diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
commit | 76cb841cb886eef6b3bee341a2266c76578724ad (patch) | |
tree | f5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /Documentation/acpi/dsd/graph.txt | |
parent | Initial commit. (diff) | |
download | linux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip |
Adding upstream version 4.19.249.upstream/4.19.249upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/acpi/dsd/graph.txt')
-rw-r--r-- | Documentation/acpi/dsd/graph.txt | 174 |
1 files changed, 174 insertions, 0 deletions
diff --git a/Documentation/acpi/dsd/graph.txt b/Documentation/acpi/dsd/graph.txt new file mode 100644 index 000000000..b9ce91078 --- /dev/null +++ b/Documentation/acpi/dsd/graph.txt @@ -0,0 +1,174 @@ +Graphs + + +_DSD +---- + +_DSD (Device Specific Data) [7] is a predefined ACPI device +configuration object that can be used to convey information on +hardware features which are not specifically covered by the ACPI +specification [1][6]. There are two _DSD extensions that are relevant +for graphs: property [4] and hierarchical data extensions [5]. The +property extension provides generic key-value pairs whereas the +hierarchical data extension supports nodes with references to other +nodes, forming a tree. The nodes in the tree may contain properties as +defined by the property extension. The two extensions together provide +a tree-like structure with zero or more properties (key-value pairs) +in each node of the tree. + +The data structure may be accessed at runtime by using the device_* +and fwnode_* functions defined in include/linux/fwnode.h . + +Fwnode represents a generic firmware node object. It is independent on +the firmware type. In ACPI, fwnodes are _DSD hierarchical data +extensions objects. A device's _DSD object is represented by an +fwnode. + +The data structure may be referenced to elsewhere in the ACPI tables +by using a hard reference to the device itself and an index to the +hierarchical data extension array on each depth. + + +Ports and endpoints +------------------- + +The port and endpoint concepts are very similar to those in Devicetree +[3]. A port represents an interface in a device, and an endpoint +represents a connection to that interface. + +All port nodes are located under the device's "_DSD" node in the hierarchical +data extension tree. The data extension related to each port node must begin +with "port" and must be followed by the "@" character and the number of the port +as its key. The target object it refers to should be called "PRTX", where "X" is +the number of the port. An example of such a package would be: + + Package() { "port@4", PRT4 } + +Further on, endpoints are located under the port nodes. The hierarchical +data extension key of the endpoint nodes must begin with +"endpoint" and must be followed by the "@" character and the number of the +endpoint. The object it refers to should be called "EPXY", where "X" is the +number of the port and "Y" is the number of the endpoint. An example of such a +package would be: + + Package() { "endpoint@0", EP40 } + +Each port node contains a property extension key "port", the value of which is +the number of the port. Each endpoint is similarly numbered with a property +extension key "reg", the value of which is the number of the endpoint. Port +numbers must be unique within a device and endpoint numbers must be unique +within a port. If a device object may only has a single port, then the number +of that port shall be zero. Similarly, if a port may only have a single +endpoint, the number of that endpoint shall be zero. + +The endpoint reference uses property extension with "remote-endpoint" property +name followed by a reference in the same package. Such references consist of the +the remote device reference, the first package entry of the port data extension +reference under the device and finally the first package entry of the endpoint +data extension reference under the port. Individual references thus appear as: + + Package() { device, "port@X", "endpoint@Y" } + +In the above example, "X" is the number of the port and "Y" is the number of the +endpoint. + +The references to endpoints must be always done both ways, to the +remote endpoint and back from the referred remote endpoint node. + +A simple example of this is show below: + + Scope (\_SB.PCI0.I2C2) + { + Device (CAM0) + { + Name (_DSD, Package () { + ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), + Package () { + Package () { "compatible", Package () { "nokia,smia" } }, + }, + ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), + Package () { + Package () { "port@0", PRT0 }, + } + }) + Name (PRT0, Package() { + ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), + Package () { + Package () { "reg", 0 }, + }, + ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), + Package () { + Package () { "endpoint@0", EP00 }, + } + }) + Name (EP00, Package() { + ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), + Package () { + Package () { "reg", 0 }, + Package () { "remote-endpoint", Package() { \_SB.PCI0.ISP, "port@4", "endpoint@0" } }, + } + }) + } + } + + Scope (\_SB.PCI0) + { + Device (ISP) + { + Name (_DSD, Package () { + ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), + Package () { + Package () { "port@4", PRT4 }, + } + }) + + Name (PRT4, Package() { + ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), + Package () { + Package () { "reg", 4 }, /* CSI-2 port number */ + }, + ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), + Package () { + Package () { "endpoint@0", EP40 }, + } + }) + + Name (EP40, Package() { + ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), + Package () { + Package () { "reg", 0 }, + Package () { "remote-endpoint", Package () { \_SB.PCI0.I2C2.CAM0, "port@0", "endpoint@0" } }, + } + }) + } + } + +Here, the port 0 of the "CAM0" device is connected to the port 4 of +the "ISP" device and vice versa. + + +References +---------- + +[1] _DSD (Device Specific Data) Implementation Guide. + <URL:http://www.uefi.org/sites/default/files/resources/_DSD-implementation-guide-toplevel-1_1.htm>, + referenced 2016-10-03. + +[2] Devicetree. <URL:http://www.devicetree.org>, referenced 2016-10-03. + +[3] Documentation/devicetree/bindings/graph.txt + +[4] Device Properties UUID For _DSD. + <URL:http://www.uefi.org/sites/default/files/resources/_DSD-device-properties-UUID.pdf>, + referenced 2016-10-04. + +[5] Hierarchical Data Extension UUID For _DSD. + <URL:http://www.uefi.org/sites/default/files/resources/_DSD-hierarchical-data-extension-UUID-v1.1.pdf>, + referenced 2016-10-04. + +[6] Advanced Configuration and Power Interface Specification. + <URL:http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf>, + referenced 2016-10-04. + +[7] _DSD Device Properties Usage Rules. + Documentation/acpi/DSD-properties-rules.txt |