/* * cryptsetup library API check functions * * Copyright (C) 2009-2019 Red Hat, Inc. All rights reserved. * Copyright (C) 2009-2019 Milan Broz * Copyright (C) 2016-2019 Ondrej Kozina * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include #include #include #include #include #include "api_test.h" #include "luks.h" #include "libcryptsetup.h" #define DMDIR "/dev/mapper/" #define DEVICE_1_UUID "28632274-8c8a-493f-835b-da802e1c576b" #define DEVICE_EMPTY_name "crypt_zero" #define DEVICE_EMPTY DMDIR DEVICE_EMPTY_name #define DEVICE_ERROR_name "crypt_error" #define DEVICE_ERROR DMDIR DEVICE_ERROR_name #define CDEVICE_1 "ctest1" #define CDEVICE_2 "ctest2" #define CDEVICE_WRONG "O_o" #define H_DEVICE "head_ok" #define H_DEVICE_WRONG "head_wr" #define L_DEVICE_1S "luks_onesec" #define L_DEVICE_0S "luks_zerosec" #define L_DEVICE_WRONG "luks_wr" #define L_DEVICE_OK "luks_ok" #define EVL_HEADER_1 "evil_hdr-luks_hdr_damage" #define EVL_HEADER_2 "evil_hdr-payload_overwrite" #define EVL_HEADER_3 "evil_hdr-stripes_payload_dmg" #define EVL_HEADER_4 "evil_hdr-small_luks_device" #define EVL_HEADER_5 "evil_hdr-keyslot_overlap" #define VALID_HEADER "valid_header_file" #define BACKUP_FILE "csetup_backup_file" #define IMAGE1 "compatimage.img" #define IMAGE_EMPTY "empty.img" #define KEYFILE1 "key1.file" #define KEY1 "compatkey" #define KEYFILE2 "key2.file" #define KEY2 "0123456789abcdef" #define PASSPHRASE "blabla" #define PASSPHRASE1 "albalb" #define DEVICE_TEST_UUID "12345678-1234-1234-1234-123456789abc" #define DEVICE_WRONG "/dev/Ooo_" #define DEVICE_CHAR "/dev/zero" #define THE_LFILE_TEMPLATE "cryptsetup-tstlp.XXXXXX" #define LUKS_PHDR_SIZE_B 1024 static int _fips_mode = 0; static char *DEVICE_1 = NULL; static char *DEVICE_2 = NULL; static char *DEVICE_3 = NULL; static char *tmp_file_1 = NULL; static char *test_loop_file = NULL; // Helpers static int get_luks_offsets(int metadata_device, size_t keylength, unsigned int alignpayload_sec, unsigned int alignoffset_sec, uint64_t *r_header_size, uint64_t *r_payload_offset) { int i; uint64_t current_sector; uint32_t sectors_per_stripes_set; if (!keylength) { if (r_header_size) *r_header_size = 0; if (r_payload_offset) *r_payload_offset = 0; return -1; } sectors_per_stripes_set = DIV_ROUND_UP(keylength*LUKS_STRIPES, SECTOR_SIZE); current_sector = DIV_ROUND_UP_MODULO(DIV_ROUND_UP(LUKS_PHDR_SIZE_B, SECTOR_SIZE), LUKS_ALIGN_KEYSLOTS / SECTOR_SIZE); for (i=0; i < (LUKS_NUMKEYS - 1); i++) current_sector = DIV_ROUND_UP_MODULO(current_sector + sectors_per_stripes_set, LUKS_ALIGN_KEYSLOTS / SECTOR_SIZE); if (r_header_size) *r_header_size = current_sector + sectors_per_stripes_set; current_sector = DIV_ROUND_UP_MODULO(current_sector + sectors_per_stripes_set, LUKS_ALIGN_KEYSLOTS / SECTOR_SIZE); if (r_payload_offset) { if (metadata_device) *r_payload_offset = alignpayload_sec; else *r_payload_offset = DIV_ROUND_UP_MODULO(current_sector, alignpayload_sec) + alignoffset_sec; } return 0; } static void _remove_keyfiles(void) { remove(KEYFILE1); remove(KEYFILE2); } #if HAVE_DECL_DM_TASK_RETRY_REMOVE #define DM_RETRY "--retry " #else #define DM_RETRY "" #endif static void _cleanup_dmdevices(void) { struct stat st; if (!stat(DMDIR H_DEVICE, &st)) _system("dmsetup remove " DM_RETRY H_DEVICE, 0); if (!stat(DMDIR H_DEVICE_WRONG, &st)) _system("dmsetup remove " DM_RETRY H_DEVICE_WRONG, 0); if (!stat(DMDIR L_DEVICE_0S, &st)) _system("dmsetup remove " DM_RETRY L_DEVICE_0S, 0); if (!stat(DMDIR L_DEVICE_1S, &st)) _system("dmsetup remove " DM_RETRY L_DEVICE_1S, 0); if (!stat(DMDIR L_DEVICE_WRONG, &st)) _system("dmsetup remove " DM_RETRY L_DEVICE_WRONG, 0); if (!stat(DMDIR L_DEVICE_OK, &st)) _system("dmsetup remove " DM_RETRY L_DEVICE_OK, 0); t_dev_offset = 0; } static void _cleanup(void) { struct stat st; //_system("udevadm settle", 0); if (!stat(DMDIR CDEVICE_1, &st)) _system("dmsetup remove " DM_RETRY CDEVICE_1, 0); if (!stat(DMDIR CDEVICE_2, &st)) _system("dmsetup remove " DM_RETRY CDEVICE_2, 0); if (!stat(DEVICE_EMPTY, &st)) _system("dmsetup remove " DM_RETRY DEVICE_EMPTY_name, 0); if (!stat(DEVICE_ERROR, &st)) _system("dmsetup remove " DM_RETRY DEVICE_ERROR_name, 0); _cleanup_dmdevices(); if (loop_device(THE_LOOP_DEV)) loop_detach(THE_LOOP_DEV); if (loop_device(DEVICE_1)) loop_detach(DEVICE_1); if (loop_device(DEVICE_2)) loop_detach(DEVICE_2); if (loop_device(DEVICE_3)) loop_detach(DEVICE_3); _system("rm -f " IMAGE_EMPTY, 0); _system("rm -f " IMAGE1, 0); if (test_loop_file) remove(test_loop_file); if (tmp_file_1) remove(tmp_file_1); remove(EVL_HEADER_1); remove(EVL_HEADER_2); remove(EVL_HEADER_3); remove(EVL_HEADER_4); remove(EVL_HEADER_5); remove(VALID_HEADER); remove(BACKUP_FILE); _remove_keyfiles(); free(tmp_file_1); free(test_loop_file); free(THE_LOOP_DEV); free(DEVICE_1); free(DEVICE_2); free(DEVICE_3); } static int _setup(void) { int fd, ro = 0; char cmd[128]; test_loop_file = strdup(THE_LFILE_TEMPLATE); if ((fd=mkstemp(test_loop_file)) == -1) { printf("cannot create temporary file with template %s\n", test_loop_file); return 1; } close(fd); snprintf(cmd, sizeof(cmd), "dd if=/dev/zero of=%s bs=%d count=%d 2>/dev/null", test_loop_file, SECTOR_SIZE, TST_LOOP_FILE_SIZE); if (_system(cmd, 1)) return 1; fd = loop_attach(&THE_LOOP_DEV, test_loop_file, 0, 0, &ro); close(fd); tmp_file_1 = strdup(THE_LFILE_TEMPLATE); if ((fd=mkstemp(tmp_file_1)) == -1) { printf("cannot create temporary file with template %s\n", tmp_file_1); return 1; } close(fd); snprintf(cmd, sizeof(cmd), "dd if=/dev/zero of=%s bs=%d count=%d 2>/dev/null", tmp_file_1, SECTOR_SIZE, 10); if (_system(cmd, 1)) return 1; _system("dmsetup create " DEVICE_EMPTY_name " --table \"0 10000 zero\"", 1); _system("dmsetup create " DEVICE_ERROR_name " --table \"0 10000 error\"", 1); _system(" [ ! -e " IMAGE1 " ] && xz -dk " IMAGE1 ".xz", 1); fd = loop_attach(&DEVICE_1, IMAGE1, 0, 0, &ro); close(fd); _system("dd if=/dev/zero of=" IMAGE_EMPTY " bs=1M count=10 2>/dev/null", 1); fd = loop_attach(&DEVICE_2, IMAGE_EMPTY, 0, 0, &ro); close(fd); /* Keymaterial offset is less than 8 sectors */ _system(" [ ! -e " EVL_HEADER_1 " ] && xz -dk " EVL_HEADER_1 ".xz", 1); /* keymaterial offset aims into payload area */ _system(" [ ! -e " EVL_HEADER_2 " ] && xz -dk " EVL_HEADER_2 ".xz", 1); /* keymaterial offset is valid, number of stripes causes payload area to be overwritten */ _system(" [ ! -e " EVL_HEADER_3 " ] && xz -dk " EVL_HEADER_3 ".xz", 1); /* luks device header for data and header on same device. payloadOffset is greater than * device size (crypt_load() test) */ _system(" [ ! -e " EVL_HEADER_4 " ] && xz -dk " EVL_HEADER_4 ".xz", 1); /* two keyslots with same offset (overlapping keyslots) */ _system(" [ ! -e " EVL_HEADER_5 " ] && xz -dk " EVL_HEADER_5 ".xz", 1); /* valid header: payloadOffset=4096, key_size=32, * volume_key = bb21158c733229347bd4e681891e213d94c685be6a5b84818afe7a78a6de7a1a */ _system(" [ ! -e " VALID_HEADER " ] && xz -dk " VALID_HEADER ".xz", 1); /* Prepare tcrypt images */ _system("tar xJf tcrypt-images.tar.xz 2>/dev/null", 1); _system("modprobe dm-crypt", 0); _system("modprobe dm-verity", 0); _fips_mode = fips_mode(); if (_debug) printf("FIPS MODE: %d\n", _fips_mode); /* Use default log callback */ crypt_set_log_callback(NULL, &global_log_callback, NULL); return 0; } static void AddDevicePlain(void) { struct crypt_device *cd; struct crypt_params_plain params = { .hash = "sha1", .skip = 0, .offset = 0, .size = 0 }; int fd; char key[128], key2[128], path[128]; const char *passphrase = PASSPHRASE; // hashed hex version of PASSPHRASE const char *mk_hex = "bb21158c733229347bd4e681891e213d94c685be6a5b84818afe7a78a6de7a1a"; size_t key_size = strlen(mk_hex) / 2; const char *cipher = "aes"; const char *cipher_mode = "cbc-essiv:sha256"; uint64_t size, r_size; crypt_decode_key(key, mk_hex, key_size); FAIL_(crypt_init(&cd, ""), "empty device string"); FAIL_(crypt_init(&cd, DEVICE_WRONG), "nonexistent device name "); FAIL_(crypt_init(&cd, DEVICE_CHAR), "character device as backing device"); OK_(crypt_init(&cd, tmp_file_1)); crypt_free(cd); // test crypt_format, crypt_get_cipher, crypt_get_cipher_mode, crypt_get_volume_key_size OK_(crypt_init(&cd,DEVICE_1)); params.skip = 3; params.offset = 42; FAIL_(crypt_format(cd,CRYPT_PLAIN,NULL,cipher_mode,NULL,NULL,key_size,¶ms),"cipher param is null"); FAIL_(crypt_format(cd,CRYPT_PLAIN,cipher,NULL,NULL,NULL,key_size,¶ms),"cipher_mode param is null"); OK_(crypt_format(cd,CRYPT_PLAIN,cipher,cipher_mode,NULL,NULL,key_size,¶ms)); OK_(strcmp(cipher_mode,crypt_get_cipher_mode(cd))); OK_(strcmp(cipher,crypt_get_cipher(cd))); EQ_((int)key_size, crypt_get_volume_key_size(cd)); EQ_(params.skip, crypt_get_iv_offset(cd)); EQ_(params.offset, crypt_get_data_offset(cd)); params.skip = 0; params.offset = 0; // crypt_set_uuid() FAIL_(crypt_set_uuid(cd,DEVICE_1_UUID),"can't set uuid to plain device"); crypt_free(cd); // default is "plain" hash - no password hash OK_(crypt_init(&cd, DEVICE_1)); OK_(crypt_format(cd, CRYPT_PLAIN, cipher, cipher_mode, NULL, NULL, key_size, NULL)); FAIL_(crypt_activate_by_volume_key(cd, NULL, key, key_size, 0), "cannot verify key with plain"); OK_(crypt_activate_by_volume_key(cd, CDEVICE_1, key, key_size, 0)); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); // test boundaries in offset parameter t_device_size(DEVICE_1,&size); params.hash = NULL; // zero sectors length params.offset = size >> SECTOR_SHIFT; OK_(crypt_init(&cd, DEVICE_1)); OK_(crypt_format(cd, CRYPT_PLAIN, cipher, cipher_mode, NULL, NULL, key_size, ¶ms)); EQ_(crypt_get_data_offset(cd),params.offset); // device size is 0 sectors FAIL_(crypt_activate_by_passphrase(cd, CDEVICE_1, CRYPT_ANY_SLOT, passphrase, strlen(passphrase), 0), "invalid device size (0 blocks)"); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_INACTIVE); // data part of crypt device is of 1 sector size params.offset = (size >> SECTOR_SHIFT) - 1; crypt_free(cd); OK_(crypt_init(&cd, DEVICE_1)); OK_(crypt_format(cd, CRYPT_PLAIN, cipher, cipher_mode, NULL, NULL, key_size, ¶ms)); OK_(crypt_activate_by_passphrase(cd, CDEVICE_1, CRYPT_ANY_SLOT, passphrase, strlen(passphrase), 0)); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); snprintf(path, sizeof(path), "%s/%s", crypt_get_dir(), CDEVICE_1); if (t_device_size(path, &r_size) >= 0) EQ_(r_size>>SECTOR_SHIFT, 1); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); // size > device_size params.offset = 0; params.size = (size >> SECTOR_SHIFT) + 1; crypt_init(&cd, DEVICE_1); OK_(crypt_format(cd, CRYPT_PLAIN, cipher, cipher_mode, NULL, NULL, key_size, ¶ms)); FAIL_(crypt_activate_by_passphrase(cd, CDEVICE_1, CRYPT_ANY_SLOT, passphrase, strlen(passphrase), 0),"Device too small"); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_INACTIVE); crypt_free(cd); // offset == device_size (autodetect size) params.offset = (size >> SECTOR_SHIFT); params.size = 0; crypt_init(&cd, DEVICE_1); OK_(crypt_format(cd, CRYPT_PLAIN, cipher, cipher_mode, NULL, NULL, key_size, ¶ms)); FAIL_(crypt_activate_by_passphrase(cd, CDEVICE_1, CRYPT_ANY_SLOT, passphrase, strlen(passphrase), 0),"Device too small"); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_INACTIVE); crypt_free(cd); // offset == device_size (user defined size) params.offset = (size >> SECTOR_SHIFT); params.size = 123; crypt_init(&cd, DEVICE_1); OK_(crypt_format(cd, CRYPT_PLAIN, cipher, cipher_mode, NULL, NULL, key_size, ¶ms)); FAIL_(crypt_activate_by_passphrase(cd, CDEVICE_1, CRYPT_ANY_SLOT, passphrase, strlen(passphrase), 0),"Device too small"); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_INACTIVE); crypt_free(cd); // offset+size > device_size params.offset = 42; params.size = (size >> SECTOR_SHIFT) - params.offset + 1; crypt_init(&cd, DEVICE_1); OK_(crypt_format(cd, CRYPT_PLAIN, cipher, cipher_mode, NULL, NULL, key_size, ¶ms)); FAIL_(crypt_activate_by_passphrase(cd, CDEVICE_1, CRYPT_ANY_SLOT, passphrase, strlen(passphrase), 0),"Offset and size are beyond device real size"); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_INACTIVE); crypt_free(cd); // offset+size == device_size params.offset = 42; params.size = (size >> SECTOR_SHIFT) - params.offset; crypt_init(&cd, DEVICE_1); OK_(crypt_format(cd, CRYPT_PLAIN, cipher, cipher_mode, NULL, NULL, key_size, ¶ms)); OK_(crypt_activate_by_passphrase(cd, CDEVICE_1, CRYPT_ANY_SLOT, passphrase, strlen(passphrase), 0)); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); if (!t_device_size(path, &r_size)) EQ_((r_size >> SECTOR_SHIFT),params.size); OK_(crypt_deactivate(cd,CDEVICE_1)); crypt_free(cd); params.hash = "sha1"; params.offset = 0; params.size = 0; params.skip = 0; // Now use hashed password OK_(crypt_init(&cd, DEVICE_1)); OK_(crypt_format(cd, CRYPT_PLAIN, cipher, cipher_mode, NULL, NULL, key_size, ¶ms)); FAIL_(crypt_activate_by_passphrase(cd, NULL, CRYPT_ANY_SLOT, passphrase, strlen(passphrase), 0), "cannot verify passphrase with plain" ); OK_(crypt_activate_by_passphrase(cd, CDEVICE_1, CRYPT_ANY_SLOT, passphrase, strlen(passphrase), 0)); // device status check EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); snprintf(path, sizeof(path), "%s/%s", crypt_get_dir(), CDEVICE_1); fd = open(path, O_RDONLY); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_BUSY); FAIL_(crypt_deactivate(cd, CDEVICE_1), "Device is busy"); close(fd); OK_(crypt_deactivate(cd, CDEVICE_1)); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_INACTIVE); crypt_free(cd); // crypt_init_by_name_and_header OK_(crypt_init(&cd,DEVICE_1)); OK_(crypt_format(cd, CRYPT_PLAIN, cipher, cipher_mode, NULL, NULL, key_size, ¶ms)); OK_(crypt_activate_by_volume_key(cd, CDEVICE_1, key, key_size, 0)); crypt_free(cd); // init with detached header is not supported OK_(crypt_init_data_device(&cd, DEVICE_2, DEVICE_1)); FAIL_(crypt_format(cd, CRYPT_PLAIN, cipher, cipher_mode, NULL, NULL, key_size, ¶ms), "can't use plain with separate metadata device"); crypt_free(cd); FAIL_(crypt_init_by_name_and_header(&cd, CDEVICE_1, H_DEVICE),"can't init plain device by header device"); OK_(crypt_init_by_name(&cd, CDEVICE_1)); OK_(strcmp(cipher_mode,crypt_get_cipher_mode(cd))); OK_(strcmp(cipher,crypt_get_cipher(cd))); EQ_((int)key_size, crypt_get_volume_key_size(cd)); EQ_(params.skip, crypt_get_iv_offset(cd)); EQ_(params.offset, crypt_get_data_offset(cd)); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); OK_(crypt_init(&cd,DEVICE_1)); OK_(crypt_format(cd,CRYPT_PLAIN,cipher,cipher_mode,NULL,NULL,key_size,¶ms)); params.size = 0; params.offset = 0; // crypt_set_data_device FAIL_(crypt_set_data_device(cd,H_DEVICE),"can't set data device for plain device"); NULL_(crypt_get_metadata_device_name(cd)); // crypt_get_type OK_(strcmp(crypt_get_type(cd),CRYPT_PLAIN)); OK_(crypt_activate_by_volume_key(cd, CDEVICE_1, key, key_size, 0)); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); // crypt_resize() OK_(crypt_resize(cd,CDEVICE_1,size>>SECTOR_SHIFT)); // same size if (!t_device_size(path,&r_size)) EQ_(r_size, size); // size overlaps FAIL_(crypt_resize(cd, CDEVICE_1, (uint64_t)-1),"Backing device is too small"); FAIL_(crypt_resize(cd, CDEVICE_1, (size>>SECTOR_SHIFT)+1),"crypt device overlaps backing device"); // resize ok OK_(crypt_resize(cd,CDEVICE_1, 123)); if (!t_device_size(path,&r_size)) EQ_(r_size>>SECTOR_SHIFT, 123); OK_(crypt_resize(cd,CDEVICE_1,0)); // full size (autodetect) if (!t_device_size(path,&r_size)) EQ_(r_size, size); OK_(crypt_deactivate(cd,CDEVICE_1)); EQ_(crypt_status(cd,CDEVICE_1),CRYPT_INACTIVE); crypt_free(cd); // offset tests OK_(crypt_init(&cd,DEVICE_1)); params.offset = 42; params.size = (size>>SECTOR_SHIFT) - params.offset - 10; OK_(crypt_format(cd,CRYPT_PLAIN,cipher,cipher_mode,NULL,NULL,key_size,¶ms)); OK_(crypt_activate_by_volume_key(cd,CDEVICE_1,key,key_size,0)); if (!t_device_size(path,&r_size)) EQ_(r_size>>SECTOR_SHIFT, params.size); // resize to fill remaining capacity OK_(crypt_resize(cd,CDEVICE_1,params.size + 10)); if (!t_device_size(path,&r_size)) EQ_(r_size>>SECTOR_SHIFT, params.size + 10); // 1 sector beyond real size FAIL_(crypt_resize(cd,CDEVICE_1,params.size + 11), "new device size overlaps backing device"); // with respect to offset if (!t_device_size(path,&r_size)) EQ_(r_size>>SECTOR_SHIFT, params.size + 10); EQ_(crypt_status(cd,CDEVICE_1),CRYPT_ACTIVE); fd = open(path, O_RDONLY); close(fd); OK_(fd < 0); // resize to minimal size OK_(crypt_resize(cd,CDEVICE_1, 1)); // minimal device size if (!t_device_size(path,&r_size)) EQ_(r_size>>SECTOR_SHIFT, 1); // use size of backing device (autodetect with respect to offset) OK_(crypt_resize(cd,CDEVICE_1,0)); if (!t_device_size(path,&r_size)) EQ_(r_size>>SECTOR_SHIFT, (size >> SECTOR_SHIFT)- 42); OK_(crypt_deactivate(cd,CDEVICE_1)); crypt_free(cd); params.size = 0; params.offset = 0; OK_(crypt_init(&cd,DEVICE_1)); OK_(crypt_format(cd,CRYPT_PLAIN,cipher,cipher_mode,NULL,NULL,key_size,¶ms)); OK_(crypt_activate_by_volume_key(cd,CDEVICE_1,key,key_size,0)); // suspend/resume tests FAIL_(crypt_suspend(cd,CDEVICE_1),"cannot suspend plain device"); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); FAIL_(crypt_resume_by_passphrase(cd,CDEVICE_1,CRYPT_ANY_SLOT,passphrase, strlen(passphrase)),"cannot resume plain device"); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); // retrieve volume key check if (!_fips_mode) { memset(key2, 0, key_size); key_size--; // small buffer FAIL_(crypt_volume_key_get(cd, CRYPT_ANY_SLOT, key2, &key_size, passphrase, strlen(passphrase)), "small buffer"); key_size++; OK_(crypt_volume_key_get(cd, CRYPT_ANY_SLOT, key2, &key_size, passphrase, strlen(passphrase))); OK_(memcmp(key, key2, key_size)); } OK_(strcmp(cipher, crypt_get_cipher(cd))); OK_(strcmp(cipher_mode, crypt_get_cipher_mode(cd))); EQ_((int)key_size, crypt_get_volume_key_size(cd)); EQ_(0, crypt_get_data_offset(cd)); OK_(crypt_deactivate(cd, CDEVICE_1)); // now with keyfile OK_(prepare_keyfile(KEYFILE1, KEY1, strlen(KEY1))); OK_(prepare_keyfile(KEYFILE2, KEY2, strlen(KEY2))); FAIL_(crypt_activate_by_keyfile(cd, NULL, CRYPT_ANY_SLOT, KEYFILE1, 0, 0), "cannot verify key with plain"); EQ_(0, crypt_activate_by_keyfile(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEYFILE1, 0, 0)); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); OK_(crypt_deactivate(cd, CDEVICE_1)); FAIL_(crypt_activate_by_keyfile_offset(cd, NULL, CRYPT_ANY_SLOT, KEYFILE1, 0, strlen(KEY1) + 1, 0), "cannot seek"); FAIL_(crypt_activate_by_keyfile_device_offset(cd, NULL, CRYPT_ANY_SLOT, KEYFILE1, 0, strlen(KEY1) + 1, 0), "cannot seek"); EQ_(0, crypt_activate_by_keyfile_offset(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEYFILE1, 0, 0, 0)); OK_(crypt_deactivate(cd, CDEVICE_1)); EQ_(0, crypt_activate_by_keyfile_device_offset(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEYFILE1, 0, 0, 0)); OK_(crypt_deactivate(cd, CDEVICE_1)); _remove_keyfiles(); crypt_free(cd); OK_(crypt_init(&cd,DEVICE_1)); OK_(crypt_format(cd,CRYPT_PLAIN,cipher,cipher_mode,NULL,NULL,key_size,¶ms)); // crypt_keyslot_*() FAIL_(crypt_keyslot_add_by_passphrase(cd,CRYPT_ANY_SLOT,passphrase,strlen(passphrase),passphrase,strlen(passphrase)), "can't add keyslot to plain device"); FAIL_(crypt_keyslot_add_by_volume_key(cd,CRYPT_ANY_SLOT ,key,key_size,passphrase,strlen(passphrase)),"can't add keyslot to plain device"); FAIL_(crypt_keyslot_add_by_keyfile(cd,CRYPT_ANY_SLOT,KEYFILE1,strlen(KEY1),KEYFILE2,strlen(KEY2)),"can't add keyslot to plain device"); FAIL_(crypt_keyslot_destroy(cd,1),"can't manipulate keyslots on plain device"); EQ_(crypt_keyslot_status(cd, 0), CRYPT_SLOT_INVALID); _remove_keyfiles(); crypt_free(cd); } static int new_messages = 0; static void new_log(int level, const char *msg, void *usrptr) { if (level == CRYPT_LOG_ERROR) new_messages++; global_log_callback(level, msg, usrptr); } static void CallbacksTest(void) { struct crypt_device *cd; struct crypt_params_plain params = { .hash = "sha1", .skip = 0, .offset = 0, }; size_t key_size = 256 / 8; const char *cipher = "aes"; const char *cipher_mode = "cbc-essiv:sha256"; const char *passphrase = PASSPHRASE; OK_(crypt_init(&cd, DEVICE_1)); new_messages = 0; crypt_set_log_callback(cd, &new_log, NULL); EQ_(new_messages, 0); OK_(crypt_format(cd, CRYPT_PLAIN, cipher, cipher_mode, NULL, NULL, key_size, ¶ms)); OK_(crypt_activate_by_passphrase(cd, CDEVICE_1, CRYPT_ANY_SLOT, passphrase, strlen(passphrase), 0)); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); EQ_(new_messages, 0); FAIL_(crypt_activate_by_passphrase(cd, CDEVICE_1, CRYPT_ANY_SLOT, passphrase, strlen(passphrase), 0), "already exists"); EQ_(new_messages, 1); crypt_set_log_callback(cd, NULL, NULL); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); } static void UseLuksDevice(void) { struct crypt_device *cd; char key[128]; size_t key_size; OK_(crypt_init(&cd, DEVICE_1)); OK_(crypt_load(cd, CRYPT_LUKS1, NULL)); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_INACTIVE); OK_(crypt_activate_by_passphrase(cd, NULL, CRYPT_ANY_SLOT, KEY1, strlen(KEY1), 0)); OK_(crypt_activate_by_passphrase(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEY1, strlen(KEY1), 0)); FAIL_(crypt_activate_by_passphrase(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEY1, strlen(KEY1), 0), "already open"); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); OK_(crypt_deactivate(cd, CDEVICE_1)); FAIL_(crypt_deactivate(cd, CDEVICE_1), "no such device"); key_size = 16; OK_(strcmp("aes", crypt_get_cipher(cd))); OK_(strcmp("cbc-essiv:sha256", crypt_get_cipher_mode(cd))); OK_(strcmp(DEVICE_1_UUID, crypt_get_uuid(cd))); EQ_((int)key_size, crypt_get_volume_key_size(cd)); EQ_(1032, crypt_get_data_offset(cd)); if (!_fips_mode) { EQ_(0, crypt_volume_key_get(cd, CRYPT_ANY_SLOT, key, &key_size, KEY1, strlen(KEY1))); OK_(crypt_volume_key_verify(cd, key, key_size)); OK_(crypt_activate_by_volume_key(cd, NULL, key, key_size, 0)); OK_(crypt_activate_by_volume_key(cd, CDEVICE_1, key, key_size, 0)); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); OK_(crypt_deactivate(cd, CDEVICE_1)); key[1] = ~key[1]; FAIL_(crypt_volume_key_verify(cd, key, key_size), "key mismatch"); FAIL_(crypt_activate_by_volume_key(cd, CDEVICE_1, key, key_size, 0), "key mismatch"); } crypt_free(cd); } static void SuspendDevice(void) { int suspend_status; struct crypt_device *cd; OK_(crypt_init(&cd, DEVICE_1)); OK_(crypt_load(cd, CRYPT_LUKS1, NULL)); OK_(crypt_activate_by_passphrase(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEY1, strlen(KEY1), 0)); suspend_status = crypt_suspend(cd, CDEVICE_1); if (suspend_status == -ENOTSUP) { printf("WARNING: Suspend/Resume not supported, skipping test.\n"); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); return; } OK_(suspend_status); FAIL_(crypt_suspend(cd, CDEVICE_1), "already suspended"); FAIL_(crypt_resume_by_passphrase(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEY1, strlen(KEY1)-1), "wrong key"); OK_(crypt_resume_by_passphrase(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEY1, strlen(KEY1))); FAIL_(crypt_resume_by_passphrase(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEY1, strlen(KEY1)), "not suspended"); OK_(prepare_keyfile(KEYFILE1, KEY1, strlen(KEY1))); OK_(crypt_suspend(cd, CDEVICE_1)); FAIL_(crypt_resume_by_keyfile(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEYFILE1 "blah", 0), "wrong keyfile"); FAIL_(crypt_resume_by_keyfile_offset(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEYFILE1, 1, 0), "wrong key"); FAIL_(crypt_resume_by_keyfile_device_offset(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEYFILE1, 1, 0), "wrong key"); OK_(crypt_resume_by_keyfile_device_offset(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEYFILE1, 0, 0)); FAIL_(crypt_resume_by_keyfile(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEYFILE1, 0), "not suspended"); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); /* create LUKS device with detached header */ OK_(crypt_init(&cd, DEVICE_1)); OK_(crypt_load(cd, CRYPT_LUKS1, NULL)); OK_(crypt_set_data_device(cd, DEVICE_2)); OK_(crypt_activate_by_passphrase(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEY1, strlen(KEY1), 0)); crypt_free(cd); /* Should be able to suspend but not resume if not header specified */ OK_(crypt_init_by_name(&cd, CDEVICE_1)); OK_(crypt_suspend(cd, CDEVICE_1)); FAIL_(crypt_suspend(cd, CDEVICE_1), "already suspended"); FAIL_(crypt_resume_by_passphrase(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEY1, strlen(KEY1)-1), "no header"); crypt_free(cd); OK_(crypt_init_by_name_and_header(&cd, CDEVICE_1, DEVICE_1)); OK_(crypt_resume_by_passphrase(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEY1, strlen(KEY1))); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); _remove_keyfiles(); } static void AddDeviceLuks(void) { enum { OFFSET_1M = 2048 , OFFSET_2M = 4096, OFFSET_4M = 8192, OFFSET_8M = 16384 }; struct crypt_device *cd; struct crypt_params_luks1 params = { .hash = "sha512", .data_alignment = OFFSET_1M, // 4M, data offset will be 4096 .data_device = DEVICE_2 }; char key[128], key2[128], key3[128]; const char *passphrase = "blabla", *passphrase2 = "nsdkFI&Y#.sd"; const char *mk_hex = "bb21158c733229347bd4e681891e213d94c685be6a5b84818afe7a78a6de7a1a"; const char *mk_hex2 = "bb21158c733229347bd4e681891e213d94c685be6a5b84818afe7a78a6de7a1e"; size_t key_size = strlen(mk_hex) / 2; const char *cipher = "aes"; const char *cipher_mode = "cbc-essiv:sha256"; uint64_t r_payload_offset, r_header_size, r_size_1; struct crypt_pbkdf_type pbkdf; crypt_decode_key(key, mk_hex, key_size); crypt_decode_key(key3, mk_hex2, key_size); // init test devices OK_(get_luks_offsets(1, key_size, 0, 0, &r_header_size, &r_payload_offset)); OK_(create_dmdevice_over_loop(H_DEVICE, r_header_size)); OK_(create_dmdevice_over_loop(H_DEVICE_WRONG, r_header_size - 1)); // format OK_(crypt_init(&cd, DMDIR H_DEVICE_WRONG)); params.data_alignment = 0; FAIL_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms), "Not enough space for keyslots material"); crypt_free(cd); // test payload_offset = 0 for encrypted device with external header device OK_(crypt_init(&cd, DMDIR H_DEVICE)); OK_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms)); EQ_(crypt_get_data_offset(cd), 0); crypt_free(cd); params.data_alignment = 0; params.data_device = NULL; // test payload_offset = 0. format() should look up alignment offset from device topology OK_(crypt_init(&cd, DEVICE_2)); OK_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms)); OK_(!(crypt_get_data_offset(cd) > 0)); crypt_free(cd); // set_data_offset has priority, alignment must be 0 or must be compatible params.data_alignment = 0; OK_(crypt_init(&cd, DEVICE_2)); OK_(crypt_set_data_offset(cd, OFFSET_8M)); OK_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms)); EQ_(crypt_get_data_offset(cd), OFFSET_8M); crypt_free(cd); // Load gets the value from metadata OK_(crypt_init(&cd, DEVICE_2)); OK_(crypt_set_data_offset(cd, OFFSET_2M)); OK_(crypt_load(cd, CRYPT_LUKS1, NULL)); EQ_(crypt_get_data_offset(cd), OFFSET_8M); crypt_free(cd); params.data_alignment = OFFSET_4M; OK_(crypt_init(&cd, DEVICE_2)); FAIL_(crypt_set_data_offset(cd, OFFSET_2M + 1), "Not aligned to 4096"); // must be aligned to 4k OK_(crypt_set_data_offset(cd, OFFSET_2M)); FAIL_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms), "Alignment not compatible"); OK_(crypt_set_data_offset(cd, OFFSET_4M)); OK_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms)); EQ_(crypt_get_data_offset(cd), OFFSET_4M); crypt_free(cd); /* * test limit values for backing device size */ params.data_alignment = OFFSET_2M; OK_(get_luks_offsets(0, key_size, params.data_alignment, 0, NULL, &r_payload_offset)); OK_(create_dmdevice_over_loop(L_DEVICE_0S, r_payload_offset)); OK_(create_dmdevice_over_loop(L_DEVICE_1S, r_payload_offset + 1)); //OK_(create_dmdevice_over_loop(L_DEVICE_WRONG, r_payload_offset - 1)); OK_(create_dmdevice_over_loop(L_DEVICE_WRONG, 2050 - 1)); //FIXME last keyslot - 1 sector // 1 sector less than required OK_(crypt_init(&cd, DMDIR L_DEVICE_WRONG)); FAIL_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms), "Device too small"); crypt_free(cd); // 0 sectors for encrypted area OK_(crypt_init(&cd, DMDIR L_DEVICE_0S)); OK_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms)); FAIL_(crypt_activate_by_volume_key(cd, CDEVICE_1, key, key_size, 0), "Encrypted area too small"); crypt_free(cd); // 1 sector for encrypted area OK_(crypt_init(&cd, DMDIR L_DEVICE_1S)); OK_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms)); EQ_(crypt_get_data_offset(cd), params.data_alignment); OK_(crypt_activate_by_volume_key(cd, CDEVICE_1, key, key_size, 0)); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); OK_(t_device_size(DMDIR CDEVICE_1, &r_size_1)); EQ_(r_size_1, SECTOR_SIZE); OK_(crypt_deactivate(cd, CDEVICE_1)); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_INACTIVE); // restrict format only to empty context FAIL_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms), "Context is already formatted"); FAIL_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, NULL), "Context is already formatted"); // change data device to wrong one OK_(crypt_set_data_device(cd, DMDIR L_DEVICE_0S)); FAIL_(crypt_activate_by_volume_key(cd, CDEVICE_1, key, key_size, 0), "Device too small"); OK_(crypt_set_data_device(cd, DMDIR L_DEVICE_1S)); OK_(crypt_activate_by_volume_key(cd, CDEVICE_1, key, key_size, 0)); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); params.data_alignment = 0; params.data_device = DEVICE_2; // generate keyslot material at the end of luks header OK_(crypt_init(&cd, DMDIR H_DEVICE)); OK_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms)); EQ_(crypt_keyslot_add_by_volume_key(cd, 7, key, key_size, passphrase, strlen(passphrase)), 7); EQ_(crypt_activate_by_passphrase(cd, CDEVICE_1, 7, passphrase, strlen(passphrase) ,0), 7); crypt_free(cd); OK_(crypt_init_by_name_and_header(&cd, CDEVICE_1, DMDIR H_DEVICE)); FAIL_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms), "Context is already formatted"); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); crypt_free(cd); // check active status without header OK_(crypt_init_by_name_and_header(&cd, CDEVICE_1, NULL)); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); NULL_(crypt_get_type(cd)); OK_(strcmp(cipher, crypt_get_cipher(cd))); OK_(strcmp(cipher_mode, crypt_get_cipher_mode(cd))); EQ_((int)key_size, crypt_get_volume_key_size(cd)); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); params.data_alignment = OFFSET_1M; params.data_device = NULL; // test uuid mismatch and _init_by_name_and_header OK_(crypt_init(&cd, DMDIR L_DEVICE_1S)); OK_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms)); OK_(crypt_activate_by_volume_key(cd, CDEVICE_1, key, key_size, 0)); crypt_free(cd); params.data_alignment = 0; params.data_device = DEVICE_2; OK_(crypt_init(&cd, DMDIR H_DEVICE)); OK_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms)); crypt_free(cd); // there we've got uuid mismatch OK_(crypt_init_by_name_and_header(&cd, CDEVICE_1, DMDIR H_DEVICE)); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); NULL_(crypt_get_type(cd)); FAIL_(crypt_activate_by_volume_key(cd, CDEVICE_1, key, key_size, 0), "Device is active"); FAIL_(crypt_activate_by_volume_key(cd, CDEVICE_2, key, key_size, 0), "Device is active"); EQ_(crypt_status(cd, CDEVICE_2), CRYPT_INACTIVE); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); params.data_device = NULL; OK_(crypt_init(&cd, DEVICE_2)); OK_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms)); // even with no keyslots defined it can be activated by volume key OK_(crypt_volume_key_verify(cd, key, key_size)); OK_(crypt_activate_by_volume_key(cd, CDEVICE_2, key, key_size, 0)); EQ_(crypt_status(cd, CDEVICE_2), CRYPT_ACTIVE); OK_(crypt_deactivate(cd, CDEVICE_2)); // now with keyslot EQ_(7, crypt_keyslot_add_by_volume_key(cd, 7, key, key_size, passphrase, strlen(passphrase))); EQ_(CRYPT_SLOT_ACTIVE_LAST, crypt_keyslot_status(cd, 7)); EQ_(7, crypt_activate_by_passphrase(cd, CDEVICE_2, CRYPT_ANY_SLOT, passphrase, strlen(passphrase), 0)); EQ_(crypt_status(cd, CDEVICE_2), CRYPT_ACTIVE); OK_(crypt_deactivate(cd, CDEVICE_2)); crypt_set_iteration_time(cd, 1); EQ_(1, crypt_keyslot_add_by_volume_key(cd, 1, key, key_size, KEY1, strlen(KEY1))); // PBKDF info (in LUKS1 slots are ther same) FAIL_(crypt_keyslot_get_pbkdf(cd, 1, NULL), "PBKDF struct required"); OK_(crypt_keyslot_get_pbkdf(cd, 1, &pbkdf)); OK_(strcmp(pbkdf.type, CRYPT_KDF_PBKDF2)); OK_(strcmp(pbkdf.hash, params.hash)); EQ_(1000, pbkdf.iterations); /* set by minimum iterations above */ EQ_(0, pbkdf.max_memory_kb); EQ_(0, pbkdf.parallel_threads); OK_(prepare_keyfile(KEYFILE1, KEY1, strlen(KEY1))); OK_(prepare_keyfile(KEYFILE2, KEY2, strlen(KEY2))); EQ_(2, crypt_keyslot_add_by_keyfile(cd, 2, KEYFILE1, 0, KEYFILE2, 0)); FAIL_(crypt_keyslot_add_by_keyfile_offset(cd, 3, KEYFILE1, 0, 1, KEYFILE2, 0, 1), "wrong key"); EQ_(3, crypt_keyslot_add_by_keyfile_offset(cd, 3, KEYFILE1, 0, 0, KEYFILE2, 0, 1)); EQ_(4, crypt_keyslot_add_by_keyfile_offset(cd, 4, KEYFILE2, 0, 1, KEYFILE1, 0, 1)); FAIL_(crypt_activate_by_keyfile(cd, CDEVICE_2, CRYPT_ANY_SLOT, KEYFILE2, strlen(KEY2)-1, 0), "key mismatch"); EQ_(2, crypt_activate_by_keyfile(cd, NULL, CRYPT_ANY_SLOT, KEYFILE2, 0, 0)); EQ_(3, crypt_activate_by_keyfile_offset(cd, NULL, CRYPT_ANY_SLOT, KEYFILE2, 0, 1, 0)); EQ_(4, crypt_activate_by_keyfile_offset(cd, NULL, CRYPT_ANY_SLOT, KEYFILE1, 0, 1, 0)); FAIL_(crypt_activate_by_keyfile_offset(cd, CDEVICE_2, CRYPT_ANY_SLOT, KEYFILE2, strlen(KEY2), 2, 0), "not enough data"); FAIL_(crypt_activate_by_keyfile_offset(cd, CDEVICE_2, CRYPT_ANY_SLOT, KEYFILE2, 0, strlen(KEY2) + 1, 0), "cannot seek"); FAIL_(crypt_activate_by_keyfile_offset(cd, CDEVICE_2, CRYPT_ANY_SLOT, KEYFILE2, 0, 2, 0), "wrong key"); EQ_(2, crypt_activate_by_keyfile(cd, CDEVICE_2, CRYPT_ANY_SLOT, KEYFILE2, 0, 0)); OK_(crypt_keyslot_destroy(cd, 1)); OK_(crypt_keyslot_destroy(cd, 2)); OK_(crypt_keyslot_destroy(cd, 3)); OK_(crypt_keyslot_destroy(cd, 4)); OK_(crypt_deactivate(cd, CDEVICE_2)); _remove_keyfiles(); FAIL_(crypt_keyslot_add_by_volume_key(cd, 7, key, key_size, passphrase, strlen(passphrase)), "slot used"); key[1] = ~key[1]; FAIL_(crypt_keyslot_add_by_volume_key(cd, 6, key, key_size, passphrase, strlen(passphrase)), "key mismatch"); key[1] = ~key[1]; EQ_(6, crypt_keyslot_add_by_volume_key(cd, 6, key, key_size, passphrase, strlen(passphrase))); EQ_(CRYPT_SLOT_ACTIVE, crypt_keyslot_status(cd, 6)); FAIL_(crypt_keyslot_destroy(cd, 8), "invalid keyslot"); FAIL_(crypt_keyslot_destroy(cd, CRYPT_ANY_SLOT), "invalid keyslot"); FAIL_(crypt_keyslot_destroy(cd, 0), "keyslot not used"); OK_(crypt_keyslot_destroy(cd, 7)); EQ_(CRYPT_SLOT_INACTIVE, crypt_keyslot_status(cd, 7)); EQ_(CRYPT_SLOT_ACTIVE_LAST, crypt_keyslot_status(cd, 6)); EQ_(7, crypt_keyslot_change_by_passphrase(cd, 6, 7, passphrase, strlen(passphrase), passphrase2, strlen(passphrase2))); EQ_(CRYPT_SLOT_ACTIVE_LAST, crypt_keyslot_status(cd, 7)); EQ_(7, crypt_activate_by_passphrase(cd, NULL, 7, passphrase2, strlen(passphrase2), 0)); EQ_(6, crypt_keyslot_change_by_passphrase(cd, CRYPT_ANY_SLOT, 6, passphrase2, strlen(passphrase2), passphrase, strlen(passphrase))); if (!_fips_mode) { EQ_(6, crypt_volume_key_get(cd, CRYPT_ANY_SLOT, key2, &key_size, passphrase, strlen(passphrase))); OK_(crypt_volume_key_verify(cd, key2, key_size)); OK_(memcmp(key, key2, key_size)); } OK_(strcmp(cipher, crypt_get_cipher(cd))); OK_(strcmp(cipher_mode, crypt_get_cipher_mode(cd))); EQ_((int)key_size, crypt_get_volume_key_size(cd)); EQ_(OFFSET_2M, crypt_get_data_offset(cd)); OK_(strcmp(DEVICE_2, crypt_get_device_name(cd))); reset_log(); OK_(crypt_dump(cd)); OK_(!(global_lines != 0)); reset_log(); FAIL_(crypt_set_uuid(cd, "blah"), "wrong UUID format"); OK_(crypt_set_uuid(cd, DEVICE_TEST_UUID)); OK_(strcmp(DEVICE_TEST_UUID, crypt_get_uuid(cd))); FAIL_(crypt_deactivate(cd, CDEVICE_2), "not active"); crypt_free(cd); _cleanup_dmdevices(); } static void UseTempVolumes(void) { struct crypt_device *cd; char tmp[256]; // Tepmporary device without keyslot but with on-disk LUKS header OK_(crypt_init(&cd, DEVICE_2)); FAIL_(crypt_activate_by_volume_key(cd, CDEVICE_2, NULL, 0, 0), "not yet formatted"); OK_(crypt_format(cd, CRYPT_LUKS1, "aes", "cbc-essiv:sha256", NULL, NULL, 16, NULL)); OK_(crypt_activate_by_volume_key(cd, CDEVICE_2, NULL, 0, 0)); EQ_(crypt_status(cd, CDEVICE_2), CRYPT_ACTIVE); crypt_free(cd); OK_(crypt_init_by_name(&cd, CDEVICE_2)); OK_(crypt_deactivate(cd, CDEVICE_2)); crypt_free(cd); // Dirty checks: device without UUID // we should be able to remove it but not manuipulate with it snprintf(tmp, sizeof(tmp), "dmsetup create %s --table \"" "0 100 crypt aes-cbc-essiv:sha256 deadbabedeadbabedeadbabedeadbabe 0 " "%s 2048\"", CDEVICE_2, DEVICE_2); _system(tmp, 1); OK_(crypt_init_by_name(&cd, CDEVICE_2)); OK_(crypt_deactivate(cd, CDEVICE_2)); FAIL_(crypt_activate_by_volume_key(cd, CDEVICE_2, NULL, 0, 0), "No known device type"); crypt_free(cd); // Dirty checks: device with UUID but LUKS header key fingerprint must fail) snprintf(tmp, sizeof(tmp), "dmsetup create %s --table \"" "0 100 crypt aes-cbc-essiv:sha256 deadbabedeadbabedeadbabedeadbabe 0 " "%s 2048\" -u CRYPT-LUKS1-aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa-ctest1", CDEVICE_2, DEVICE_2); _system(tmp, 1); OK_(crypt_init_by_name(&cd, CDEVICE_2)); OK_(crypt_deactivate(cd, CDEVICE_2)); FAIL_(crypt_activate_by_volume_key(cd, CDEVICE_2, NULL, 0, 0), "wrong volume key"); crypt_free(cd); // No slots OK_(crypt_init(&cd, DEVICE_2)); OK_(crypt_load(cd, CRYPT_LUKS1, NULL)); FAIL_(crypt_activate_by_volume_key(cd, CDEVICE_2, NULL, 0, 0), "volume key is lost"); crypt_free(cd); // Plain device OK_(crypt_init(&cd, DEVICE_2)); OK_(crypt_format(cd, CRYPT_PLAIN, "aes", "cbc-essiv:sha256", NULL, NULL, 16, NULL)); FAIL_(crypt_activate_by_volume_key(cd, NULL, "xxx", 3, 0), "cannot verify key with plain"); FAIL_(crypt_volume_key_verify(cd, "xxx", 3), "cannot verify key with plain"); FAIL_(crypt_activate_by_volume_key(cd, CDEVICE_2, "xxx", 3, 0), "wrong key length"); OK_(crypt_activate_by_volume_key(cd, CDEVICE_2, "volumekeyvolumek", 16, 0)); EQ_(crypt_status(cd, CDEVICE_2), CRYPT_ACTIVE); OK_(crypt_deactivate(cd, CDEVICE_2)); crypt_free(cd); } static void LuksHeaderRestore(void) { struct crypt_device *cd; struct crypt_params_luks1 params = { .hash = "sha512", .data_alignment = 2048, // 4M, data offset will be 4096 }; struct crypt_params_plain pl_params = { .hash = "sha1", .skip = 0, .offset = 0, .size = 0 }; char key[128], key2[128], cmd[256]; const char *mk_hex = "bb21158c733229347bd4e681891e213d94c685be6a5b84818afe7a78a6de7a1a"; size_t key_size = strlen(mk_hex) / 2; const char *cipher = "aes"; const char *cipher_mode = "cbc-essiv:sha256"; uint64_t r_payload_offset; crypt_decode_key(key, mk_hex, key_size); OK_(get_luks_offsets(0, key_size, params.data_alignment, 0, NULL, &r_payload_offset)); OK_(create_dmdevice_over_loop(L_DEVICE_OK, r_payload_offset + 5000)); // do not restore header over plain device OK_(crypt_init(&cd, DMDIR L_DEVICE_OK)); OK_(crypt_format(cd, CRYPT_PLAIN, cipher, cipher_mode, NULL, NULL, key_size, &pl_params)); OK_(crypt_activate_by_volume_key(cd, CDEVICE_1, key, key_size, 0)); FAIL_(crypt_header_restore(cd, CRYPT_PLAIN, VALID_HEADER), "Cannot restore header to PLAIN type device"); FAIL_(crypt_header_restore(cd, CRYPT_LUKS1, VALID_HEADER), "Cannot restore header over PLAIN type device"); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); // invalid headers OK_(crypt_init(&cd, DMDIR L_DEVICE_OK)); OK_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms)); FAIL_(crypt_header_restore(cd, CRYPT_LUKS1, EVL_HEADER_1), "Header corrupted"); FAIL_(crypt_header_restore(cd, CRYPT_LUKS1, EVL_HEADER_2), "Header corrupted"); FAIL_(crypt_header_restore(cd, CRYPT_LUKS1, EVL_HEADER_3), "Header corrupted"); FAIL_(crypt_header_restore(cd, CRYPT_LUKS1, EVL_HEADER_4), "Header too small"); FAIL_(crypt_header_restore(cd, CRYPT_LUKS1, EVL_HEADER_5), "Header corrupted"); OK_(crypt_header_restore(cd, CRYPT_LUKS1, VALID_HEADER)); // wipe valid luks header snprintf(cmd, sizeof(cmd), "dd if=/dev/zero of=" DMDIR L_DEVICE_OK " bs=512 count=%" PRIu64 " 2>/dev/null", r_payload_offset); OK_(_system(cmd, 1)); FAIL_(crypt_header_restore(cd, CRYPT_LUKS1, EVL_HEADER_1), "Header corrupted"); FAIL_(crypt_header_restore(cd, CRYPT_LUKS1, EVL_HEADER_2), "Header corrupted"); FAIL_(crypt_header_restore(cd, CRYPT_LUKS1, EVL_HEADER_3), "Header corrupted"); FAIL_(crypt_header_restore(cd, CRYPT_LUKS1, EVL_HEADER_4), "Header too small"); FAIL_(crypt_header_restore(cd, CRYPT_LUKS1, EVL_HEADER_5), "Header corrupted"); OK_(crypt_header_restore(cd, CRYPT_LUKS1, VALID_HEADER)); OK_(crypt_activate_by_volume_key(cd, CDEVICE_1, key, key_size, 0)); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); // volume key_size mismatch OK_(crypt_init(&cd, DMDIR L_DEVICE_OK)); memcpy(key2, key, key_size / 2); OK_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key2, key_size / 2, ¶ms)); FAIL_(crypt_header_restore(cd, CRYPT_LUKS1, VALID_HEADER), "Volume keysize mismatch"); crypt_free(cd); // payload offset mismatch params.data_alignment = 8192; OK_(crypt_init(&cd, DMDIR L_DEVICE_OK)); OK_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms)); FAIL_(crypt_header_restore(cd, CRYPT_LUKS1, VALID_HEADER), "Payload offset mismatch"); //_system("dmsetup table;sleep 1",1); crypt_free(cd); /* check crypt_header_restore() properly loads crypt_device context */ OK_(crypt_init(&cd, DMDIR L_DEVICE_OK)); OK_(crypt_wipe(cd, NULL, CRYPT_WIPE_ZERO, 0, 1*1024*1024, 1*1024*1024, 0, NULL, NULL)); OK_(crypt_header_restore(cd, CRYPT_LUKS1, VALID_HEADER)); OK_(crypt_activate_by_volume_key(cd, NULL, key, key_size, 0)); /* same test, any LUKS */ OK_(crypt_wipe(cd, NULL, CRYPT_WIPE_ZERO, 0, 1*1024*1024, 1*1024*1024, 0, NULL, NULL)); OK_(crypt_header_restore(cd, CRYPT_LUKS, VALID_HEADER)); OK_(crypt_activate_by_volume_key(cd, NULL, key, key_size, 0)); crypt_free(cd); _cleanup_dmdevices(); } static void LuksHeaderLoad(void) { struct crypt_device *cd; struct crypt_params_luks1 params = { .hash = "sha512", .data_alignment = 2048, }; struct crypt_params_plain pl_params = { .hash = "sha1", .skip = 0, .offset = 0, .size = 0 }; char key[128], cmd[256]; const char *mk_hex = "bb21158c733229347bd4e681891e213d94c685be6a5b84818afe7a78a6de7a1a"; size_t key_size = strlen(mk_hex) / 2; const char *cipher = "aes"; const char *cipher_mode = "cbc-essiv:sha256"; uint64_t r_payload_offset, r_header_size; uint64_t mdata_size, keyslots_size; crypt_decode_key(key, mk_hex, key_size); // prepare test env OK_(get_luks_offsets(0, key_size, params.data_alignment, 0, &r_header_size, &r_payload_offset)); // external header device OK_(create_dmdevice_over_loop(H_DEVICE, r_header_size)); // prepared header on a device too small to contain header and payload //OK_(create_dmdevice_over_loop(H_DEVICE_WRONG, r_payload_offset - 1)); OK_(create_dmdevice_over_loop(H_DEVICE_WRONG, 2050 - 1)); //FIXME //snprintf(cmd, sizeof(cmd), "dd if=" EVL_HEADER_4 " of=" DMDIR H_DEVICE_WRONG " bs=512 count=%" PRIu64, r_payload_offset - 1); snprintf(cmd, sizeof(cmd), "dd if=" EVL_HEADER_4 " of=" DMDIR H_DEVICE_WRONG " bs=512 count=%d 2>/dev/null", 2050 - 1); OK_(_system(cmd, 1)); // some device OK_(create_dmdevice_over_loop(L_DEVICE_OK, r_payload_offset + 1000)); // 1 sector device OK_(create_dmdevice_over_loop(L_DEVICE_1S, r_payload_offset + 1)); // 0 sectors device for payload OK_(create_dmdevice_over_loop(L_DEVICE_0S, r_payload_offset)); // valid metadata and device size params.data_alignment = 0; params.data_device = DMDIR L_DEVICE_OK; OK_(crypt_init(&cd, DMDIR H_DEVICE)); OK_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms)); crypt_free(cd); OK_(crypt_init(&cd, DMDIR H_DEVICE)); OK_(crypt_load(cd, CRYPT_LUKS1, NULL)); OK_(crypt_set_data_device(cd, DMDIR L_DEVICE_OK)); OK_(crypt_activate_by_volume_key(cd, CDEVICE_1, key, key_size, 0)); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); OK_(!crypt_get_metadata_device_name(cd)); EQ_(strcmp(DMDIR H_DEVICE, crypt_get_metadata_device_name(cd)), 0); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); // repeat with init with two devices OK_(crypt_init_data_device(&cd, DMDIR H_DEVICE, DMDIR L_DEVICE_OK)); OK_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms)); crypt_free(cd); OK_(crypt_init_data_device(&cd, DMDIR H_DEVICE, DMDIR L_DEVICE_OK)); OK_(crypt_load(cd, CRYPT_LUKS1, NULL)); OK_(!crypt_get_metadata_device_name(cd)); EQ_(strcmp(DMDIR H_DEVICE, crypt_get_metadata_device_name(cd)), 0); crypt_free(cd); // bad header: device too small (payloadOffset > device_size) OK_(crypt_init(&cd, DMDIR H_DEVICE_WRONG)); FAIL_(crypt_load(cd, CRYPT_LUKS1, NULL), "Device too small"); NULL_(crypt_get_type(cd)); crypt_free(cd); // 0 secs for encrypted data area params.data_alignment = 2048; params.data_device = NULL; OK_(crypt_init(&cd, DMDIR L_DEVICE_0S)); OK_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms)); FAIL_(crypt_set_metadata_size(cd, 0x004000, 0x004000), "Wrong context type"); OK_(crypt_get_metadata_size(cd, &mdata_size, &keyslots_size)); EQ_(mdata_size, LUKS_ALIGN_KEYSLOTS); EQ_(keyslots_size, r_header_size * SECTOR_SIZE - mdata_size); crypt_free(cd); // load should be ok OK_(crypt_init(&cd, DMDIR L_DEVICE_0S)); OK_(crypt_load(cd, CRYPT_LUKS1, NULL)); FAIL_(crypt_activate_by_volume_key(cd, CDEVICE_1, key, key_size, 0), "Device too small"); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_INACTIVE); crypt_free(cd); // damaged header OK_(_system("dd if=/dev/zero of=" DMDIR L_DEVICE_OK " bs=512 count=8 2>/dev/null", 1)); OK_(crypt_init(&cd, DMDIR L_DEVICE_OK)); FAIL_(crypt_load(cd, CRYPT_LUKS1, NULL), "Header not found"); crypt_free(cd); // plain device OK_(crypt_init(&cd, DMDIR H_DEVICE)); FAIL_(crypt_load(cd, CRYPT_PLAIN, NULL), "Can't load nonLUKS device type"); crypt_free(cd); OK_(crypt_init(&cd, DMDIR H_DEVICE)); OK_(crypt_format(cd, CRYPT_PLAIN, cipher, cipher_mode, NULL, key, key_size, &pl_params)); FAIL_(crypt_load(cd, CRYPT_LUKS1, NULL), "Can't load over nonLUKS device type"); FAIL_(crypt_set_metadata_size(cd, 0x004000, 0x004000), "Wrong context type"); FAIL_(crypt_get_metadata_size(cd, &mdata_size, &keyslots_size), "Wrong context type"); crypt_free(cd); /* check load sets proper device type */ OK_(crypt_init(&cd, DMDIR L_DEVICE_0S)); OK_(crypt_load(cd, CRYPT_LUKS, NULL)); EQ_(strcmp(CRYPT_LUKS1, crypt_get_type(cd)), 0); crypt_free(cd); _cleanup_dmdevices(); } static void LuksHeaderBackup(void) { struct crypt_device *cd; struct crypt_params_luks1 params = { .hash = "sha512", .data_alignment = 2048, }; char key[128]; int fd, ro = O_RDONLY; const char *mk_hex = "bb21158c733229347bd4e681891e213d94c685be6a5b84818afe7a78a6de7a1a"; size_t key_size = strlen(mk_hex) / 2; const char *cipher = "aes"; const char *cipher_mode = "cbc-essiv:sha256"; uint64_t r_payload_offset; const char *passphrase = PASSPHRASE; crypt_decode_key(key, mk_hex, key_size); OK_(get_luks_offsets(0, key_size, params.data_alignment, 0, NULL, &r_payload_offset)); OK_(create_dmdevice_over_loop(L_DEVICE_OK, r_payload_offset + 1)); // create LUKS device and backup the header OK_(crypt_init(&cd, DMDIR L_DEVICE_OK)); OK_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms)); OK_(crypt_activate_by_volume_key(cd, CDEVICE_1, key, key_size, 0)); EQ_(crypt_keyslot_add_by_volume_key(cd, 7, key, key_size, passphrase, strlen(passphrase)), 7); EQ_(crypt_keyslot_add_by_volume_key(cd, 0, key, key_size, passphrase, strlen(passphrase)), 0); OK_(crypt_header_backup(cd, CRYPT_LUKS1, BACKUP_FILE)); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); // restore header from backup OK_(crypt_init(&cd, DMDIR L_DEVICE_OK)); OK_(crypt_header_restore(cd, CRYPT_LUKS1, BACKUP_FILE)); OK_(crypt_load(cd, CRYPT_LUKS1, NULL)); OK_(crypt_activate_by_volume_key(cd, CDEVICE_1, key, key_size, 0)); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); // exercise luksOpen using backup header in file OK_(crypt_init(&cd, BACKUP_FILE)); OK_(crypt_load(cd, CRYPT_LUKS1, NULL)); OK_(crypt_set_data_device(cd, DMDIR L_DEVICE_OK)); EQ_(crypt_activate_by_passphrase(cd, CDEVICE_1, 0, passphrase, strlen(passphrase), 0), 0); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); OK_(crypt_init(&cd, BACKUP_FILE)); OK_(crypt_load(cd, CRYPT_LUKS1, NULL)); OK_(crypt_set_data_device(cd, DMDIR L_DEVICE_OK)); EQ_(crypt_activate_by_passphrase(cd, CDEVICE_1, 7, passphrase, strlen(passphrase), 0), 7); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); // exercise luksOpen using backup header on block device fd = loop_attach(&DEVICE_3, BACKUP_FILE, 0, 0, &ro); close(fd); OK_(fd < 0); OK_(crypt_init(&cd, DEVICE_3)); OK_(crypt_load(cd, CRYPT_LUKS1, NULL)); OK_(crypt_set_data_device(cd, DMDIR L_DEVICE_OK)); EQ_(crypt_activate_by_passphrase(cd, CDEVICE_1, 0, passphrase, strlen(passphrase), 0), 0); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); OK_(crypt_init(&cd, DEVICE_3)); OK_(crypt_load(cd, CRYPT_LUKS1, NULL)); OK_(crypt_set_data_device(cd, DMDIR L_DEVICE_OK)); EQ_(crypt_activate_by_passphrase(cd, CDEVICE_1, 7, passphrase, strlen(passphrase), 0), 7); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); _cleanup_dmdevices(); } static void ResizeDeviceLuks(void) { struct crypt_device *cd, *cd2; struct crypt_params_luks1 params = { .hash = "sha512", .data_alignment = 2048, }; char key[128]; const char *mk_hex = "bb21158c733229347bd4e681891e213d94c685be6a5b84818afe7a78a6de7a1a"; size_t key_size = strlen(mk_hex) / 2; const char *cipher = "aes"; const char *cipher_mode = "cbc-essiv:sha256"; uint64_t r_payload_offset, r_header_size, r_size; crypt_decode_key(key, mk_hex, key_size); // prepare env OK_(get_luks_offsets(0, key_size, params.data_alignment, 0, NULL, &r_payload_offset)); OK_(get_luks_offsets(1, key_size, 0, 0, &r_header_size, NULL)); OK_(create_dmdevice_over_loop(H_DEVICE, r_header_size)); OK_(create_dmdevice_over_loop(L_DEVICE_OK, r_payload_offset + 1000)); OK_(create_dmdevice_over_loop(L_DEVICE_0S, 1000)); OK_(create_dmdevice_over_loop(L_DEVICE_WRONG, r_payload_offset + 1000)); // test header and encrypted payload all in one device OK_(crypt_init(&cd, DMDIR L_DEVICE_OK)); OK_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms)); OK_(crypt_activate_by_volume_key(cd, CDEVICE_1, key, key_size, 0)); OK_(crypt_resize(cd, CDEVICE_1, 42)); if (!t_device_size(DMDIR CDEVICE_1, &r_size)) EQ_(42, r_size >> SECTOR_SHIFT); // autodetect encrypted device area size OK_(crypt_resize(cd, CDEVICE_1, 0)); if (!t_device_size(DMDIR CDEVICE_1, &r_size)) EQ_(1000, r_size >> SECTOR_SHIFT); FAIL_(crypt_resize(cd, CDEVICE_1, 1001), "Device too small"); if (!t_device_size(DMDIR CDEVICE_1, &r_size)) EQ_(1000, r_size >> SECTOR_SHIFT); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); params.data_alignment = 0; params.data_device = DMDIR L_DEVICE_0S; // test case for external header OK_(crypt_init(&cd, DMDIR H_DEVICE)); OK_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms)); OK_(crypt_activate_by_volume_key(cd, CDEVICE_1, key, key_size, 0)); OK_(crypt_resize(cd, CDEVICE_1, 666)); if (!t_device_size(DMDIR CDEVICE_1, &r_size)) EQ_(666, r_size >> SECTOR_SHIFT); // autodetect encrypted device size OK_(crypt_resize(cd, CDEVICE_1, 0)); if (!t_device_size(DMDIR CDEVICE_1, &r_size)) EQ_(1000, r_size >> SECTOR_SHIFT); FAIL_(crypt_resize(cd, CDEVICE_1, 1001), "Device too small"); if (!t_device_size(DMDIR CDEVICE_1, &r_size)) EQ_(1000, r_size >> SECTOR_SHIFT); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); OK_(crypt_init(&cd, DMDIR L_DEVICE_OK)); OK_(crypt_load(cd, NULL, NULL)); OK_(crypt_activate_by_volume_key(cd, CDEVICE_1, key, key_size, 0)); /* do not allow resize of other device */ OK_(crypt_init(&cd2, DMDIR L_DEVICE_WRONG)); OK_(crypt_format(cd2, CRYPT_LUKS1, cipher, cipher_mode, crypt_get_uuid(cd), key, key_size, ¶ms)); OK_(crypt_activate_by_volume_key(cd2, CDEVICE_2, key, key_size, 0)); FAIL_(crypt_resize(cd2, CDEVICE_1, 1), "Device got resized by wrong device context."); OK_(crypt_deactivate(cd2, CDEVICE_2)); crypt_free(cd2); OK_(crypt_init(&cd2, DMDIR L_DEVICE_WRONG)); OK_(crypt_format(cd2, CRYPT_PLAIN, cipher, cipher_mode, NULL, key, key_size, NULL)); OK_(crypt_activate_by_volume_key(cd2, CDEVICE_2, key, key_size, 0)); FAIL_(crypt_resize(cd2, CDEVICE_1, 1), "Device got resized by wrong device context."); OK_(crypt_deactivate(cd2, CDEVICE_2)); crypt_free(cd2); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); _cleanup_dmdevices(); } static void HashDevicePlain(void) { struct crypt_device *cd; struct crypt_params_plain params = { .hash = NULL, .skip = 0, .offset = 0, }; size_t key_size; const char *mk_hex, *keystr; char key[256]; OK_(crypt_init(&cd, DEVICE_1)); OK_(crypt_format(cd, CRYPT_PLAIN, "aes", "cbc-essiv:sha256", NULL, NULL, 16, ¶ms)); // hash PLAIN, short key OK_(prepare_keyfile(KEYFILE1, "tooshort", 8)); FAIL_(crypt_activate_by_keyfile(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEYFILE1, 16, 0), "not enough data in keyfile"); _remove_keyfiles(); // hash PLAIN, exact key // 0 1 2 3 4 5 6 7 8 9 a b c d e f mk_hex = "caffeecaffeecaffeecaffeecaffee88"; key_size = 16; crypt_decode_key(key, mk_hex, key_size); OK_(prepare_keyfile(KEYFILE1, key, key_size)); OK_(crypt_activate_by_keyfile(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEYFILE1, key_size, 0)); OK_(get_key_dm(CDEVICE_1, key, sizeof(key))); OK_(strcmp(key, mk_hex)); OK_(crypt_deactivate(cd, CDEVICE_1)); // Limit plain key mk_hex = "caffeecaffeecaffeecaffeeca000000"; OK_(crypt_activate_by_keyfile(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEYFILE1, key_size - 3, 0)); OK_(get_key_dm(CDEVICE_1, key, sizeof(key))); OK_(strcmp(key, mk_hex)); OK_(crypt_deactivate(cd, CDEVICE_1)); _remove_keyfiles(); // hash PLAIN, long key // 0 1 2 3 4 5 6 7 8 9 a b c d e f mk_hex = "caffeecaffeecaffeecaffeecaffee88babebabe"; key_size = 16; crypt_decode_key(key, mk_hex, key_size); OK_(prepare_keyfile(KEYFILE1, key, strlen(mk_hex) / 2)); OK_(crypt_activate_by_keyfile(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEYFILE1, key_size, 0)); OK_(get_key_dm(CDEVICE_1, key, sizeof(key))); FAIL_(strcmp(key, mk_hex), "only key length used"); OK_(strncmp(key, mk_hex, key_size)); OK_(crypt_deactivate(cd, CDEVICE_1)); // Now without explicit limit OK_(crypt_activate_by_keyfile(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEYFILE1, 0, 0)); OK_(get_key_dm(CDEVICE_1, key, sizeof(key))); FAIL_(strcmp(key, mk_hex), "only key length used"); OK_(strncmp(key, mk_hex, key_size)); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); _remove_keyfiles(); // Handling of legacy "plain" hash (no hash) params.hash = "plain"; // 0 1 2 3 4 5 6 7 8 9 a b c d e f mk_hex = "aabbcaffeecaffeecaffeecaffeecaff"; key_size = 16; crypt_decode_key(key, mk_hex, key_size); OK_(prepare_keyfile(KEYFILE1, key, strlen(mk_hex) / 2)); OK_(crypt_init(&cd, DEVICE_1)); OK_(crypt_format(cd, CRYPT_PLAIN, "aes", "cbc-essiv:sha256", NULL, NULL, 16, ¶ms)); OK_(crypt_activate_by_keyfile(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEYFILE1, key_size, 0)); OK_(get_key_dm(CDEVICE_1, key, sizeof(key))); OK_(strcmp(key, mk_hex)); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); _remove_keyfiles(); // hash sha256 params.hash = "sha256"; OK_(crypt_init(&cd, DEVICE_1)); OK_(crypt_format(cd, CRYPT_PLAIN, "aes", "cbc-essiv:sha256", NULL, NULL, 16, ¶ms)); // 0 1 2 3 4 5 6 7 8 9 a b c d e f mk_hex = "c62e4615bd39e222572f3a1bf7c2132e"; keystr = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"; key_size = strlen(keystr); // 32 OK_(prepare_keyfile(KEYFILE1, keystr, strlen(keystr))); OK_(crypt_activate_by_keyfile(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEYFILE1, key_size, 0)); OK_(get_key_dm(CDEVICE_1, key, sizeof(key))); OK_(strcmp(key, mk_hex)); OK_(crypt_deactivate(cd, CDEVICE_1)); // Read full keyfile OK_(crypt_activate_by_keyfile(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEYFILE1, 0, 0)); OK_(get_key_dm(CDEVICE_1, key, sizeof(key))); OK_(strcmp(key, mk_hex)); OK_(crypt_deactivate(cd, CDEVICE_1)); _remove_keyfiles(); // Limit keyfile read keystr = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxAAAAAAAA"; OK_(prepare_keyfile(KEYFILE1, keystr, strlen(keystr))); OK_(crypt_activate_by_keyfile(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEYFILE1, key_size, 0)); OK_(get_key_dm(CDEVICE_1, key, sizeof(key))); OK_(strcmp(key, mk_hex)); OK_(crypt_deactivate(cd, CDEVICE_1)); // Full keyfile OK_(crypt_activate_by_keyfile(cd, CDEVICE_1, CRYPT_ANY_SLOT, KEYFILE1, 0, 0)); OK_(get_key_dm(CDEVICE_1, key, sizeof(key))); OK_(strcmp(key, "0e49cb34a1dee1df33f6505e4de44a66")); OK_(crypt_deactivate(cd, CDEVICE_1)); _remove_keyfiles(); // FIXME: add keyfile="-" tests somehow crypt_free(cd); } static void VerityTest(void) { struct crypt_device *cd; const char *salt_hex = "20c28ffc129c12360ba6ceea2b6cf04e89c2b41cfe6b8439eb53c1897f50df7b"; const char *root_hex = "ab018b003a967fc782effb293b6dccb60b4f40c06bf80d16391acf686d28b5d6"; char salt[256], root_hash[256]; struct crypt_active_device cad; struct crypt_params_verity params = { .data_device = DEVICE_EMPTY, .salt = salt, .data_size = 0, /* whole device */ .hash_area_offset = 0, .flags = CRYPT_VERITY_CREATE_HASH, }; crypt_decode_key(salt, salt_hex, strlen(salt_hex) / 2); crypt_decode_key(root_hash, root_hex, strlen(root_hex) / 2); /* Format */ OK_(crypt_init(&cd, DEVICE_2)); /* block size */ params.data_block_size = 333; FAIL_(crypt_format(cd, CRYPT_VERITY, NULL, NULL, NULL, NULL, 0, ¶ms), "Unsupppored block size."); params.data_block_size = 4096; params.hash_block_size = 333; FAIL_(crypt_format(cd, CRYPT_VERITY, NULL, NULL, NULL, NULL, 0, ¶ms), "Unsupppored block size."); params.hash_block_size = 4096; /* salt size */ params.salt_size = 257; FAIL_(crypt_format(cd, CRYPT_VERITY, NULL, NULL, NULL, NULL, 0, ¶ms), "Too large salt."); params.salt_size = 32; /* hash_type */ params.hash_type = 3; FAIL_(crypt_format(cd, CRYPT_VERITY, NULL, NULL, NULL, NULL, 0, ¶ms), "Unsupported hash type."); params.hash_type = 1; params.hash_name = "blah"; FAIL_(crypt_format(cd, CRYPT_VERITY, NULL, NULL, NULL, NULL, 0, ¶ms), "Unsupported hash name."); params.hash_name = "sha256"; OK_(crypt_format(cd, CRYPT_VERITY, NULL, NULL, NULL, NULL, 0, ¶ms)); crypt_free(cd); params.data_device = NULL; OK_(crypt_init_data_device(&cd, DEVICE_2, DEVICE_EMPTY)); OK_(crypt_format(cd, CRYPT_VERITY, NULL, NULL, NULL, NULL, 0, ¶ms)); EQ_(strcmp(DEVICE_2, crypt_get_metadata_device_name(cd)), 0); crypt_free(cd); /* Verify */ OK_(crypt_init(&cd, DEVICE_2)); memset(¶ms, 0, sizeof(params)); params.data_device = DEVICE_EMPTY; params.flags = CRYPT_VERITY_CHECK_HASH; OK_(crypt_load(cd, CRYPT_VERITY, ¶ms)); /* check verity params */ EQ_(crypt_get_volume_key_size(cd), 32); OK_(strcmp(CRYPT_VERITY, crypt_get_type(cd))); memset(¶ms, 0, sizeof(params)); OK_(crypt_get_verity_info(cd, ¶ms)); OK_(strcmp("sha256", params.hash_name)); EQ_(strlen(salt_hex) / 2, params.salt_size); OK_(memcmp(salt, params.salt, params.salt_size)); EQ_(4096, params.data_block_size); EQ_(4096, params.hash_block_size); EQ_(1, params.hash_type); EQ_(crypt_get_volume_key_size(cd), 32); OK_(crypt_activate_by_volume_key(cd, NULL, root_hash, 32, 0)); OK_(crypt_set_data_device(cd, DEVICE_1)); FAIL_(crypt_activate_by_volume_key(cd, NULL, root_hash, 32, 0), "Data corrupted");; OK_(crypt_set_data_device(cd, DEVICE_EMPTY)); if (crypt_activate_by_volume_key(cd, CDEVICE_1, root_hash, 32, CRYPT_ACTIVATE_READONLY) == -ENOTSUP) { printf("WARNING: kernel dm-verity not supported, skipping test.\n"); crypt_free(cd); return; } OK_(crypt_get_active_device(cd, CDEVICE_1, &cad)); EQ_(CRYPT_ACTIVATE_READONLY, cad.flags); crypt_free(cd); OK_(crypt_init_by_name(&cd, CDEVICE_1)); OK_(crypt_deactivate(cd, CDEVICE_1)); /* hash fail */ root_hash[1] = ~root_hash[1]; OK_(crypt_activate_by_volume_key(cd, CDEVICE_1, root_hash, 32, CRYPT_ACTIVATE_READONLY)); /* Be sure there was some read activity to mark device corrupted. */ _system("blkid " DMDIR CDEVICE_1, 0); OK_(crypt_get_active_device(cd, CDEVICE_1, &cad)); EQ_(CRYPT_ACTIVATE_READONLY|CRYPT_ACTIVATE_CORRUPTED, cad.flags); OK_(crypt_deactivate(cd, CDEVICE_1)); root_hash[1] = ~root_hash[1]; /* data fail */ OK_(crypt_set_data_device(cd, DEVICE_1)); OK_(crypt_activate_by_volume_key(cd, CDEVICE_1, root_hash, 32, CRYPT_ACTIVATE_READONLY)); _system("blkid " DMDIR CDEVICE_1, 0); OK_(crypt_get_active_device(cd, CDEVICE_1, &cad)); EQ_(CRYPT_ACTIVATE_READONLY|CRYPT_ACTIVATE_CORRUPTED, cad.flags); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); } static void TcryptTest(void) { struct crypt_device *cd = NULL; struct crypt_active_device cad; const char *passphrase = "aaaaaaaaaaaa"; const char *kf1 = "tcrypt-images/keyfile1"; const char *kf2 = "tcrypt-images/keyfile2"; const char *keyfiles[] = { kf1, kf2 }; struct crypt_params_tcrypt params = { .passphrase = passphrase, .passphrase_size = strlen(passphrase), .keyfiles = keyfiles, .keyfiles_count = 2, }; double enc_mbr = 0, dec_mbr = 0; const char *tcrypt_dev = "tcrypt-images/tck_5-sha512-xts-aes"; const char *tcrypt_dev2 = "tcrypt-images/tc_5-sha512-xts-serpent-twofish-aes"; size_t key_size = 64; char key[key_size], key_def[key_size]; const char *key_hex = "98dee64abe44bbf41d171c1f7b3e8eacda6d6b01f459097459a167f8c2872a96" "3979531d1cdc18af62757cf22286f16f8583d848524f128d7594ac2082668c73"; int r; crypt_decode_key(key_def, key_hex, strlen(key_hex) / 2); // First ensure we can use af_alg skcipher interface r = crypt_benchmark(NULL, "aes", "xts", 512, 16, 1024, &enc_mbr, &dec_mbr); if (r == -ENOTSUP || r == -ENOENT) { printf("WARNING: algif_skcipher interface not present, skipping test.\n"); return; } OK_(crypt_init(&cd, tcrypt_dev)); params.passphrase_size--; FAIL_(crypt_load(cd, CRYPT_TCRYPT, ¶ms), "Wrong passphrase"); params.passphrase_size++; OK_(crypt_load(cd, CRYPT_TCRYPT, ¶ms)); // check params after load OK_(strcmp("xts-plain64", crypt_get_cipher_mode(cd))); OK_(strcmp("aes", crypt_get_cipher(cd))); EQ_(key_size, crypt_get_volume_key_size(cd)); EQ_(256, crypt_get_iv_offset(cd)); EQ_(256, crypt_get_data_offset(cd)); memset(key, 0, key_size); if (!_fips_mode) { key_size--; // small buffer FAIL_(crypt_volume_key_get(cd, CRYPT_ANY_SLOT, key, &key_size, NULL, 0), "small buffer"); key_size++; OK_(crypt_volume_key_get(cd, CRYPT_ANY_SLOT, key, &key_size, NULL, 0)); OK_(memcmp(key, key_def, key_size)); } reset_log(); OK_(crypt_dump(cd)); OK_(!(global_lines != 0)); reset_log(); OK_(crypt_activate_by_volume_key(cd, CDEVICE_1, NULL, 0, CRYPT_ACTIVATE_READONLY)); NULL_(crypt_get_metadata_device_name(cd)); crypt_free(cd); OK_(crypt_init_by_name_and_header(&cd, CDEVICE_1, NULL)); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); FAIL_(crypt_volume_key_get(cd, CRYPT_ANY_SLOT, key, &key_size, NULL, 0), "Need crypt_load"); // check params after init_by_name OK_(strcmp("xts-plain64", crypt_get_cipher_mode(cd))); OK_(strcmp("aes", crypt_get_cipher(cd))); EQ_(key_size, crypt_get_volume_key_size(cd)); EQ_(256, crypt_get_iv_offset(cd)); EQ_(256, crypt_get_data_offset(cd)); OK_(crypt_get_active_device(cd, CDEVICE_1, &cad)); EQ_(CRYPT_ACTIVATE_READONLY, cad.flags); EQ_(256, cad.offset); EQ_(256, cad.iv_offset); EQ_(72, cad.size); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); // init with detached header is not supported OK_(crypt_init_data_device(&cd, tcrypt_dev2, DEVICE_2)); FAIL_(crypt_load(cd, CRYPT_TCRYPT, ¶ms), "can't use tcrypt with separate metadata device"); crypt_free(cd); // Following test uses non-FIPS algorithms in the cipher chain if(_fips_mode) return; OK_(crypt_init(&cd, tcrypt_dev2)); params.keyfiles = NULL; params.keyfiles_count = 0; r = crypt_load(cd, CRYPT_TCRYPT, ¶ms); if (r < 0) { printf("WARNING: cannot use non-AES encryption, skipping test.\n"); crypt_free(cd); return; } OK_(crypt_activate_by_volume_key(cd, CDEVICE_1, NULL, 0, CRYPT_ACTIVATE_READONLY)); crypt_free(cd); // Deactivate the whole chain EQ_(crypt_status(NULL, CDEVICE_1 "_1"), CRYPT_BUSY); OK_(crypt_deactivate(NULL, CDEVICE_1)); EQ_(crypt_status(NULL, CDEVICE_1 "_1"), CRYPT_INACTIVE); } static void IntegrityTest(void) { struct crypt_device *cd; struct crypt_params_integrity params = { .tag_size = 4, .integrity = "crc32c", .sector_size = 4096, }, ip = {}; int ret; // FIXME: this should be more detailed OK_(crypt_init(&cd,DEVICE_1)); FAIL_(crypt_format(cd,CRYPT_INTEGRITY,NULL,NULL,NULL,NULL,0,NULL), "params field required"); ret = crypt_format(cd,CRYPT_INTEGRITY,NULL,NULL,NULL,NULL,0,¶ms); if (ret < 0) { printf("WARNING: cannot format integrity device, skipping test.\n"); crypt_free(cd); return; } OK_(crypt_get_integrity_info(cd, &ip)); EQ_(ip.tag_size, params.tag_size); EQ_(ip.sector_size, params.sector_size); EQ_(crypt_get_sector_size(cd), params.sector_size); EQ_(ip.interleave_sectors, params.interleave_sectors); EQ_(ip.journal_size, params.journal_size); EQ_(ip.journal_watermark, params.journal_watermark); OK_(strcmp(ip.integrity,params.integrity)); FAIL_(crypt_set_uuid(cd,DEVICE_1_UUID),"can't set uuid to integrity device"); crypt_free(cd); OK_(crypt_init(&cd, DEVICE_1)); OK_(crypt_load(cd, CRYPT_INTEGRITY, NULL)); crypt_free(cd); OK_(crypt_init(&cd, DEVICE_1)); //params.tag_size = 8; //FAIL_(crypt_load(cd, CRYPT_INTEGRITY, ¶ms), "tag size mismatch"); params.tag_size = 4; OK_(crypt_load(cd, CRYPT_INTEGRITY, ¶ms)); OK_(crypt_activate_by_volume_key(cd, CDEVICE_1, NULL, 0, 0)); EQ_(crypt_status(cd, CDEVICE_1), CRYPT_ACTIVE); crypt_free(cd); memset(&ip, 0, sizeof(ip)); OK_(crypt_init_by_name(&cd, CDEVICE_1)); OK_(crypt_get_integrity_info(cd, &ip)); EQ_(ip.tag_size, params.tag_size); OK_(strcmp(ip.integrity,params.integrity)); OK_(strcmp(CRYPT_INTEGRITY,crypt_get_type(cd))); OK_(crypt_deactivate(cd, CDEVICE_1)); crypt_free(cd); } // Check that gcrypt is properly initialised in format static void NonFIPSAlg(void) { struct crypt_device *cd; struct crypt_params_luks1 params = {0}; char key[128] = ""; size_t key_size = 128 / 8; const char *cipher = "aes"; const char *cipher_mode = "cbc-essiv:sha256"; int ret; OK_(crypt_init(&cd, DEVICE_2)); params.hash = "sha256"; OK_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms)); FAIL_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms), "Already formatted."); crypt_free(cd); params.hash = "whirlpool"; OK_(crypt_init(&cd, DEVICE_2)); ret = crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms); if (ret < 0) { printf("WARNING: whirlpool not supported, skipping test.\n"); crypt_free(cd); return; } crypt_free(cd); params.hash = "md5"; OK_(crypt_init(&cd, DEVICE_2)); FAIL_(crypt_format(cd, CRYPT_LUKS1, cipher, cipher_mode, NULL, key, key_size, ¶ms), "MD5 unsupported, too short"); crypt_free(cd); } static void int_handler(int sig __attribute__((__unused__))) { _quit++; } int main(int argc, char *argv[]) { struct sigaction sa = { .sa_handler = int_handler }; int i; if (getuid() != 0) { printf("You must be root to run this test.\n"); exit(77); } for (i = 1; i < argc; i++) { if (!strcmp("-v", argv[i]) || !strcmp("--verbose", argv[i])) _verbose = 1; else if (!strcmp("--debug", argv[i])) _debug = _verbose = 1; } /* Handle interrupt properly */ sigaction(SIGINT, &sa, NULL); sigaction(SIGTERM, &sa, NULL); register_cleanup(_cleanup); _cleanup(); if (_setup()) goto out; crypt_set_debug_level(_debug ? CRYPT_DEBUG_ALL : CRYPT_DEBUG_NONE); RUN_(NonFIPSAlg, "Crypto is properly initialised in format"); //must be the first! RUN_(AddDevicePlain, "A plain device API creation"); RUN_(HashDevicePlain, "A plain device API hash"); RUN_(AddDeviceLuks, "Format and use LUKS device"); RUN_(LuksHeaderLoad, "Header load"); RUN_(LuksHeaderRestore, "LUKS header restore"); RUN_(LuksHeaderBackup, "LUKS header backup"); RUN_(ResizeDeviceLuks, "LUKS device resize"); RUN_(UseLuksDevice, "Use pre-formated LUKS device"); RUN_(SuspendDevice, "Suspend/Resume"); RUN_(UseTempVolumes, "Format and use temporary encrypted device"); RUN_(CallbacksTest, "API callbacks"); RUN_(VerityTest, "DM verity"); RUN_(TcryptTest, "Tcrypt API"); RUN_(IntegrityTest, "Integrity API"); out: _cleanup(); return 0; }