/*
* array.c - functions to create, destroy, access, and manipulate arrays
* of strings.
*
* Arrays are sparse doubly-linked lists. An element's index is stored
* with it.
*
* Chet Ramey
* chet@ins.cwru.edu
*/
/* Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of GNU Bash, the Bourne Again SHell.
Bash is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Bash is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Bash. If not, see .
*/
#include "config.h"
#if defined (ARRAY_VARS)
#if defined (HAVE_UNISTD_H)
# ifdef _MINIX
# include
# endif
# include
#endif
#include
#include "bashansi.h"
#include "shell.h"
#include "array.h"
#include "builtins/common.h"
#define ADD_BEFORE(ae, new) \
do { \
ae->prev->next = new; \
new->prev = ae->prev; \
ae->prev = new; \
new->next = ae; \
} while(0)
#define ADD_AFTER(ae, new) \
do { \
ae->next->prev = new; \
new->next = ae->next; \
new->prev = ae; \
ae->next = new; \
} while (0)
static char *array_to_string_internal __P((ARRAY_ELEMENT *, ARRAY_ELEMENT *, char *, int));
static char *spacesep = " ";
#define IS_LASTREF(a) (a->lastref)
#define LASTREF_START(a, i) \
(IS_LASTREF(a) && i >= element_index(a->lastref)) ? a->lastref \
: element_forw(a->head)
#define LASTREF(a) (a->lastref ? a->lastref : element_forw(a->head))
#define INVALIDATE_LASTREF(a) a->lastref = 0
#define SET_LASTREF(a, e) a->lastref = (e)
#define UNSET_LASTREF(a) a->lastref = 0;
ARRAY *
array_create()
{
ARRAY *r;
ARRAY_ELEMENT *head;
r = (ARRAY *)xmalloc(sizeof(ARRAY));
r->type = array_indexed;
r->max_index = -1;
r->num_elements = 0;
r->lastref = (ARRAY_ELEMENT *)0;
head = array_create_element(-1, (char *)NULL); /* dummy head */
head->prev = head->next = head;
r->head = head;
return(r);
}
void
array_flush (a)
ARRAY *a;
{
register ARRAY_ELEMENT *r, *r1;
if (a == 0)
return;
for (r = element_forw(a->head); r != a->head; ) {
r1 = element_forw(r);
array_dispose_element(r);
r = r1;
}
a->head->next = a->head->prev = a->head;
a->max_index = -1;
a->num_elements = 0;
INVALIDATE_LASTREF(a);
}
void
array_dispose(a)
ARRAY *a;
{
if (a == 0)
return;
array_flush (a);
array_dispose_element(a->head);
free(a);
}
ARRAY *
array_copy(a)
ARRAY *a;
{
ARRAY *a1;
ARRAY_ELEMENT *ae, *new;
if (a == 0)
return((ARRAY *) NULL);
a1 = array_create();
a1->type = a->type;
a1->max_index = a->max_index;
a1->num_elements = a->num_elements;
for (ae = element_forw(a->head); ae != a->head; ae = element_forw(ae)) {
new = array_create_element(element_index(ae), element_value(ae));
ADD_BEFORE(a1->head, new);
if (ae == LASTREF(a))
SET_LASTREF(a1, new);
}
return(a1);
}
/*
* Make and return a new array composed of the elements in array A from
* S to E, inclusive.
*/
ARRAY *
array_slice(array, s, e)
ARRAY *array;
ARRAY_ELEMENT *s, *e;
{
ARRAY *a;
ARRAY_ELEMENT *p, *n;
int i;
arrayind_t mi;
a = array_create ();
a->type = array->type;
for (mi = 0, p = s, i = 0; p != e; p = element_forw(p), i++) {
n = array_create_element (element_index(p), element_value(p));
ADD_BEFORE(a->head, n);
mi = element_index(n);
}
a->num_elements = i;
a->max_index = mi;
return a;
}
/*
* Walk the array, calling FUNC once for each element, with the array
* element as the argument.
*/
void
array_walk(a, func, udata)
ARRAY *a;
sh_ae_map_func_t *func;
void *udata;
{
register ARRAY_ELEMENT *ae;
if (a == 0 || array_empty(a))
return;
for (ae = element_forw(a->head); ae != a->head; ae = element_forw(ae))
if ((*func)(ae, udata) < 0)
return;
}
/*
* Shift the array A N elements to the left. Delete the first N elements
* and subtract N from the indices of the remaining elements. If FLAGS
* does not include AS_DISPOSE, this returns a singly-linked null-terminated
* list of elements so the caller can dispose of the chain. If FLAGS
* includes AS_DISPOSE, this function disposes of the shifted-out elements
* and returns NULL.
*/
ARRAY_ELEMENT *
array_shift(a, n, flags)
ARRAY *a;
int n, flags;
{
register ARRAY_ELEMENT *ae, *ret;
register int i;
if (a == 0 || array_empty(a) || n <= 0)
return ((ARRAY_ELEMENT *)NULL);
INVALIDATE_LASTREF(a);
for (i = 0, ret = ae = element_forw(a->head); ae != a->head && i < n; ae = element_forw(ae), i++)
;
if (ae == a->head) {
/* Easy case; shifting out all of the elements */
if (flags & AS_DISPOSE) {
array_flush (a);
return ((ARRAY_ELEMENT *)NULL);
}
for (ae = ret; element_forw(ae) != a->head; ae = element_forw(ae))
;
element_forw(ae) = (ARRAY_ELEMENT *)NULL;
a->head->next = a->head->prev = a->head;
a->max_index = -1;
a->num_elements = 0;
return ret;
}
/*
* ae now points to the list of elements we want to retain.
* ret points to the list we want to either destroy or return.
*/
ae->prev->next = (ARRAY_ELEMENT *)NULL; /* null-terminate RET */
a->head->next = ae; /* slice RET out of the array */
ae->prev = a->head;
for ( ; ae != a->head; ae = element_forw(ae))
element_index(ae) -= n; /* renumber retained indices */
a->num_elements -= n; /* modify bookkeeping information */
a->max_index = element_index(a->head->prev);
if (flags & AS_DISPOSE) {
for (ae = ret; ae; ) {
ret = element_forw(ae);
array_dispose_element(ae);
ae = ret;
}
return ((ARRAY_ELEMENT *)NULL);
}
return ret;
}
/*
* Shift array A right N indices. If S is non-null, it becomes the value of
* the new element 0. Returns the number of elements in the array after the
* shift.
*/
int
array_rshift (a, n, s)
ARRAY *a;
int n;
char *s;
{
register ARRAY_ELEMENT *ae, *new;
if (a == 0 || (array_empty(a) && s == 0))
return 0;
else if (n <= 0)
return (a->num_elements);
ae = element_forw(a->head);
if (s) {
new = array_create_element(0, s);
ADD_BEFORE(ae, new);
a->num_elements++;
if (array_num_elements(a) == 1) { /* array was empty */
a->max_index = 0;
return 1;
}
}
/*
* Renumber all elements in the array except the one we just added.
*/
for ( ; ae != a->head; ae = element_forw(ae))
element_index(ae) += n;
a->max_index = element_index(a->head->prev);
INVALIDATE_LASTREF(a);
return (a->num_elements);
}
ARRAY_ELEMENT *
array_unshift_element(a)
ARRAY *a;
{
return (array_shift (a, 1, 0));
}
int
array_shift_element(a, v)
ARRAY *a;
char *v;
{
return (array_rshift (a, 1, v));
}
ARRAY *
array_quote(array)
ARRAY *array;
{
ARRAY_ELEMENT *a;
char *t;
if (array == 0 || array_head(array) == 0 || array_empty(array))
return (ARRAY *)NULL;
for (a = element_forw(array->head); a != array->head; a = element_forw(a)) {
t = quote_string (a->value);
FREE(a->value);
a->value = t;
}
return array;
}
ARRAY *
array_quote_escapes(array)
ARRAY *array;
{
ARRAY_ELEMENT *a;
char *t;
if (array == 0 || array_head(array) == 0 || array_empty(array))
return (ARRAY *)NULL;
for (a = element_forw(array->head); a != array->head; a = element_forw(a)) {
t = quote_escapes (a->value);
FREE(a->value);
a->value = t;
}
return array;
}
ARRAY *
array_dequote(array)
ARRAY *array;
{
ARRAY_ELEMENT *a;
char *t;
if (array == 0 || array_head(array) == 0 || array_empty(array))
return (ARRAY *)NULL;
for (a = element_forw(array->head); a != array->head; a = element_forw(a)) {
t = dequote_string (a->value);
FREE(a->value);
a->value = t;
}
return array;
}
ARRAY *
array_dequote_escapes(array)
ARRAY *array;
{
ARRAY_ELEMENT *a;
char *t;
if (array == 0 || array_head(array) == 0 || array_empty(array))
return (ARRAY *)NULL;
for (a = element_forw(array->head); a != array->head; a = element_forw(a)) {
t = dequote_escapes (a->value);
FREE(a->value);
a->value = t;
}
return array;
}
ARRAY *
array_remove_quoted_nulls(array)
ARRAY *array;
{
ARRAY_ELEMENT *a;
if (array == 0 || array_head(array) == 0 || array_empty(array))
return (ARRAY *)NULL;
for (a = element_forw(array->head); a != array->head; a = element_forw(a))
a->value = remove_quoted_nulls (a->value);
return array;
}
/*
* Return a string whose elements are the members of array A beginning at
* index START and spanning NELEM members. Null elements are counted.
* Since arrays are sparse, unset array elements are not counted.
*/
char *
array_subrange (a, start, nelem, starsub, quoted)
ARRAY *a;
arrayind_t start, nelem;
int starsub, quoted;
{
ARRAY *a2;
ARRAY_ELEMENT *h, *p;
arrayind_t i;
char *t;
WORD_LIST *wl;
p = a ? array_head (a) : 0;
if (p == 0 || array_empty (a) || start > array_max_index(a))
return ((char *)NULL);
/*
* Find element with index START. If START corresponds to an unset
* element (arrays can be sparse), use the first element whose index
* is >= START. If START is < 0, we count START indices back from
* the end of A (not elements, even with sparse arrays -- START is an
* index).
*/
for (p = element_forw(p); p != array_head(a) && start > element_index(p); p = element_forw(p))
;
if (p == a->head)
return ((char *)NULL);
/* Starting at P, take NELEM elements, inclusive. */
for (i = 0, h = p; p != a->head && i < nelem; i++, p = element_forw(p))
;
a2 = array_slice(a, h, p);
wl = array_to_word_list(a2);
array_dispose(a2);
if (wl == 0)
return (char *)NULL;
t = string_list_pos_params(starsub ? '*' : '@', wl, quoted);
dispose_words(wl);
return t;
}
char *
array_patsub (a, pat, rep, mflags)
ARRAY *a;
char *pat, *rep;
int mflags;
{
char *t;
int pchar, qflags;
WORD_LIST *wl, *save;
if (a == 0 || array_head(a) == 0 || array_empty(a))
return ((char *)NULL);
wl = array_to_word_list(a);
if (wl == 0)
return (char *)NULL;
for (save = wl; wl; wl = wl->next) {
t = pat_subst (wl->word->word, pat, rep, mflags);
FREE (wl->word->word);
wl->word->word = t;
}
pchar = (mflags & MATCH_STARSUB) == MATCH_STARSUB ? '*' : '@';
qflags = (mflags & MATCH_QUOTED) == MATCH_QUOTED ? Q_DOUBLE_QUOTES : 0;
t = string_list_pos_params (pchar, save, qflags);
dispose_words(save);
return t;
}
char *
array_modcase (a, pat, modop, mflags)
ARRAY *a;
char *pat;
int modop;
int mflags;
{
char *t;
int pchar, qflags;
WORD_LIST *wl, *save;
if (a == 0 || array_head(a) == 0 || array_empty(a))
return ((char *)NULL);
wl = array_to_word_list(a);
if (wl == 0)
return ((char *)NULL);
for (save = wl; wl; wl = wl->next) {
t = sh_modcase(wl->word->word, pat, modop);
FREE(wl->word->word);
wl->word->word = t;
}
pchar = (mflags & MATCH_STARSUB) == MATCH_STARSUB ? '*' : '@';
qflags = (mflags & MATCH_QUOTED) == MATCH_QUOTED ? Q_DOUBLE_QUOTES : 0;
t = string_list_pos_params (pchar, save, qflags);
dispose_words(save);
return t;
}
/*
* Allocate and return a new array element with index INDEX and value
* VALUE.
*/
ARRAY_ELEMENT *
array_create_element(indx, value)
arrayind_t indx;
char *value;
{
ARRAY_ELEMENT *r;
r = (ARRAY_ELEMENT *)xmalloc(sizeof(ARRAY_ELEMENT));
r->ind = indx;
r->value = value ? savestring(value) : (char *)NULL;
r->next = r->prev = (ARRAY_ELEMENT *) NULL;
return(r);
}
#ifdef INCLUDE_UNUSED
ARRAY_ELEMENT *
array_copy_element(ae)
ARRAY_ELEMENT *ae;
{
return(ae ? array_create_element(element_index(ae), element_value(ae))
: (ARRAY_ELEMENT *) NULL);
}
#endif
void
array_dispose_element(ae)
ARRAY_ELEMENT *ae;
{
if (ae) {
FREE(ae->value);
free(ae);
}
}
/*
* Add a new element with index I and value V to array A (a[i] = v).
*/
int
array_insert(a, i, v)
ARRAY *a;
arrayind_t i;
char *v;
{
register ARRAY_ELEMENT *new, *ae, *start;
arrayind_t startind;
int direction;
if (a == 0)
return(-1);
new = array_create_element(i, v);
if (i > array_max_index(a)) {
/*
* Hook onto the end. This also works for an empty array.
* Fast path for the common case of allocating arrays
* sequentially.
*/
ADD_BEFORE(a->head, new);
a->max_index = i;
a->num_elements++;
SET_LASTREF(a, new);
return(0);
} else if (i < array_first_index(a)) {
/* Hook at the beginning */
ADD_AFTER(a->head, new);
a->num_elements++;
SET_LASTREF(a, new);
return(0);
}
#if OPTIMIZE_SEQUENTIAL_ARRAY_ASSIGNMENT
/*
* Otherwise we search for the spot to insert it. The lastref
* handle optimizes the case of sequential or almost-sequential
* assignments that are not at the end of the array.
*/
start = LASTREF(a);
/* Use same strategy as array_reference to avoid paying large penalty
for semi-random assignment pattern. */
startind = element_index(start);
if (i < startind/2) {
start = element_forw(a->head);
startind = element_index(start);
direction = 1;
} else if (i >= startind) {
direction = 1;
} else {
direction = -1;
}
#else
start = element_forw(ae->head);
startind = element_index(start);
direction = 1;
#endif
for (ae = start; ae != a->head; ) {
if (element_index(ae) == i) {
/*
* Replacing an existing element.
*/
free(element_value(ae));
/* Just swap in the new value */
ae->value = new->value;
new->value = 0;
array_dispose_element(new);
SET_LASTREF(a, ae);
return(0);
} else if (direction == 1 && element_index(ae) > i) {
ADD_BEFORE(ae, new);
a->num_elements++;
SET_LASTREF(a, new);
return(0);
} else if (direction == -1 && element_index(ae) < i) {
ADD_AFTER(ae, new);
a->num_elements++;
SET_LASTREF(a, new);
return(0);
}
ae = direction == 1 ? element_forw(ae) : element_back(ae);
}
array_dispose_element(new);
INVALIDATE_LASTREF(a);
return (-1); /* problem */
}
/*
* Delete the element with index I from array A and return it so the
* caller can dispose of it.
*/
ARRAY_ELEMENT *
array_remove(a, i)
ARRAY *a;
arrayind_t i;
{
register ARRAY_ELEMENT *ae, *start;
arrayind_t startind;
int direction;
if (a == 0 || array_empty(a))
return((ARRAY_ELEMENT *) NULL);
if (i > array_max_index(a) || i < array_first_index(a))
return((ARRAY_ELEMENT *)NULL); /* Keep roving pointer into array to optimize sequential access */
start = LASTREF(a);
/* Use same strategy as array_reference to avoid paying large penalty
for semi-random assignment pattern. */
startind = element_index(start);
if (i < startind/2) {
start = element_forw(a->head);
startind = element_index(start);
direction = 1;
} else if (i >= startind) {
direction = 1;
} else {
direction = -1;
}
for (ae = start; ae != a->head; ) {
if (element_index(ae) == i) {
ae->next->prev = ae->prev;
ae->prev->next = ae->next;
a->num_elements--;
if (i == array_max_index(a))
a->max_index = element_index(ae->prev);
#if 0
INVALIDATE_LASTREF(a);
#else
if (ae->next != a->head)
SET_LASTREF(a, ae->next);
else if (ae->prev != a->head)
SET_LASTREF(a, ae->prev);
else
INVALIDATE_LASTREF(a);
#endif
return(ae);
}
ae = (direction == 1) ? element_forw(ae) : element_back(ae);
if (direction == 1 && element_index(ae) > i)
break;
else if (direction == -1 && element_index(ae) < i)
break;
}
return((ARRAY_ELEMENT *) NULL);
}
/*
* Return the value of a[i].
*/
char *
array_reference(a, i)
ARRAY *a;
arrayind_t i;
{
register ARRAY_ELEMENT *ae, *start;
arrayind_t startind;
int direction;
if (a == 0 || array_empty(a))
return((char *) NULL);
if (i > array_max_index(a) || i < array_first_index(a))
return((char *)NULL); /* Keep roving pointer into array to optimize sequential access */
start = LASTREF(a); /* lastref pointer */
startind = element_index(start);
if (i < startind/2) { /* XXX - guess */
start = element_forw(a->head);
startind = element_index(start);
direction = 1;
} else if (i >= startind) {
direction = 1;
} else {
direction = -1;
}
for (ae = start; ae != a->head; ) {
if (element_index(ae) == i) {
SET_LASTREF(a, ae);
return(element_value(ae));
}
ae = (direction == 1) ? element_forw(ae) : element_back(ae);
/* Take advantage of index ordering to short-circuit */
/* If we don't find it, set the lastref pointer to the element
that's `closest', assuming that the unsuccessful reference
will quickly be followed by an assignment. No worse than
not changing it from the previous value or resetting it. */
if (direction == 1 && element_index(ae) > i) {
start = ae; /* use for SET_LASTREF below */
break;
} else if (direction == -1 && element_index(ae) < i) {
start = ae; /* use for SET_LASTREF below */
break;
}
}
#if 0
UNSET_LASTREF(a);
#else
SET_LASTREF(a, start);
#endif
return((char *) NULL);
}
/* Convenience routines for the shell to translate to and from the form used
by the rest of the code. */
WORD_LIST *
array_to_word_list(a)
ARRAY *a;
{
WORD_LIST *list;
ARRAY_ELEMENT *ae;
if (a == 0 || array_empty(a))
return((WORD_LIST *)NULL);
list = (WORD_LIST *)NULL;
for (ae = element_forw(a->head); ae != a->head; ae = element_forw(ae))
list = make_word_list (make_bare_word(element_value(ae)), list);
return (REVERSE_LIST(list, WORD_LIST *));
}
ARRAY *
array_from_word_list (list)
WORD_LIST *list;
{
ARRAY *a;
if (list == 0)
return((ARRAY *)NULL);
a = array_create();
return (array_assign_list (a, list));
}
WORD_LIST *
array_keys_to_word_list(a)
ARRAY *a;
{
WORD_LIST *list;
ARRAY_ELEMENT *ae;
char *t;
if (a == 0 || array_empty(a))
return((WORD_LIST *)NULL);
list = (WORD_LIST *)NULL;
for (ae = element_forw(a->head); ae != a->head; ae = element_forw(ae)) {
t = itos(element_index(ae));
list = make_word_list (make_bare_word(t), list);
free(t);
}
return (REVERSE_LIST(list, WORD_LIST *));
}
ARRAY *
array_assign_list (array, list)
ARRAY *array;
WORD_LIST *list;
{
register WORD_LIST *l;
register arrayind_t i;
for (l = list, i = 0; l; l = l->next, i++)
array_insert(array, i, l->word->word);
return array;
}
char **
array_to_argv (a)
ARRAY *a;
{
char **ret, *t;
int i;
ARRAY_ELEMENT *ae;
if (a == 0 || array_empty(a))
return ((char **)NULL);
ret = strvec_create (array_num_elements (a) + 1);
i = 0;
for (ae = element_forw(a->head); ae != a->head; ae = element_forw(ae)) {
t = element_value (ae);
ret[i++] = t ? savestring (t) : (char *)NULL;
}
ret[i] = (char *)NULL;
return (ret);
}
/*
* Return a string that is the concatenation of the elements in A from START
* to END, separated by SEP.
*/
static char *
array_to_string_internal (start, end, sep, quoted)
ARRAY_ELEMENT *start, *end;
char *sep;
int quoted;
{
char *result, *t;
ARRAY_ELEMENT *ae;
int slen, rsize, rlen, reg;
if (start == end) /* XXX - should not happen */
return ((char *)NULL);
slen = strlen(sep);
result = NULL;
for (rsize = rlen = 0, ae = start; ae != end; ae = element_forw(ae)) {
if (rsize == 0)
result = (char *)xmalloc (rsize = 64);
if (element_value(ae)) {
t = quoted ? quote_string(element_value(ae)) : element_value(ae);
reg = strlen(t);
RESIZE_MALLOCED_BUFFER (result, rlen, (reg + slen + 2),
rsize, rsize);
strcpy(result + rlen, t);
rlen += reg;
if (quoted)
free(t);
/*
* Add a separator only after non-null elements.
*/
if (element_forw(ae) != end) {
strcpy(result + rlen, sep);
rlen += slen;
}
}
}
if (result)
result[rlen] = '\0'; /* XXX */
return(result);
}
char *
array_to_assign (a, quoted)
ARRAY *a;
int quoted;
{
char *result, *valstr, *is;
char indstr[INT_STRLEN_BOUND(intmax_t) + 1];
ARRAY_ELEMENT *ae;
int rsize, rlen, elen;
if (a == 0 || array_empty (a))
return((char *)NULL);
result = (char *)xmalloc (rsize = 128);
result[0] = '(';
rlen = 1;
for (ae = element_forw(a->head); ae != a->head; ae = element_forw(ae)) {
is = inttostr (element_index(ae), indstr, sizeof(indstr));
valstr = element_value (ae) ?
(ansic_shouldquote (element_value (ae)) ?
ansic_quote (element_value(ae), 0, (int *)0) :
sh_double_quote (element_value (ae)))
: (char *)NULL;
elen = STRLEN (is) + 8 + STRLEN (valstr);
RESIZE_MALLOCED_BUFFER (result, rlen, (elen + 1), rsize, rsize);
result[rlen++] = '[';
strcpy (result + rlen, is);
rlen += STRLEN (is);
result[rlen++] = ']';
result[rlen++] = '=';
if (valstr) {
strcpy (result + rlen, valstr);
rlen += STRLEN (valstr);
}
if (element_forw(ae) != a->head)
result[rlen++] = ' ';
FREE (valstr);
}
RESIZE_MALLOCED_BUFFER (result, rlen, 1, rsize, 8);
result[rlen++] = ')';
result[rlen] = '\0';
if (quoted) {
/* This is not as efficient as it could be... */
valstr = sh_single_quote (result);
free (result);
result = valstr;
}
return(result);
}
char *
array_to_string (a, sep, quoted)
ARRAY *a;
char *sep;
int quoted;
{
if (a == 0)
return((char *)NULL);
if (array_empty(a))
return(savestring(""));
return (array_to_string_internal (element_forw(a->head), a->head, sep, quoted));
}
#if defined (INCLUDE_UNUSED) || defined (TEST_ARRAY)
/*
* Return an array consisting of elements in S, separated by SEP
*/
ARRAY *
array_from_string(s, sep)
char *s, *sep;
{
ARRAY *a;
WORD_LIST *w;
if (s == 0)
return((ARRAY *)NULL);
w = list_string (s, sep, 0);
if (w == 0)
return((ARRAY *)NULL);
a = array_from_word_list (w);
return (a);
}
#endif
#if defined (TEST_ARRAY)
/*
* To make a running version, compile -DTEST_ARRAY and link with:
* xmalloc.o syntax.o lib/malloc/libmalloc.a lib/sh/libsh.a
*/
int interrupt_immediately = 0;
int
signal_is_trapped(s)
int s;
{
return 0;
}
void
fatal_error(const char *s, ...)
{
fprintf(stderr, "array_test: fatal memory error\n");
abort();
}
void
programming_error(const char *s, ...)
{
fprintf(stderr, "array_test: fatal programming error\n");
abort();
}
WORD_DESC *
make_bare_word (s)
const char *s;
{
WORD_DESC *w;
w = (WORD_DESC *)xmalloc(sizeof(WORD_DESC));
w->word = s ? savestring(s) : savestring ("");
w->flags = 0;
return w;
}
WORD_LIST *
make_word_list(x, l)
WORD_DESC *x;
WORD_LIST *l;
{
WORD_LIST *w;
w = (WORD_LIST *)xmalloc(sizeof(WORD_LIST));
w->word = x;
w->next = l;
return w;
}
WORD_LIST *
list_string(s, t, i)
char *s, *t;
int i;
{
char *r, *a;
WORD_LIST *wl;
if (s == 0)
return (WORD_LIST *)NULL;
r = savestring(s);
wl = (WORD_LIST *)NULL;
a = strtok(r, t);
while (a) {
wl = make_word_list (make_bare_word(a), wl);
a = strtok((char *)NULL, t);
}
return (REVERSE_LIST (wl, WORD_LIST *));
}
GENERIC_LIST *
list_reverse (list)
GENERIC_LIST *list;
{
register GENERIC_LIST *next, *prev;
for (prev = 0; list; ) {
next = list->next;
list->next = prev;
prev = list;
list = next;
}
return prev;
}
char *
pat_subst(s, t, u, i)
char *s, *t, *u;
int i;
{
return ((char *)NULL);
}
char *
quote_string(s)
char *s;
{
return savestring(s);
}
print_element(ae)
ARRAY_ELEMENT *ae;
{
char lbuf[INT_STRLEN_BOUND (intmax_t) + 1];
printf("array[%s] = %s\n",
inttostr (element_index(ae), lbuf, sizeof (lbuf)),
element_value(ae));
}
print_array(a)
ARRAY *a;
{
printf("\n");
array_walk(a, print_element, (void *)NULL);
}
main()
{
ARRAY *a, *new_a, *copy_of_a;
ARRAY_ELEMENT *ae, *aew;
char *s;
a = array_create();
array_insert(a, 1, "one");
array_insert(a, 7, "seven");
array_insert(a, 4, "four");
array_insert(a, 1029, "one thousand twenty-nine");
array_insert(a, 12, "twelve");
array_insert(a, 42, "forty-two");
print_array(a);
s = array_to_string (a, " ", 0);
printf("s = %s\n", s);
copy_of_a = array_from_string(s, " ");
printf("copy_of_a:");
print_array(copy_of_a);
array_dispose(copy_of_a);
printf("\n");
free(s);
ae = array_remove(a, 4);
array_dispose_element(ae);
ae = array_remove(a, 1029);
array_dispose_element(ae);
array_insert(a, 16, "sixteen");
print_array(a);
s = array_to_string (a, " ", 0);
printf("s = %s\n", s);
copy_of_a = array_from_string(s, " ");
printf("copy_of_a:");
print_array(copy_of_a);
array_dispose(copy_of_a);
printf("\n");
free(s);
array_insert(a, 2, "two");
array_insert(a, 1029, "new one thousand twenty-nine");
array_insert(a, 0, "zero");
array_insert(a, 134, "");
print_array(a);
s = array_to_string (a, ":", 0);
printf("s = %s\n", s);
copy_of_a = array_from_string(s, ":");
printf("copy_of_a:");
print_array(copy_of_a);
array_dispose(copy_of_a);
printf("\n");
free(s);
new_a = array_copy(a);
print_array(new_a);
s = array_to_string (new_a, ":", 0);
printf("s = %s\n", s);
copy_of_a = array_from_string(s, ":");
free(s);
printf("copy_of_a:");
print_array(copy_of_a);
array_shift(copy_of_a, 2, AS_DISPOSE);
printf("copy_of_a shifted by two:");
print_array(copy_of_a);
ae = array_shift(copy_of_a, 2, 0);
printf("copy_of_a shifted by two:");
print_array(copy_of_a);
for ( ; ae; ) {
aew = element_forw(ae);
array_dispose_element(ae);
ae = aew;
}
array_rshift(copy_of_a, 1, (char *)0);
printf("copy_of_a rshift by 1:");
print_array(copy_of_a);
array_rshift(copy_of_a, 2, "new element zero");
printf("copy_of_a rshift again by 2 with new element zero:");
print_array(copy_of_a);
s = array_to_assign(copy_of_a, 0);
printf("copy_of_a=%s\n", s);
free(s);
ae = array_shift(copy_of_a, array_num_elements(copy_of_a), 0);
for ( ; ae; ) {
aew = element_forw(ae);
array_dispose_element(ae);
ae = aew;
}
array_dispose(copy_of_a);
printf("\n");
array_dispose(a);
array_dispose(new_a);
}
#endif /* TEST_ARRAY */
#endif /* ARRAY_VARS */