/* Copyright (C) 2014-2017 CZ.NIC, z.s.p.o. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include #include #if defined(__GLIBC__) && defined(_GNU_SOURCE) #include #endif #include #include #include #include #include "lib/utils.h" #include "lib/layer.h" #include "daemon/worker.h" #include "daemon/bindings.h" #include "daemon/engine.h" #include "daemon/io.h" #include "daemon/tls.h" #include "daemon/zimport.h" #include "daemon/session.h" /* Magic defaults for the worker. */ #ifndef MP_FREELIST_SIZE # ifdef __clang_analyzer__ # define MP_FREELIST_SIZE 0 # else # define MP_FREELIST_SIZE 64 /**< Maximum length of the worker mempool freelist */ # endif #endif #ifndef QUERY_RATE_THRESHOLD #define QUERY_RATE_THRESHOLD (2 * MP_FREELIST_SIZE) /**< Nr of parallel queries considered as high rate */ #endif #ifndef MAX_PIPELINED #define MAX_PIPELINED 100 #endif #define VERBOSE_MSG(qry, ...) QRVERBOSE(qry, "wrkr", __VA_ARGS__) /** Client request state. */ struct request_ctx { struct kr_request req; struct { union inaddr addr; union inaddr dst_addr; /* uv_handle_t *handle; */ /** NULL if the request didn't come over network. */ struct session *session; } source; struct worker_ctx *worker; struct qr_task *task; }; /** Query resolution task. */ struct qr_task { struct request_ctx *ctx; knot_pkt_t *pktbuf; qr_tasklist_t waiting; struct session *pending[MAX_PENDING]; uint16_t pending_count; uint16_t addrlist_count; uint16_t addrlist_turn; uint16_t timeouts; uint16_t iter_count; struct sockaddr *addrlist; uint32_t refs; bool finished : 1; bool leading : 1; uint64_t creation_time; }; /* Convenience macros */ #define qr_task_ref(task) \ do { ++(task)->refs; } while(0) #define qr_task_unref(task) \ do { if (task && --(task)->refs == 0) { qr_task_free(task); } } while (0) /** @internal get key for tcp session * @note kr_straddr() return pointer to static string */ #define tcpsess_key(addr) kr_straddr(addr) /* Forward decls */ static void qr_task_free(struct qr_task *task); static int qr_task_step(struct qr_task *task, const struct sockaddr *packet_source, knot_pkt_t *packet); static int qr_task_send(struct qr_task *task, struct session *session, struct sockaddr *addr, knot_pkt_t *pkt); static int qr_task_finalize(struct qr_task *task, int state); static void qr_task_complete(struct qr_task *task); static struct session* worker_find_tcp_connected(struct worker_ctx *worker, const struct sockaddr *addr); static int worker_add_tcp_waiting(struct worker_ctx *worker, const struct sockaddr *addr, struct session *session); static struct session* worker_find_tcp_waiting(struct worker_ctx *worker, const struct sockaddr *addr); static void on_tcp_connect_timeout(uv_timer_t *timer); /** @internal Get singleton worker. */ static inline struct worker_ctx *get_worker(void) { return uv_default_loop()->data; } /*! @internal Create a UDP/TCP handle for an outgoing AF_INET* connection. * socktype is SOCK_* */ static uv_handle_t *ioreq_spawn(struct worker_ctx *worker, int socktype, sa_family_t family, bool has_tls) { bool precond = (socktype == SOCK_DGRAM || socktype == SOCK_STREAM) && (family == AF_INET || family == AF_INET6); if (!precond) { assert(false); kr_log_verbose("[work] ioreq_spawn: pre-condition failed\n"); return NULL; } /* Create connection for iterative query */ uv_handle_t *handle = malloc(socktype == SOCK_DGRAM ? sizeof(uv_udp_t) : sizeof(uv_tcp_t)); if (!handle) { return NULL; } int ret = io_create(worker->loop, handle, socktype, family, has_tls); if (ret) { if (ret == UV_EMFILE) { worker->too_many_open = true; worker->rconcurrent_highwatermark = worker->stats.rconcurrent; } free(handle); return NULL; } /* Bind to outgoing address, according to IP v4/v6. */ union inaddr *addr; if (family == AF_INET) { addr = (union inaddr *)&worker->out_addr4; } else { addr = (union inaddr *)&worker->out_addr6; } if (addr->ip.sa_family != AF_UNSPEC) { assert(addr->ip.sa_family == family); if (socktype == SOCK_DGRAM) { uv_udp_t *udp = (uv_udp_t *)handle; ret = uv_udp_bind(udp, &addr->ip, 0); } else if (socktype == SOCK_STREAM){ uv_tcp_t *tcp = (uv_tcp_t *)handle; ret = uv_tcp_bind(tcp, &addr->ip, 0); } } if (ret != 0) { io_deinit(handle); free(handle); return NULL; } /* Set current handle as a subrequest type. */ struct session *session = handle->data; session_flags(session)->outgoing = true; /* Connect or issue query datagram */ return handle; } static void ioreq_kill_pending(struct qr_task *task) { for (uint16_t i = 0; i < task->pending_count; ++i) { session_kill_ioreq(task->pending[i], task); } task->pending_count = 0; } /** @cond This memory layout is internal to mempool.c, use only for debugging. */ #if defined(__SANITIZE_ADDRESS__) struct mempool_chunk { struct mempool_chunk *next; size_t size; }; static void mp_poison(struct mempool *mp, bool poison) { if (!poison) { /* @note mempool is part of the first chunk, unpoison it first */ kr_asan_unpoison(mp, sizeof(*mp)); } struct mempool_chunk *chunk = mp->state.last[0]; void *chunk_off = (uint8_t *)chunk - chunk->size; if (poison) { kr_asan_poison(chunk_off, chunk->size); } else { kr_asan_unpoison(chunk_off, chunk->size); } } #else #define mp_poison(mp, enable) #endif /** @endcond */ /** Get a mempool. (Recycle if possible.) */ static inline struct mempool *pool_borrow(struct worker_ctx *worker) { struct mempool *mp = NULL; if (worker->pool_mp.len > 0) { mp = array_tail(worker->pool_mp); array_pop(worker->pool_mp); mp_poison(mp, 0); } else { /* No mempool on the freelist, create new one */ mp = mp_new (4 * CPU_PAGE_SIZE); } return mp; } /** Return a mempool. (Cache them up to some count.) */ static inline void pool_release(struct worker_ctx *worker, struct mempool *mp) { if (worker->pool_mp.len < MP_FREELIST_SIZE) { mp_flush(mp); array_push(worker->pool_mp, mp); mp_poison(mp, 1); } else { mp_delete(mp); } } /** Create a key for an outgoing subrequest: qname, qclass, qtype. * @param key Destination buffer for key size, MUST be SUBREQ_KEY_LEN or larger. * @return key length if successful or an error */ static const size_t SUBREQ_KEY_LEN = KR_RRKEY_LEN; static int subreq_key(char *dst, knot_pkt_t *pkt) { assert(pkt); return kr_rrkey(dst, knot_pkt_qclass(pkt), knot_pkt_qname(pkt), knot_pkt_qtype(pkt), knot_pkt_qtype(pkt)); } /** Create and initialize a request_ctx (on a fresh mempool). * * handle and addr point to the source of the request, and they are NULL * in case the request didn't come from network. */ static struct request_ctx *request_create(struct worker_ctx *worker, uv_handle_t *handle, const struct sockaddr *addr, uint32_t uid) { knot_mm_t pool = { .ctx = pool_borrow(worker), .alloc = (knot_mm_alloc_t) mp_alloc }; /* Create request context */ struct request_ctx *ctx = mm_alloc(&pool, sizeof(*ctx)); if (!ctx) { pool_release(worker, pool.ctx); return NULL; } memset(ctx, 0, sizeof(*ctx)); /* TODO Relocate pool to struct request */ ctx->worker = worker; struct session *s = handle ? handle->data : NULL; if (s) { assert(session_flags(s)->outgoing == false); } ctx->source.session = s; struct kr_request *req = &ctx->req; req->pool = pool; req->vars_ref = LUA_NOREF; req->uid = uid; req->daemon_context = worker; /* Remember query source addr */ if (!addr || (addr->sa_family != AF_INET && addr->sa_family != AF_INET6)) { ctx->source.addr.ip.sa_family = AF_UNSPEC; } else { memcpy(&ctx->source.addr, addr, kr_sockaddr_len(addr)); ctx->req.qsource.addr = &ctx->source.addr.ip; } worker->stats.rconcurrent += 1; if (!handle) { return ctx; } /* Remember the destination address. */ int addr_len = sizeof(ctx->source.dst_addr); struct sockaddr *dst_addr = &ctx->source.dst_addr.ip; ctx->source.dst_addr.ip.sa_family = AF_UNSPEC; if (handle->type == UV_UDP) { if (uv_udp_getsockname((uv_udp_t *)handle, dst_addr, &addr_len) == 0) { req->qsource.dst_addr = dst_addr; } req->qsource.flags.tcp = false; req->qsource.flags.tls = false; } else if (handle->type == UV_TCP) { if (uv_tcp_getsockname((uv_tcp_t *)handle, dst_addr, &addr_len) == 0) { req->qsource.dst_addr = dst_addr; } req->qsource.flags.tcp = true; req->qsource.flags.tls = s && session_flags(s)->has_tls; } return ctx; } /** More initialization, related to the particular incoming query/packet. */ static int request_start(struct request_ctx *ctx, knot_pkt_t *query) { assert(query && ctx); size_t answer_max = KNOT_WIRE_MIN_PKTSIZE; struct kr_request *req = &ctx->req; /* source.session can be empty if request was generated by kresd itself */ struct session *s = ctx->source.session; if (!s || session_get_handle(s)->type == UV_TCP) { answer_max = KNOT_WIRE_MAX_PKTSIZE; } else if (knot_pkt_has_edns(query)) { /* EDNS */ answer_max = MAX(knot_edns_get_payload(query->opt_rr), KNOT_WIRE_MIN_PKTSIZE); } req->qsource.size = query->size; if (knot_pkt_has_tsig(query)) { req->qsource.size += query->tsig_wire.len; } knot_pkt_t *answer = knot_pkt_new(NULL, answer_max, &req->pool); if (!answer) { /* Failed to allocate answer */ return kr_error(ENOMEM); } knot_pkt_t *pkt = knot_pkt_new(NULL, req->qsource.size, &req->pool); if (!pkt) { return kr_error(ENOMEM); } int ret = knot_pkt_copy(pkt, query); if (ret != KNOT_EOK && ret != KNOT_ETRAIL) { return kr_error(ENOMEM); } req->qsource.packet = pkt; /* Start resolution */ struct worker_ctx *worker = ctx->worker; struct engine *engine = worker->engine; kr_resolve_begin(req, &engine->resolver, answer); worker->stats.queries += 1; /* Throttle outbound queries only when high pressure */ if (worker->stats.concurrent < QUERY_RATE_THRESHOLD) { req->options.NO_THROTTLE = true; } return kr_ok(); } static void request_free(struct request_ctx *ctx) { struct worker_ctx *worker = ctx->worker; /* Dereference any Lua vars table if exists */ if (ctx->req.vars_ref != LUA_NOREF) { lua_State *L = worker->engine->L; /* Get worker variables table */ lua_rawgeti(L, LUA_REGISTRYINDEX, worker->vars_table_ref); /* Get next free element (position 0) and store it under current reference (forming a list) */ lua_rawgeti(L, -1, 0); lua_rawseti(L, -2, ctx->req.vars_ref); /* Set current reference as the next free element */ lua_pushinteger(L, ctx->req.vars_ref); lua_rawseti(L, -2, 0); lua_pop(L, 1); ctx->req.vars_ref = LUA_NOREF; } /* Return mempool to ring or free it if it's full */ pool_release(worker, ctx->req.pool.ctx); /* @note The 'task' is invalidated from now on. */ /* Decommit memory every once in a while */ static int mp_delete_count = 0; if (++mp_delete_count == 100000) { lua_gc(worker->engine->L, LUA_GCCOLLECT, 0); #if defined(__GLIBC__) && defined(_GNU_SOURCE) malloc_trim(0); #endif mp_delete_count = 0; } worker->stats.rconcurrent -= 1; } static struct qr_task *qr_task_create(struct request_ctx *ctx) { /* How much can client handle? */ struct engine *engine = ctx->worker->engine; size_t pktbuf_max = KR_EDNS_PAYLOAD; if (engine->resolver.opt_rr) { pktbuf_max = MAX(knot_edns_get_payload(engine->resolver.opt_rr), pktbuf_max); } /* Create resolution task */ struct qr_task *task = mm_alloc(&ctx->req.pool, sizeof(*task)); if (!task) { return NULL; } memset(task, 0, sizeof(*task)); /* avoid accidentally unintialized fields */ /* Create packet buffers for answer and subrequests */ knot_pkt_t *pktbuf = knot_pkt_new(NULL, pktbuf_max, &ctx->req.pool); if (!pktbuf) { mm_free(&ctx->req.pool, task); return NULL; } pktbuf->size = 0; task->ctx = ctx; task->pktbuf = pktbuf; array_init(task->waiting); task->refs = 0; assert(ctx->task == NULL); ctx->task = task; /* Make the primary reference to task. */ qr_task_ref(task); task->creation_time = kr_now(); ctx->worker->stats.concurrent += 1; return task; } /* This is called when the task refcount is zero, free memory. */ static void qr_task_free(struct qr_task *task) { struct request_ctx *ctx = task->ctx; assert(ctx); struct worker_ctx *worker = ctx->worker; if (ctx->task == NULL) { request_free(ctx); } /* Update stats */ worker->stats.concurrent -= 1; } /*@ Register new qr_task within session. */ static int qr_task_register(struct qr_task *task, struct session *session) { assert(!session_flags(session)->outgoing && session_get_handle(session)->type == UV_TCP); session_tasklist_add(session, task); struct request_ctx *ctx = task->ctx; assert(ctx && (ctx->source.session == NULL || ctx->source.session == session)); ctx->source.session = session; /* Soft-limit on parallel queries, there is no "slow down" RCODE * that we could use to signalize to client, but we can stop reading, * an in effect shrink TCP window size. To get more precise throttling, * we would need to copy remainder of the unread buffer and reassemble * when resuming reading. This is NYI. */ if (session_tasklist_get_len(session) >= task->ctx->worker->tcp_pipeline_max && !session_flags(session)->throttled && !session_flags(session)->closing) { session_stop_read(session); session_flags(session)->throttled = true; } return 0; } static void qr_task_complete(struct qr_task *task) { struct request_ctx *ctx = task->ctx; /* Kill pending I/O requests */ ioreq_kill_pending(task); assert(task->waiting.len == 0); assert(task->leading == false); struct session *s = ctx->source.session; if (s) { assert(!session_flags(s)->outgoing && session_waitinglist_is_empty(s)); ctx->source.session = NULL; session_tasklist_del(s, task); } /* Release primary reference to task. */ if (ctx->task == task) { ctx->task = NULL; qr_task_unref(task); } } /* This is called when we send subrequest / answer */ static int qr_task_on_send(struct qr_task *task, uv_handle_t *handle, int status) { if (task->finished) { assert(task->leading == false); qr_task_complete(task); } if (!handle || handle->type != UV_TCP) { return status; } struct session* s = handle->data; assert(s); if (status != 0) { session_tasklist_del(s, task); } if (session_flags(s)->outgoing || session_flags(s)->closing) { return status; } struct worker_ctx *worker = task->ctx->worker; if (session_flags(s)->throttled && session_tasklist_get_len(s) < worker->tcp_pipeline_max/2) { /* Start reading again if the session is throttled and * the number of outgoing requests is below watermark. */ session_start_read(s); session_flags(s)->throttled = false; } return status; } static void on_send(uv_udp_send_t *req, int status) { struct qr_task *task = req->data; uv_handle_t *h = (uv_handle_t *)req->handle; qr_task_on_send(task, h, status); qr_task_unref(task); free(req); } static void on_write(uv_write_t *req, int status) { struct qr_task *task = req->data; uv_handle_t *h = (uv_handle_t *)req->handle; qr_task_on_send(task, h, status); qr_task_unref(task); free(req); } static int qr_task_send(struct qr_task *task, struct session *session, struct sockaddr *addr, knot_pkt_t *pkt) { if (!session) { return qr_task_on_send(task, NULL, kr_error(EIO)); } int ret = 0; struct request_ctx *ctx = task->ctx; uv_handle_t *handle = session_get_handle(session); assert(handle && handle->data == session); const bool is_stream = handle->type == UV_TCP; if (!is_stream && handle->type != UV_UDP) abort(); if (addr == NULL) { addr = session_get_peer(session); } if (pkt == NULL) { pkt = worker_task_get_pktbuf(task); } if (session_flags(session)->outgoing && handle->type == UV_TCP) { size_t try_limit = session_tasklist_get_len(session) + 1; uint16_t msg_id = knot_wire_get_id(pkt->wire); size_t try_count = 0; while (session_tasklist_find_msgid(session, msg_id) && try_count <= try_limit) { ++msg_id; ++try_count; } if (try_count > try_limit) { return kr_error(ENOENT); } worker_task_pkt_set_msgid(task, msg_id); } uv_handle_t *ioreq = malloc(is_stream ? sizeof(uv_write_t) : sizeof(uv_udp_send_t)); if (!ioreq) { return qr_task_on_send(task, handle, kr_error(ENOMEM)); } /* Pending ioreq on current task */ qr_task_ref(task); struct worker_ctx *worker = ctx->worker; /* Send using given protocol */ assert(!session_flags(session)->closing); if (session_flags(session)->has_tls) { uv_write_t *write_req = (uv_write_t *)ioreq; write_req->data = task; ret = tls_write(write_req, handle, pkt, &on_write); } else if (handle->type == UV_UDP) { uv_udp_send_t *send_req = (uv_udp_send_t *)ioreq; uv_buf_t buf = { (char *)pkt->wire, pkt->size }; send_req->data = task; ret = uv_udp_send(send_req, (uv_udp_t *)handle, &buf, 1, addr, &on_send); } else if (handle->type == UV_TCP) { uv_write_t *write_req = (uv_write_t *)ioreq; uint16_t pkt_size = htons(pkt->size); uv_buf_t buf[2] = { { (char *)&pkt_size, sizeof(pkt_size) }, { (char *)pkt->wire, pkt->size } }; write_req->data = task; ret = uv_write(write_req, (uv_stream_t *)handle, buf, 2, &on_write); } else { assert(false); } if (ret == 0) { session_touch(session); if (session_flags(session)->outgoing) { session_tasklist_add(session, task); } if (worker->too_many_open && worker->stats.rconcurrent < worker->rconcurrent_highwatermark - 10) { worker->too_many_open = false; } } else { free(ioreq); qr_task_unref(task); if (ret == UV_EMFILE) { worker->too_many_open = true; worker->rconcurrent_highwatermark = worker->stats.rconcurrent; ret = kr_error(UV_EMFILE); } } /* Update statistics */ if (session_flags(session)->outgoing && addr) { if (session_flags(session)->has_tls) worker->stats.tls += 1; else if (handle->type == UV_UDP) worker->stats.udp += 1; else worker->stats.tcp += 1; if (addr->sa_family == AF_INET6) worker->stats.ipv6 += 1; else if (addr->sa_family == AF_INET) worker->stats.ipv4 += 1; } return ret; } static struct kr_query *task_get_last_pending_query(struct qr_task *task) { if (!task || task->ctx->req.rplan.pending.len == 0) { return NULL; } return array_tail(task->ctx->req.rplan.pending); } static int session_tls_hs_cb(struct session *session, int status) { assert(session_flags(session)->outgoing); uv_handle_t *handle = session_get_handle(session); uv_loop_t *loop = handle->loop; struct worker_ctx *worker = loop->data; struct sockaddr *peer = session_get_peer(session); int deletion_res = worker_del_tcp_waiting(worker, peer); int ret = kr_ok(); if (status) { struct qr_task *task = session_waitinglist_get(session); if (task) { struct kr_qflags *options = &task->ctx->req.options; unsigned score = options->FORWARD || options->STUB ? KR_NS_FWD_DEAD : KR_NS_DEAD; kr_nsrep_update_rtt(NULL, peer, score, worker->engine->resolver.cache_rtt, KR_NS_UPDATE_NORESET); } #ifndef NDEBUG else { /* Task isn't in the list of tasks * waiting for connection to upstream. * So that it MUST be unsuccessful rehandshake. * Check it. */ assert(deletion_res != 0); const char *key = tcpsess_key(peer); assert(key); assert(map_contains(&worker->tcp_connected, key) != 0); } #endif return ret; } /* handshake was completed successfully */ struct tls_client_ctx_t *tls_client_ctx = session_tls_get_client_ctx(session); struct tls_client_paramlist_entry *tls_params = tls_client_ctx->params; gnutls_session_t tls_session = tls_client_ctx->c.tls_session; if (gnutls_session_is_resumed(tls_session) != 0) { kr_log_verbose("[tls_client] TLS session has resumed\n"); } else { kr_log_verbose("[tls_client] TLS session has not resumed\n"); /* session wasn't resumed, delete old session data ... */ if (tls_params->session_data.data != NULL) { gnutls_free(tls_params->session_data.data); tls_params->session_data.data = NULL; tls_params->session_data.size = 0; } /* ... and get the new session data */ gnutls_datum_t tls_session_data = { NULL, 0 }; ret = gnutls_session_get_data2(tls_session, &tls_session_data); if (ret == 0) { tls_params->session_data = tls_session_data; } } struct session *s = worker_find_tcp_connected(worker, peer); ret = kr_ok(); if (deletion_res == kr_ok()) { /* peer was in the waiting list, add to the connected list. */ if (s) { /* Something went wrong, * peer already is in the connected list. */ ret = kr_error(EINVAL); } else { ret = worker_add_tcp_connected(worker, peer, session); } } else { /* peer wasn't in the waiting list. * It can be * 1) either successful rehandshake; in this case peer * must be already in the connected list. * 2) or successful handshake with session, which was timeouted * by on_tcp_connect_timeout(); after successful tcp connection; * in this case peer isn't in the connected list. **/ if (!s || s != session) { ret = kr_error(EINVAL); } } if (ret == kr_ok()) { while (!session_waitinglist_is_empty(session)) { struct qr_task *t = session_waitinglist_get(session); ret = qr_task_send(t, session, NULL, NULL); if (ret != 0) { break; } session_waitinglist_pop(session, true); } } else { ret = kr_error(EINVAL); } if (ret != kr_ok()) { /* Something went wrong. * Either addition to the list of connected sessions * or write to upstream failed. */ worker_del_tcp_connected(worker, peer); session_waitinglist_finalize(session, KR_STATE_FAIL); assert(session_tasklist_is_empty(session)); session_close(session); } else { session_timer_stop(session); session_timer_start(session, tcp_timeout_trigger, MAX_TCP_INACTIVITY, MAX_TCP_INACTIVITY); } return kr_ok(); } static int send_waiting(struct session *session) { int ret = 0; while (!session_waitinglist_is_empty(session)) { struct qr_task *t = session_waitinglist_get(session); ret = qr_task_send(t, session, NULL, NULL); if (ret != 0) { struct worker_ctx *worker = t->ctx->worker; struct sockaddr *peer = session_get_peer(session); session_waitinglist_finalize(session, KR_STATE_FAIL); session_tasklist_finalize(session, KR_STATE_FAIL); worker_del_tcp_connected(worker, peer); session_close(session); break; } session_waitinglist_pop(session, true); } return ret; } static void on_connect(uv_connect_t *req, int status) { struct worker_ctx *worker = get_worker(); uv_stream_t *handle = req->handle; struct session *session = handle->data; struct sockaddr *peer = session_get_peer(session); free(req); assert(session_flags(session)->outgoing); if (session_flags(session)->closing) { worker_del_tcp_waiting(worker, peer); assert(session_is_empty(session)); return; } /* Check if the connection is in the waiting list. * If no, most likely this is timeouted connection * which was removed from waiting list by * on_tcp_connect_timeout() callback. */ struct session *s = worker_find_tcp_waiting(worker, peer); if (!s || s != session) { /* session isn't on the waiting list. * it's timeouted session. */ if (VERBOSE_STATUS) { const char *peer_str = kr_straddr(peer); kr_log_verbose( "[wrkr]=> connected to '%s', but session " "is already timeouted, close\n", peer_str ? peer_str : ""); } assert(session_tasklist_is_empty(session)); session_waitinglist_retry(session, false); session_close(session); return; } s = worker_find_tcp_connected(worker, peer); if (s) { /* session already in the connected list. * Something went wrong, it can be due to races when kresd has tried * to reconnect to upstream after unsuccessful attempt. */ if (VERBOSE_STATUS) { const char *peer_str = kr_straddr(peer); kr_log_verbose( "[wrkr]=> connected to '%s', but peer " "is already connected, close\n", peer_str ? peer_str : ""); } assert(session_tasklist_is_empty(session)); session_waitinglist_retry(session, false); session_close(session); return; } if (status != 0) { if (VERBOSE_STATUS) { const char *peer_str = kr_straddr(peer); kr_log_verbose( "[wrkr]=> connection to '%s' failed (%s), flagged as 'bad'\n", peer_str ? peer_str : "", uv_strerror(status)); } worker_del_tcp_waiting(worker, peer); struct qr_task *task = session_waitinglist_get(session); if (task && status != UV_ETIMEDOUT) { /* Penalize upstream. * In case of UV_ETIMEDOUT upstream has been * already penalized in on_tcp_connect_timeout() */ struct kr_qflags *options = &task->ctx->req.options; unsigned score = options->FORWARD || options->STUB ? KR_NS_FWD_DEAD : KR_NS_DEAD; kr_nsrep_update_rtt(NULL, peer, score, worker->engine->resolver.cache_rtt, KR_NS_UPDATE_NORESET); } assert(session_tasklist_is_empty(session)); session_waitinglist_retry(session, false); session_close(session); return; } if (!session_flags(session)->has_tls) { /* if there is a TLS, session still waiting for handshake, * otherwise remove it from waiting list */ if (worker_del_tcp_waiting(worker, peer) != 0) { /* session isn't in list of waiting queries, * * something gone wrong */ session_waitinglist_finalize(session, KR_STATE_FAIL); assert(session_tasklist_is_empty(session)); session_close(session); return; } } if (VERBOSE_STATUS) { const char *peer_str = kr_straddr(peer); kr_log_verbose( "[wrkr]=> connected to '%s'\n", peer_str ? peer_str : ""); } session_flags(session)->connected = true; session_start_read(session); int ret = kr_ok(); if (session_flags(session)->has_tls) { struct tls_client_ctx_t *tls_ctx = session_tls_get_client_ctx(session); ret = tls_client_connect_start(tls_ctx, session, session_tls_hs_cb); if (ret == kr_error(EAGAIN)) { session_timer_stop(session); session_timer_start(session, tcp_timeout_trigger, MAX_TCP_INACTIVITY, MAX_TCP_INACTIVITY); return; } } else { worker_add_tcp_connected(worker, peer, session); } ret = send_waiting(session); if (ret != 0) { return; } session_timer_stop(session); session_timer_start(session, tcp_timeout_trigger, MAX_TCP_INACTIVITY, MAX_TCP_INACTIVITY); } static void on_tcp_connect_timeout(uv_timer_t *timer) { struct session *session = timer->data; uv_timer_stop(timer); struct worker_ctx *worker = get_worker(); assert (session_tasklist_is_empty(session)); struct sockaddr *peer = session_get_peer(session); worker_del_tcp_waiting(worker, peer); struct qr_task *task = session_waitinglist_get(session); if (!task) { /* Normally shouldn't happen. */ const char *peer_str = kr_straddr(peer); VERBOSE_MSG(NULL, "=> connection to '%s' failed (internal timeout), empty waitinglist\n", peer_str ? peer_str : ""); return; } struct kr_query *qry = task_get_last_pending_query(task); WITH_VERBOSE (qry) { const char *peer_str = kr_straddr(peer); VERBOSE_MSG(qry, "=> connection to '%s' failed (internal timeout)\n", peer_str ? peer_str : ""); } unsigned score = qry->flags.FORWARD || qry->flags.STUB ? KR_NS_FWD_DEAD : KR_NS_DEAD; kr_nsrep_update_rtt(NULL, peer, score, worker->engine->resolver.cache_rtt, KR_NS_UPDATE_NORESET); worker->stats.timeout += session_waitinglist_get_len(session); session_waitinglist_retry(session, true); assert (session_tasklist_is_empty(session)); /* uv_cancel() doesn't support uv_connect_t request, * so that we can't cancel it. * There still exists possibility of successful connection * for this request. * So connection callback (on_connect()) must check * if connection is in the list of waiting connection. * If no, most likely this is timeouted connection even if * it was successful. */ } /* This is called when I/O timeouts */ static void on_udp_timeout(uv_timer_t *timer) { struct session *session = timer->data; assert(session_get_handle(session)->data == session); assert(session_tasklist_get_len(session) == 1); assert(session_waitinglist_is_empty(session)); uv_timer_stop(timer); /* Penalize all tried nameservers with a timeout. */ struct qr_task *task = session_tasklist_get_first(session); struct worker_ctx *worker = task->ctx->worker; if (task->leading && task->pending_count > 0) { struct kr_query *qry = array_tail(task->ctx->req.rplan.pending); struct sockaddr_in6 *addrlist = (struct sockaddr_in6 *)task->addrlist; for (uint16_t i = 0; i < MIN(task->pending_count, task->addrlist_count); ++i) { struct sockaddr *choice = (struct sockaddr *)(&addrlist[i]); WITH_VERBOSE(qry) { char *addr_str = kr_straddr(choice); VERBOSE_MSG(qry, "=> server: '%s' flagged as 'bad'\n", addr_str ? addr_str : ""); } unsigned score = qry->flags.FORWARD || qry->flags.STUB ? KR_NS_FWD_DEAD : KR_NS_DEAD; kr_nsrep_update_rtt(&qry->ns, choice, score, worker->engine->resolver.cache_rtt, KR_NS_UPDATE_NORESET); } } task->timeouts += 1; worker->stats.timeout += 1; qr_task_step(task, NULL, NULL); } static uv_handle_t *retransmit(struct qr_task *task) { uv_handle_t *ret = NULL; if (task && task->addrlist && task->addrlist_count > 0) { struct sockaddr_in6 *choice = &((struct sockaddr_in6 *)task->addrlist)[task->addrlist_turn]; if (!choice) { return ret; } if (task->pending_count >= MAX_PENDING) { return ret; } /* Checkout answer before sending it */ struct request_ctx *ctx = task->ctx; if (kr_resolve_checkout(&ctx->req, NULL, (struct sockaddr *)choice, SOCK_DGRAM, task->pktbuf) != 0) { return ret; } ret = ioreq_spawn(ctx->worker, SOCK_DGRAM, choice->sin6_family, false); if (!ret) { return ret; } struct sockaddr *addr = (struct sockaddr *)choice; struct session *session = ret->data; struct sockaddr *peer = session_get_peer(session); assert (peer->sa_family == AF_UNSPEC && session_flags(session)->outgoing); memcpy(peer, addr, kr_sockaddr_len(addr)); if (qr_task_send(task, session, (struct sockaddr *)choice, task->pktbuf) != 0) { session_close(session); ret = NULL; } else { task->pending[task->pending_count] = session; task->pending_count += 1; task->addrlist_turn = (task->addrlist_turn + 1) % task->addrlist_count; /* Round robin */ session_start_read(session); /* Start reading answer */ } } return ret; } static void on_retransmit(uv_timer_t *req) { struct session *session = req->data; assert(session_tasklist_get_len(session) == 1); uv_timer_stop(req); struct qr_task *task = session_tasklist_get_first(session); if (retransmit(task) == NULL) { /* Not possible to spawn request, start timeout timer with remaining deadline. */ struct kr_qflags *options = &task->ctx->req.options; uint64_t timeout = options->FORWARD || options->STUB ? KR_NS_FWD_TIMEOUT / 2 : KR_CONN_RTT_MAX - task->pending_count * KR_CONN_RETRY; uv_timer_start(req, on_udp_timeout, timeout, 0); } else { uv_timer_start(req, on_retransmit, KR_CONN_RETRY, 0); } } static void subreq_finalize(struct qr_task *task, const struct sockaddr *packet_source, knot_pkt_t *pkt) { if (!task || task->finished) { return; } /* Close pending timer */ ioreq_kill_pending(task); /* Clear from outgoing table. */ if (!task->leading) return; char key[SUBREQ_KEY_LEN]; const int klen = subreq_key(key, task->pktbuf); if (klen > 0) { void *val_deleted; int ret = trie_del(task->ctx->worker->subreq_out, key, klen, &val_deleted); assert(ret == KNOT_EOK && val_deleted == task); (void)ret; } /* Notify waiting tasks. */ struct kr_query *leader_qry = array_tail(task->ctx->req.rplan.pending); for (size_t i = task->waiting.len; i > 0; i--) { struct qr_task *follower = task->waiting.at[i - 1]; /* Reuse MSGID and 0x20 secret */ if (follower->ctx->req.rplan.pending.len > 0) { struct kr_query *qry = array_tail(follower->ctx->req.rplan.pending); qry->id = leader_qry->id; qry->secret = leader_qry->secret; leader_qry->secret = 0; /* Next will be already decoded */ } qr_task_step(follower, packet_source, pkt); qr_task_unref(follower); } task->waiting.len = 0; task->leading = false; } static void subreq_lead(struct qr_task *task) { assert(task); char key[SUBREQ_KEY_LEN]; const int klen = subreq_key(key, task->pktbuf); if (klen < 0) return; struct qr_task **tvp = (struct qr_task **) trie_get_ins(task->ctx->worker->subreq_out, key, klen); if (unlikely(!tvp)) return; /*ENOMEM*/ if (unlikely(*tvp != NULL)) { assert(false); return; } *tvp = task; task->leading = true; } static bool subreq_enqueue(struct qr_task *task) { assert(task); char key[SUBREQ_KEY_LEN]; const int klen = subreq_key(key, task->pktbuf); if (klen < 0) return false; struct qr_task **leader = (struct qr_task **) trie_get_try(task->ctx->worker->subreq_out, key, klen); if (!leader /*ENOMEM*/ || !*leader) return false; /* Enqueue itself to leader for this subrequest. */ int ret = array_push_mm((*leader)->waiting, task, kr_memreserve, &(*leader)->ctx->req.pool); if (unlikely(ret < 0)) /*ENOMEM*/ return false; qr_task_ref(task); return true; } static int qr_task_finalize(struct qr_task *task, int state) { assert(task && task->leading == false); if (task->finished) { return 0; } struct request_ctx *ctx = task->ctx; struct session *source_session = ctx->source.session; kr_resolve_finish(&ctx->req, state); task->finished = true; if (source_session == NULL) { (void) qr_task_on_send(task, NULL, kr_error(EIO)); return state == KR_STATE_DONE ? 0 : kr_error(EIO); } /* Reference task as the callback handler can close it */ qr_task_ref(task); /* Send back answer */ assert(!session_flags(source_session)->closing); assert(ctx->source.addr.ip.sa_family != AF_UNSPEC); int res = qr_task_send(task, source_session, (struct sockaddr *)&ctx->source.addr, ctx->req.answer); if (res != kr_ok()) { (void) qr_task_on_send(task, NULL, kr_error(EIO)); /* Since source session is erroneous detach all tasks. */ while (!session_tasklist_is_empty(source_session)) { struct qr_task *t = session_tasklist_del_first(source_session, false); struct request_ctx *c = t->ctx; assert(c->source.session == source_session); c->source.session = NULL; /* Don't finalize them as there can be other tasks * waiting for answer to this particular task. * (ie. task->leading is true) */ worker_task_unref(t); } session_close(source_session); } qr_task_unref(task); return state == KR_STATE_DONE ? 0 : kr_error(EIO); } static int udp_task_step(struct qr_task *task, const struct sockaddr *packet_source, knot_pkt_t *packet) { struct request_ctx *ctx = task->ctx; struct kr_request *req = &ctx->req; /* If there is already outgoing query, enqueue to it. */ if (subreq_enqueue(task)) { return kr_ok(); /* Will be notified when outgoing query finishes. */ } /* Start transmitting */ uv_handle_t *handle = retransmit(task); if (handle == NULL) { subreq_finalize(task, packet_source, packet); return qr_task_finalize(task, KR_STATE_FAIL); } /* Check current query NSLIST */ struct kr_query *qry = array_tail(req->rplan.pending); assert(qry != NULL); /* Retransmit at default interval, or more frequently if the mean * RTT of the server is better. If the server is glued, use default rate. */ size_t timeout = qry->ns.score; if (timeout > KR_NS_GLUED) { /* We don't have information about variance in RTT, expect +10ms */ timeout = MIN(qry->ns.score + 10, KR_CONN_RETRY); } else { timeout = KR_CONN_RETRY; } /* Announce and start subrequest. * @note Only UDP can lead I/O as it doesn't touch 'task->pktbuf' for reassembly. */ subreq_lead(task); struct session *session = handle->data; assert(session_get_handle(session) == handle && (handle->type == UV_UDP)); int ret = session_timer_start(session, on_retransmit, timeout, 0); /* Start next step with timeout, fatal if can't start a timer. */ if (ret != 0) { subreq_finalize(task, packet_source, packet); return qr_task_finalize(task, KR_STATE_FAIL); } return kr_ok(); } static int tcp_task_waiting_connection(struct session *session, struct qr_task *task) { assert(session_flags(session)->outgoing); if (session_flags(session)->closing) { /* Something went wrong. Better answer with KR_STATE_FAIL. * TODO: normally should not happen, * consider possibility to transform this into * assert(!session_flags(session)->closing). */ return kr_error(EINVAL); } /* Add task to the end of list of waiting tasks. * It will be notified in on_connect() or qr_task_on_send(). */ int ret = session_waitinglist_push(session, task); if (ret < 0) { return kr_error(EINVAL); } return kr_ok(); } static int tcp_task_existing_connection(struct session *session, struct qr_task *task) { assert(session_flags(session)->outgoing); struct request_ctx *ctx = task->ctx; struct worker_ctx *worker = ctx->worker; if (session_flags(session)->closing) { /* Something went wrong. Better answer with KR_STATE_FAIL. * TODO: normally should not happen, * consider possibility to transform this into * assert(!session_flags(session)->closing). */ return kr_error(EINVAL); } /* If there are any unsent queries, send it first. */ int ret = send_waiting(session); if (ret != 0) { return kr_error(EINVAL); } /* No unsent queries at that point. */ if (session_tasklist_get_len(session) >= worker->tcp_pipeline_max) { /* Too many outstanding queries, answer with SERFVAIL, */ return kr_error(EINVAL); } /* Send query to upstream. */ ret = qr_task_send(task, session, NULL, NULL); if (ret != 0) { /* Error, finalize task with SERVFAIL and * close connection to upstream. */ session_tasklist_finalize(session, KR_STATE_FAIL); worker_del_tcp_connected(worker, session_get_peer(session)); session_close(session); return kr_error(EINVAL); } return kr_ok(); } static int tcp_task_make_connection(struct qr_task *task, const struct sockaddr *addr) { struct request_ctx *ctx = task->ctx; struct worker_ctx *worker = ctx->worker; /* Check if there must be TLS */ struct engine *engine = worker->engine; struct network *net = &engine->net; const char *key = tcpsess_key(addr); struct tls_client_ctx_t *tls_ctx = NULL; struct tls_client_paramlist_entry *entry = map_get(&net->tls_client_params, key); if (entry) { /* Address is configured to be used with TLS. * We need to allocate auxiliary data structure. */ tls_ctx = tls_client_ctx_new(entry, worker); if (!tls_ctx) { return kr_error(EINVAL); } } uv_connect_t *conn = malloc(sizeof(uv_connect_t)); if (!conn) { tls_client_ctx_free(tls_ctx); return kr_error(EINVAL); } bool has_tls = (tls_ctx != NULL); uv_handle_t *client = ioreq_spawn(worker, SOCK_STREAM, addr->sa_family, has_tls); if (!client) { tls_client_ctx_free(tls_ctx); free(conn); return kr_error(EINVAL); } struct session *session = client->data; assert(session_flags(session)->has_tls == has_tls); if (has_tls) { tls_client_ctx_set_session(tls_ctx, session); session_tls_set_client_ctx(session, tls_ctx); } /* Add address to the waiting list. * Now it "is waiting to be connected to." */ int ret = worker_add_tcp_waiting(ctx->worker, addr, session); if (ret < 0) { free(conn); session_close(session); return kr_error(EINVAL); } conn->data = session; /* Store peer address for the session. */ struct sockaddr *peer = session_get_peer(session); memcpy(peer, addr, kr_sockaddr_len(addr)); /* Start watchdog to catch eventual connection timeout. */ ret = session_timer_start(session, on_tcp_connect_timeout, KR_CONN_RTT_MAX, 0); if (ret != 0) { worker_del_tcp_waiting(ctx->worker, addr); free(conn); session_close(session); return kr_error(EINVAL); } struct kr_query *qry = task_get_last_pending_query(task); WITH_VERBOSE (qry) { const char *peer_str = kr_straddr(peer); VERBOSE_MSG(qry, "=> connecting to: '%s'\n", peer_str ? peer_str : ""); } /* Start connection process to upstream. */ ret = uv_tcp_connect(conn, (uv_tcp_t *)client, addr , on_connect); if (ret != 0) { session_timer_stop(session); worker_del_tcp_waiting(ctx->worker, addr); free(conn); session_close(session); unsigned score = qry->flags.FORWARD || qry->flags.STUB ? KR_NS_FWD_DEAD : KR_NS_DEAD; kr_nsrep_update_rtt(NULL, peer, score, worker->engine->resolver.cache_rtt, KR_NS_UPDATE_NORESET); WITH_VERBOSE (qry) { const char *peer_str = kr_straddr(peer); kr_log_verbose( "[wrkr]=> connect to '%s' failed (%s), flagged as 'bad'\n", peer_str ? peer_str : "", uv_strerror(ret)); } return kr_error(EAGAIN); } /* Add task to the end of list of waiting tasks. * Will be notified either in on_connect() or in qr_task_on_send(). */ ret = session_waitinglist_push(session, task); if (ret < 0) { session_timer_stop(session); worker_del_tcp_waiting(ctx->worker, addr); free(conn); session_close(session); return kr_error(EINVAL); } return kr_ok(); } static int tcp_task_step(struct qr_task *task, const struct sockaddr *packet_source, knot_pkt_t *packet) { assert(task->pending_count == 0); /* target */ const struct sockaddr *addr = task->addrlist; if (addr->sa_family == AF_UNSPEC) { /* Target isn't defined. Finalize task with SERVFAIL. * Although task->pending_count is zero, there are can be followers, * so we need to call subreq_finalize() to handle them properly. */ subreq_finalize(task, packet_source, packet); return qr_task_finalize(task, KR_STATE_FAIL); } /* Checkout task before connecting */ struct request_ctx *ctx = task->ctx; if (kr_resolve_checkout(&ctx->req, NULL, (struct sockaddr *)addr, SOCK_STREAM, task->pktbuf) != 0) { subreq_finalize(task, packet_source, packet); return qr_task_finalize(task, KR_STATE_FAIL); } int ret; struct session* session = NULL; if ((session = worker_find_tcp_waiting(ctx->worker, addr)) != NULL) { /* Connection is in the list of waiting connections. * It means that connection establishing is coming right now. */ ret = tcp_task_waiting_connection(session, task); } else if ((session = worker_find_tcp_connected(ctx->worker, addr)) != NULL) { /* Connection has been already established. */ ret = tcp_task_existing_connection(session, task); } else { /* Make connection. */ ret = tcp_task_make_connection(task, addr); } if (ret != kr_ok()) { subreq_finalize(task, addr, packet); if (ret == kr_error(EAGAIN)) { ret = qr_task_step(task, addr, NULL); } else { ret = qr_task_finalize(task, KR_STATE_FAIL); } } return ret; } static int qr_task_step(struct qr_task *task, const struct sockaddr *packet_source, knot_pkt_t *packet) { /* No more steps after we're finished. */ if (!task || task->finished) { return kr_error(ESTALE); } /* Close pending I/O requests */ subreq_finalize(task, packet_source, packet); if ((kr_now() - worker_task_creation_time(task)) >= KR_RESOLVE_TIME_LIMIT) { return qr_task_finalize(task, KR_STATE_FAIL); } /* Consume input and produce next query */ struct request_ctx *ctx = task->ctx; assert(ctx); struct kr_request *req = &ctx->req; struct worker_ctx *worker = ctx->worker; int sock_type = -1; task->addrlist = NULL; task->addrlist_count = 0; task->addrlist_turn = 0; if (worker->too_many_open) { /* */ struct kr_rplan *rplan = &req->rplan; if (worker->stats.rconcurrent < worker->rconcurrent_highwatermark - 10) { worker->too_many_open = false; } else { if (packet && kr_rplan_empty(rplan)) { /* new query; TODO - make this detection more obvious */ kr_resolve_consume(req, packet_source, packet); } return qr_task_finalize(task, KR_STATE_FAIL); } } int state = kr_resolve_consume(req, packet_source, packet); while (state == KR_STATE_PRODUCE) { state = kr_resolve_produce(req, &task->addrlist, &sock_type, task->pktbuf); if (unlikely(++task->iter_count > KR_ITER_LIMIT || task->timeouts >= KR_TIMEOUT_LIMIT)) { return qr_task_finalize(task, KR_STATE_FAIL); } } /* We're done, no more iterations needed */ if (state & (KR_STATE_DONE|KR_STATE_FAIL)) { return qr_task_finalize(task, state); } else if (!task->addrlist || sock_type < 0) { return qr_task_step(task, NULL, NULL); } /* Count available address choices */ struct sockaddr_in6 *choice = (struct sockaddr_in6 *)task->addrlist; for (size_t i = 0; i < KR_NSREP_MAXADDR && choice->sin6_family != AF_UNSPEC; ++i) { task->addrlist_count += 1; choice += 1; } /* Upgrade to TLS if the upstream address is configured as DoT capable. */ if (task->addrlist_count > 0 && kr_inaddr_port(task->addrlist) == KR_DNS_PORT) { /* TODO if there are multiple addresses (task->addrlist_count > 1) * check all of them. */ struct engine *engine = worker->engine; struct network *net = &engine->net; struct tls_client_paramlist_entry *tls_entry = tls_client_try_upgrade(&net->tls_client_params, task->addrlist); if (tls_entry != NULL) { kr_inaddr_set_port(task->addrlist, KR_DNS_TLS_PORT); packet_source = NULL; sock_type = SOCK_STREAM; /* TODO in this case in tcp_task_make_connection() will be performed * redundant map_get() call. */ } } int ret = 0; if (sock_type == SOCK_DGRAM) { /* Start fast retransmit with UDP. */ ret = udp_task_step(task, packet_source, packet); } else { /* TCP. Connect to upstream or send the query if connection already exists. */ assert (sock_type == SOCK_STREAM); ret = tcp_task_step(task, packet_source, packet); } return ret; } static int parse_packet(knot_pkt_t *query) { if (!query){ return kr_error(EINVAL); } /* Parse query packet. */ int ret = knot_pkt_parse(query, 0); if (ret == KNOT_ETRAIL) { /* Extra data after message end. */ ret = kr_error(EMSGSIZE); } else if (ret != KNOT_EOK) { /* Malformed query. */ ret = kr_error(EPROTO); } else { ret = kr_ok(); } return ret; } int worker_submit(struct session *session, knot_pkt_t *query) { if (!session) { assert(false); return kr_error(EINVAL); } uv_handle_t *handle = session_get_handle(session); bool OK = handle && handle->loop->data; if (!OK) { assert(false); return kr_error(EINVAL); } struct worker_ctx *worker = handle->loop->data; /* Parse packet */ int ret = parse_packet(query); const bool is_query = (knot_wire_get_qr(query->wire) == 0); const bool is_outgoing = session_flags(session)->outgoing; /* Ignore badly formed queries. */ if (!query || (ret != kr_ok() && ret != kr_error(EMSGSIZE)) || (is_query == is_outgoing)) { if (query && !is_outgoing) worker->stats.dropped += 1; return kr_error(EILSEQ); } /* Start new task on listening sockets, * or resume if this is subrequest */ struct qr_task *task = NULL; struct sockaddr *addr = NULL; if (!is_outgoing) { /* request from a client */ struct request_ctx *ctx = request_create(worker, handle, session_get_peer(session), knot_wire_get_id(query->wire)); if (!ctx) { return kr_error(ENOMEM); } ret = request_start(ctx, query); if (ret != 0) { request_free(ctx); return kr_error(ENOMEM); } task = qr_task_create(ctx); if (!task) { request_free(ctx); return kr_error(ENOMEM); } if (handle->type == UV_TCP && qr_task_register(task, session)) { return kr_error(ENOMEM); } } else if (query) { /* response from upstream */ task = session_tasklist_del_msgid(session, knot_wire_get_id(query->wire)); if (task == NULL) { return kr_error(ENOENT); } assert(!session_flags(session)->closing); addr = session_get_peer(session); } assert(uv_is_closing(session_get_handle(session)) == false); /* Packet was successfully parsed. * Task was created (found). */ session_touch(session); /* Consume input and produce next message */ return qr_task_step(task, addr, query); } static int map_add_tcp_session(map_t *map, const struct sockaddr* addr, struct session *session) { assert(map && addr); const char *key = tcpsess_key(addr); assert(key); assert(map_contains(map, key) == 0); int ret = map_set(map, key, session); return ret ? kr_error(EINVAL) : kr_ok(); } static int map_del_tcp_session(map_t *map, const struct sockaddr* addr) { assert(map && addr); const char *key = tcpsess_key(addr); assert(key); int ret = map_del(map, key); return ret ? kr_error(ENOENT) : kr_ok(); } static struct session* map_find_tcp_session(map_t *map, const struct sockaddr *addr) { assert(map && addr); const char *key = tcpsess_key(addr); assert(key); struct session* ret = map_get(map, key); return ret; } int worker_add_tcp_connected(struct worker_ctx *worker, const struct sockaddr* addr, struct session *session) { #ifndef NDEBUG assert(addr); const char *key = tcpsess_key(addr); assert(key); assert(map_contains(&worker->tcp_connected, key) == 0); #endif return map_add_tcp_session(&worker->tcp_connected, addr, session); } int worker_del_tcp_connected(struct worker_ctx *worker, const struct sockaddr* addr) { assert(addr && tcpsess_key(addr)); return map_del_tcp_session(&worker->tcp_connected, addr); } static struct session* worker_find_tcp_connected(struct worker_ctx *worker, const struct sockaddr* addr) { return map_find_tcp_session(&worker->tcp_connected, addr); } static int worker_add_tcp_waiting(struct worker_ctx *worker, const struct sockaddr* addr, struct session *session) { #ifndef NDEBUG assert(addr); const char *key = tcpsess_key(addr); assert(key); assert(map_contains(&worker->tcp_waiting, key) == 0); #endif return map_add_tcp_session(&worker->tcp_waiting, addr, session); } int worker_del_tcp_waiting(struct worker_ctx *worker, const struct sockaddr* addr) { assert(addr && tcpsess_key(addr)); return map_del_tcp_session(&worker->tcp_waiting, addr); } static struct session* worker_find_tcp_waiting(struct worker_ctx *worker, const struct sockaddr* addr) { return map_find_tcp_session(&worker->tcp_waiting, addr); } int worker_end_tcp(struct session *session) { if (!session) { return kr_error(EINVAL); } session_timer_stop(session); uv_handle_t *handle = session_get_handle(session); struct worker_ctx *worker = handle->loop->data; struct sockaddr *peer = session_get_peer(session); worker_del_tcp_waiting(worker, peer); worker_del_tcp_connected(worker, peer); session_flags(session)->connected = false; struct tls_client_ctx_t *tls_client_ctx = session_tls_get_client_ctx(session); if (tls_client_ctx) { /* Avoid gnutls_bye() call */ tls_set_hs_state(&tls_client_ctx->c, TLS_HS_NOT_STARTED); } struct tls_ctx_t *tls_ctx = session_tls_get_server_ctx(session); if (tls_ctx) { /* Avoid gnutls_bye() call */ tls_set_hs_state(&tls_ctx->c, TLS_HS_NOT_STARTED); } while (!session_waitinglist_is_empty(session)) { struct qr_task *task = session_waitinglist_pop(session, false); assert(task->refs > 1); session_tasklist_del(session, task); if (session_flags(session)->outgoing) { if (task->ctx->req.options.FORWARD) { /* We are in TCP_FORWARD mode. * To prevent failing at kr_resolve_consume() * qry.flags.TCP must be cleared. * TODO - refactoring is needed. */ struct kr_request *req = &task->ctx->req; struct kr_rplan *rplan = &req->rplan; struct kr_query *qry = array_tail(rplan->pending); qry->flags.TCP = false; } qr_task_step(task, NULL, NULL); } else { assert(task->ctx->source.session == session); task->ctx->source.session = NULL; } worker_task_unref(task); } while (!session_tasklist_is_empty(session)) { struct qr_task *task = session_tasklist_del_first(session, false); if (session_flags(session)->outgoing) { if (task->ctx->req.options.FORWARD) { struct kr_request *req = &task->ctx->req; struct kr_rplan *rplan = &req->rplan; struct kr_query *qry = array_tail(rplan->pending); qry->flags.TCP = false; } qr_task_step(task, NULL, NULL); } else { assert(task->ctx->source.session == session); task->ctx->source.session = NULL; } worker_task_unref(task); } session_close(session); return kr_ok(); } struct qr_task *worker_resolve_start(struct worker_ctx *worker, knot_pkt_t *query, struct kr_qflags options) { if (!worker || !query) { assert(!EINVAL); return NULL; } struct request_ctx *ctx = request_create(worker, NULL, NULL, worker->next_request_uid); if (!ctx) { return NULL; } /* Create task */ struct qr_task *task = qr_task_create(ctx); if (!task) { request_free(ctx); return NULL; } /* Start task */ int ret = request_start(ctx, query); if (ret != 0) { /* task is attached to request context, * so dereference (and deallocate) it first */ ctx->task = NULL; qr_task_unref(task); request_free(ctx); return NULL; } worker->next_request_uid += 1; if (worker->next_request_uid == 0) { worker->next_request_uid = UINT16_MAX + 1; } /* Set options late, as qr_task_start() -> kr_resolve_begin() rewrite it. */ kr_qflags_set(&task->ctx->req.options, options); return task; } int worker_resolve_exec(struct qr_task *task, knot_pkt_t *query) { if (!task) { return kr_error(EINVAL); } return qr_task_step(task, NULL, query); } int worker_task_numrefs(const struct qr_task *task) { return task->refs; } struct kr_request *worker_task_request(struct qr_task *task) { if (!task || !task->ctx) { return NULL; } return &task->ctx->req; } int worker_task_finalize(struct qr_task *task, int state) { return qr_task_finalize(task, state); } int worker_task_step(struct qr_task *task, const struct sockaddr *packet_source, knot_pkt_t *packet) { return qr_task_step(task, packet_source, packet); } void worker_task_complete(struct qr_task *task) { qr_task_complete(task); } void worker_task_ref(struct qr_task *task) { qr_task_ref(task); } void worker_task_unref(struct qr_task *task) { qr_task_unref(task); } void worker_task_timeout_inc(struct qr_task *task) { task->timeouts += 1; } knot_pkt_t *worker_task_get_pktbuf(const struct qr_task *task) { return task->pktbuf; } struct request_ctx *worker_task_get_request(struct qr_task *task) { return task->ctx; } struct session *worker_request_get_source_session(struct request_ctx *ctx) { return ctx->source.session; } void worker_request_set_source_session(struct request_ctx *ctx, struct session *session) { ctx->source.session = session; } uint16_t worker_task_pkt_get_msgid(struct qr_task *task) { knot_pkt_t *pktbuf = worker_task_get_pktbuf(task); uint16_t msg_id = knot_wire_get_id(pktbuf->wire); return msg_id; } void worker_task_pkt_set_msgid(struct qr_task *task, uint16_t msgid) { knot_pkt_t *pktbuf = worker_task_get_pktbuf(task); knot_wire_set_id(pktbuf->wire, msgid); struct kr_query *q = task_get_last_pending_query(task); q->id = msgid; } uint64_t worker_task_creation_time(struct qr_task *task) { return task->creation_time; } void worker_task_subreq_finalize(struct qr_task *task) { subreq_finalize(task, NULL, NULL); } bool worker_task_finished(struct qr_task *task) { return task->finished; } /** Reserve worker buffers */ static int worker_reserve(struct worker_ctx *worker, size_t ring_maxlen) { array_init(worker->pool_mp); if (array_reserve(worker->pool_mp, ring_maxlen)) { return kr_error(ENOMEM); } memset(&worker->pkt_pool, 0, sizeof(worker->pkt_pool)); worker->pkt_pool.ctx = mp_new (4 * sizeof(knot_pkt_t)); worker->pkt_pool.alloc = (knot_mm_alloc_t) mp_alloc; worker->subreq_out = trie_create(NULL); worker->tcp_connected = map_make(NULL); worker->tcp_waiting = map_make(NULL); worker->tcp_pipeline_max = MAX_PIPELINED; memset(&worker->stats, 0, sizeof(worker->stats)); return kr_ok(); } static inline void reclaim_mp_freelist(mp_freelist_t *list) { for (unsigned i = 0; i < list->len; ++i) { struct mempool *e = list->at[i]; kr_asan_unpoison(e, sizeof(*e)); mp_delete(e); } array_clear(*list); } void worker_reclaim(struct worker_ctx *worker) { reclaim_mp_freelist(&worker->pool_mp); mp_delete(worker->pkt_pool.ctx); worker->pkt_pool.ctx = NULL; trie_free(worker->subreq_out); worker->subreq_out = NULL; map_clear(&worker->tcp_connected); map_clear(&worker->tcp_waiting); if (worker->z_import != NULL) { zi_free(worker->z_import); worker->z_import = NULL; } } struct worker_ctx *worker_create(struct engine *engine, knot_mm_t *pool, int worker_id, int worker_count) { /* Load bindings */ engine_lualib(engine, "modules", lib_modules); engine_lualib(engine, "net", lib_net); engine_lualib(engine, "cache", lib_cache); engine_lualib(engine, "event", lib_event); engine_lualib(engine, "worker", lib_worker); /* Create main worker. */ struct worker_ctx *worker = mm_alloc(pool, sizeof(*worker)); if (!worker) { return NULL; } memset(worker, 0, sizeof(*worker)); worker->id = worker_id; worker->count = worker_count; worker->engine = engine; worker->next_request_uid = UINT16_MAX + 1; worker_reserve(worker, MP_FREELIST_SIZE); worker->out_addr4.sin_family = AF_UNSPEC; worker->out_addr6.sin6_family = AF_UNSPEC; /* Register worker in Lua thread */ lua_pushlightuserdata(engine->L, worker); lua_setglobal(engine->L, "__worker"); lua_getglobal(engine->L, "worker"); lua_pushnumber(engine->L, worker_id); lua_setfield(engine->L, -2, "id"); lua_pushnumber(engine->L, getpid()); lua_setfield(engine->L, -2, "pid"); lua_pushnumber(engine->L, worker_count); lua_setfield(engine->L, -2, "count"); /* Register table for worker per-request variables */ lua_newtable(engine->L); lua_setfield(engine->L, -2, "vars"); lua_getfield(engine->L, -1, "vars"); worker->vars_table_ref = luaL_ref(engine->L, LUA_REGISTRYINDEX); lua_pop(engine->L, 1); return worker; } #undef VERBOSE_MSG