summaryrefslogtreecommitdiffstats
path: root/sourcestats.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-05 18:43:21 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-05 18:43:21 +0000
commit104f986b0650b8f93540785d2bcf486905e49b62 (patch)
tree2b2ae5113d9b57425d4bb3f726e325316b87e00a /sourcestats.c
parentInitial commit. (diff)
downloadchrony-upstream/3.4.tar.xz
chrony-upstream/3.4.zip
Adding upstream version 3.4.upstream/3.4upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'sourcestats.c')
-rw-r--r--sourcestats.c1040
1 files changed, 1040 insertions, 0 deletions
diff --git a/sourcestats.c b/sourcestats.c
new file mode 100644
index 0000000..2c49272
--- /dev/null
+++ b/sourcestats.c
@@ -0,0 +1,1040 @@
+/*
+ chronyd/chronyc - Programs for keeping computer clocks accurate.
+
+ **********************************************************************
+ * Copyright (C) Richard P. Curnow 1997-2003
+ * Copyright (C) Miroslav Lichvar 2011-2014, 2016-2018
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of version 2 of the GNU General Public License as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ **********************************************************************
+
+ =======================================================================
+
+ This file contains the routines that do the statistical
+ analysis on the samples obtained from the sources,
+ to determined frequencies and error bounds. */
+
+#include "config.h"
+
+#include "sysincl.h"
+
+#include "sourcestats.h"
+#include "memory.h"
+#include "regress.h"
+#include "util.h"
+#include "conf.h"
+#include "logging.h"
+#include "local.h"
+
+/* ================================================== */
+/* Define the maxumum number of samples that we want
+ to store per source */
+#define MAX_SAMPLES 64
+
+/* This is the assumed worst case bound on an unknown frequency,
+ 2000ppm, which would be pretty bad */
+#define WORST_CASE_FREQ_BOUND (2000.0/1.0e6)
+
+/* The minimum and maximum assumed skew */
+#define MIN_SKEW 1.0e-12
+#define MAX_SKEW 1.0e+02
+
+/* The minimum standard deviation */
+#define MIN_STDDEV 1.0e-9
+
+/* The asymmetry of network jitter when all jitter is in one direction */
+#define MAX_ASYMMETRY 0.5
+
+/* The minimum estimated asymmetry that can activate the offset correction */
+#define MIN_ASYMMETRY 0.45
+
+/* The minimum number of consecutive asymmetries with the same sign needed
+ to activate the offset correction */
+#define MIN_ASYMMETRY_RUN 10
+
+/* The maximum value of the counter */
+#define MAX_ASYMMETRY_RUN 1000
+
+/* ================================================== */
+
+static LOG_FileID logfileid;
+
+/* ================================================== */
+/* This data structure is used to hold the history of data from the
+ source */
+
+struct SST_Stats_Record {
+
+ /* Reference ID and IP address of source, used for logging to statistics log */
+ uint32_t refid;
+ IPAddr *ip_addr;
+
+ /* User defined minimum and maximum number of samples */
+ int min_samples;
+ int max_samples;
+
+ /* User defined minimum delay */
+ double fixed_min_delay;
+
+ /* User defined asymmetry of network jitter */
+ double fixed_asymmetry;
+
+ /* Number of samples currently stored. The samples are stored in circular
+ buffer. */
+ int n_samples;
+
+ /* Number of extra samples stored in sample_times, offsets and peer_delays
+ arrays that are used to extend the runs test */
+ int runs_samples;
+
+ /* The index of the newest sample */
+ int last_sample;
+
+ /* Flag indicating whether last regression was successful */
+ int regression_ok;
+
+ /* The best individual sample that we are holding, in terms of the minimum
+ root distance at the present time */
+ int best_single_sample;
+
+ /* The index of the sample with minimum delay in peer_delays */
+ int min_delay_sample;
+
+ /* This is the estimated offset (+ve => local fast) at a particular time */
+ double estimated_offset;
+ double estimated_offset_sd;
+ struct timespec offset_time;
+
+ /* Number of runs of the same sign amongst the residuals */
+ int nruns;
+
+ /* Number of consecutive estimated asymmetries with the same sign.
+ The sign of the number encodes the sign of the asymmetry. */
+ int asymmetry_run;
+
+ /* This is the latest estimated asymmetry of network jitter */
+ double asymmetry;
+
+ /* This value contains the estimated frequency. This is the number
+ of seconds that the local clock gains relative to the reference
+ source per unit local time. (Positive => local clock fast,
+ negative => local clock slow) */
+ double estimated_frequency;
+ double estimated_frequency_sd;
+
+ /* This is the assumed worst case bounds on the estimated frequency.
+ We assume that the true frequency lies within +/- half this much
+ about estimated_frequency */
+ double skew;
+
+ /* This is the estimated standard deviation of the data points */
+ double std_dev;
+
+ /* This array contains the sample epochs, in terms of the local
+ clock. */
+ struct timespec sample_times[MAX_SAMPLES * REGRESS_RUNS_RATIO];
+
+ /* This is an array of offsets, in seconds, corresponding to the
+ sample times. In this module, we use the convention that
+ positive means the local clock is FAST of the source and negative
+ means it is SLOW. This is contrary to the convention in the NTP
+ stuff. */
+ double offsets[MAX_SAMPLES * REGRESS_RUNS_RATIO];
+
+ /* This is an array of the offsets as originally measured. Local
+ clock fast of real time is indicated by positive values. This
+ array is not slewed to adjust the readings when we apply
+ adjustments to the local clock, as is done for the array
+ 'offset'. */
+ double orig_offsets[MAX_SAMPLES];
+
+ /* This is an array of peer delays, in seconds, being the roundtrip
+ measurement delay to the peer */
+ double peer_delays[MAX_SAMPLES * REGRESS_RUNS_RATIO];
+
+ /* This is an array of peer dispersions, being the skew and local
+ precision dispersion terms from sampling the peer */
+ double peer_dispersions[MAX_SAMPLES];
+
+ /* This array contains the root delays of each sample, in seconds */
+ double root_delays[MAX_SAMPLES];
+
+ /* This array contains the root dispersions of each sample at the
+ time of the measurements */
+ double root_dispersions[MAX_SAMPLES];
+
+ /* The stratum from the last accumulated sample */
+ int stratum;
+
+ /* The leap status from the last accumulated sample */
+ NTP_Leap leap;
+};
+
+/* ================================================== */
+
+static void find_min_delay_sample(SST_Stats inst);
+static int get_buf_index(SST_Stats inst, int i);
+
+/* ================================================== */
+
+void
+SST_Initialise(void)
+{
+ logfileid = CNF_GetLogStatistics() ? LOG_FileOpen("statistics",
+ " Date (UTC) Time IP Address Std dev'n Est offset Offset sd Diff freq Est skew Stress Ns Bs Nr Asym")
+ : -1;
+}
+
+/* ================================================== */
+
+void
+SST_Finalise(void)
+{
+}
+
+/* ================================================== */
+/* This function creates a new instance of the statistics handler */
+
+SST_Stats
+SST_CreateInstance(uint32_t refid, IPAddr *addr, int min_samples, int max_samples,
+ double min_delay, double asymmetry)
+{
+ SST_Stats inst;
+ inst = MallocNew(struct SST_Stats_Record);
+
+ inst->min_samples = min_samples;
+ inst->max_samples = max_samples;
+ inst->fixed_min_delay = min_delay;
+ inst->fixed_asymmetry = asymmetry;
+
+ SST_SetRefid(inst, refid, addr);
+ SST_ResetInstance(inst);
+
+ return inst;
+}
+
+/* ================================================== */
+/* This function deletes an instance of the statistics handler. */
+
+void
+SST_DeleteInstance(SST_Stats inst)
+{
+ Free(inst);
+}
+
+/* ================================================== */
+
+void
+SST_ResetInstance(SST_Stats inst)
+{
+ inst->n_samples = 0;
+ inst->runs_samples = 0;
+ inst->last_sample = 0;
+ inst->regression_ok = 0;
+ inst->best_single_sample = 0;
+ inst->min_delay_sample = 0;
+ inst->estimated_frequency = 0;
+ inst->estimated_frequency_sd = WORST_CASE_FREQ_BOUND;
+ inst->skew = WORST_CASE_FREQ_BOUND;
+ inst->estimated_offset = 0.0;
+ inst->estimated_offset_sd = 86400.0; /* Assume it's at least within a day! */
+ UTI_ZeroTimespec(&inst->offset_time);
+ inst->std_dev = 4.0;
+ inst->nruns = 0;
+ inst->asymmetry_run = 0;
+ inst->asymmetry = 0.0;
+ inst->leap = LEAP_Unsynchronised;
+}
+
+/* ================================================== */
+
+void
+SST_SetRefid(SST_Stats inst, uint32_t refid, IPAddr *addr)
+{
+ inst->refid = refid;
+ inst->ip_addr = addr;
+}
+
+/* ================================================== */
+/* This function is called to prune the register down when it is full.
+ For now, just discard the oldest sample. */
+
+static void
+prune_register(SST_Stats inst, int new_oldest)
+{
+ if (!new_oldest)
+ return;
+
+ assert(inst->n_samples >= new_oldest);
+ inst->n_samples -= new_oldest;
+ inst->runs_samples += new_oldest;
+ if (inst->runs_samples > inst->n_samples * (REGRESS_RUNS_RATIO - 1))
+ inst->runs_samples = inst->n_samples * (REGRESS_RUNS_RATIO - 1);
+
+ assert(inst->n_samples + inst->runs_samples <= MAX_SAMPLES * REGRESS_RUNS_RATIO);
+
+ find_min_delay_sample(inst);
+}
+
+/* ================================================== */
+
+void
+SST_AccumulateSample(SST_Stats inst, NTP_Sample *sample)
+{
+ int n, m;
+
+ /* Make room for the new sample */
+ if (inst->n_samples > 0 &&
+ (inst->n_samples == MAX_SAMPLES || inst->n_samples == inst->max_samples)) {
+ prune_register(inst, 1);
+ }
+
+ /* Make sure it's newer than the last sample */
+ if (inst->n_samples &&
+ UTI_CompareTimespecs(&inst->sample_times[inst->last_sample], &sample->time) >= 0) {
+ LOG(LOGS_WARN, "Out of order sample detected, discarding history for %s",
+ inst->ip_addr ? UTI_IPToString(inst->ip_addr) : UTI_RefidToString(inst->refid));
+ SST_ResetInstance(inst);
+ }
+
+ n = inst->last_sample = (inst->last_sample + 1) %
+ (MAX_SAMPLES * REGRESS_RUNS_RATIO);
+ m = n % MAX_SAMPLES;
+
+ /* WE HAVE TO NEGATE OFFSET IN THIS CALL, IT IS HERE THAT THE SENSE OF OFFSET
+ IS FLIPPED */
+ inst->sample_times[n] = sample->time;
+ inst->offsets[n] = -sample->offset;
+ inst->orig_offsets[m] = -sample->offset;
+ inst->peer_delays[n] = sample->peer_delay;
+ inst->peer_dispersions[m] = sample->peer_dispersion;
+ inst->root_delays[m] = sample->root_delay;
+ inst->root_dispersions[m] = sample->root_dispersion;
+ inst->stratum = sample->stratum;
+ inst->leap = sample->leap;
+
+ if (inst->peer_delays[n] < inst->fixed_min_delay)
+ inst->peer_delays[n] = 2.0 * inst->fixed_min_delay - inst->peer_delays[n];
+
+ if (!inst->n_samples || inst->peer_delays[n] < inst->peer_delays[inst->min_delay_sample])
+ inst->min_delay_sample = n;
+
+ ++inst->n_samples;
+}
+
+/* ================================================== */
+/* Return index of the i-th sample in the sample_times and offset buffers,
+ i can be negative down to -runs_samples */
+
+static int
+get_runsbuf_index(SST_Stats inst, int i)
+{
+ return (unsigned int)(inst->last_sample + 2 * MAX_SAMPLES * REGRESS_RUNS_RATIO -
+ inst->n_samples + i + 1) % (MAX_SAMPLES * REGRESS_RUNS_RATIO);
+}
+
+/* ================================================== */
+/* Return index of the i-th sample in the other buffers */
+
+static int
+get_buf_index(SST_Stats inst, int i)
+{
+ return (unsigned int)(inst->last_sample + MAX_SAMPLES * REGRESS_RUNS_RATIO -
+ inst->n_samples + i + 1) % MAX_SAMPLES;
+}
+
+/* ================================================== */
+/* This function is used by both the regression routines to find the
+ time interval between each historical sample and the most recent
+ one */
+
+static void
+convert_to_intervals(SST_Stats inst, double *times_back)
+{
+ struct timespec *ts;
+ int i;
+
+ ts = &inst->sample_times[inst->last_sample];
+ for (i = -inst->runs_samples; i < inst->n_samples; i++) {
+ /* The entries in times_back[] should end up negative */
+ times_back[i] = UTI_DiffTimespecsToDouble(&inst->sample_times[get_runsbuf_index(inst, i)], ts);
+ }
+}
+
+/* ================================================== */
+
+static void
+find_best_sample_index(SST_Stats inst, double *times_back)
+{
+ /* With the value of skew that has been computed, see which of the
+ samples offers the tightest bound on root distance */
+
+ double root_distance, best_root_distance;
+ double elapsed;
+ int i, j, best_index;
+
+ if (!inst->n_samples)
+ return;
+
+ best_index = -1;
+ best_root_distance = DBL_MAX;
+
+ for (i = 0; i < inst->n_samples; i++) {
+ j = get_buf_index(inst, i);
+
+ elapsed = -times_back[i];
+ assert(elapsed >= 0.0);
+
+ root_distance = inst->root_dispersions[j] + elapsed * inst->skew + 0.5 * inst->root_delays[j];
+ if (root_distance < best_root_distance) {
+ best_root_distance = root_distance;
+ best_index = i;
+ }
+ }
+
+ assert(best_index >= 0);
+ inst->best_single_sample = best_index;
+}
+
+/* ================================================== */
+
+static void
+find_min_delay_sample(SST_Stats inst)
+{
+ int i, index;
+
+ inst->min_delay_sample = get_runsbuf_index(inst, -inst->runs_samples);
+
+ for (i = -inst->runs_samples + 1; i < inst->n_samples; i++) {
+ index = get_runsbuf_index(inst, i);
+ if (inst->peer_delays[index] < inst->peer_delays[inst->min_delay_sample])
+ inst->min_delay_sample = index;
+ }
+}
+
+/* ================================================== */
+/* This function estimates asymmetry of network jitter on the path to the
+ source as a slope of offset against network delay in multiple linear
+ regression. If the asymmetry is significant and its sign doesn't change
+ frequently, the measured offsets (which are used later to estimate the
+ offset and frequency of the clock) are corrected to correspond to the
+ minimum network delay. This can significantly improve the accuracy and
+ stability of the estimated offset and frequency. */
+
+static int
+estimate_asymmetry(double *times_back, double *offsets, double *delays, int n,
+ double *asymmetry, int *asymmetry_run)
+{
+ double a;
+
+ /* Reset the counter when the regression fails or the sign changes */
+ if (!RGR_MultipleRegress(times_back, delays, offsets, n, &a) ||
+ a * *asymmetry_run < 0.0) {
+ *asymmetry = 0;
+ *asymmetry_run = 0.0;
+ return 0;
+ }
+
+ if (a <= -MIN_ASYMMETRY && *asymmetry_run > -MAX_ASYMMETRY_RUN)
+ (*asymmetry_run)--;
+ else if (a >= MIN_ASYMMETRY && *asymmetry_run < MAX_ASYMMETRY_RUN)
+ (*asymmetry_run)++;
+
+ if (abs(*asymmetry_run) < MIN_ASYMMETRY_RUN)
+ return 0;
+
+ *asymmetry = CLAMP(-MAX_ASYMMETRY, a, MAX_ASYMMETRY);
+
+ return 1;
+}
+
+/* ================================================== */
+
+static void
+correct_asymmetry(SST_Stats inst, double *times_back, double *offsets)
+{
+ double min_delay, delays[MAX_SAMPLES * REGRESS_RUNS_RATIO];
+ int i, n;
+
+ /* Check if the asymmetry was not specified to be zero */
+ if (inst->fixed_asymmetry == 0.0)
+ return;
+
+ min_delay = SST_MinRoundTripDelay(inst);
+ n = inst->runs_samples + inst->n_samples;
+
+ for (i = 0; i < n; i++)
+ delays[i] = inst->peer_delays[get_runsbuf_index(inst, i - inst->runs_samples)] -
+ min_delay;
+
+ if (fabs(inst->fixed_asymmetry) <= MAX_ASYMMETRY) {
+ inst->asymmetry = inst->fixed_asymmetry;
+ } else {
+ if (!estimate_asymmetry(times_back, offsets, delays, n,
+ &inst->asymmetry, &inst->asymmetry_run))
+ return;
+ }
+
+ /* Correct the offsets */
+ for (i = 0; i < n; i++)
+ offsets[i] -= inst->asymmetry * delays[i];
+}
+
+/* ================================================== */
+
+/* This defines the assumed ratio between the standard deviation of
+ the samples and the peer distance as measured from the round trip
+ time. E.g. a value of 4 means that we think the standard deviation
+ is four times the fluctuation of the peer distance */
+
+#define SD_TO_DIST_RATIO 0.7
+
+/* ================================================== */
+/* This function runs the linear regression operation on the data. It
+ finds the set of most recent samples that give the tightest
+ confidence interval for the frequency, and truncates the register
+ down to that number of samples */
+
+void
+SST_DoNewRegression(SST_Stats inst)
+{
+ double times_back[MAX_SAMPLES * REGRESS_RUNS_RATIO];
+ double offsets[MAX_SAMPLES * REGRESS_RUNS_RATIO];
+ double peer_distances[MAX_SAMPLES];
+ double weights[MAX_SAMPLES];
+
+ int degrees_of_freedom;
+ int best_start, times_back_start;
+ double est_intercept, est_slope, est_var, est_intercept_sd, est_slope_sd;
+ int i, j, nruns;
+ double min_distance, median_distance;
+ double sd_weight, sd;
+ double old_skew, old_freq, stress;
+ double precision;
+
+ convert_to_intervals(inst, times_back + inst->runs_samples);
+
+ if (inst->n_samples > 0) {
+ for (i = -inst->runs_samples; i < inst->n_samples; i++) {
+ offsets[i + inst->runs_samples] = inst->offsets[get_runsbuf_index(inst, i)];
+ }
+
+ for (i = 0, min_distance = DBL_MAX; i < inst->n_samples; i++) {
+ j = get_buf_index(inst, i);
+ peer_distances[i] = 0.5 * inst->peer_delays[get_runsbuf_index(inst, i)] +
+ inst->peer_dispersions[j];
+ if (peer_distances[i] < min_distance) {
+ min_distance = peer_distances[i];
+ }
+ }
+
+ /* And now, work out the weight vector */
+
+ precision = LCL_GetSysPrecisionAsQuantum();
+ median_distance = RGR_FindMedian(peer_distances, inst->n_samples);
+
+ sd = (median_distance - min_distance) / SD_TO_DIST_RATIO;
+ sd = CLAMP(precision, sd, min_distance);
+ min_distance += precision;
+
+ for (i=0; i<inst->n_samples; i++) {
+ sd_weight = 1.0;
+ if (peer_distances[i] > min_distance)
+ sd_weight += (peer_distances[i] - min_distance) / sd;
+ weights[i] = SQUARE(sd_weight);
+ }
+ }
+
+ correct_asymmetry(inst, times_back, offsets);
+
+ inst->regression_ok = RGR_FindBestRegression(times_back + inst->runs_samples,
+ offsets + inst->runs_samples, weights,
+ inst->n_samples, inst->runs_samples,
+ inst->min_samples,
+ &est_intercept, &est_slope, &est_var,
+ &est_intercept_sd, &est_slope_sd,
+ &best_start, &nruns, &degrees_of_freedom);
+
+ if (inst->regression_ok) {
+
+ old_skew = inst->skew;
+ old_freq = inst->estimated_frequency;
+
+ inst->estimated_frequency = est_slope;
+ inst->estimated_frequency_sd = CLAMP(MIN_SKEW, est_slope_sd, MAX_SKEW);
+ inst->skew = est_slope_sd * RGR_GetTCoef(degrees_of_freedom);
+ inst->estimated_offset = est_intercept;
+ inst->offset_time = inst->sample_times[inst->last_sample];
+ inst->estimated_offset_sd = est_intercept_sd;
+ inst->std_dev = MAX(MIN_STDDEV, sqrt(est_var));
+ inst->nruns = nruns;
+
+ inst->skew = CLAMP(MIN_SKEW, inst->skew, MAX_SKEW);
+ stress = fabs(old_freq - inst->estimated_frequency) / old_skew;
+
+ DEBUG_LOG("off=%e freq=%e skew=%e n=%d bs=%d runs=%d asym=%f arun=%d",
+ inst->estimated_offset, inst->estimated_frequency, inst->skew,
+ inst->n_samples, best_start, inst->nruns,
+ inst->asymmetry, inst->asymmetry_run);
+
+ if (logfileid != -1) {
+ LOG_FileWrite(logfileid, "%s %-15s %10.3e %10.3e %10.3e %10.3e %10.3e %7.1e %3d %3d %3d %5.2f",
+ UTI_TimeToLogForm(inst->offset_time.tv_sec),
+ inst->ip_addr ? UTI_IPToString(inst->ip_addr) : UTI_RefidToString(inst->refid),
+ inst->std_dev,
+ inst->estimated_offset, inst->estimated_offset_sd,
+ inst->estimated_frequency, inst->skew, stress,
+ inst->n_samples, best_start, inst->nruns,
+ inst->asymmetry);
+ }
+
+ times_back_start = inst->runs_samples + best_start;
+ prune_register(inst, best_start);
+ } else {
+ inst->estimated_frequency = 0.0;
+ inst->estimated_frequency_sd = WORST_CASE_FREQ_BOUND;
+ inst->skew = WORST_CASE_FREQ_BOUND;
+ times_back_start = 0;
+ }
+
+ find_best_sample_index(inst, times_back + times_back_start);
+
+}
+
+/* ================================================== */
+/* Return the assumed worst case range of values that this source's
+ frequency lies within. Frequency is defined as the amount of time
+ the local clock gains relative to the source per unit local clock
+ time. */
+void
+SST_GetFrequencyRange(SST_Stats inst,
+ double *lo, double *hi)
+{
+ double freq, skew;
+ freq = inst->estimated_frequency;
+ skew = inst->skew;
+ *lo = freq - skew;
+ *hi = freq + skew;
+
+ /* This function is currently used only to determine the values of delta
+ and epsilon in the ntp_core module. Limit the skew to a reasonable maximum
+ to avoid failing the dispersion test too easily. */
+ if (skew > WORST_CASE_FREQ_BOUND) {
+ *lo = -WORST_CASE_FREQ_BOUND;
+ *hi = WORST_CASE_FREQ_BOUND;
+ }
+}
+
+/* ================================================== */
+
+void
+SST_GetSelectionData(SST_Stats inst, struct timespec *now,
+ int *stratum, NTP_Leap *leap,
+ double *offset_lo_limit,
+ double *offset_hi_limit,
+ double *root_distance,
+ double *std_dev,
+ double *first_sample_ago,
+ double *last_sample_ago,
+ int *select_ok)
+{
+ double offset, sample_elapsed;
+ int i, j;
+
+ if (!inst->n_samples) {
+ *select_ok = 0;
+ return;
+ }
+
+ i = get_runsbuf_index(inst, inst->best_single_sample);
+ j = get_buf_index(inst, inst->best_single_sample);
+
+ *stratum = inst->stratum;
+ *leap = inst->leap;
+ *std_dev = inst->std_dev;
+
+ sample_elapsed = fabs(UTI_DiffTimespecsToDouble(now, &inst->sample_times[i]));
+ offset = inst->offsets[i] + sample_elapsed * inst->estimated_frequency;
+ *root_distance = 0.5 * inst->root_delays[j] +
+ inst->root_dispersions[j] + sample_elapsed * inst->skew;
+
+ *offset_lo_limit = offset - *root_distance;
+ *offset_hi_limit = offset + *root_distance;
+
+#if 0
+ double average_offset, elapsed;
+ int average_ok;
+ /* average_ok ignored for now */
+ elapsed = UTI_DiffTimespecsToDouble(now, &inst->offset_time);
+ average_offset = inst->estimated_offset + inst->estimated_frequency * elapsed;
+ if (fabs(average_offset - offset) <=
+ inst->peer_dispersions[j] + 0.5 * inst->peer_delays[i]) {
+ average_ok = 1;
+ } else {
+ average_ok = 0;
+ }
+#endif
+
+ i = get_runsbuf_index(inst, 0);
+ *first_sample_ago = UTI_DiffTimespecsToDouble(now, &inst->sample_times[i]);
+ i = get_runsbuf_index(inst, inst->n_samples - 1);
+ *last_sample_ago = UTI_DiffTimespecsToDouble(now, &inst->sample_times[i]);
+
+ *select_ok = inst->regression_ok;
+
+ DEBUG_LOG("n=%d off=%f dist=%f sd=%f first_ago=%f last_ago=%f selok=%d",
+ inst->n_samples, offset, *root_distance, *std_dev,
+ *first_sample_ago, *last_sample_ago, *select_ok);
+}
+
+/* ================================================== */
+
+void
+SST_GetTrackingData(SST_Stats inst, struct timespec *ref_time,
+ double *average_offset, double *offset_sd,
+ double *frequency, double *frequency_sd, double *skew,
+ double *root_delay, double *root_dispersion)
+{
+ int i, j;
+ double elapsed_sample;
+
+ assert(inst->n_samples > 0);
+
+ i = get_runsbuf_index(inst, inst->best_single_sample);
+ j = get_buf_index(inst, inst->best_single_sample);
+
+ *ref_time = inst->offset_time;
+ *average_offset = inst->estimated_offset;
+ *offset_sd = inst->estimated_offset_sd;
+ *frequency = inst->estimated_frequency;
+ *frequency_sd = inst->estimated_frequency_sd;
+ *skew = inst->skew;
+ *root_delay = inst->root_delays[j];
+
+ elapsed_sample = UTI_DiffTimespecsToDouble(&inst->offset_time, &inst->sample_times[i]);
+ *root_dispersion = inst->root_dispersions[j] + inst->skew * elapsed_sample + *offset_sd;
+
+ DEBUG_LOG("n=%d off=%f offsd=%f freq=%e freqsd=%e skew=%e delay=%f disp=%f",
+ inst->n_samples, *average_offset, *offset_sd,
+ *frequency, *frequency_sd, *skew, *root_delay, *root_dispersion);
+}
+
+/* ================================================== */
+
+void
+SST_SlewSamples(SST_Stats inst, struct timespec *when, double dfreq, double doffset)
+{
+ int m, i;
+ double delta_time;
+ struct timespec *sample, prev;
+ double prev_offset, prev_freq;
+
+ if (!inst->n_samples)
+ return;
+
+ for (m = -inst->runs_samples; m < inst->n_samples; m++) {
+ i = get_runsbuf_index(inst, m);
+ sample = &inst->sample_times[i];
+ prev = *sample;
+ UTI_AdjustTimespec(sample, when, sample, &delta_time, dfreq, doffset);
+ inst->offsets[i] += delta_time;
+ }
+
+ /* Update the regression estimates */
+ prev = inst->offset_time;
+ prev_offset = inst->estimated_offset;
+ prev_freq = inst->estimated_frequency;
+ UTI_AdjustTimespec(&inst->offset_time, when, &inst->offset_time,
+ &delta_time, dfreq, doffset);
+ inst->estimated_offset += delta_time;
+ inst->estimated_frequency = (inst->estimated_frequency - dfreq) / (1.0 - dfreq);
+
+ DEBUG_LOG("n=%d m=%d old_off_time=%s new=%s old_off=%f new_off=%f old_freq=%.3f new_freq=%.3f",
+ inst->n_samples, inst->runs_samples,
+ UTI_TimespecToString(&prev), UTI_TimespecToString(&inst->offset_time),
+ prev_offset, inst->estimated_offset,
+ 1.0e6 * prev_freq, 1.0e6 * inst->estimated_frequency);
+}
+
+/* ================================================== */
+
+void
+SST_AddDispersion(SST_Stats inst, double dispersion)
+{
+ int m, i;
+
+ for (m = 0; m < inst->n_samples; m++) {
+ i = get_buf_index(inst, m);
+ inst->root_dispersions[i] += dispersion;
+ inst->peer_dispersions[i] += dispersion;
+ }
+}
+
+/* ================================================== */
+
+double
+SST_PredictOffset(SST_Stats inst, struct timespec *when)
+{
+ double elapsed;
+
+ if (inst->n_samples < 3) {
+ /* We don't have any useful statistics, and presumably the poll
+ interval is minimal. We can't do any useful prediction other
+ than use the latest sample or zero if we don't have any samples */
+ if (inst->n_samples > 0) {
+ return inst->offsets[inst->last_sample];
+ } else {
+ return 0.0;
+ }
+ } else {
+ elapsed = UTI_DiffTimespecsToDouble(when, &inst->offset_time);
+ return inst->estimated_offset + elapsed * inst->estimated_frequency;
+ }
+
+}
+
+/* ================================================== */
+
+double
+SST_MinRoundTripDelay(SST_Stats inst)
+{
+ if (inst->fixed_min_delay > 0.0)
+ return inst->fixed_min_delay;
+
+ if (!inst->n_samples)
+ return DBL_MAX;
+
+ return inst->peer_delays[inst->min_delay_sample];
+}
+
+/* ================================================== */
+
+int
+SST_GetDelayTestData(SST_Stats inst, struct timespec *sample_time,
+ double *last_sample_ago, double *predicted_offset,
+ double *min_delay, double *skew, double *std_dev)
+{
+ if (inst->n_samples < 6)
+ return 0;
+
+ *last_sample_ago = UTI_DiffTimespecsToDouble(sample_time, &inst->offset_time);
+ *predicted_offset = inst->estimated_offset +
+ *last_sample_ago * inst->estimated_frequency;
+ *min_delay = SST_MinRoundTripDelay(inst);
+ *skew = inst->skew;
+ *std_dev = inst->std_dev;
+
+ return 1;
+}
+
+/* ================================================== */
+/* This is used to save the register to a file, so that we can reload
+ it after restarting the daemon */
+
+void
+SST_SaveToFile(SST_Stats inst, FILE *out)
+{
+ int m, i, j;
+
+ fprintf(out, "%d\n", inst->n_samples);
+
+ for(m = 0; m < inst->n_samples; m++) {
+ i = get_runsbuf_index(inst, m);
+ j = get_buf_index(inst, m);
+
+ fprintf(out,
+#ifdef HAVE_LONG_TIME_T
+ "%08"PRIx64" %08lx %.6e %.6e %.6e %.6e %.6e %.6e %.6e %d\n",
+ (uint64_t)inst->sample_times[i].tv_sec,
+#else
+ "%08lx %08lx %.6e %.6e %.6e %.6e %.6e %.6e %.6e %d\n",
+ (unsigned long)inst->sample_times[i].tv_sec,
+#endif
+ (unsigned long)inst->sample_times[i].tv_nsec / 1000,
+ inst->offsets[i],
+ inst->orig_offsets[j],
+ inst->peer_delays[i],
+ inst->peer_dispersions[j],
+ inst->root_delays[j],
+ inst->root_dispersions[j],
+ 1.0, /* used to be inst->weights[i] */
+ inst->stratum /* used to be an array */);
+
+ }
+
+ fprintf(out, "%d\n", inst->asymmetry_run);
+}
+
+/* ================================================== */
+/* This is used to reload samples from a file */
+
+int
+SST_LoadFromFile(SST_Stats inst, FILE *in)
+{
+#ifdef HAVE_LONG_TIME_T
+ uint64_t sec;
+#else
+ unsigned long sec;
+#endif
+ unsigned long usec;
+ int i;
+ char line[1024];
+ double weight;
+
+ SST_ResetInstance(inst);
+
+ if (fgets(line, sizeof(line), in) &&
+ sscanf(line, "%d", &inst->n_samples) == 1 &&
+ inst->n_samples >= 0 && inst->n_samples <= MAX_SAMPLES) {
+
+ for (i=0; i<inst->n_samples; i++) {
+ if (!fgets(line, sizeof(line), in) ||
+ (sscanf(line,
+#ifdef HAVE_LONG_TIME_T
+ "%"SCNx64"%lx%lf%lf%lf%lf%lf%lf%lf%d\n",
+#else
+ "%lx%lx%lf%lf%lf%lf%lf%lf%lf%d\n",
+#endif
+ &(sec), &(usec),
+ &(inst->offsets[i]),
+ &(inst->orig_offsets[i]),
+ &(inst->peer_delays[i]),
+ &(inst->peer_dispersions[i]),
+ &(inst->root_delays[i]),
+ &(inst->root_dispersions[i]),
+ &weight, /* not used anymore */
+ &inst->stratum) != 10)) {
+
+ /* This is the branch taken if the read FAILED */
+
+ inst->n_samples = 0; /* Load abandoned if any sign of corruption */
+ return 0;
+ } else {
+
+ /* This is the branch taken if the read is SUCCESSFUL */
+ inst->sample_times[i].tv_sec = sec;
+ inst->sample_times[i].tv_nsec = 1000 * usec;
+ UTI_NormaliseTimespec(&inst->sample_times[i]);
+ }
+ }
+
+ /* This field was not saved in older versions */
+ if (!fgets(line, sizeof(line), in) || sscanf(line, "%d\n", &inst->asymmetry_run) != 1)
+ inst->asymmetry_run = 0;
+ } else {
+ inst->n_samples = 0; /* Load abandoned if any sign of corruption */
+ return 0;
+ }
+
+ if (!inst->n_samples)
+ return 1;
+
+ inst->last_sample = inst->n_samples - 1;
+
+ find_min_delay_sample(inst);
+ SST_DoNewRegression(inst);
+
+ return 1;
+}
+
+/* ================================================== */
+
+void
+SST_DoSourceReport(SST_Stats inst, RPT_SourceReport *report, struct timespec *now)
+{
+ int i, j;
+ struct timespec last_sample_time;
+
+ if (inst->n_samples > 0) {
+ i = get_runsbuf_index(inst, inst->n_samples - 1);
+ j = get_buf_index(inst, inst->n_samples - 1);
+ report->orig_latest_meas = inst->orig_offsets[j];
+ report->latest_meas = inst->offsets[i];
+ report->latest_meas_err = 0.5*inst->root_delays[j] + inst->root_dispersions[j];
+ report->stratum = inst->stratum;
+
+ /* Align the sample time to reduce the leak of the receive timestamp */
+ last_sample_time = inst->sample_times[i];
+ last_sample_time.tv_nsec = 0;
+ report->latest_meas_ago = UTI_DiffTimespecsToDouble(now, &last_sample_time);
+ } else {
+ report->latest_meas_ago = (uint32_t)-1;
+ report->orig_latest_meas = 0;
+ report->latest_meas = 0;
+ report->latest_meas_err = 0;
+ report->stratum = 0;
+ }
+}
+
+/* ================================================== */
+
+int
+SST_Samples(SST_Stats inst)
+{
+ return inst->n_samples;
+}
+
+/* ================================================== */
+
+void
+SST_DoSourcestatsReport(SST_Stats inst, RPT_SourcestatsReport *report, struct timespec *now)
+{
+ double dspan;
+ double elapsed, sample_elapsed;
+ int li, lj, bi, bj;
+
+ report->n_samples = inst->n_samples;
+ report->n_runs = inst->nruns;
+
+ if (inst->n_samples > 1) {
+ li = get_runsbuf_index(inst, inst->n_samples - 1);
+ lj = get_buf_index(inst, inst->n_samples - 1);
+ dspan = UTI_DiffTimespecsToDouble(&inst->sample_times[li],
+ &inst->sample_times[get_runsbuf_index(inst, 0)]);
+ report->span_seconds = (unsigned long) (dspan + 0.5);
+
+ if (inst->n_samples > 3) {
+ elapsed = UTI_DiffTimespecsToDouble(now, &inst->offset_time);
+ bi = get_runsbuf_index(inst, inst->best_single_sample);
+ bj = get_buf_index(inst, inst->best_single_sample);
+ sample_elapsed = UTI_DiffTimespecsToDouble(now, &inst->sample_times[bi]);
+ report->est_offset = inst->estimated_offset + elapsed * inst->estimated_frequency;
+ report->est_offset_err = (inst->estimated_offset_sd +
+ sample_elapsed * inst->skew +
+ (0.5*inst->root_delays[bj] + inst->root_dispersions[bj]));
+ } else {
+ report->est_offset = inst->offsets[li];
+ report->est_offset_err = 0.5*inst->root_delays[lj] + inst->root_dispersions[lj];
+ }
+ } else {
+ report->span_seconds = 0;
+ report->est_offset = 0;
+ report->est_offset_err = 0;
+ }
+
+ report->resid_freq_ppm = 1.0e6 * inst->estimated_frequency;
+ report->skew_ppm = 1.0e6 * inst->skew;
+ report->sd = inst->std_dev;
+}
+
+/* ================================================== */
+
+double
+SST_GetJitterAsymmetry(SST_Stats inst)
+{
+ return inst->asymmetry;
+}
+
+/* ================================================== */