diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
commit | 76cb841cb886eef6b3bee341a2266c76578724ad (patch) | |
tree | f5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /Documentation/networking/phonet.txt | |
parent | Initial commit. (diff) | |
download | linux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip |
Adding upstream version 4.19.249.upstream/4.19.249upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/networking/phonet.txt')
-rw-r--r-- | Documentation/networking/phonet.txt | 214 |
1 files changed, 214 insertions, 0 deletions
diff --git a/Documentation/networking/phonet.txt b/Documentation/networking/phonet.txt new file mode 100644 index 000000000..81003581f --- /dev/null +++ b/Documentation/networking/phonet.txt @@ -0,0 +1,214 @@ +Linux Phonet protocol family +============================ + +Introduction +------------ + +Phonet is a packet protocol used by Nokia cellular modems for both IPC +and RPC. With the Linux Phonet socket family, Linux host processes can +receive and send messages from/to the modem, or any other external +device attached to the modem. The modem takes care of routing. + +Phonet packets can be exchanged through various hardware connections +depending on the device, such as: + - USB with the CDC Phonet interface, + - infrared, + - Bluetooth, + - an RS232 serial port (with a dedicated "FBUS" line discipline), + - the SSI bus with some TI OMAP processors. + + +Packets format +-------------- + +Phonet packets have a common header as follows: + + struct phonethdr { + uint8_t pn_media; /* Media type (link-layer identifier) */ + uint8_t pn_rdev; /* Receiver device ID */ + uint8_t pn_sdev; /* Sender device ID */ + uint8_t pn_res; /* Resource ID or function */ + uint16_t pn_length; /* Big-endian message byte length (minus 6) */ + uint8_t pn_robj; /* Receiver object ID */ + uint8_t pn_sobj; /* Sender object ID */ + }; + +On Linux, the link-layer header includes the pn_media byte (see below). +The next 7 bytes are part of the network-layer header. + +The device ID is split: the 6 higher-order bits constitute the device +address, while the 2 lower-order bits are used for multiplexing, as are +the 8-bit object identifiers. As such, Phonet can be considered as a +network layer with 6 bits of address space and 10 bits for transport +protocol (much like port numbers in IP world). + +The modem always has address number zero. All other device have a their +own 6-bit address. + + +Link layer +---------- + +Phonet links are always point-to-point links. The link layer header +consists of a single Phonet media type byte. It uniquely identifies the +link through which the packet is transmitted, from the modem's +perspective. Each Phonet network device shall prepend and set the media +type byte as appropriate. For convenience, a common phonet_header_ops +link-layer header operations structure is provided. It sets the +media type according to the network device hardware address. + +Linux Phonet network interfaces support a dedicated link layer packets +type (ETH_P_PHONET) which is out of the Ethernet type range. They can +only send and receive Phonet packets. + +The virtual TUN tunnel device driver can also be used for Phonet. This +requires IFF_TUN mode, _without_ the IFF_NO_PI flag. In this case, +there is no link-layer header, so there is no Phonet media type byte. + +Note that Phonet interfaces are not allowed to re-order packets, so +only the (default) Linux FIFO qdisc should be used with them. + + +Network layer +------------- + +The Phonet socket address family maps the Phonet packet header: + + struct sockaddr_pn { + sa_family_t spn_family; /* AF_PHONET */ + uint8_t spn_obj; /* Object ID */ + uint8_t spn_dev; /* Device ID */ + uint8_t spn_resource; /* Resource or function */ + uint8_t spn_zero[...]; /* Padding */ + }; + +The resource field is only used when sending and receiving; +It is ignored by bind() and getsockname(). + + +Low-level datagram protocol +--------------------------- + +Applications can send Phonet messages using the Phonet datagram socket +protocol from the PF_PHONET family. Each socket is bound to one of the +2^10 object IDs available, and can send and receive packets with any +other peer. + + struct sockaddr_pn addr = { .spn_family = AF_PHONET, }; + ssize_t len; + socklen_t addrlen = sizeof(addr); + int fd; + + fd = socket(PF_PHONET, SOCK_DGRAM, 0); + bind(fd, (struct sockaddr *)&addr, sizeof(addr)); + /* ... */ + + sendto(fd, msg, msglen, 0, (struct sockaddr *)&addr, sizeof(addr)); + len = recvfrom(fd, buf, sizeof(buf), 0, + (struct sockaddr *)&addr, &addrlen); + +This protocol follows the SOCK_DGRAM connection-less semantics. +However, connect() and getpeername() are not supported, as they did +not seem useful with Phonet usages (could be added easily). + + +Resource subscription +--------------------- + +A Phonet datagram socket can be subscribed to any number of 8-bits +Phonet resources, as follow: + + uint32_t res = 0xXX; + ioctl(fd, SIOCPNADDRESOURCE, &res); + +Subscription is similarly cancelled using the SIOCPNDELRESOURCE I/O +control request, or when the socket is closed. + +Note that no more than one socket can be subcribed to any given +resource at a time. If not, ioctl() will return EBUSY. + + +Phonet Pipe protocol +-------------------- + +The Phonet Pipe protocol is a simple sequenced packets protocol +with end-to-end congestion control. It uses the passive listening +socket paradigm. The listening socket is bound to an unique free object +ID. Each listening socket can handle up to 255 simultaneous +connections, one per accept()'d socket. + + int lfd, cfd; + + lfd = socket(PF_PHONET, SOCK_SEQPACKET, PN_PROTO_PIPE); + listen (lfd, INT_MAX); + + /* ... */ + cfd = accept(lfd, NULL, NULL); + for (;;) + { + char buf[...]; + ssize_t len = read(cfd, buf, sizeof(buf)); + + /* ... */ + + write(cfd, msg, msglen); + } + +Connections are traditionally established between two endpoints by a +"third party" application. This means that both endpoints are passive. + + +As of Linux kernel version 2.6.39, it is also possible to connect +two endpoints directly, using connect() on the active side. This is +intended to support the newer Nokia Wireless Modem API, as found in +e.g. the Nokia Slim Modem in the ST-Ericsson U8500 platform: + + struct sockaddr_spn spn; + int fd; + + fd = socket(PF_PHONET, SOCK_SEQPACKET, PN_PROTO_PIPE); + memset(&spn, 0, sizeof(spn)); + spn.spn_family = AF_PHONET; + spn.spn_obj = ...; + spn.spn_dev = ...; + spn.spn_resource = 0xD9; + connect(fd, (struct sockaddr *)&spn, sizeof(spn)); + /* normal I/O here ... */ + close(fd); + + +WARNING: +When polling a connected pipe socket for writability, there is an +intrinsic race condition whereby writability might be lost between the +polling and the writing system calls. In this case, the socket will +block until write becomes possible again, unless non-blocking mode +is enabled. + + +The pipe protocol provides two socket options at the SOL_PNPIPE level: + + PNPIPE_ENCAP accepts one integer value (int) of: + + PNPIPE_ENCAP_NONE: The socket operates normally (default). + + PNPIPE_ENCAP_IP: The socket is used as a backend for a virtual IP + interface. This requires CAP_NET_ADMIN capability. GPRS data + support on Nokia modems can use this. Note that the socket cannot + be reliably poll()'d or read() from while in this mode. + + PNPIPE_IFINDEX is a read-only integer value. It contains the + interface index of the network interface created by PNPIPE_ENCAP, + or zero if encapsulation is off. + + PNPIPE_HANDLE is a read-only integer value. It contains the underlying + identifier ("pipe handle") of the pipe. This is only defined for + socket descriptors that are already connected or being connected. + + +Authors +------- + +Linux Phonet was initially written by Sakari Ailus. +Other contributors include Mikä Liljeberg, Andras Domokos, +Carlos Chinea and Rémi Denis-Courmont. +Copyright (C) 2008 Nokia Corporation. |