/* Copyright (C) 2014-2017 CZ.NIC, z.s.p.o. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "lib/defines.h" #include "lib/utils.h" #include "lib/generic/array.h" #include "lib/nsrep.h" #include "lib/module.h" #include "lib/resolve.h" /* Always compile-in log symbols, even if disabled. */ #undef kr_verbose_status #undef kr_verbose_set #undef kr_log_verbose /* Logging & debugging */ bool kr_verbose_status = false; void *mm_realloc(knot_mm_t *mm, void *what, size_t size, size_t prev_size) { if (mm) { void *p = mm->alloc(mm->ctx, size); if (p == NULL) { return NULL; } else { if (what) { memcpy(p, what, prev_size < size ? prev_size : size); } mm_free(mm, what); return p; } } else { return realloc(what, size); } } void *mm_malloc(void *ctx, size_t n) { (void)ctx; return malloc(n); } /* * Macros. */ #define strlen_safe(x) ((x) ? strlen(x) : 0) /** * @internal Convert 16bit unsigned to string, keeps leading spaces. * @note Always fills dst length = 5 * Credit: http://computer-programming-forum.com/46-asm/7aa4b50bce8dd985.htm */ static inline int u16tostr(uint8_t *dst, uint16_t num) { uint32_t tmp = num * (((1 << 28) / 10000) + 1) - (num / 4); for(size_t i = 0; i < 5; i++) { dst[i] = '0' + (char) (tmp >> 28); tmp = (tmp & 0x0fffffff) * 10; } return 5; } /* * Cleanup callbacks. */ static void kres_gnutls_log(int level, const char *message) { kr_log_verbose("[gnutls] (%d) %s", level, message); } bool kr_verbose_set(bool status) { #ifndef NOVERBOSELOG kr_verbose_status = status; /* gnutls logs messages related to our TLS and also libdnssec, * and the logging is set up in a global way only */ if (status) { gnutls_global_set_log_function(kres_gnutls_log); } gnutls_global_set_log_level(status ? 5 : 0); #endif return kr_verbose_status; } void kr_log_verbose(const char *fmt, ...) { if (kr_verbose_status) { va_list args; va_start(args, fmt); vprintf(fmt, args); va_end(args); fflush(stdout); } } void kr_log_qverbose_impl(const struct kr_query *qry, const char *cls, const char *fmt, ...) { unsigned ind = 0; for (const struct kr_query *q = qry; q; q = q->parent) ind += 2; uint32_t qry_uid = qry ? qry->uid : 0; uint32_t req_uid = qry && qry->request ? qry->request->uid : 0; /* Simplified kr_log_verbose() calls, first prefix then passed fmt... * Calling it would take about the same amount of code. */ printf("[%05u.%02u][%s] %*s", req_uid, qry_uid, cls, ind, ""); va_list args; va_start(args, fmt); vprintf(fmt, args); va_end(args); fflush(stdout); } bool kr_log_trace(const struct kr_query *query, const char *source, const char *fmt, ...) { if (!kr_log_trace_enabled(query)) { return false; } auto_free char *msg = NULL; va_list args; va_start(args, fmt); int len = vasprintf(&msg, fmt, args); va_end(args); /* Check formatting result before logging */ if (len < 0) { return false; } query->request->trace_log(query, source, msg); return true; } char* kr_strcatdup(unsigned n, ...) { if (n < 1) { return NULL; } /* Calculate total length */ size_t total_len = 0; va_list vl; va_start(vl, n); for (unsigned i = 0; i < n; ++i) { char *item = va_arg(vl, char *); const size_t new_len = total_len + strlen_safe(item); if (unlikely(new_len < total_len)) { va_end(vl); return NULL; } total_len = new_len; } va_end(vl); /* Allocate result and fill */ char *result = NULL; if (total_len > 0) { if (unlikely(total_len + 1 == 0)) return NULL; result = malloc(total_len + 1); } if (result) { char *stream = result; va_start(vl, n); for (unsigned i = 0; i < n; ++i) { char *item = va_arg(vl, char *); if (item) { size_t len = strlen(item); memcpy(stream, item, len + 1); stream += len; } } va_end(vl); } return result; } int kr_memreserve(void *baton, char **mem, size_t elm_size, size_t want, size_t *have) { if (*have >= want) { return 0; } else { knot_mm_t *pool = baton; size_t next_size = array_next_count(want); void *mem_new = mm_alloc(pool, next_size * elm_size); if (mem_new != NULL) { memcpy(mem_new, *mem, (*have)*(elm_size)); mm_free(pool, *mem); *mem = mem_new; *have = next_size; return 0; } } return -1; } static int pkt_recycle(knot_pkt_t *pkt, bool keep_question) { /* The maximum size of a header + query name + (class, type) */ uint8_t buf[KNOT_WIRE_HEADER_SIZE + KNOT_DNAME_MAXLEN + 2 * sizeof(uint16_t)]; /* Save header and the question section */ size_t base_size = KNOT_WIRE_HEADER_SIZE; if (keep_question) { base_size += knot_pkt_question_size(pkt); } assert(base_size <= sizeof(buf)); memcpy(buf, pkt->wire, base_size); /* Clear the packet and its auxiliary structures */ knot_pkt_clear(pkt); /* Restore header and question section and clear counters */ pkt->size = base_size; memcpy(pkt->wire, buf, base_size); knot_wire_set_qdcount(pkt->wire, keep_question); knot_wire_set_ancount(pkt->wire, 0); knot_wire_set_nscount(pkt->wire, 0); knot_wire_set_arcount(pkt->wire, 0); /* Reparse question */ knot_pkt_begin(pkt, KNOT_ANSWER); return knot_pkt_parse_question(pkt); } int kr_pkt_recycle(knot_pkt_t *pkt) { return pkt_recycle(pkt, false); } int kr_pkt_clear_payload(knot_pkt_t *pkt) { return pkt_recycle(pkt, knot_wire_get_qdcount(pkt->wire)); } int kr_pkt_put(knot_pkt_t *pkt, const knot_dname_t *name, uint32_t ttl, uint16_t rclass, uint16_t rtype, const uint8_t *rdata, uint16_t rdlen) { /* LATER(opt.): there's relatively lots of copying, but ATM kr_pkt_put() * isn't considered to be used in any performance-critical parts (just lua). */ if (!pkt || !name) { return kr_error(EINVAL); } /* Create empty RR */ knot_rrset_t rr; knot_rrset_init(&rr, knot_dname_copy(name, &pkt->mm), rtype, rclass, ttl); /* Create RDATA */ knot_rdata_t *rdata_tmp = mm_alloc(&pkt->mm, offsetof(knot_rdata_t, data) + rdlen); knot_rdata_init(rdata_tmp, rdlen, rdata); knot_rdataset_add(&rr.rrs, rdata_tmp, &pkt->mm); mm_free(&pkt->mm, rdata_tmp); /* we're always on mempool for now, but whatever */ /* Append RR */ return knot_pkt_put(pkt, 0, &rr, KNOT_PF_FREE); } void kr_pkt_make_auth_header(knot_pkt_t *pkt) { assert(pkt && pkt->wire); knot_wire_clear_ad(pkt->wire); knot_wire_set_aa(pkt->wire); } const char *kr_inaddr(const struct sockaddr *addr) { if (!addr) { return NULL; } switch (addr->sa_family) { case AF_INET: return (const char *)&(((const struct sockaddr_in *)addr)->sin_addr); case AF_INET6: return (const char *)&(((const struct sockaddr_in6 *)addr)->sin6_addr); default: return NULL; } } int kr_inaddr_family(const struct sockaddr *addr) { if (!addr) return AF_UNSPEC; return addr->sa_family; } int kr_inaddr_len(const struct sockaddr *addr) { if (!addr) { return kr_error(EINVAL); } return kr_family_len(addr->sa_family); } int kr_sockaddr_len(const struct sockaddr *addr) { if (!addr) { return kr_error(EINVAL); } switch (addr->sa_family) { case AF_INET: return sizeof(struct sockaddr_in); case AF_INET6: return sizeof(struct sockaddr_in6); default: return kr_error(EINVAL); } } int kr_sockaddr_cmp(const struct sockaddr *left, const struct sockaddr *right) { if (!left || !right) { return kr_error(EINVAL); } if (left->sa_family != right->sa_family) { return kr_error(EFAULT); } if (left->sa_family == AF_INET) { struct sockaddr_in *left_in = (struct sockaddr_in *)left; struct sockaddr_in *right_in = (struct sockaddr_in *)right; if (left_in->sin_addr.s_addr != right_in->sin_addr.s_addr) { return kr_error(EFAULT); } if (left_in->sin_port != right_in->sin_port) { return kr_error(EFAULT); } } else if (left->sa_family == AF_INET6) { struct sockaddr_in6 *left_in6 = (struct sockaddr_in6 *)left; struct sockaddr_in6 *right_in6 = (struct sockaddr_in6 *)right; if (memcmp(&left_in6->sin6_addr, &right_in6->sin6_addr, sizeof(struct in6_addr)) != 0) { return kr_error(EFAULT); } if (left_in6->sin6_port != right_in6->sin6_port) { return kr_error(EFAULT); } } else { return kr_error(ENOENT); } return kr_ok(); } uint16_t kr_inaddr_port(const struct sockaddr *addr) { if (!addr) { return 0; } switch (addr->sa_family) { case AF_INET: return ntohs(((const struct sockaddr_in *)addr)->sin_port); case AF_INET6: return ntohs(((const struct sockaddr_in6 *)addr)->sin6_port); default: return 0; } } void kr_inaddr_set_port(struct sockaddr *addr, uint16_t port) { if (!addr) { return; } switch (addr->sa_family) { case AF_INET: ((struct sockaddr_in *)addr)->sin_port = htons(port); case AF_INET6: ((struct sockaddr_in6 *)addr)->sin6_port = htons(port); default: break; } } int kr_inaddr_str(const struct sockaddr *addr, char *buf, size_t *buflen) { if (!addr || !buf || !buflen) { return kr_error(EINVAL); } if (!inet_ntop(addr->sa_family, kr_inaddr(addr), buf, *buflen)) { return kr_error(errno); } const int len = strlen(buf); const int len_need = len + 1 + 5 + 1; if (len_need > *buflen) { *buflen = len_need; return kr_error(ENOSPC); } *buflen = len_need; buf[len] = '#'; u16tostr((uint8_t *)&buf[len + 1], kr_inaddr_port(addr)); buf[len_need - 1] = 0; return kr_ok(); } int kr_straddr_family(const char *addr) { if (!addr) { return kr_error(EINVAL); } if (strchr(addr, ':')) { return AF_INET6; } return AF_INET; } int kr_family_len(int family) { switch (family) { case AF_INET: return sizeof(struct in_addr); case AF_INET6: return sizeof(struct in6_addr); default: return kr_error(EINVAL); } } struct sockaddr * kr_straddr_socket(const char *addr, int port) { switch (kr_straddr_family(addr)) { case AF_INET: { struct sockaddr_in *res = malloc(sizeof(*res)); if (uv_ip4_addr(addr, port, res) >= 0) { return (struct sockaddr *)res; } else { free(res); return NULL; } } case AF_INET6: { struct sockaddr_in6 *res = malloc(sizeof(*res)); if (uv_ip6_addr(addr, port, res) >= 0) { return (struct sockaddr *)res; } else { free(res); return NULL; } } default: return NULL; } } int kr_straddr_subnet(void *dst, const char *addr) { if (!dst || !addr) { return kr_error(EINVAL); } /* Parse subnet */ int bit_len = 0; int family = kr_straddr_family(addr); auto_free char *addr_str = strdup(addr); char *subnet = strchr(addr_str, '/'); if (subnet) { *subnet = '\0'; subnet += 1; bit_len = strtol(subnet, NULL, 10); /* Check client subnet length */ const int max_len = (family == AF_INET6) ? 128 : 32; if (bit_len < 0 || bit_len > max_len) { return kr_error(ERANGE); } } else { /* No subnet, use maximal subnet length. */ bit_len = (family == AF_INET6) ? 128 : 32; } /* Parse address */ int ret = inet_pton(family, addr_str, dst); if (ret < 0) { return kr_error(EILSEQ); } return bit_len; } int kr_straddr_split(const char *addr, char *buf, size_t buflen, uint16_t *port) { const int base = 10; long p = 0; size_t addrlen = strlen(addr); char *p_start = strchr(addr, '@'); char *p_end; if (!p_start) { p_start = strchr(addr, '#'); } if (p_start) { if (p_start[1] != '\0'){ p = strtol(p_start + 1, &p_end, base); if (*p_end != '\0' || p <= 0 || p > UINT16_MAX) { return kr_error(EINVAL); } } addrlen = p_start - addr; } /* Check if address is valid. */ if (addrlen >= INET6_ADDRSTRLEN) { return kr_error(EINVAL); } char str[INET6_ADDRSTRLEN]; struct sockaddr_storage ss; memcpy(str, addr, addrlen); str[addrlen] = '\0'; int family = kr_straddr_family(str); if (family == kr_error(EINVAL) || !inet_pton(family, str, &ss)) { return kr_error(EINVAL); } /* Address and port contains valid values, return it to caller */ if (buf) { if (addrlen >= buflen) { return kr_error(ENOSPC); } memcpy(buf, addr, addrlen); buf[addrlen] = '\0'; } if (port) { *port = (uint16_t)p; } return kr_ok(); } int kr_straddr_join(const char *addr, uint16_t port, char *buf, size_t *buflen) { if (!addr || !buf || !buflen) { return kr_error(EINVAL); } struct sockaddr_storage ss; int family = kr_straddr_family(addr); if (family == kr_error(EINVAL) || !inet_pton(family, addr, &ss)) { return kr_error(EINVAL); } int len = strlen(addr); if (len + 6 >= *buflen) { return kr_error(ENOSPC); } memcpy(buf, addr, len + 1); buf[len] = '#'; u16tostr((uint8_t *)&buf[len + 1], port); len += 6; buf[len] = 0; *buflen = len; return kr_ok(); } int kr_bitcmp(const char *a, const char *b, int bits) { /* We're using the function from lua directly, so at least for now * we avoid crashing on bogus inputs. Meaning: NULL is ordered before * anything else, and negative length is the same as zero. * TODO: review the call sites and probably remove the checks. */ if (bits <= 0 || (!a && !b)) { return 0; } else if (!a) { return -1; } else if (!b) { return 1; } assert((a && b && bits >= 0) || bits == 0); /* Compare part byte-divisible part. */ const size_t chunk = bits / 8; int ret = memcmp(a, b, chunk); if (ret != 0) { return ret; } a += chunk; b += chunk; bits -= chunk * 8; /* Compare last partial byte address block. */ if (bits > 0) { const size_t shift = (8 - bits); ret = ((uint8_t)(*a >> shift) - (uint8_t)(*b >> shift)); } return ret; } int kr_rrkey(char *key, uint16_t class, const knot_dname_t *owner, uint16_t type, uint16_t additional) { if (!key || !owner) { return kr_error(EINVAL); } uint8_t *key_buf = (uint8_t *)key; int ret = u16tostr(key_buf, class); if (ret <= 0) { return ret; } key_buf += ret; ret = knot_dname_to_wire(key_buf, owner, KNOT_DNAME_MAXLEN); if (ret <= 0) { return ret; } knot_dname_to_lower(key_buf); key_buf += ret - 1; ret = u16tostr(key_buf, type); if (ret <= 0) { return ret; } key_buf += ret; ret = u16tostr(key_buf, additional); if (ret <= 0) { return ret; } key_buf[ret] = '\0'; return (char *)&key_buf[ret] - key; } /** Return whether two RRsets match, i.e. would form the same set; see ranked_rr_array_t */ static inline bool rrsets_match(const knot_rrset_t *rr1, const knot_rrset_t *rr2) { bool match = rr1->type == rr2->type && rr1->rclass == rr2->rclass; if (match && rr2->type == KNOT_RRTYPE_RRSIG) { match = match && knot_rrsig_type_covered(rr1->rrs.rdata) == knot_rrsig_type_covered(rr2->rrs.rdata); } match = match && knot_dname_is_equal(rr1->owner, rr2->owner); return match; } /** Ensure that an index in a ranked array won't cause "duplicate" RRsets on wire. * * Other entries that would form the same RRset get to_wire = false. * See also rrsets_match. */ static int to_wire_ensure_unique(ranked_rr_array_t *array, size_t index) { bool ok = array && index < array->len; if (!ok) { assert(false); return kr_error(EINVAL); } const struct ranked_rr_array_entry *e0 = array->at[index]; if (!e0->to_wire) { return kr_ok(); } for (ssize_t i = array->len - 1; i >= 0; --i) { /* ^ iterate backwards, as the end is more likely in CPU caches */ struct ranked_rr_array_entry *ei = array->at[i]; if (ei->qry_uid == e0->qry_uid /* assumption: no duplicates within qry */ || !ei->to_wire /* no use for complex comparison if @to_wire */ ) { continue; } if (rrsets_match(ei->rr, e0->rr)) { ei->to_wire = false; } } return kr_ok(); } int kr_ranked_rrarray_add(ranked_rr_array_t *array, const knot_rrset_t *rr, uint8_t rank, bool to_wire, uint32_t qry_uid, knot_mm_t *pool) { /* rr always has one record per rrset * check if another rrset with the same * rclass/type/owner combination exists within current query * and merge if needed */ for (ssize_t i = array->len - 1; i >= 0; --i) { ranked_rr_array_entry_t *stashed = array->at[i]; if (stashed->yielded) { break; } if (stashed->qry_uid != qry_uid) { break; } if (!rrsets_match(stashed->rr, rr)) { continue; } /* Found the entry to merge with. Check consistency and merge. */ bool ok = stashed->rank == rank && !stashed->cached; if (!ok) { assert(false); return kr_error(EEXIST); } /* It may happen that an RRset is first considered useful * (to_wire = false, e.g. due to being part of glue), * and later we may find we also want it in the answer. */ stashed->to_wire = stashed->to_wire || to_wire; return knot_rdataset_merge(&stashed->rr->rrs, &rr->rrs, pool); } /* No stashed rrset found, add */ int ret = array_reserve_mm(*array, array->len + 1, kr_memreserve, pool); if (ret != 0) { return kr_error(ENOMEM); } ranked_rr_array_entry_t *entry = mm_alloc(pool, sizeof(ranked_rr_array_entry_t)); if (!entry) { return kr_error(ENOMEM); } knot_rrset_t *copy = knot_rrset_copy(rr, pool); if (!copy) { mm_free(pool, entry); return kr_error(ENOMEM); } entry->qry_uid = qry_uid; entry->rr = copy; entry->rank = rank; entry->revalidation_cnt = 0; entry->cached = false; entry->yielded = false; entry->to_wire = to_wire; if (array_push(*array, entry) < 0) { /* Silence coverity. It shouldn't be possible to happen, * due to the array_reserve_mm call above. */ mm_free(pool, entry); return kr_error(ENOMEM); } return to_wire_ensure_unique(array, array->len - 1); } int kr_ranked_rrarray_set_wire(ranked_rr_array_t *array, bool to_wire, uint32_t qry_uid, bool check_dups, bool (*extraCheck)(const ranked_rr_array_entry_t *)) { for (size_t i = 0; i < array->len; ++i) { ranked_rr_array_entry_t *entry = array->at[i]; if (entry->qry_uid != qry_uid) { continue; } if (extraCheck != NULL && !extraCheck(entry)) { continue; } entry->to_wire = to_wire; if (check_dups) { int ret = to_wire_ensure_unique(array, i); if (ret) return ret; } } return kr_ok(); } static char *callprop(struct kr_module *module, const char *prop, const char *input, void *env) { if (!module || !module->props || !prop) { return NULL; } for (const struct kr_prop *p = module->props(); p && p->name; ++p) { if (p->cb != NULL && strcmp(p->name, prop) == 0) { return p->cb(env, module, input); } } return NULL; } char *kr_module_call(struct kr_context *ctx, const char *module, const char *prop, const char *input) { if (!ctx || !ctx->modules || !module || !prop) { return NULL; } module_array_t *mod_list = ctx->modules; for (size_t i = 0; i < mod_list->len; ++i) { struct kr_module *mod = mod_list->at[i]; if (strcmp(mod->name, module) == 0) { return callprop(mod, prop, input, ctx); } } return NULL; } static void flags_to_str(char *dst, const knot_pkt_t *pkt, size_t maxlen) { int offset = 0; int ret = 0; struct { uint8_t (*get) (const uint8_t *packet); char name[3]; } flag[7] = { {knot_wire_get_qr, "qr"}, {knot_wire_get_aa, "aa"}, {knot_wire_get_rd, "rd"}, {knot_wire_get_ra, "ra"}, {knot_wire_get_tc, "tc"}, {knot_wire_get_ad, "ad"}, {knot_wire_get_cd, "cd"} }; for (int i = 0; i < 7; ++i) { if (!flag[i].get(pkt->wire)) { continue; } ret = snprintf(dst + offset, maxlen, "%s ", flag[i].name); if (ret <= 0 || ret >= maxlen) { dst[0] = 0; return; } offset += ret; maxlen -= ret; } dst[offset] = 0; } static char *print_section_opt(struct mempool *mp, char *endp, const knot_rrset_t *rr, const uint8_t rcode) { uint8_t ercode = knot_edns_get_ext_rcode(rr); uint16_t ext_rcode_id = knot_edns_whole_rcode(ercode, rcode); const char *ext_rcode_str = "Unused"; const knot_lookup_t *ext_rcode; if (ercode > 0) { ext_rcode = knot_lookup_by_id(knot_rcode_names, ext_rcode_id); if (ext_rcode != NULL) { ext_rcode_str = ext_rcode->name; } else { ext_rcode_str = "Unknown"; } } return mp_printf_append(mp, endp, ";; EDNS PSEUDOSECTION:\n;; " "Version: %u; flags: %s; UDP size: %u B; ext-rcode: %s\n\n", knot_edns_get_version(rr), (knot_edns_do(rr) != 0) ? "do" : "", knot_edns_get_payload(rr), ext_rcode_str); } char *kr_pkt_text(const knot_pkt_t *pkt) { if (!pkt) { return NULL; } struct mempool *mp = mp_new(512); static const char * snames[] = { ";; ANSWER SECTION", ";; AUTHORITY SECTION", ";; ADDITIONAL SECTION" }; char flags[32]; uint8_t pkt_rcode = knot_wire_get_rcode(pkt->wire); uint8_t pkt_opcode = knot_wire_get_opcode(pkt->wire); const char *rcode_str = "Unknown"; const char *opcode_str = "Unknown"; const knot_lookup_t *rcode = knot_lookup_by_id(knot_rcode_names, pkt_rcode); const knot_lookup_t *opcode = knot_lookup_by_id(knot_opcode_names, pkt_opcode); uint16_t qry_id = knot_wire_get_id(pkt->wire); uint16_t qdcount = knot_wire_get_qdcount(pkt->wire); if (rcode != NULL) { rcode_str = rcode->name; } if (opcode != NULL) { opcode_str = opcode->name; } flags_to_str(flags, pkt, sizeof(flags)); char *ptr = mp_printf(mp, ";; ->>HEADER<<- opcode: %s; status: %s; id: %hu\n" ";; Flags: %s QUERY: %hu; ANSWER: %hu; " "AUTHORITY: %hu; ADDITIONAL: %hu\n\n", opcode_str, rcode_str, qry_id, flags, qdcount, knot_wire_get_ancount(pkt->wire), knot_wire_get_nscount(pkt->wire), knot_wire_get_arcount(pkt->wire)); if (knot_pkt_has_edns(pkt)) { ptr = print_section_opt(mp, ptr, pkt->opt_rr, knot_wire_get_rcode(pkt->wire)); } if (qdcount == 1) { KR_DNAME_GET_STR(qname, knot_pkt_qname(pkt)); KR_RRTYPE_GET_STR(rrtype, knot_pkt_qtype(pkt)); ptr = mp_printf_append(mp, ptr, ";; QUESTION SECTION\n%s\t\t%s\n", qname, rrtype); } else if (qdcount > 1) { ptr = mp_printf_append(mp, ptr, ";; Warning: unsupported QDCOUNT %hu\n", qdcount); } for (knot_section_t i = KNOT_ANSWER; i <= KNOT_ADDITIONAL; ++i) { const knot_pktsection_t *sec = knot_pkt_section(pkt, i); if (sec->count == 0 || knot_pkt_rr(sec, 0)->type == KNOT_RRTYPE_OPT) { /* OPT RRs are _supposed_ to be the last ^^, if they appear */ continue; } ptr = mp_printf_append(mp, ptr, "\n%s\n", snames[i - KNOT_ANSWER]); for (unsigned k = 0; k < sec->count; ++k) { const knot_rrset_t *rr = knot_pkt_rr(sec, k); if (rr->type == KNOT_RRTYPE_OPT) { continue; } auto_free char *rr_text = kr_rrset_text(rr); ptr = mp_printf_append(mp, ptr, "%s", rr_text); } } /* Close growing buffer and duplicate result before deleting */ char *result = strdup(ptr); mp_delete(mp); return result; } char *kr_rrset_text(const knot_rrset_t *rr) { if (!rr) { return NULL; } /* Note: knot_rrset_txt_dump will double the size until the rrset fits */ size_t bufsize = 128; char *buf = malloc(bufsize); int ret = knot_rrset_txt_dump(rr, &buf, &bufsize, &KNOT_DUMP_STYLE_DEFAULT); if (ret < 0) { free(buf); return NULL; } return buf; } uint64_t kr_now() { return uv_now(uv_default_loop()); } const char *kr_strptime_diff(const char *format, const char *time1_str, const char *time0_str, double *diff) { assert(format != NULL); assert(time1_str != NULL); assert(time0_str != NULL); assert(diff != NULL); struct tm time1_tm; time_t time1_u; struct tm time0_tm; time_t time0_u; char *err = strptime(time1_str, format, &time1_tm); if (err == NULL || err != time1_str + strlen(time1_str)) return "strptime failed for time1"; time1_tm.tm_isdst = -1; /* determine if DST is active or not */ time1_u = mktime(&time1_tm); if (time1_u == (time_t)-1) return "mktime failed for time1"; err = strptime(time0_str, format, &time0_tm); if (err == NULL || err != time0_str + strlen(time0_str)) return "strptime failed for time0"; time0_tm.tm_isdst = -1; /* determine if DST is active or not */ time0_u = mktime(&time0_tm); if (time0_u == (time_t)-1) return "mktime failed for time0"; *diff = difftime(time1_u, time0_u); return NULL; } int knot_dname_lf2wire(knot_dname_t * const dst, uint8_t len, const uint8_t *lf) { knot_dname_t *d = dst; /* moving "cursor" as we write it out */ bool ok = d && (len == 0 || lf); if (!ok) { assert(false); return kr_error(EINVAL); } /* we allow the final zero byte to be omitted */ if (!len) { goto finish; } if (lf[len - 1]) { ++len; } /* convert the name, one label at a time */ int label_end = len - 1; /* index of the zero byte after the current label */ while (label_end >= 0) { /* find label_start */ int i = label_end - 1; while (i >= 0 && lf[i]) --i; const int label_start = i + 1; /* index of the first byte of the current label */ const int label_len = label_end - label_start; assert(label_len >= 0); if (label_len > 63 || label_len <= 0) return kr_error(EILSEQ); /* write the label */ *d = label_len; ++d; memcpy(d, lf + label_start, label_len); d += label_len; /* next label */ label_end = label_start - 1; } finish: *d = 0; /* the final zero */ ++d; return d - dst; } static void rnd_noerror(void *data, uint size) { int ret = gnutls_rnd(GNUTLS_RND_NONCE, data, size); if (ret) { kr_log_error("gnutls_rnd(): %s\n", gnutls_strerror(ret)); abort(); } } void kr_rnd_buffered(void *data, uint size) { /* static circular buffer, from index _begin (inclusive) to _end (exclusive) */ static uint8_t buf[512/8]; /* gnutls_rnd() works on blocks of 512 bits (chacha) */ static uint buf_begin = sizeof(buf); if (unlikely(size > sizeof(buf))) { rnd_noerror(data, size); return; } /* Start with contiguous chunk, possibly until the end of buffer. */ const uint size1 = MIN(size, sizeof(buf) - buf_begin); uint8_t *d = data; memcpy(d, buf + buf_begin, size1); if (size1 == size) { buf_begin += size1; return; } d += size1; size -= size1; /* Refill the whole buffer, and finish by another contiguous chunk. */ rnd_noerror(buf, sizeof(buf)); memcpy(d, buf, size); buf_begin = size; } void kr_rrset_init(knot_rrset_t *rrset, knot_dname_t *owner, uint16_t type, uint16_t rclass, uint32_t ttl) { assert(rrset); knot_rrset_init(rrset, owner, type, rclass, ttl); } uint16_t kr_pkt_qclass(const knot_pkt_t *pkt) { return knot_pkt_qclass(pkt); } uint16_t kr_pkt_qtype(const knot_pkt_t *pkt) { return knot_pkt_qtype(pkt); } uint32_t kr_rrsig_sig_inception(const knot_rdata_t *rdata) { return knot_rrsig_sig_inception(rdata); } uint32_t kr_rrsig_sig_expiration(const knot_rdata_t *rdata) { return knot_rrsig_sig_expiration(rdata); } uint16_t kr_rrsig_type_covered(const knot_rdata_t *rdata) { return knot_rrsig_type_covered(rdata); }