summaryrefslogtreecommitdiffstats
path: root/sys-utils/hwclock-cmos.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 02:42:50 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 02:42:50 +0000
commit8cb83eee5a58b1fad74c34094ce3afb9e430b5a4 (patch)
treea9b2e7baeca1be40eb734371e3c8b11b02294497 /sys-utils/hwclock-cmos.c
parentInitial commit. (diff)
downloadutil-linux-8cb83eee5a58b1fad74c34094ce3afb9e430b5a4.tar.xz
util-linux-8cb83eee5a58b1fad74c34094ce3afb9e430b5a4.zip
Adding upstream version 2.33.1.upstream/2.33.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--sys-utils/hwclock-cmos.c420
1 files changed, 420 insertions, 0 deletions
diff --git a/sys-utils/hwclock-cmos.c b/sys-utils/hwclock-cmos.c
new file mode 100644
index 0000000..a11f676
--- /dev/null
+++ b/sys-utils/hwclock-cmos.c
@@ -0,0 +1,420 @@
+/*
+ * i386 CMOS starts out with 14 bytes clock data alpha has something
+ * similar, but with details depending on the machine type.
+ *
+ * byte 0: seconds 0-59
+ * byte 2: minutes 0-59
+ * byte 4: hours 0-23 in 24hr mode,
+ * 1-12 in 12hr mode, with high bit unset/set
+ * if am/pm.
+ * byte 6: weekday 1-7, Sunday=1
+ * byte 7: day of the month 1-31
+ * byte 8: month 1-12
+ * byte 9: year 0-99
+ *
+ * Numbers are stored in BCD/binary if bit 2 of byte 11 is unset/set The
+ * clock is in 12hr/24hr mode if bit 1 of byte 11 is unset/set The clock is
+ * undefined (being updated) if bit 7 of byte 10 is set. The clock is frozen
+ * (to be updated) by setting bit 7 of byte 11 Bit 7 of byte 14 indicates
+ * whether the CMOS clock is reliable: it is 1 if RTC power has been good
+ * since this bit was last read; it is 0 when the battery is dead and system
+ * power has been off.
+ *
+ * Avoid setting the RTC clock within 2 seconds of the day rollover that
+ * starts a new month or enters daylight saving time.
+ *
+ * The century situation is messy:
+ *
+ * Usually byte 50 (0x32) gives the century (in BCD, so 19 or 20 hex), but
+ * IBM PS/2 has (part of) a checksum there and uses byte 55 (0x37).
+ * Sometimes byte 127 (0x7f) or Bank 1, byte 0x48 gives the century. The
+ * original RTC will not access any century byte; some modern versions will.
+ * If a modern RTC or BIOS increments the century byte it may go from 0x19
+ * to 0x20, but in some buggy cases 0x1a is produced.
+ */
+/*
+ * A struct tm has int fields
+ * tm_sec 0-59, 60 or 61 only for leap seconds
+ * tm_min 0-59
+ * tm_hour 0-23
+ * tm_mday 1-31
+ * tm_mon 0-11
+ * tm_year number of years since 1900
+ * tm_wday 0-6, 0=Sunday
+ * tm_yday 0-365
+ * tm_isdst >0: yes, 0: no, <0: unknown
+ */
+
+#include <fcntl.h>
+#include <stdio.h>
+#include <string.h>
+#include <time.h>
+#include <unistd.h>
+
+#include "c.h"
+#include "nls.h"
+#include "pathnames.h"
+
+/* for inb, outb */
+#if defined(__i386__) || defined(__x86_64__)
+# ifdef HAVE_SYS_IO_H
+# include <sys/io.h>
+# elif defined(HAVE_ASM_IO_H)
+# include <asm/io.h>
+# else
+# undef __i386__
+# undef __x86_64__
+# warning "disable cmos access - no sys/io.h or asm/io.h"
+static void outb(int a __attribute__((__unused__)),
+ int b __attribute__((__unused__)))
+{
+}
+
+static int inb(int c __attribute__((__unused__)))
+{
+ return 0;
+}
+# endif /* __i386__ __x86_64__ */
+#else
+# warning "disable cmos access - not i386 or x86_64"
+static void outb(int a __attribute__((__unused__)),
+ int b __attribute__((__unused__)))
+{
+}
+
+static int inb(int c __attribute__((__unused__)))
+{
+ return 0;
+}
+#endif /* for inb, outb */
+
+#include "hwclock.h"
+
+#define BCD_TO_BIN(val) ((val)=((val)&15) + ((val)>>4)*10)
+#define BIN_TO_BCD(val) ((val)=(((val)/10)<<4) + (val)%10)
+
+#define IOPL_NOT_IMPLEMENTED -2
+
+/*
+ * POSIX uses 1900 as epoch for a struct tm, and 1970 for a time_t.
+ */
+#define TM_EPOCH 1900
+
+static unsigned short clock_ctl_addr = 0x70;
+static unsigned short clock_data_addr = 0x71;
+
+/*
+ * Hmmh, this isn't very atomic. Maybe we should force an error instead?
+ *
+ * TODO: optimize the access to CMOS by mlockall(MCL_CURRENT) and SCHED_FIFO
+ */
+static unsigned long atomic(unsigned long (*op) (unsigned long),
+ unsigned long arg)
+{
+ return (*op) (arg);
+}
+
+/*
+ * We only want to read CMOS data, but unfortunately writing to bit 7
+ * disables (1) or enables (0) NMI; since this bit is read-only we have
+ * to guess the old status. Various docs suggest that one should disable
+ * NMI while reading/writing CMOS data, and enable it again afterwards.
+ * This would yield the sequence
+ *
+ * outb (reg | 0x80, 0x70);
+ * val = inb(0x71);
+ * outb (0x0d, 0x70); // 0x0d: random read-only location
+ *
+ * Other docs state that "any write to 0x70 should be followed by an
+ * action to 0x71 or the RTC will be left in an unknown state". Most
+ * docs say that it doesn't matter at all what one does.
+ *
+ * bit 0x80: disable NMI while reading - should we? Let us follow the
+ * kernel and not disable. Called only with 0 <= reg < 128
+ */
+
+static inline unsigned long cmos_read(unsigned long reg)
+{
+ outb(reg, clock_ctl_addr);
+ return inb(clock_data_addr);
+}
+
+static inline unsigned long cmos_write(unsigned long reg, unsigned long val)
+{
+ outb(reg, clock_ctl_addr);
+ outb(val, clock_data_addr);
+ return 0;
+}
+
+static unsigned long cmos_set_time(unsigned long arg)
+{
+ unsigned char save_control, save_freq_select, pmbit = 0;
+ struct tm tm = *(struct tm *)arg;
+
+/*
+ * CMOS byte 10 (clock status register A) has 3 bitfields:
+ * bit 7: 1 if data invalid, update in progress (read-only bit)
+ * (this is raised 224 us before the actual update starts)
+ * 6-4 select base frequency
+ * 010: 32768 Hz time base (default)
+ * 111: reset
+ * all other combinations are manufacturer-dependent
+ * (e.g.: DS1287: 010 = start oscillator, anything else = stop)
+ * 3-0 rate selection bits for interrupt
+ * 0000 none (may stop RTC)
+ * 0001, 0010 give same frequency as 1000, 1001
+ * 0011 122 microseconds (minimum, 8192 Hz)
+ * .... each increase by 1 halves the frequency, doubles the period
+ * 1111 500 milliseconds (maximum, 2 Hz)
+ * 0110 976.562 microseconds (default 1024 Hz)
+ */
+ save_control = cmos_read(11); /* tell the clock it's being set */
+ cmos_write(11, (save_control | 0x80));
+ save_freq_select = cmos_read(10); /* stop and reset prescaler */
+ cmos_write(10, (save_freq_select | 0x70));
+
+ tm.tm_year %= 100;
+ tm.tm_mon += 1;
+ tm.tm_wday += 1;
+
+ if (!(save_control & 0x02)) { /* 12hr mode; the default is 24hr mode */
+ if (tm.tm_hour == 0)
+ tm.tm_hour = 24;
+ if (tm.tm_hour > 12) {
+ tm.tm_hour -= 12;
+ pmbit = 0x80;
+ }
+ }
+
+ if (!(save_control & 0x04)) { /* BCD mode - the default */
+ BIN_TO_BCD(tm.tm_sec);
+ BIN_TO_BCD(tm.tm_min);
+ BIN_TO_BCD(tm.tm_hour);
+ BIN_TO_BCD(tm.tm_wday);
+ BIN_TO_BCD(tm.tm_mday);
+ BIN_TO_BCD(tm.tm_mon);
+ BIN_TO_BCD(tm.tm_year);
+ }
+
+ cmos_write(0, tm.tm_sec);
+ cmos_write(2, tm.tm_min);
+ cmos_write(4, tm.tm_hour | pmbit);
+ cmos_write(6, tm.tm_wday);
+ cmos_write(7, tm.tm_mday);
+ cmos_write(8, tm.tm_mon);
+ cmos_write(9, tm.tm_year);
+
+ /*
+ * The kernel sources, linux/arch/i386/kernel/time.c, have the
+ * following comment:
+ *
+ * The following flags have to be released exactly in this order,
+ * otherwise the DS12887 (popular MC146818A clone with integrated
+ * battery and quartz) will not reset the oscillator and will not
+ * update precisely 500 ms later. You won't find this mentioned in
+ * the Dallas Semiconductor data sheets, but who believes data
+ * sheets anyway ... -- Markus Kuhn
+ */
+ cmos_write(11, save_control);
+ cmos_write(10, save_freq_select);
+ return 0;
+}
+
+static int hclock_read(unsigned long reg)
+{
+ return atomic(cmos_read, reg);
+}
+
+static void hclock_set_time(const struct tm *tm)
+{
+ atomic(cmos_set_time, (unsigned long)(tm));
+}
+
+static inline int cmos_clock_busy(void)
+{
+ return
+ /* poll bit 7 (UIP) of Control Register A */
+ (hclock_read(10) & 0x80);
+}
+
+static int synchronize_to_clock_tick_cmos(const struct hwclock_control *ctl
+ __attribute__((__unused__)))
+{
+ int i;
+
+ /*
+ * Wait for rise. Should be within a second, but in case something
+ * weird happens, we have a limit on this loop to reduce the impact
+ * of this failure.
+ */
+ for (i = 0; !cmos_clock_busy(); i++)
+ if (i >= 10000000)
+ return 1;
+
+ /* Wait for fall. Should be within 2.228 ms. */
+ for (i = 0; cmos_clock_busy(); i++)
+ if (i >= 1000000)
+ return 1;
+ return 0;
+}
+
+/*
+ * Read the hardware clock and return the current time via <tm> argument.
+ * Assume we have an ISA machine and read the clock directly with CPU I/O
+ * instructions.
+ *
+ * This function is not totally reliable. It takes a finite and
+ * unpredictable amount of time to execute the code below. During that time,
+ * the clock may change and we may even read an invalid value in the middle
+ * of an update. We do a few checks to minimize this possibility, but only
+ * the kernel can actually read the clock properly, since it can execute
+ * code in a short and predictable amount of time (by turning of
+ * interrupts).
+ *
+ * In practice, the chance of this function returning the wrong time is
+ * extremely remote.
+ */
+static int read_hardware_clock_cmos(const struct hwclock_control *ctl
+ __attribute__((__unused__)), struct tm *tm)
+{
+ unsigned char status = 0, pmbit = 0;
+
+ while (1) {
+ /*
+ * Bit 7 of Byte 10 of the Hardware Clock value is the
+ * Update In Progress (UIP) bit, which is on while and 244
+ * uS before the Hardware Clock updates itself. It updates
+ * the counters individually, so reading them during an
+ * update would produce garbage. The update takes 2mS, so we
+ * could be spinning here that long waiting for this bit to
+ * turn off.
+ *
+ * Furthermore, it is pathologically possible for us to be
+ * in this code so long that even if the UIP bit is not on
+ * at first, the clock has changed while we were running. We
+ * check for that too, and if it happens, we start over.
+ */
+ if (!cmos_clock_busy()) {
+ /* No clock update in progress, go ahead and read */
+ tm->tm_sec = hclock_read(0);
+ tm->tm_min = hclock_read(2);
+ tm->tm_hour = hclock_read(4);
+ tm->tm_wday = hclock_read(6);
+ tm->tm_mday = hclock_read(7);
+ tm->tm_mon = hclock_read(8);
+ tm->tm_year = hclock_read(9);
+ status = hclock_read(11);
+ /*
+ * Unless the clock changed while we were reading,
+ * consider this a good clock read .
+ */
+ if (tm->tm_sec == hclock_read(0))
+ break;
+ }
+ /*
+ * Yes, in theory we could have been running for 60 seconds
+ * and the above test wouldn't work!
+ */
+ }
+
+ if (!(status & 0x04)) { /* BCD mode - the default */
+ BCD_TO_BIN(tm->tm_sec);
+ BCD_TO_BIN(tm->tm_min);
+ pmbit = (tm->tm_hour & 0x80);
+ tm->tm_hour &= 0x7f;
+ BCD_TO_BIN(tm->tm_hour);
+ BCD_TO_BIN(tm->tm_wday);
+ BCD_TO_BIN(tm->tm_mday);
+ BCD_TO_BIN(tm->tm_mon);
+ BCD_TO_BIN(tm->tm_year);
+ }
+
+ /*
+ * We don't use the century byte of the Hardware Clock since we
+ * don't know its address (usually 50 or 55). Here, we follow the
+ * advice of the X/Open Base Working Group: "if century is not
+ * specified, then values in the range [69-99] refer to years in the
+ * twentieth century (1969 to 1999 inclusive), and values in the
+ * range [00-68] refer to years in the twenty-first century (2000 to
+ * 2068 inclusive)."
+ */
+ tm->tm_wday -= 1;
+ tm->tm_mon -= 1;
+ if (tm->tm_year < 69)
+ tm->tm_year += 100;
+ if (pmbit) {
+ tm->tm_hour += 12;
+ if (tm->tm_hour == 24)
+ tm->tm_hour = 0;
+ }
+
+ tm->tm_isdst = -1; /* don't know whether it's daylight */
+ return 0;
+}
+
+static int set_hardware_clock_cmos(const struct hwclock_control *ctl
+ __attribute__((__unused__)),
+ const struct tm *new_broken_time)
+{
+ hclock_set_time(new_broken_time);
+ return 0;
+}
+
+#if defined(__i386__) || defined(__x86_64__)
+# if defined(HAVE_IOPL)
+static int i386_iopl(const int level)
+{
+ return iopl(level);
+}
+# else
+static int i386_iopl(const int level __attribute__ ((__unused__)))
+{
+ extern int ioperm(unsigned long from, unsigned long num, int turn_on);
+ return ioperm(clock_ctl_addr, 2, 1);
+}
+# endif
+#else
+static int i386_iopl(const int level __attribute__ ((__unused__)))
+{
+ return IOPL_NOT_IMPLEMENTED;
+}
+#endif
+
+static int get_permissions_cmos(void)
+{
+ int rc;
+
+ rc = i386_iopl(3);
+ if (rc == IOPL_NOT_IMPLEMENTED) {
+ warnx(_("ISA port access is not implemented"));
+ } else if (rc != 0) {
+ warn(_("iopl() port access failed"));
+ }
+ return rc;
+}
+
+static const char *get_device_path(void)
+{
+ return NULL;
+}
+
+static struct clock_ops cmos_interface = {
+ N_("Using direct ISA access to the clock"),
+ get_permissions_cmos,
+ read_hardware_clock_cmos,
+ set_hardware_clock_cmos,
+ synchronize_to_clock_tick_cmos,
+ get_device_path,
+};
+
+/*
+ * return &cmos if cmos clock present, NULL otherwise.
+ */
+struct clock_ops *probe_for_cmos_clock(void)
+{
+#if defined(__i386__) || defined(__x86_64__)
+ return &cmos_interface;
+#else
+ return NULL;
+#endif
+}