diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
commit | 76cb841cb886eef6b3bee341a2266c76578724ad (patch) | |
tree | f5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /Documentation/powerpc/qe_firmware.txt | |
parent | Initial commit. (diff) | |
download | linux-upstream/4.19.249.tar.xz linux-upstream/4.19.249.zip |
Adding upstream version 4.19.249.upstream/4.19.249upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/powerpc/qe_firmware.txt')
-rw-r--r-- | Documentation/powerpc/qe_firmware.txt | 295 |
1 files changed, 295 insertions, 0 deletions
diff --git a/Documentation/powerpc/qe_firmware.txt b/Documentation/powerpc/qe_firmware.txt new file mode 100644 index 000000000..e7ac24aec --- /dev/null +++ b/Documentation/powerpc/qe_firmware.txt @@ -0,0 +1,295 @@ + Freescale QUICC Engine Firmware Uploading + ----------------------------------------- + +(c) 2007 Timur Tabi <timur at freescale.com>, + Freescale Semiconductor + +Table of Contents +================= + + I - Software License for Firmware + + II - Microcode Availability + + III - Description and Terminology + + IV - Microcode Programming Details + + V - Firmware Structure Layout + + VI - Sample Code for Creating Firmware Files + +Revision Information +==================== + +November 30, 2007: Rev 1.0 - Initial version + +I - Software License for Firmware +================================= + +Each firmware file comes with its own software license. For information on +the particular license, please see the license text that is distributed with +the firmware. + +II - Microcode Availability +=========================== + +Firmware files are distributed through various channels. Some are available on +http://opensource.freescale.com. For other firmware files, please contact +your Freescale representative or your operating system vendor. + +III - Description and Terminology +================================ + +In this document, the term 'microcode' refers to the sequence of 32-bit +integers that compose the actual QE microcode. + +The term 'firmware' refers to a binary blob that contains the microcode as +well as other data that + + 1) describes the microcode's purpose + 2) describes how and where to upload the microcode + 3) specifies the values of various registers + 4) includes additional data for use by specific device drivers + +Firmware files are binary files that contain only a firmware. + +IV - Microcode Programming Details +=================================== + +The QE architecture allows for only one microcode present in I-RAM for each +RISC processor. To replace any current microcode, a full QE reset (which +disables the microcode) must be performed first. + +QE microcode is uploaded using the following procedure: + +1) The microcode is placed into I-RAM at a specific location, using the + IRAM.IADD and IRAM.IDATA registers. + +2) The CERCR.CIR bit is set to 0 or 1, depending on whether the firmware + needs split I-RAM. Split I-RAM is only meaningful for SOCs that have + QEs with multiple RISC processors, such as the 8360. Splitting the I-RAM + allows each processor to run a different microcode, effectively creating an + asymmetric multiprocessing (AMP) system. + +3) The TIBCR trap registers are loaded with the addresses of the trap handlers + in the microcode. + +4) The RSP.ECCR register is programmed with the value provided. + +5) If necessary, device drivers that need the virtual traps and extended mode + data will use them. + +Virtual Microcode Traps + +These virtual traps are conditional branches in the microcode. These are +"soft" provisional introduced in the ROMcode in order to enable higher +flexibility and save h/w traps If new features are activated or an issue is +being fixed in the RAM package utilizing they should be activated. This data +structure signals the microcode which of these virtual traps is active. + +This structure contains 6 words that the application should copy to some +specific been defined. This table describes the structure. + + --------------------------------------------------------------- + | Offset in | | Destination Offset | Size of | + | array | Protocol | within PRAM | Operand | + --------------------------------------------------------------| + | 0 | Ethernet | 0xF8 | 4 bytes | + | | interworking | | | + --------------------------------------------------------------- + | 4 | ATM | 0xF8 | 4 bytes | + | | interworking | | | + --------------------------------------------------------------- + | 8 | PPP | 0xF8 | 4 bytes | + | | interworking | | | + --------------------------------------------------------------- + | 12 | Ethernet RX | 0x22 | 1 byte | + | | Distributor Page | | | + --------------------------------------------------------------- + | 16 | ATM Globtal | 0x28 | 1 byte | + | | Params Table | | | + --------------------------------------------------------------- + | 20 | Insert Frame | 0xF8 | 4 bytes | + --------------------------------------------------------------- + + +Extended Modes + +This is a double word bit array (64 bits) that defines special functionality +which has an impact on the software drivers. Each bit has its own impact +and has special instructions for the s/w associated with it. This structure is +described in this table: + + ----------------------------------------------------------------------- + | Bit # | Name | Description | + ----------------------------------------------------------------------- + | 0 | General | Indicates that prior to each host command | + | | push command | given by the application, the software must | + | | | assert a special host command (push command)| + | | | CECDR = 0x00800000. | + | | | CECR = 0x01c1000f. | + ----------------------------------------------------------------------- + | 1 | UCC ATM | Indicates that after issuing ATM RX INIT | + | | RX INIT | command, the host must issue another special| + | | push command | command (push command) and immediately | + | | | following that re-issue the ATM RX INIT | + | | | command. (This makes the sequence of | + | | | initializing the ATM receiver a sequence of | + | | | three host commands) | + | | | CECDR = 0x00800000. | + | | | CECR = 0x01c1000f. | + ----------------------------------------------------------------------- + | 2 | Add/remove | Indicates that following the specific host | + | | command | command: "Add/Remove entry in Hash Lookup | + | | validation | Table" used in Interworking setup, the user | + | | | must issue another command. | + | | | CECDR = 0xce000003. | + | | | CECR = 0x01c10f58. | + ----------------------------------------------------------------------- + | 3 | General push | Indicates that the s/w has to initialize | + | | command | some pointers in the Ethernet thread pages | + | | | which are used when Header Compression is | + | | | activated. The full details of these | + | | | pointers is located in the software drivers.| + ----------------------------------------------------------------------- + | 4 | General push | Indicates that after issuing Ethernet TX | + | | command | INIT command, user must issue this command | + | | | for each SNUM of Ethernet TX thread. | + | | | CECDR = 0x00800003. | + | | | CECR = 0x7'b{0}, 8'b{Enet TX thread SNUM}, | + | | | 1'b{1}, 12'b{0}, 4'b{1} | + ----------------------------------------------------------------------- + | 5 - 31 | N/A | Reserved, set to zero. | + ----------------------------------------------------------------------- + +V - Firmware Structure Layout +============================== + +QE microcode from Freescale is typically provided as a header file. This +header file contains macros that define the microcode binary itself as well as +some other data used in uploading that microcode. The format of these files +do not lend themselves to simple inclusion into other code. Hence, +the need for a more portable format. This section defines that format. + +Instead of distributing a header file, the microcode and related data are +embedded into a binary blob. This blob is passed to the qe_upload_firmware() +function, which parses the blob and performs everything necessary to upload +the microcode. + +All integers are big-endian. See the comments for function +qe_upload_firmware() for up-to-date implementation information. + +This structure supports versioning, where the version of the structure is +embedded into the structure itself. To ensure forward and backwards +compatibility, all versions of the structure must use the same 'qe_header' +structure at the beginning. + +'header' (type: struct qe_header): + The 'length' field is the size, in bytes, of the entire structure, + including all the microcode embedded in it, as well as the CRC (if + present). + + The 'magic' field is an array of three bytes that contains the letters + 'Q', 'E', and 'F'. This is an identifier that indicates that this + structure is a QE Firmware structure. + + The 'version' field is a single byte that indicates the version of this + structure. If the layout of the structure should ever need to be + changed to add support for additional types of microcode, then the + version number should also be changed. + +The 'id' field is a null-terminated string(suitable for printing) that +identifies the firmware. + +The 'count' field indicates the number of 'microcode' structures. There +must be one and only one 'microcode' structure for each RISC processor. +Therefore, this field also represents the number of RISC processors for this +SOC. + +The 'soc' structure contains the SOC numbers and revisions used to match +the microcode to the SOC itself. Normally, the microcode loader should +check the data in this structure with the SOC number and revisions, and +only upload the microcode if there's a match. However, this check is not +made on all platforms. + +Although it is not recommended, you can specify '0' in the soc.model +field to skip matching SOCs altogether. + +The 'model' field is a 16-bit number that matches the actual SOC. The +'major' and 'minor' fields are the major and minor revision numbers, +respectively, of the SOC. + +For example, to match the 8323, revision 1.0: + soc.model = 8323 + soc.major = 1 + soc.minor = 0 + +'padding' is necessary for structure alignment. This field ensures that the +'extended_modes' field is aligned on a 64-bit boundary. + +'extended_modes' is a bitfield that defines special functionality which has an +impact on the device drivers. Each bit has its own impact and has special +instructions for the driver associated with it. This field is stored in +the QE library and available to any driver that calles qe_get_firmware_info(). + +'vtraps' is an array of 8 words that contain virtual trap values for each +virtual traps. As with 'extended_modes', this field is stored in the QE +library and available to any driver that calles qe_get_firmware_info(). + +'microcode' (type: struct qe_microcode): + For each RISC processor there is one 'microcode' structure. The first + 'microcode' structure is for the first RISC, and so on. + + The 'id' field is a null-terminated string suitable for printing that + identifies this particular microcode. + + 'traps' is an array of 16 words that contain hardware trap values + for each of the 16 traps. If trap[i] is 0, then this particular + trap is to be ignored (i.e. not written to TIBCR[i]). The entire value + is written as-is to the TIBCR[i] register, so be sure to set the EN + and T_IBP bits if necessary. + + 'eccr' is the value to program into the ECCR register. + + 'iram_offset' is the offset into IRAM to start writing the + microcode. + + 'count' is the number of 32-bit words in the microcode. + + 'code_offset' is the offset, in bytes, from the beginning of this + structure where the microcode itself can be found. The first + microcode binary should be located immediately after the 'microcode' + array. + + 'major', 'minor', and 'revision' are the major, minor, and revision + version numbers, respectively, of the microcode. If all values are 0, + then these fields are ignored. + + 'reserved' is necessary for structure alignment. Since 'microcode' + is an array, the 64-bit 'extended_modes' field needs to be aligned + on a 64-bit boundary, and this can only happen if the size of + 'microcode' is a multiple of 8 bytes. To ensure that, we add + 'reserved'. + +After the last microcode is a 32-bit CRC. It can be calculated using +this algorithm: + +u32 crc32(const u8 *p, unsigned int len) +{ + unsigned int i; + u32 crc = 0; + + while (len--) { + crc ^= *p++; + for (i = 0; i < 8; i++) + crc = (crc >> 1) ^ ((crc & 1) ? 0xedb88320 : 0); + } + return crc; +} + +VI - Sample Code for Creating Firmware Files +============================================ + +A Python program that creates firmware binaries from the header files normally +distributed by Freescale can be found on http://opensource.freescale.com. |