summaryrefslogtreecommitdiffstats
path: root/lib/verity/rs_encode_char.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/verity/rs_encode_char.c')
-rw-r--r--lib/verity/rs_encode_char.c173
1 files changed, 173 insertions, 0 deletions
diff --git a/lib/verity/rs_encode_char.c b/lib/verity/rs_encode_char.c
new file mode 100644
index 0000000..dc751a0
--- /dev/null
+++ b/lib/verity/rs_encode_char.c
@@ -0,0 +1,173 @@
+/*
+ * Reed-Solomon encoder, based on libfec
+ *
+ * Copyright (C) 2002, Phil Karn, KA9Q
+ * libcryptsetup modifications
+ * Copyright (C) 2017-2019 Red Hat, Inc. All rights reserved.
+ *
+ * This file is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This file is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this file; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+#include <string.h>
+#include <stdlib.h>
+
+#include "rs.h"
+
+/* Initialize a Reed-Solomon codec
+ * symsize = symbol size, bits
+ * gfpoly = Field generator polynomial coefficients
+ * fcr = first root of RS code generator polynomial, index form
+ * prim = primitive element to generate polynomial roots
+ * nroots = RS code generator polynomial degree (number of roots)
+ * pad = padding bytes at front of shortened block
+ */
+struct rs *init_rs_char(int symsize, int gfpoly, int fcr, int prim, int nroots, int pad)
+{
+ struct rs *rs;
+ int i, j, sr, root, iprim;
+
+ /* Check parameter ranges */
+ if (symsize < 0 || symsize > 8 * (int)sizeof(data_t))
+ return NULL;
+ if (fcr < 0 || fcr >= (1<<symsize))
+ return NULL;
+ if (prim <= 0 || prim >= (1<<symsize))
+ return NULL;
+ if (nroots < 0 || nroots >= (1<<symsize))
+ return NULL; /* Can't have more roots than symbol values! */
+
+ if (pad < 0 || pad >= ((1<<symsize) - 1 - nroots))
+ return NULL; /* Too much padding */
+
+ rs = calloc(1, sizeof(struct rs));
+ if (rs == NULL)
+ return NULL;
+
+ rs->mm = symsize;
+ rs->nn = (1<<symsize) - 1;
+ rs->pad = pad;
+
+ rs->alpha_to = malloc(sizeof(data_t) * (rs->nn + 1));
+ if (rs->alpha_to == NULL) {
+ free(rs);
+ return NULL;
+ }
+ rs->index_of = malloc(sizeof(data_t) * (rs->nn + 1));
+ if (rs->index_of == NULL) {
+ free(rs->alpha_to);
+ free(rs);
+ return NULL;
+ }
+ memset(rs->index_of, 0, sizeof(data_t) * (rs->nn + 1));
+
+ /* Generate Galois field lookup tables */
+ rs->index_of[0] = A0; /* log(zero) = -inf */
+ rs->alpha_to[A0] = 0; /* alpha**-inf = 0 */
+ sr = 1;
+ for (i = 0; i < rs->nn; i++) {
+ rs->index_of[sr] = i;
+ rs->alpha_to[i] = sr;
+ sr <<= 1;
+ if(sr & (1<<symsize))
+ sr ^= gfpoly;
+ sr &= rs->nn;
+ }
+ if (sr != 1) {
+ /* field generator polynomial is not primitive! */
+ free(rs->alpha_to);
+ free(rs->index_of);
+ free(rs);
+ return NULL;
+ }
+
+ /* Form RS code generator polynomial from its roots */
+ rs->genpoly = malloc(sizeof(data_t) * (nroots + 1));
+ if (rs->genpoly == NULL) {
+ free(rs->alpha_to);
+ free(rs->index_of);
+ free(rs);
+ return NULL;
+ }
+
+ rs->fcr = fcr;
+ rs->prim = prim;
+ rs->nroots = nroots;
+
+ /* Find prim-th root of 1, used in decoding */
+ for (iprim = 1; (iprim % prim) != 0; iprim += rs->nn)
+ ;
+ rs->iprim = iprim / prim;
+
+ rs->genpoly[0] = 1;
+ for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) {
+ rs->genpoly[i + 1] = 1;
+
+ /* Multiply rs->genpoly[] by @**(root + x) */
+ for (j = i; j > 0; j--){
+ if (rs->genpoly[j] != 0)
+ rs->genpoly[j] = rs->genpoly[j - 1] ^ rs->alpha_to[modnn(rs, rs->index_of[rs->genpoly[j]] + root)];
+ else
+ rs->genpoly[j] = rs->genpoly[j - 1];
+ }
+ /* rs->genpoly[0] can never be zero */
+ rs->genpoly[0] = rs->alpha_to[modnn(rs, rs->index_of[rs->genpoly[0]] + root)];
+ }
+ /* convert rs->genpoly[] to index form for quicker encoding */
+ for (i = 0; i <= nroots; i++)
+ rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
+
+ return rs;
+}
+
+void free_rs_char(struct rs *rs)
+{
+ if (!rs)
+ return;
+
+ free(rs->alpha_to);
+ free(rs->index_of);
+ free(rs->genpoly);
+ free(rs);
+}
+
+void encode_rs_char(struct rs *rs, data_t *data, data_t *parity)
+{
+ int i, j;
+ data_t feedback;
+
+ memset(parity, 0, rs->nroots * sizeof(data_t));
+
+ for (i = 0; i < rs->nn - rs->nroots - rs->pad; i++) {
+ feedback = rs->index_of[data[i] ^ parity[0]];
+ if (feedback != A0) {
+ /* feedback term is non-zero */
+#ifdef UNNORMALIZED
+ /* This line is unnecessary when GENPOLY[NROOTS] is unity, as it must
+ * always be for the polynomials constructed by init_rs() */
+ feedback = modnn(rs, rs->nn - rs->genpoly[rs->nroots] + feedback);
+#endif
+ for (j = 1; j < rs->nroots; j++)
+ parity[j] ^= rs->alpha_to[modnn(rs, feedback + rs->genpoly[rs->nroots - j])];
+ }
+
+ /* Shift */
+ memmove(&parity[0], &parity[1], sizeof(data_t) * (rs->nroots - 1));
+
+ if (feedback != A0)
+ parity[rs->nroots - 1] = rs->alpha_to[modnn(rs, feedback + rs->genpoly[0])];
+ else
+ parity[rs->nroots - 1] = 0;
+ }
+}