/* Copyright (C) 2017 CZ.NIC, z.s.p.o. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /** @file * Implementation of NSEC (1) handling. Prototypes in ./impl.h */ #include "lib/cache/impl.h" #include "lib/dnssec/nsec.h" #include "lib/layer/iterate.h" /** Reconstruct a name into a buffer (assuming length at least KNOT_DNAME_MAXLEN). * \return kr_ok() or error code (<0). */ static int dname_wire_reconstruct(knot_dname_t *buf, const struct key *k, knot_db_val_t kwz) { /* Reconstruct from key: first the ending, then zone name. */ int ret = knot_dname_lf2wire(buf, kwz.len, kwz.data); if (ret < 0) { VERBOSE_MSG(NULL, "=> NSEC: LF2wire ret = %d\n", ret); assert(false); return ret; } /* The last written byte is the zero label for root -> overwrite. */ knot_dname_t *zone_start = buf + ret - 1; assert(*zone_start == '\0'); ret = knot_dname_to_wire(zone_start, k->zname, KNOT_DNAME_MAXLEN - kwz.len); if (ret != k->zlf_len + 1) { assert(false); return ret < 0 ? ret : kr_error(EILSEQ); } return kr_ok(); } knot_db_val_t key_NSEC1(struct key *k, const knot_dname_t *name, bool add_wildcard) { /* we basically need dname_lf with two bytes added * on a correct place within the name (the cut) */ int ret; const bool ok = k && name && !(ret = kr_dname_lf(k->buf, name, add_wildcard)); if (!ok) { assert(false); return (knot_db_val_t){ NULL, 0 }; } uint8_t *begin = k->buf + 1 + k->zlf_len; /* one byte after zone's zero */ uint8_t *end = k->buf + 1 + k->buf[0]; /* we don't use the final zero in key, * but move it anyway */ if (end < begin) { assert(false); return (knot_db_val_t){ NULL, 0 }; } int key_len; if (end > begin) { memmove(begin + 2, begin, end - begin); key_len = k->buf[0] + 1; } else { key_len = k->buf[0] + 2; } /* CACHE_KEY_DEF: key == zone's dname_lf + '\0' + '1' + dname_lf * of the name within the zone without the final 0. Iff the latter is empty, * there's no zero to cut and thus the key_len difference. */ begin[0] = 0; begin[1] = '1'; /* tag for NSEC1 */ k->type = KNOT_RRTYPE_NSEC; /* VERBOSE_MSG(NULL, "<> key_NSEC1; name: "); kr_dname_print(name, add_wildcard ? "*." : "" , " "); kr_log_verbose("(zone name LF length: %d; total key length: %d)\n", k->zlf_len, key_len); */ return (knot_db_val_t){ k->buf + 1, key_len }; } /** Assuming that k1 < k4, find where k2 is. (Considers DNS wrap-around.) * * \return Intuition: position of k2 among kX. * 0: k2 < k1; 1: k1 == k2; 2: k1 is a prefix of k2 < k4; * 3: k1 < k2 < k4 (and not 2); 4: k2 == k4; 5: k2 > k4 * \note k1.data may be NULL, meaning assumption that k1 < k2 and not a prefix * (i.e. return code will be > 2) */ static int kwz_between(knot_db_val_t k1, knot_db_val_t k2, knot_db_val_t k4) { assert(k2.data && k4.data); /* CACHE_KEY_DEF; we need to beware of one key being a prefix of another */ int ret_maybe; /**< result, assuming we confirm k2 < k4 */ if (k1.data) { const int cmp12 = memcmp(k1.data, k2.data, MIN(k1.len, k2.len)); if (cmp12 == 0 && k1.len == k2.len) /* iff k1 == k2 */ return 1; if (cmp12 > 0 || (cmp12 == 0 && k1.len > k2.len)) /* iff k1 > k2 */ return 0; ret_maybe = cmp12 == 0 ? 2 : 3; } else { ret_maybe = 3; } if (k4.len == 0) { /* wrap-around */ return k2.len > 0 ? ret_maybe : 4; } else { const int cmp24 = memcmp(k2.data, k4.data, MIN(k2.len, k4.len)); if (cmp24 == 0 && k2.len == k4.len) /* iff k2 == k4 */ return 4; if (cmp24 > 0 || (cmp24 == 0 && k2.len > k4.len)) /* iff k2 > k4 */ return 5; return ret_maybe; } } /** NSEC1 range search. * * \param key Pass output of key_NSEC1(k, ...) * \param value[out] The raw data of the NSEC cache record (optional; consistency checked). * \param exact_match[out] Whether the key was matched exactly or just covered (optional). * \param kwz_low[out] Output the low end of covering NSEC, pointing within DB (optional). * \param kwz_high[in,out] Storage for the high end of covering NSEC (optional). * It's only set if !exact_match. * \param new_ttl[out] New TTL of the NSEC (optional). * \return Error message or NULL. * \note The function itself does *no* bitmap checks, e.g. RFC 6840 sec. 4. */ static const char * find_leq_NSEC1(struct kr_cache *cache, const struct kr_query *qry, const knot_db_val_t key, const struct key *k, knot_db_val_t *value, bool *exact_match, knot_db_val_t *kwz_low, knot_db_val_t *kwz_high, uint32_t *new_ttl) { /* Do the cache operation. */ const size_t nwz_off = key_nwz_off(k); if (!key.data || key.len < nwz_off) { assert(false); return "range search ERROR"; } knot_db_val_t key_nsec = key; knot_db_val_t val = { NULL, 0 }; int ret = cache_op(cache, read_leq, &key_nsec, &val); if (ret < 0) { if (ret == kr_error(ENOENT)) { return "range search miss"; } else { assert(false); return "range search ERROR"; } } if (value) { *value = val; } /* Check consistency, TTL, rank. */ const bool is_exact = (ret == 0); if (exact_match) { *exact_match = is_exact; } const struct entry_h *eh = entry_h_consistent_NSEC(val); if (!eh) { /* This might be just finding something else than NSEC1 entry, * in case we searched before the very first one in the zone. */ return "range search found inconsistent entry"; } /* Passing just zone name instead of owner, as we don't * have it reconstructed at this point. */ int32_t new_ttl_ = get_new_ttl(eh, qry, k->zname, KNOT_RRTYPE_NSEC, qry->timestamp.tv_sec); if (new_ttl_ < 0 || !kr_rank_test(eh->rank, KR_RANK_SECURE)) { return "range search found stale or insecure entry"; /* TODO: remove the stale record *and* retry, * in case we haven't run off. Perhaps start by in_zone check. */ } if (new_ttl) { *new_ttl = new_ttl_; } if (kwz_low) { *kwz_low = (knot_db_val_t){ .data = (uint8_t *)key_nsec.data + nwz_off, .len = key_nsec.len - nwz_off, }; /* CACHE_KEY_DEF */ } if (is_exact) { /* Nothing else to do. */ return NULL; } /* The NSEC starts strictly before our target name; * now check that it still belongs into that zone. */ const bool nsec_in_zone = key_nsec.len >= nwz_off /* CACHE_KEY_DEF */ && memcmp(key.data, key_nsec.data, nwz_off) == 0; if (!nsec_in_zone) { return "range search miss (!nsec_in_zone)"; } /* We know it starts before sname, so let's check the other end. * 1. construct the key for the next name - kwz_hi. */ /* it's *full* name ATM */ const knot_rdata_t *next = (const knot_rdata_t *) (eh->data + KR_CACHE_RR_COUNT_SIZE); if (KR_CACHE_RR_COUNT_SIZE != 2 || get_uint16(eh->data) == 0) { assert(false); return "ERROR"; /* TODO: more checks? */ } /* WITH_VERBOSE { VERBOSE_MSG(qry, "=> NSEC: next name: "); kr_dname_print(next, "", "\n"); } */ knot_dname_t ch_buf[KNOT_DNAME_MAXLEN]; knot_dname_t *chs = kwz_high ? kwz_high->data : ch_buf; if (!chs) { assert(false); return "EINVAL"; } { /* Lower-case chs; see also RFC 6840 5.1. * LATER(optim.): we do lots of copying etc. */ knot_dname_t lower_buf[KNOT_DNAME_MAXLEN]; ret = knot_dname_to_wire(lower_buf, next->data, MIN(next->len, KNOT_DNAME_MAXLEN)); if (ret < 0) { /* _ESPACE */ return "range search found record with incorrect contents"; } knot_dname_to_lower(lower_buf); ret = kr_dname_lf(chs, lower_buf, false); } if (ret) { assert(false); return "ERROR"; } knot_db_val_t kwz_hi = { /* skip the zone name */ .data = chs + 1 + k->zlf_len, .len = chs[0] - k->zlf_len, }; assert((ssize_t)(kwz_hi.len) >= 0); /* 2. do the actual range check. */ const knot_db_val_t kwz_sname = { .data = (void *)/*const-cast*/(k->buf + 1 + nwz_off), .len = k->buf[0] - k->zlf_len, }; assert((ssize_t)(kwz_sname.len) >= 0); bool covers = /* we know for sure that the low end is before kwz_sname */ 3 == kwz_between((knot_db_val_t){ NULL, 0 }, kwz_sname, kwz_hi); if (!covers) { return "range search miss (!covers)"; } if (kwz_high) { *kwz_high = kwz_hi; } return NULL; } int nsec1_encloser(struct key *k, struct answer *ans, const int sname_labels, int *clencl_labels, knot_db_val_t *cover_low_kwz, knot_db_val_t *cover_hi_kwz, const struct kr_query *qry, struct kr_cache *cache) { static const int ESKIP = ABS(ENOENT); /* Basic sanity check. */ const bool ok = k && ans && clencl_labels && cover_low_kwz && cover_hi_kwz && qry && cache; if (!ok) { assert(!EINVAL); return kr_error(EINVAL); } /* Find a previous-or-equal name+NSEC in cache covering the QNAME, * checking TTL etc. */ knot_db_val_t key = key_NSEC1(k, qry->sname, false); knot_db_val_t val = { NULL, 0 }; bool exact_match; uint32_t new_ttl; const char *err = find_leq_NSEC1(cache, qry, key, k, &val, &exact_match, cover_low_kwz, cover_hi_kwz, &new_ttl); if (err) { VERBOSE_MSG(qry, "=> NSEC sname: %s\n", err); return ESKIP; } /* Get owner name of the record. */ const knot_dname_t *owner; knot_dname_t owner_buf[KNOT_DNAME_MAXLEN]; if (exact_match) { owner = qry->sname; } else { int ret = dname_wire_reconstruct(owner_buf, k, *cover_low_kwz); if (unlikely(ret)) return ESKIP; owner = owner_buf; } /* Basic checks OK -> materialize data. */ { const struct entry_h *nsec_eh = val.data; int ret = entry2answer(ans, AR_NSEC, nsec_eh, knot_db_val_bound(val), owner, KNOT_RRTYPE_NSEC, new_ttl); if (ret) return kr_error(ret); } /* Final checks, split for matching vs. covering our sname. */ const knot_rrset_t *nsec_rr = ans->rrsets[AR_NSEC].set.rr; const uint8_t *bm = knot_nsec_bitmap(nsec_rr->rrs.rdata); uint16_t bm_size = knot_nsec_bitmap_len(nsec_rr->rrs.rdata); assert(bm); if (exact_match) { if (kr_nsec_bitmap_nodata_check(bm, bm_size, qry->stype, nsec_rr->owner) != 0) { VERBOSE_MSG(qry, "=> NSEC sname: match but failed type check\n"); return ESKIP; } /* NODATA proven; just need to add SOA+RRSIG later */ VERBOSE_MSG(qry, "=> NSEC sname: match proved NODATA, new TTL %d\n", new_ttl); ans->rcode = PKT_NODATA; return kr_ok(); } /* else */ /* Inexact match. First check if sname is delegated by that NSEC. */ const int nsec_matched = knot_dname_matched_labels(nsec_rr->owner, qry->sname); const bool is_sub = nsec_matched == knot_dname_labels(nsec_rr->owner, NULL); if (is_sub && kr_nsec_children_in_zone_check(bm, bm_size) != 0) { VERBOSE_MSG(qry, "=> NSEC sname: covered but delegated (or error)\n"); return ESKIP; } /* NXDOMAIN proven *except* for wildcards. */ WITH_VERBOSE(qry) { auto_free char *owner_str = kr_dname_text(nsec_rr->owner), *next_str = kr_dname_text(knot_nsec_next(nsec_rr->rrs.rdata)); VERBOSE_MSG(qry, "=> NSEC sname: covered by: %s -> %s, new TTL %d\n", owner_str, next_str, new_ttl); } /* Find label count of the closest encloser. * Both endpoints in an NSEC do exist (though possibly in a child zone) * and any prefixes of those names as well (empty non-terminals), * but nothing else exists inside this "triangle". * * Note that we have to lower-case the next name for comparison, * even though we have canonicalized NSEC already; see RFC 6840 5.1. * LATER(optim.): it might be faster to use the LFs we already have. */ knot_dname_t next[KNOT_DNAME_MAXLEN]; int ret = knot_dname_to_wire(next, knot_nsec_next(nsec_rr->rrs.rdata), sizeof(next)); if (ret < 0) { assert(!ret); return kr_error(ret); } knot_dname_to_lower(next); *clencl_labels = MAX( nsec_matched, knot_dname_matched_labels(qry->sname, next) ); /* Empty non-terminals don't need to have * a matching NSEC record. */ if (sname_labels == *clencl_labels) { ans->rcode = PKT_NODATA; VERBOSE_MSG(qry, "=> NSEC sname: empty non-terminal by the same RR\n"); } else { ans->rcode = PKT_NXDOMAIN; } return kr_ok(); } /** Verify non-existence after kwz_between() call. */ static bool nonexistence_ok(int cmp, const knot_rrset_t *rrs) { if (cmp == 3) { return true; } if (cmp != 2) { return false; } const uint8_t *bm = knot_nsec_bitmap(rrs->rrs.rdata); uint16_t bm_size = knot_nsec_bitmap_len(rrs->rrs.rdata); return kr_nsec_children_in_zone_check(bm, bm_size) != 0; } int nsec1_src_synth(struct key *k, struct answer *ans, const knot_dname_t *clencl_name, knot_db_val_t cover_low_kwz, knot_db_val_t cover_hi_kwz, const struct kr_query *qry, struct kr_cache *cache) { /* Construct key for the source of synthesis. */ knot_db_val_t key = key_NSEC1(k, clencl_name, true); const size_t nwz_off = key_nwz_off(k); if (!key.data || key.len < nwz_off) { assert(false); return kr_error(1); } /* Check if our sname-covering NSEC also covers/matches SS. */ knot_db_val_t kwz = { .data = (uint8_t *)key.data + nwz_off, .len = key.len - nwz_off, }; assert((ssize_t)(kwz.len) >= 0); const int cmp = kwz_between(cover_low_kwz, kwz, cover_hi_kwz); if (nonexistence_ok(cmp, ans->rrsets[AR_NSEC].set.rr)) { VERBOSE_MSG(qry, "=> NSEC wildcard: covered by the same RR\n"); return AR_SOA; } const knot_rrset_t *nsec_rr = NULL; /**< the wildcard proof NSEC */ bool exact_match; /**< whether it matches the source of synthesis */ if (cmp == 1) { exact_match = true; nsec_rr = ans->rrsets[AR_NSEC].set.rr; } else { /* Try to find the NSEC for SS. */ knot_db_val_t val = { NULL, 0 }; knot_db_val_t wild_low_kwz = { NULL, 0 }; uint32_t new_ttl; const char *err = find_leq_NSEC1(cache, qry, key, k, &val, &exact_match, &wild_low_kwz, NULL, &new_ttl); if (err) { VERBOSE_MSG(qry, "=> NSEC wildcard: %s\n", err); return kr_ok(); } /* Materialize the record into answer (speculatively). */ knot_dname_t owner[KNOT_DNAME_MAXLEN]; int ret = dname_wire_reconstruct(owner, k, wild_low_kwz); if (ret) return kr_error(ret); const struct entry_h *nsec_eh = val.data; ret = entry2answer(ans, AR_WILD, nsec_eh, knot_db_val_bound(val), owner, KNOT_RRTYPE_NSEC, new_ttl); if (ret) return kr_error(ret); nsec_rr = ans->rrsets[AR_WILD].set.rr; } assert(nsec_rr); const uint32_t new_ttl_log = kr_verbose_status ? nsec_rr->ttl : -1; const uint8_t *bm = knot_nsec_bitmap(nsec_rr->rrs.rdata); uint16_t bm_size = knot_nsec_bitmap_len(nsec_rr->rrs.rdata); int ret; struct answer_rrset * const arw = &ans->rrsets[AR_WILD]; if (!bm) { assert(false); ret = kr_error(1); goto clean_wild; } if (!exact_match) { /* Finish verification that the source of synthesis doesn't exist. */ const int nsec_matched = knot_dname_matched_labels(nsec_rr->owner, clencl_name); /* we don't need to use the full source of synthesis ^ */ const bool is_sub = nsec_matched == knot_dname_labels(nsec_rr->owner, NULL); if (is_sub && kr_nsec_children_in_zone_check(bm, bm_size) != 0) { VERBOSE_MSG(qry, "=> NSEC wildcard: covered but delegated (or error)\n"); ret = kr_ok(); goto clean_wild; } /* We have a record proving wildcard non-existence. */ WITH_VERBOSE(qry) { auto_free char *owner_str = kr_dname_text(nsec_rr->owner), *next_str = kr_dname_text(knot_nsec_next(nsec_rr->rrs.rdata)); VERBOSE_MSG(qry, "=> NSEC wildcard: covered by: %s -> %s, new TTL %d\n", owner_str, next_str, new_ttl_log); } return AR_SOA; } /* The wildcard exists. Find if it's NODATA - check type bitmap. */ if (kr_nsec_bitmap_nodata_check(bm, bm_size, qry->stype, nsec_rr->owner) == 0) { /* NODATA proven; just need to add SOA+RRSIG later */ WITH_VERBOSE(qry) { const char *msg_start = "=> NSEC wildcard: match proved NODATA"; if (arw->set.rr) { auto_free char *owner_str = kr_dname_text(nsec_rr->owner); VERBOSE_MSG(qry, "%s: %s, new TTL %d\n", msg_start, owner_str, new_ttl_log); } else { /* don't repeat the RR if it's the same */ VERBOSE_MSG(qry, "%s, by the same RR\n", msg_start); } } ans->rcode = PKT_NODATA; return AR_SOA; } /* else */ /* The data probably exists -> don't add this NSEC * and (later) try to find the real wildcard data */ VERBOSE_MSG(qry, "=> NSEC wildcard: should exist (or error)\n"); ans->rcode = PKT_NOERROR; ret = kr_ok(); clean_wild: if (arw->set.rr) { /* we may have matched AR_NSEC */ knot_rrset_free(arw->set.rr, ans->mm); arw->set.rr = NULL; knot_rdataset_clear(&arw->sig_rds, ans->mm); } return ret; }