1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
|
/*
* PBKDF performance check
* Copyright (C) 2012-2019 Red Hat, Inc. All rights reserved.
* Copyright (C) 2012-2019 Milan Broz
* Copyright (C) 2016-2019 Ondrej Mosnacek
*
* This file is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this file; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdlib.h>
#include <errno.h>
#include <limits.h>
#include <time.h>
#include <sys/time.h>
#include <sys/resource.h>
#include "crypto_backend.h"
#define BENCH_MIN_MS 250
#define BENCH_MIN_MS_FAST 10
#define BENCH_PERCENT_ATLEAST 95
#define BENCH_PERCENT_ATMOST 110
#define BENCH_SAMPLES_FAST 3
#define BENCH_SAMPLES_SLOW 1
/* These PBKDF2 limits must be never violated */
int crypt_pbkdf_get_limits(const char *kdf, struct crypt_pbkdf_limits *limits)
{
if (!kdf || !limits)
return -EINVAL;
if (!strcmp(kdf, "pbkdf2")) {
limits->min_iterations = 1000; /* recommendation in NIST SP 800-132 */
limits->max_iterations = UINT32_MAX;
limits->min_memory = 0; /* N/A */
limits->max_memory = 0; /* N/A */
limits->min_parallel = 0; /* N/A */
limits->max_parallel = 0; /* N/A */
return 0;
} else if (!strcmp(kdf, "argon2i") || !strcmp(kdf, "argon2id")) {
limits->min_iterations = 4;
limits->max_iterations = UINT32_MAX;
limits->min_memory = 32;
limits->max_memory = 4*1024*1024; /* 4GiB */
limits->min_parallel = 1;
limits->max_parallel = 4;
return 0;
}
return -EINVAL;
}
static long time_ms(struct rusage *start, struct rusage *end)
{
int count_kernel_time = 0;
long ms;
if (crypt_backend_flags() & CRYPT_BACKEND_KERNEL)
count_kernel_time = 1;
/*
* FIXME: if there is no self usage info, count system time.
* This seem like getrusage() bug in some hypervisors...
*/
if (!end->ru_utime.tv_sec && !start->ru_utime.tv_sec &&
!end->ru_utime.tv_usec && !start->ru_utime.tv_usec)
count_kernel_time = 1;
ms = (end->ru_utime.tv_sec - start->ru_utime.tv_sec) * 1000;
ms += (end->ru_utime.tv_usec - start->ru_utime.tv_usec) / 1000;
if (count_kernel_time) {
ms += (end->ru_stime.tv_sec - start->ru_stime.tv_sec) * 1000;
ms += (end->ru_stime.tv_usec - start->ru_stime.tv_usec) / 1000;
}
return ms;
}
static long timespec_ms(struct timespec *start, struct timespec *end)
{
return (end->tv_sec - start->tv_sec) * 1000 +
(end->tv_nsec - start->tv_nsec) / (1000 * 1000);
}
static int measure_argon2(const char *kdf, const char *password, size_t password_length,
const char *salt, size_t salt_length,
char *key, size_t key_length,
uint32_t t_cost, uint32_t m_cost, uint32_t parallel,
size_t samples, long ms_atleast, long *out_ms)
{
long ms, ms_min = LONG_MAX;
int r;
size_t i;
for (i = 0; i < samples; i++) {
struct timespec tstart, tend;
/*
* NOTE: We must use clock_gettime here, because Argon2 can run over
* multiple threads, and thus we care about real time, not CPU time!
*/
if (clock_gettime(CLOCK_MONOTONIC_RAW, &tstart) < 0)
return -EINVAL;
r = crypt_pbkdf(kdf, NULL, password, password_length, salt,
salt_length, key, key_length, t_cost, m_cost, parallel);
if (r < 0)
return r;
if (clock_gettime(CLOCK_MONOTONIC_RAW, &tend) < 0)
return -EINVAL;
ms = timespec_ms(&tstart, &tend);
if (ms < 0)
return -EINVAL;
if (ms < ms_atleast) {
/* early exit */
ms_min = ms;
break;
}
if (ms < ms_min) {
ms_min = ms;
}
}
*out_ms = ms_min;
return 0;
}
#define CONTINUE 0
#define FINAL 1
static int next_argon2_params(uint32_t *t_cost, uint32_t *m_cost,
uint32_t min_t_cost, uint32_t min_m_cost,
uint32_t max_m_cost, long ms, uint32_t target_ms)
{
uint32_t old_t_cost, old_m_cost, new_t_cost, new_m_cost;
uint64_t num, denom;
old_t_cost = *t_cost;
old_m_cost = *m_cost;
if (ms > target_ms) {
/* decreasing, first try to lower t_cost, then m_cost */
num = (uint64_t)*t_cost * (uint64_t)target_ms;
denom = (uint64_t)ms;
new_t_cost = (uint32_t)(num / denom);
if (new_t_cost < min_t_cost) {
num = (uint64_t)*t_cost * (uint64_t)*m_cost *
(uint64_t)target_ms;
denom = (uint64_t)min_t_cost * (uint64_t)ms;
*t_cost = min_t_cost;
*m_cost = (uint32_t)(num / denom);
if (*m_cost < min_m_cost) {
*m_cost = min_m_cost;
return FINAL;
}
} else {
*t_cost = new_t_cost;
}
} else {
/* increasing, first try to increase m_cost, then t_cost */
num = (uint64_t)*m_cost * (uint64_t)target_ms;
denom = (uint64_t)ms;
new_m_cost = (uint32_t)(num / denom);
if (new_m_cost > max_m_cost) {
num = (uint64_t)*t_cost * (uint64_t)*m_cost *
(uint64_t)target_ms;
denom = (uint64_t)max_m_cost * (uint64_t)ms;
*t_cost = (uint32_t)(num / denom);
*m_cost = max_m_cost;
if (*t_cost <= min_t_cost) {
*t_cost = min_t_cost;
return FINAL;
}
} else if (new_m_cost < min_m_cost) {
*m_cost = min_m_cost;
return FINAL;
} else {
*m_cost = new_m_cost;
}
}
/* do not continue if it is the same as in the previous run */
if (old_t_cost == *t_cost && old_m_cost == *m_cost)
return FINAL;
return CONTINUE;
}
static int crypt_argon2_check(const char *kdf, const char *password,
size_t password_length, const char *salt,
size_t salt_length, size_t key_length,
uint32_t min_t_cost, uint32_t min_m_cost, uint32_t max_m_cost,
uint32_t parallel, uint32_t target_ms,
uint32_t *out_t_cost, uint32_t *out_m_cost,
int (*progress)(uint32_t time_ms, void *usrptr),
void *usrptr)
{
int r = 0;
char *key = NULL;
uint32_t t_cost, m_cost;
long ms;
long ms_atleast = (long)target_ms * BENCH_PERCENT_ATLEAST / 100;
long ms_atmost = (long)target_ms * BENCH_PERCENT_ATMOST / 100;
if (key_length <= 0 || target_ms <= 0)
return -EINVAL;
if (min_m_cost < (parallel * 8))
min_m_cost = parallel * 8;
if (max_m_cost < min_m_cost)
return -EINVAL;
key = malloc(key_length);
if (!key)
return -ENOMEM;
t_cost = min_t_cost;
m_cost = min_m_cost;
/* 1. Find some small parameters, s. t. ms >= BENCH_MIN_MS: */
while (1) {
r = measure_argon2(kdf, password, password_length, salt, salt_length,
key, key_length, t_cost, m_cost, parallel,
BENCH_SAMPLES_FAST, BENCH_MIN_MS, &ms);
if (!r) {
/* Update parameters to actual measurement */
*out_t_cost = t_cost;
*out_m_cost = m_cost;
if (progress && progress((uint32_t)ms, usrptr))
r = -EINTR;
}
if (r < 0)
goto out;
if (ms >= BENCH_MIN_MS)
break;
if (m_cost == max_m_cost) {
if (ms < BENCH_MIN_MS_FAST)
t_cost *= 16;
else {
uint32_t new = (t_cost * BENCH_MIN_MS) / (uint32_t)ms;
if (new == t_cost)
break;
t_cost = new;
}
} else {
if (ms < BENCH_MIN_MS_FAST)
m_cost *= 16;
else {
uint32_t new = (m_cost * BENCH_MIN_MS) / (uint32_t)ms;
if (new == m_cost)
break;
m_cost = new;
}
if (m_cost > max_m_cost) {
m_cost = max_m_cost;
}
}
}
/*
* 2. Use the params obtained in (1.) to estimate the target params.
* 3. Then repeatedly measure the candidate params and if they fall out of
* the acceptance range (+-5 %), try to improve the estimate:
*/
do {
if (next_argon2_params(&t_cost, &m_cost, min_t_cost, min_m_cost,
max_m_cost, ms, target_ms)) {
/* Update parameters to final computation */
*out_t_cost = t_cost;
*out_m_cost = m_cost;
break;
}
r = measure_argon2(kdf, password, password_length, salt, salt_length,
key, key_length, t_cost, m_cost, parallel,
BENCH_SAMPLES_SLOW, ms_atleast, &ms);
if (!r) {
/* Update parameters to actual measurement */
*out_t_cost = t_cost;
*out_m_cost = m_cost;
if (progress && progress((uint32_t)ms, usrptr))
r = -EINTR;
}
if (r < 0)
break;
} while (ms < ms_atleast || ms > ms_atmost);
out:
if (key) {
crypt_backend_memzero(key, key_length);
free(key);
}
return r;
}
/* This code benchmarks PBKDF and returns iterations/second using specified hash */
static int crypt_pbkdf_check(const char *kdf, const char *hash,
const char *password, size_t password_length,
const char *salt, size_t salt_length,
size_t key_length, uint32_t *iter_secs, uint32_t target_ms,
int (*progress)(uint32_t time_ms, void *usrptr), void *usrptr)
{
struct rusage rstart, rend;
int r = 0, step = 0;
long ms = 0;
char *key = NULL;
uint32_t iterations;
double PBKDF2_temp;
if (!kdf || !hash || key_length <= 0)
return -EINVAL;
key = malloc(key_length);
if (!key)
return -ENOMEM;
*iter_secs = 0;
iterations = 1 << 15;
while (1) {
if (getrusage(RUSAGE_SELF, &rstart) < 0) {
r = -EINVAL;
goto out;
}
r = crypt_pbkdf(kdf, hash, password, password_length, salt,
salt_length, key, key_length, iterations, 0, 0);
if (r < 0)
goto out;
if (getrusage(RUSAGE_SELF, &rend) < 0) {
r = -EINVAL;
goto out;
}
ms = time_ms(&rstart, &rend);
if (ms) {
PBKDF2_temp = (double)iterations * target_ms / ms;
if (PBKDF2_temp > UINT32_MAX)
return -EINVAL;
*iter_secs = (uint32_t)PBKDF2_temp;
}
if (progress && progress((uint32_t)ms, usrptr)) {
r = -EINTR;
goto out;
}
if (ms > 500)
break;
if (ms <= 62)
iterations <<= 4;
else if (ms <= 125)
iterations <<= 3;
else if (ms <= 250)
iterations <<= 2;
else
iterations <<= 1;
if (++step > 10 || !iterations) {
r = -EINVAL;
goto out;
}
}
out:
if (key) {
crypt_backend_memzero(key, key_length);
free(key);
}
return r;
}
int crypt_pbkdf_perf(const char *kdf, const char *hash,
const char *password, size_t password_size,
const char *salt, size_t salt_size,
size_t volume_key_size, uint32_t time_ms,
uint32_t max_memory_kb, uint32_t parallel_threads,
uint32_t *iterations_out, uint32_t *memory_out,
int (*progress)(uint32_t time_ms, void *usrptr), void *usrptr)
{
struct crypt_pbkdf_limits pbkdf_limits;
int r = -EINVAL;
if (!kdf || !iterations_out || !memory_out)
return -EINVAL;
/* FIXME: whole limits propagation should be more clear here */
r = crypt_pbkdf_get_limits(kdf, &pbkdf_limits);
if (r < 0)
return r;
*memory_out = 0;
*iterations_out = 0;
if (!strcmp(kdf, "pbkdf2"))
r = crypt_pbkdf_check(kdf, hash, password, password_size,
salt, salt_size, volume_key_size,
iterations_out, time_ms, progress, usrptr);
else if (!strncmp(kdf, "argon2", 6))
r = crypt_argon2_check(kdf, password, password_size,
salt, salt_size, volume_key_size,
pbkdf_limits.min_iterations,
pbkdf_limits.min_memory,
max_memory_kb,
parallel_threads, time_ms, iterations_out,
memory_out, progress, usrptr);
return r;
}
|