/* chronyd/chronyc - Programs for keeping computer clocks accurate. ********************************************************************** * Copyright (C) Miroslav Lichvar 2009-2011, 2013-2014, 2016-2018 * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * ********************************************************************** ======================================================================= Routines implementing reference clocks. */ #include "config.h" #include "array.h" #include "refclock.h" #include "reference.h" #include "conf.h" #include "local.h" #include "memory.h" #include "util.h" #include "sources.h" #include "logging.h" #include "regress.h" #include "samplefilt.h" #include "sched.h" /* list of refclock drivers */ extern RefclockDriver RCL_SHM_driver; extern RefclockDriver RCL_SOCK_driver; extern RefclockDriver RCL_PPS_driver; extern RefclockDriver RCL_PHC_driver; struct FilterSample { double offset; double dispersion; struct timespec sample_time; }; struct MedianFilter { int length; int index; int used; int last; int avg_var_n; double avg_var; double max_var; struct FilterSample *samples; int *selected; double *x_data; double *y_data; double *w_data; }; struct RCL_Instance_Record { RefclockDriver *driver; void *data; char *driver_parameter; int driver_parameter_length; int driver_poll; int driver_polled; int poll; int leap_status; int pps_forced; int pps_rate; int pps_active; int max_lock_age; int stratum; int tai; uint32_t ref_id; uint32_t lock_ref; double offset; double delay; double precision; double pulse_width; SPF_Instance filter; SCH_TimeoutID timeout_id; SRC_Instance source; }; /* Array of pointers to RCL_Instance_Record */ static ARR_Instance refclocks; static LOG_FileID logfileid; static int valid_sample_time(RCL_Instance instance, struct timespec *sample_time); static int pps_stratum(RCL_Instance instance, struct timespec *ts); static void poll_timeout(void *arg); static void slew_samples(struct timespec *raw, struct timespec *cooked, double dfreq, double doffset, LCL_ChangeType change_type, void *anything); static void add_dispersion(double dispersion, void *anything); static void log_sample(RCL_Instance instance, struct timespec *sample_time, int filtered, int pulse, double raw_offset, double cooked_offset, double dispersion); static RCL_Instance get_refclock(unsigned int index) { return *(RCL_Instance *)ARR_GetElement(refclocks, index); } void RCL_Initialise(void) { refclocks = ARR_CreateInstance(sizeof (RCL_Instance)); CNF_AddRefclocks(); if (ARR_GetSize(refclocks) > 0) { LCL_AddParameterChangeHandler(slew_samples, NULL); LCL_AddDispersionNotifyHandler(add_dispersion, NULL); } logfileid = CNF_GetLogRefclocks() ? LOG_FileOpen("refclocks", " Date (UTC) Time Refid DP L P Raw offset Cooked offset Disp.") : -1; } void RCL_Finalise(void) { unsigned int i; for (i = 0; i < ARR_GetSize(refclocks); i++) { RCL_Instance inst = get_refclock(i); if (inst->driver->fini) inst->driver->fini(inst); SPF_DestroyInstance(inst->filter); Free(inst->driver_parameter); SRC_DestroyInstance(inst->source); Free(inst); } if (ARR_GetSize(refclocks) > 0) { LCL_RemoveParameterChangeHandler(slew_samples, NULL); LCL_RemoveDispersionNotifyHandler(add_dispersion, NULL); } ARR_DestroyInstance(refclocks); } int RCL_AddRefclock(RefclockParameters *params) { RCL_Instance inst; inst = MallocNew(struct RCL_Instance_Record); *(RCL_Instance *)ARR_GetNewElement(refclocks) = inst; if (strcmp(params->driver_name, "SHM") == 0) { inst->driver = &RCL_SHM_driver; } else if (strcmp(params->driver_name, "SOCK") == 0) { inst->driver = &RCL_SOCK_driver; } else if (strcmp(params->driver_name, "PPS") == 0) { inst->driver = &RCL_PPS_driver; } else if (strcmp(params->driver_name, "PHC") == 0) { inst->driver = &RCL_PHC_driver; } else { LOG_FATAL("unknown refclock driver %s", params->driver_name); } if (!inst->driver->init && !inst->driver->poll) LOG_FATAL("refclock driver %s is not compiled in", params->driver_name); if (params->tai && !CNF_GetLeapSecTimezone()) LOG_FATAL("refclock tai option requires leapsectz"); inst->data = NULL; inst->driver_parameter = params->driver_parameter; inst->driver_parameter_length = 0; inst->driver_poll = params->driver_poll; inst->poll = params->poll; inst->driver_polled = 0; inst->leap_status = LEAP_Normal; inst->pps_forced = params->pps_forced; inst->pps_rate = params->pps_rate; inst->pps_active = 0; inst->max_lock_age = params->max_lock_age; inst->stratum = params->stratum; inst->tai = params->tai; inst->lock_ref = params->lock_ref_id; inst->offset = params->offset; inst->delay = params->delay; inst->precision = LCL_GetSysPrecisionAsQuantum(); inst->precision = MAX(inst->precision, params->precision); inst->pulse_width = params->pulse_width; inst->timeout_id = -1; inst->source = NULL; if (inst->driver_parameter) { int i; inst->driver_parameter_length = strlen(inst->driver_parameter); for (i = 0; i < inst->driver_parameter_length; i++) if (inst->driver_parameter[i] == ':') inst->driver_parameter[i] = '\0'; } if (inst->pps_rate < 1) inst->pps_rate = 1; if (params->ref_id) inst->ref_id = params->ref_id; else { unsigned char ref[5] = { 0, 0, 0, 0, 0 }; unsigned int index = ARR_GetSize(refclocks) - 1; snprintf((char *)ref, sizeof (ref), "%3.3s", params->driver_name); ref[3] = index % 10 + '0'; if (index >= 10) ref[2] = (index / 10) % 10 + '0'; inst->ref_id = (uint32_t)ref[0] << 24 | ref[1] << 16 | ref[2] << 8 | ref[3]; } if (inst->driver->poll) { int max_samples; if (inst->driver_poll > inst->poll) inst->driver_poll = inst->poll; max_samples = 1 << (inst->poll - inst->driver_poll); if (max_samples < params->filter_length) { if (max_samples < 4) { LOG(LOGS_WARN, "Setting filter length for %s to %d", UTI_RefidToString(inst->ref_id), max_samples); } params->filter_length = max_samples; } } if (inst->driver->init && !inst->driver->init(inst)) LOG_FATAL("refclock %s initialisation failed", params->driver_name); /* Require the filter to have at least 4 samples to produce a filtered sample, or be full for shorter lengths, and combine 60% of samples closest to the median */ inst->filter = SPF_CreateInstance(MIN(params->filter_length, 4), params->filter_length, params->max_dispersion, 0.6); inst->source = SRC_CreateNewInstance(inst->ref_id, SRC_REFCLOCK, params->sel_options, NULL, params->min_samples, params->max_samples, 0.0, 0.0); DEBUG_LOG("refclock %s refid=%s poll=%d dpoll=%d filter=%d", params->driver_name, UTI_RefidToString(inst->ref_id), inst->poll, inst->driver_poll, params->filter_length); Free(params->driver_name); return 1; } void RCL_StartRefclocks(void) { unsigned int i, j, n; n = ARR_GetSize(refclocks); for (i = 0; i < n; i++) { RCL_Instance inst = get_refclock(i); SRC_SetActive(inst->source); inst->timeout_id = SCH_AddTimeoutByDelay(0.0, poll_timeout, (void *)inst); if (inst->lock_ref) { /* Replace lock refid with index to refclocks */ for (j = 0; j < n && get_refclock(j)->ref_id != inst->lock_ref; j++) ; inst->lock_ref = j < n ? j : -1; } else inst->lock_ref = -1; } } void RCL_ReportSource(RPT_SourceReport *report, struct timespec *now) { unsigned int i; uint32_t ref_id; assert(report->ip_addr.family == IPADDR_INET4); ref_id = report->ip_addr.addr.in4; for (i = 0; i < ARR_GetSize(refclocks); i++) { RCL_Instance inst = get_refclock(i); if (inst->ref_id == ref_id) { report->poll = inst->poll; report->mode = RPT_LOCAL_REFERENCE; break; } } } void RCL_SetDriverData(RCL_Instance instance, void *data) { instance->data = data; } void * RCL_GetDriverData(RCL_Instance instance) { return instance->data; } char * RCL_GetDriverParameter(RCL_Instance instance) { return instance->driver_parameter; } char * RCL_GetDriverOption(RCL_Instance instance, char *name) { char *s, *e; int n; s = instance->driver_parameter; e = s + instance->driver_parameter_length; n = strlen(name); while (1) { s += strlen(s) + 1; if (s >= e) break; if (!strncmp(name, s, n)) { if (s[n] == '=') return s + n + 1; if (s[n] == '\0') return s + n; } } return NULL; } static int convert_tai_offset(struct timespec *sample_time, double *offset) { struct timespec tai_ts, utc_ts; int tai_offset; /* Get approximate TAI-UTC offset for the reference time in TAI */ UTI_AddDoubleToTimespec(sample_time, *offset, &tai_ts); tai_offset = REF_GetTaiOffset(&tai_ts); /* Get TAI-UTC offset for the reference time in UTC +/- 1 second */ UTI_AddDoubleToTimespec(&tai_ts, -tai_offset, &utc_ts); tai_offset = REF_GetTaiOffset(&utc_ts); if (!tai_offset) return 0; *offset -= tai_offset; return 1; } static int accumulate_sample(RCL_Instance instance, struct timespec *sample_time, double offset, double dispersion) { NTP_Sample sample; sample.time = *sample_time; sample.offset = offset; sample.peer_delay = instance->delay; sample.root_delay = instance->delay; sample.peer_dispersion = dispersion; sample.root_dispersion = dispersion; sample.leap = instance->leap_status; /* Handle special case when PPS is used with the local reference */ if (instance->pps_active && instance->lock_ref == -1) sample.stratum = pps_stratum(instance, &sample.time); else sample.stratum = instance->stratum; return SPF_AccumulateSample(instance->filter, &sample); } int RCL_AddSample(RCL_Instance instance, struct timespec *sample_time, double offset, int leap) { double correction, dispersion; struct timespec cooked_time; if (instance->pps_forced) return RCL_AddPulse(instance, sample_time, -offset); LCL_GetOffsetCorrection(sample_time, &correction, &dispersion); UTI_AddDoubleToTimespec(sample_time, correction, &cooked_time); dispersion += instance->precision; /* Make sure the timestamp and offset provided by the driver are sane */ if (!UTI_IsTimeOffsetSane(sample_time, offset) || !valid_sample_time(instance, &cooked_time)) return 0; switch (leap) { case LEAP_Normal: case LEAP_InsertSecond: case LEAP_DeleteSecond: instance->leap_status = leap; break; default: DEBUG_LOG("refclock sample ignored bad leap %d", leap); return 0; } if (instance->tai && !convert_tai_offset(sample_time, &offset)) { DEBUG_LOG("refclock sample ignored unknown TAI offset"); return 0; } if (!accumulate_sample(instance, &cooked_time, offset - correction + instance->offset, dispersion)) return 0; instance->pps_active = 0; log_sample(instance, &cooked_time, 0, 0, offset, offset - correction + instance->offset, dispersion); /* for logging purposes */ if (!instance->driver->poll) instance->driver_polled++; return 1; } int RCL_AddPulse(RCL_Instance instance, struct timespec *pulse_time, double second) { double correction, dispersion; struct timespec cooked_time; LCL_GetOffsetCorrection(pulse_time, &correction, &dispersion); UTI_AddDoubleToTimespec(pulse_time, correction, &cooked_time); second += correction; if (!UTI_IsTimeOffsetSane(pulse_time, 0.0)) return 0; return RCL_AddCookedPulse(instance, &cooked_time, second, dispersion, correction); } static int check_pulse_edge(RCL_Instance instance, double offset, double distance) { double max_error; if (instance->pulse_width <= 0.0) return 1; max_error = 1.0 / instance->pps_rate - instance->pulse_width; max_error = MIN(instance->pulse_width, max_error); max_error *= 0.5; if (fabs(offset) > max_error || distance > max_error) { DEBUG_LOG("refclock pulse ignored offset=%.9f distance=%.9f max_error=%.9f", offset, distance, max_error); return 0; } return 1; } int RCL_AddCookedPulse(RCL_Instance instance, struct timespec *cooked_time, double second, double dispersion, double raw_correction) { double offset; int rate; NTP_Leap leap; if (!UTI_IsTimeOffsetSane(cooked_time, second) || !valid_sample_time(instance, cooked_time)) return 0; leap = LEAP_Normal; dispersion += instance->precision; rate = instance->pps_rate; offset = -second + instance->offset; /* Adjust the offset to [-0.5/rate, 0.5/rate) interval */ offset -= (long)(offset * rate) / (double)rate; if (offset < -0.5 / rate) offset += 1.0 / rate; else if (offset >= 0.5 / rate) offset -= 1.0 / rate; if (instance->lock_ref != -1) { RCL_Instance lock_refclock; NTP_Sample ref_sample; double sample_diff, shift; lock_refclock = get_refclock(instance->lock_ref); if (!SPF_GetLastSample(lock_refclock->filter, &ref_sample)) { DEBUG_LOG("refclock pulse ignored no ref sample"); return 0; } ref_sample.root_dispersion += SPF_GetAvgSampleDispersion(lock_refclock->filter); sample_diff = UTI_DiffTimespecsToDouble(cooked_time, &ref_sample.time); if (fabs(sample_diff) >= (double)instance->max_lock_age / rate) { DEBUG_LOG("refclock pulse ignored samplediff=%.9f", sample_diff); return 0; } /* Align the offset to the reference sample */ if ((ref_sample.offset - offset) >= 0.0) shift = (long)((ref_sample.offset - offset) * rate + 0.5) / (double)rate; else shift = (long)((ref_sample.offset - offset) * rate - 0.5) / (double)rate; offset += shift; if (fabs(ref_sample.offset - offset) + ref_sample.root_dispersion + dispersion >= 0.2 / rate) { DEBUG_LOG("refclock pulse ignored offdiff=%.9f refdisp=%.9f disp=%.9f", ref_sample.offset - offset, ref_sample.root_dispersion, dispersion); return 0; } if (!check_pulse_edge(instance, ref_sample.offset - offset, 0.0)) return 0; leap = lock_refclock->leap_status; DEBUG_LOG("refclock pulse offset=%.9f offdiff=%.9f samplediff=%.9f", offset, ref_sample.offset - offset, sample_diff); } else { struct timespec ref_time; int is_synchronised, stratum; double root_delay, root_dispersion, distance; uint32_t ref_id; /* Ignore the pulse if we are not well synchronized and the local reference is not active */ REF_GetReferenceParams(cooked_time, &is_synchronised, &leap, &stratum, &ref_id, &ref_time, &root_delay, &root_dispersion); distance = fabs(root_delay) / 2 + root_dispersion; if (leap == LEAP_Unsynchronised || distance >= 0.5 / rate) { DEBUG_LOG("refclock pulse ignored offset=%.9f sync=%d dist=%.9f", offset, leap != LEAP_Unsynchronised, distance); /* Drop also all stored samples */ SPF_DropSamples(instance->filter); return 0; } if (!check_pulse_edge(instance, offset, distance)) return 0; } if (!accumulate_sample(instance, cooked_time, offset, dispersion)) return 0; instance->leap_status = leap; instance->pps_active = 1; log_sample(instance, cooked_time, 0, 1, offset + raw_correction - instance->offset, offset, dispersion); /* for logging purposes */ if (!instance->driver->poll) instance->driver_polled++; return 1; } double RCL_GetPrecision(RCL_Instance instance) { return instance->precision; } int RCL_GetDriverPoll(RCL_Instance instance) { return instance->driver_poll; } static int valid_sample_time(RCL_Instance instance, struct timespec *sample_time) { struct timespec now; double diff; LCL_ReadCookedTime(&now, NULL); diff = UTI_DiffTimespecsToDouble(&now, sample_time); if (diff < 0.0 || diff > UTI_Log2ToDouble(instance->poll + 1)) { DEBUG_LOG("%s refclock sample time %s not valid age=%.6f", UTI_RefidToString(instance->ref_id), UTI_TimespecToString(sample_time), diff); return 0; } return 1; } static int pps_stratum(RCL_Instance instance, struct timespec *ts) { struct timespec ref_time; int is_synchronised, stratum; unsigned int i; double root_delay, root_dispersion; NTP_Leap leap; uint32_t ref_id; RCL_Instance refclock; REF_GetReferenceParams(ts, &is_synchronised, &leap, &stratum, &ref_id, &ref_time, &root_delay, &root_dispersion); /* Don't change our stratum if the local reference is active or this is the current source */ if (ref_id == instance->ref_id || (!is_synchronised && leap != LEAP_Unsynchronised)) return stratum - 1; /* Or the current source is another PPS refclock */ for (i = 0; i < ARR_GetSize(refclocks); i++) { refclock = get_refclock(i); if (refclock->ref_id == ref_id && refclock->pps_active && refclock->lock_ref == -1) return stratum - 1; } return 0; } static void poll_timeout(void *arg) { NTP_Sample sample; int poll; RCL_Instance inst = (RCL_Instance)arg; poll = inst->poll; if (inst->driver->poll) { poll = inst->driver_poll; inst->driver->poll(inst); inst->driver_polled++; } if (!(inst->driver->poll && inst->driver_polled < (1 << (inst->poll - inst->driver_poll)))) { inst->driver_polled = 0; if (SPF_GetFilteredSample(inst->filter, &sample)) { SRC_UpdateReachability(inst->source, 1); SRC_AccumulateSample(inst->source, &sample); SRC_SelectSource(inst->source); log_sample(inst, &sample.time, 1, 0, 0.0, sample.offset, sample.peer_dispersion); } else { SRC_UpdateReachability(inst->source, 0); } } inst->timeout_id = SCH_AddTimeoutByDelay(UTI_Log2ToDouble(poll), poll_timeout, arg); } static void slew_samples(struct timespec *raw, struct timespec *cooked, double dfreq, double doffset, LCL_ChangeType change_type, void *anything) { unsigned int i; for (i = 0; i < ARR_GetSize(refclocks); i++) { if (change_type == LCL_ChangeUnknownStep) SPF_DropSamples(get_refclock(i)->filter); else SPF_SlewSamples(get_refclock(i)->filter, cooked, dfreq, doffset); } } static void add_dispersion(double dispersion, void *anything) { unsigned int i; for (i = 0; i < ARR_GetSize(refclocks); i++) SPF_AddDispersion(get_refclock(i)->filter, dispersion); } static void log_sample(RCL_Instance instance, struct timespec *sample_time, int filtered, int pulse, double raw_offset, double cooked_offset, double dispersion) { char sync_stats[4] = {'N', '+', '-', '?'}; if (logfileid == -1) return; if (!filtered) { LOG_FileWrite(logfileid, "%s.%06d %-5s %3d %1c %1d %13.6e %13.6e %10.3e", UTI_TimeToLogForm(sample_time->tv_sec), (int)sample_time->tv_nsec / 1000, UTI_RefidToString(instance->ref_id), instance->driver_polled, sync_stats[instance->leap_status], pulse, raw_offset, cooked_offset, dispersion); } else { LOG_FileWrite(logfileid, "%s.%06d %-5s - %1c - - %13.6e %10.3e", UTI_TimeToLogForm(sample_time->tv_sec), (int)sample_time->tv_nsec / 1000, UTI_RefidToString(instance->ref_id), sync_stats[instance->leap_status], cooked_offset, dispersion); } }