diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
commit | 76cb841cb886eef6b3bee341a2266c76578724ad (patch) | |
tree | f5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /Documentation/devicetree/bindings/power/power_domain.txt | |
parent | Initial commit. (diff) | |
download | linux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip |
Adding upstream version 4.19.249.upstream/4.19.249upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/devicetree/bindings/power/power_domain.txt')
-rw-r--r-- | Documentation/devicetree/bindings/power/power_domain.txt | 205 |
1 files changed, 205 insertions, 0 deletions
diff --git a/Documentation/devicetree/bindings/power/power_domain.txt b/Documentation/devicetree/bindings/power/power_domain.txt new file mode 100644 index 000000000..8f8b25a24 --- /dev/null +++ b/Documentation/devicetree/bindings/power/power_domain.txt @@ -0,0 +1,205 @@ +* Generic PM domains + +System on chip designs are often divided into multiple PM domains that can be +used for power gating of selected IP blocks for power saving by reduced leakage +current. + +This device tree binding can be used to bind PM domain consumer devices with +their PM domains provided by PM domain providers. A PM domain provider can be +represented by any node in the device tree and can provide one or more PM +domains. A consumer node can refer to the provider by a phandle and a set of +phandle arguments (so called PM domain specifiers) of length specified by the +#power-domain-cells property in the PM domain provider node. + +==PM domain providers== + +Required properties: + - #power-domain-cells : Number of cells in a PM domain specifier; + Typically 0 for nodes representing a single PM domain and 1 for nodes + providing multiple PM domains (e.g. power controllers), but can be any value + as specified by device tree binding documentation of particular provider. + +Optional properties: + - power-domains : A phandle and PM domain specifier as defined by bindings of + the power controller specified by phandle. + Some power domains might be powered from another power domain (or have + other hardware specific dependencies). For representing such dependency + a standard PM domain consumer binding is used. When provided, all domains + created by the given provider should be subdomains of the domain + specified by this binding. More details about power domain specifier are + available in the next section. + +- domain-idle-states : A phandle of an idle-state that shall be soaked into a + generic domain power state. The idle state definitions are + compatible with domain-idle-state specified in [1]. phandles + that are not compatible with domain-idle-state will be + ignored. + The domain-idle-state property reflects the idle state of this PM domain and + not the idle states of the devices or sub-domains in the PM domain. Devices + and sub-domains have their own idle-states independent of the parent + domain's idle states. In the absence of this property, the domain would be + considered as capable of being powered-on or powered-off. + +- operating-points-v2 : Phandles to the OPP tables of power domains provided by + a power domain provider. If the provider provides a single power domain only + or all the power domains provided by the provider have identical OPP tables, + then this shall contain a single phandle. Refer to ../opp/opp.txt for more + information. + +Example: + + power: power-controller@12340000 { + compatible = "foo,power-controller"; + reg = <0x12340000 0x1000>; + #power-domain-cells = <1>; + }; + +The node above defines a power controller that is a PM domain provider and +expects one cell as its phandle argument. + +Example 2: + + parent: power-controller@12340000 { + compatible = "foo,power-controller"; + reg = <0x12340000 0x1000>; + #power-domain-cells = <1>; + }; + + child: power-controller@12341000 { + compatible = "foo,power-controller"; + reg = <0x12341000 0x1000>; + power-domains = <&parent 0>; + #power-domain-cells = <1>; + }; + +The nodes above define two power controllers: 'parent' and 'child'. +Domains created by the 'child' power controller are subdomains of '0' power +domain provided by the 'parent' power controller. + +Example 3: + parent: power-controller@12340000 { + compatible = "foo,power-controller"; + reg = <0x12340000 0x1000>; + #power-domain-cells = <0>; + domain-idle-states = <&DOMAIN_RET>, <&DOMAIN_PWR_DN>; + }; + + child: power-controller@12341000 { + compatible = "foo,power-controller"; + reg = <0x12341000 0x1000>; + power-domains = <&parent>; + #power-domain-cells = <0>; + domain-idle-states = <&DOMAIN_PWR_DN>; + }; + + DOMAIN_RET: state@0 { + compatible = "domain-idle-state"; + reg = <0x0>; + entry-latency-us = <1000>; + exit-latency-us = <2000>; + min-residency-us = <10000>; + }; + + DOMAIN_PWR_DN: state@1 { + compatible = "domain-idle-state"; + reg = <0x1>; + entry-latency-us = <5000>; + exit-latency-us = <8000>; + min-residency-us = <7000>; + }; + +==PM domain consumers== + +Required properties: + - power-domains : A list of PM domain specifiers, as defined by bindings of + the power controller that is the PM domain provider. + +Optional properties: + - power-domain-names : A list of power domain name strings sorted in the same + order as the power-domains property. Consumers drivers will use + power-domain-names to match power domains with power-domains + specifiers. + +Example: + + leaky-device@12350000 { + compatible = "foo,i-leak-current"; + reg = <0x12350000 0x1000>; + power-domains = <&power 0>; + power-domain-names = "io"; + }; + + leaky-device@12351000 { + compatible = "foo,i-leak-current"; + reg = <0x12351000 0x1000>; + power-domains = <&power 0>, <&power 1> ; + power-domain-names = "io", "clk"; + }; + +The first example above defines a typical PM domain consumer device, which is +located inside a PM domain with index 0 of a power controller represented by a +node with the label "power". +In the second example the consumer device are partitioned across two PM domains, +the first with index 0 and the second with index 1, of a power controller that +is represented by a node with the label "power". + +Optional properties: +- required-opps: This contains phandle to an OPP node in another device's OPP + table. It may contain an array of phandles, where each phandle points to an + OPP of a different device. It should not contain multiple phandles to the OPP + nodes in the same OPP table. This specifies the minimum required OPP of the + device(s), whose OPP's phandle is present in this property, for the + functioning of the current device at the current OPP (where this property is + present). + +Example: +- OPP table for domain provider that provides two domains. + + domain0_opp_table: opp-table0 { + compatible = "operating-points-v2"; + + domain0_opp_0: opp-1000000000 { + opp-hz = /bits/ 64 <1000000000>; + opp-microvolt = <975000 970000 985000>; + }; + domain0_opp_1: opp-1100000000 { + opp-hz = /bits/ 64 <1100000000>; + opp-microvolt = <1000000 980000 1010000>; + }; + }; + + domain1_opp_table: opp-table1 { + compatible = "operating-points-v2"; + + domain1_opp_0: opp-1200000000 { + opp-hz = /bits/ 64 <1200000000>; + opp-microvolt = <975000 970000 985000>; + }; + domain1_opp_1: opp-1300000000 { + opp-hz = /bits/ 64 <1300000000>; + opp-microvolt = <1000000 980000 1010000>; + }; + }; + + power: power-controller@12340000 { + compatible = "foo,power-controller"; + reg = <0x12340000 0x1000>; + #power-domain-cells = <1>; + operating-points-v2 = <&domain0_opp_table>, <&domain1_opp_table>; + }; + + leaky-device0@12350000 { + compatible = "foo,i-leak-current"; + reg = <0x12350000 0x1000>; + power-domains = <&power 0>; + required-opps = <&domain0_opp_0>; + }; + + leaky-device1@12350000 { + compatible = "foo,i-leak-current"; + reg = <0x12350000 0x1000>; + power-domains = <&power 1>; + required-opps = <&domain1_opp_1>; + }; + +[1]. Documentation/devicetree/bindings/power/domain-idle-state.txt |