 1; +} + +#endif /* SELF_TEST */ |