summaryrefslogtreecommitdiffstats
path: root/Documentation/x86/x86_64
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
commit76cb841cb886eef6b3bee341a2266c76578724ad (patch)
treef5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /Documentation/x86/x86_64
parentInitial commit. (diff)
downloadlinux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz
linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip
Adding upstream version 4.19.249.upstream/4.19.249upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--Documentation/x86/x86_64/00-INDEX16
-rw-r--r--Documentation/x86/x86_64/5level-paging.txt61
-rw-r--r--Documentation/x86/x86_64/boot-options.txt281
-rw-r--r--Documentation/x86/x86_64/cpu-hotplug-spec21
-rw-r--r--Documentation/x86/x86_64/fake-numa-for-cpusets67
-rw-r--r--Documentation/x86/x86_64/machinecheck83
-rw-r--r--Documentation/x86/x86_64/mm.txt81
-rw-r--r--Documentation/x86/x86_64/uefi.txt42
8 files changed, 652 insertions, 0 deletions
diff --git a/Documentation/x86/x86_64/00-INDEX b/Documentation/x86/x86_64/00-INDEX
new file mode 100644
index 000000000..92fc20ab5
--- /dev/null
+++ b/Documentation/x86/x86_64/00-INDEX
@@ -0,0 +1,16 @@
+00-INDEX
+ - This file
+boot-options.txt
+ - AMD64-specific boot options.
+cpu-hotplug-spec
+ - Firmware support for CPU hotplug under Linux/x86-64
+fake-numa-for-cpusets
+ - Using numa=fake and CPUSets for Resource Management
+kernel-stacks
+ - Context-specific per-processor interrupt stacks.
+machinecheck
+ - Configurable sysfs parameters for the x86-64 machine check code.
+mm.txt
+ - Memory layout of x86-64 (4 level page tables, 46 bits physical).
+uefi.txt
+ - Booting Linux via Unified Extensible Firmware Interface.
diff --git a/Documentation/x86/x86_64/5level-paging.txt b/Documentation/x86/x86_64/5level-paging.txt
new file mode 100644
index 000000000..2432a5ef8
--- /dev/null
+++ b/Documentation/x86/x86_64/5level-paging.txt
@@ -0,0 +1,61 @@
+== Overview ==
+
+Original x86-64 was limited by 4-level paing to 256 TiB of virtual address
+space and 64 TiB of physical address space. We are already bumping into
+this limit: some vendors offers servers with 64 TiB of memory today.
+
+To overcome the limitation upcoming hardware will introduce support for
+5-level paging. It is a straight-forward extension of the current page
+table structure adding one more layer of translation.
+
+It bumps the limits to 128 PiB of virtual address space and 4 PiB of
+physical address space. This "ought to be enough for anybody" ©.
+
+QEMU 2.9 and later support 5-level paging.
+
+Virtual memory layout for 5-level paging is described in
+Documentation/x86/x86_64/mm.txt
+
+== Enabling 5-level paging ==
+
+CONFIG_X86_5LEVEL=y enables the feature.
+
+Kernel with CONFIG_X86_5LEVEL=y still able to boot on 4-level hardware.
+In this case additional page table level -- p4d -- will be folded at
+runtime.
+
+== User-space and large virtual address space ==
+
+On x86, 5-level paging enables 56-bit userspace virtual address space.
+Not all user space is ready to handle wide addresses. It's known that
+at least some JIT compilers use higher bits in pointers to encode their
+information. It collides with valid pointers with 5-level paging and
+leads to crashes.
+
+To mitigate this, we are not going to allocate virtual address space
+above 47-bit by default.
+
+But userspace can ask for allocation from full address space by
+specifying hint address (with or without MAP_FIXED) above 47-bits.
+
+If hint address set above 47-bit, but MAP_FIXED is not specified, we try
+to look for unmapped area by specified address. If it's already
+occupied, we look for unmapped area in *full* address space, rather than
+from 47-bit window.
+
+A high hint address would only affect the allocation in question, but not
+any future mmap()s.
+
+Specifying high hint address on older kernel or on machine without 5-level
+paging support is safe. The hint will be ignored and kernel will fall back
+to allocation from 47-bit address space.
+
+This approach helps to easily make application's memory allocator aware
+about large address space without manually tracking allocated virtual
+address space.
+
+One important case we need to handle here is interaction with MPX.
+MPX (without MAWA extension) cannot handle addresses above 47-bit, so we
+need to make sure that MPX cannot be enabled we already have VMA above
+the boundary and forbid creating such VMAs once MPX is enabled.
+
diff --git a/Documentation/x86/x86_64/boot-options.txt b/Documentation/x86/x86_64/boot-options.txt
new file mode 100644
index 000000000..ad6d2a80c
--- /dev/null
+++ b/Documentation/x86/x86_64/boot-options.txt
@@ -0,0 +1,281 @@
+AMD64 specific boot options
+
+There are many others (usually documented in driver documentation), but
+only the AMD64 specific ones are listed here.
+
+Machine check
+
+ Please see Documentation/x86/x86_64/machinecheck for sysfs runtime tunables.
+
+ mce=off
+ Disable machine check
+ mce=no_cmci
+ Disable CMCI(Corrected Machine Check Interrupt) that
+ Intel processor supports. Usually this disablement is
+ not recommended, but it might be handy if your hardware
+ is misbehaving.
+ Note that you'll get more problems without CMCI than with
+ due to the shared banks, i.e. you might get duplicated
+ error logs.
+ mce=dont_log_ce
+ Don't make logs for corrected errors. All events reported
+ as corrected are silently cleared by OS.
+ This option will be useful if you have no interest in any
+ of corrected errors.
+ mce=ignore_ce
+ Disable features for corrected errors, e.g. polling timer
+ and CMCI. All events reported as corrected are not cleared
+ by OS and remained in its error banks.
+ Usually this disablement is not recommended, however if
+ there is an agent checking/clearing corrected errors
+ (e.g. BIOS or hardware monitoring applications), conflicting
+ with OS's error handling, and you cannot deactivate the agent,
+ then this option will be a help.
+ mce=no_lmce
+ Do not opt-in to Local MCE delivery. Use legacy method
+ to broadcast MCEs.
+ mce=bootlog
+ Enable logging of machine checks left over from booting.
+ Disabled by default on AMD Fam10h and older because some BIOS
+ leave bogus ones.
+ If your BIOS doesn't do that it's a good idea to enable though
+ to make sure you log even machine check events that result
+ in a reboot. On Intel systems it is enabled by default.
+ mce=nobootlog
+ Disable boot machine check logging.
+ mce=tolerancelevel[,monarchtimeout] (number,number)
+ tolerance levels:
+ 0: always panic on uncorrected errors, log corrected errors
+ 1: panic or SIGBUS on uncorrected errors, log corrected errors
+ 2: SIGBUS or log uncorrected errors, log corrected errors
+ 3: never panic or SIGBUS, log all errors (for testing only)
+ Default is 1
+ Can be also set using sysfs which is preferable.
+ monarchtimeout:
+ Sets the time in us to wait for other CPUs on machine checks. 0
+ to disable.
+ mce=bios_cmci_threshold
+ Don't overwrite the bios-set CMCI threshold. This boot option
+ prevents Linux from overwriting the CMCI threshold set by the
+ bios. Without this option, Linux always sets the CMCI
+ threshold to 1. Enabling this may make memory predictive failure
+ analysis less effective if the bios sets thresholds for memory
+ errors since we will not see details for all errors.
+ mce=recovery
+ Force-enable recoverable machine check code paths
+
+ nomce (for compatibility with i386): same as mce=off
+
+ Everything else is in sysfs now.
+
+APICs
+
+ apic Use IO-APIC. Default
+
+ noapic Don't use the IO-APIC.
+
+ disableapic Don't use the local APIC
+
+ nolapic Don't use the local APIC (alias for i386 compatibility)
+
+ pirq=... See Documentation/x86/i386/IO-APIC.txt
+
+ noapictimer Don't set up the APIC timer
+
+ no_timer_check Don't check the IO-APIC timer. This can work around
+ problems with incorrect timer initialization on some boards.
+ apicpmtimer
+ Do APIC timer calibration using the pmtimer. Implies
+ apicmaintimer. Useful when your PIT timer is totally
+ broken.
+
+Timing
+
+ notsc
+ Deprecated, use tsc=unstable instead.
+
+ nohpet
+ Don't use the HPET timer.
+
+Idle loop
+
+ idle=poll
+ Don't do power saving in the idle loop using HLT, but poll for rescheduling
+ event. This will make the CPUs eat a lot more power, but may be useful
+ to get slightly better performance in multiprocessor benchmarks. It also
+ makes some profiling using performance counters more accurate.
+ Please note that on systems with MONITOR/MWAIT support (like Intel EM64T
+ CPUs) this option has no performance advantage over the normal idle loop.
+ It may also interact badly with hyperthreading.
+
+Rebooting
+
+ reboot=b[ios] | t[riple] | k[bd] | a[cpi] | e[fi] [, [w]arm | [c]old]
+ bios Use the CPU reboot vector for warm reset
+ warm Don't set the cold reboot flag
+ cold Set the cold reboot flag
+ triple Force a triple fault (init)
+ kbd Use the keyboard controller. cold reset (default)
+ acpi Use the ACPI RESET_REG in the FADT. If ACPI is not configured or the
+ ACPI reset does not work, the reboot path attempts the reset using
+ the keyboard controller.
+ efi Use efi reset_system runtime service. If EFI is not configured or the
+ EFI reset does not work, the reboot path attempts the reset using
+ the keyboard controller.
+
+ Using warm reset will be much faster especially on big memory
+ systems because the BIOS will not go through the memory check.
+ Disadvantage is that not all hardware will be completely reinitialized
+ on reboot so there may be boot problems on some systems.
+
+ reboot=force
+
+ Don't stop other CPUs on reboot. This can make reboot more reliable
+ in some cases.
+
+Non Executable Mappings
+
+ noexec=on|off
+
+ on Enable(default)
+ off Disable
+
+NUMA
+
+ numa=off Only set up a single NUMA node spanning all memory.
+
+ numa=noacpi Don't parse the SRAT table for NUMA setup
+
+ numa=fake=<size>[MG]
+ If given as a memory unit, fills all system RAM with nodes of
+ size interleaved over physical nodes.
+
+ numa=fake=<N>
+ If given as an integer, fills all system RAM with N fake nodes
+ interleaved over physical nodes.
+
+ numa=fake=<N>U
+ If given as an integer followed by 'U', it will divide each
+ physical node into N emulated nodes.
+
+ACPI
+
+ acpi=off Don't enable ACPI
+ acpi=ht Use ACPI boot table parsing, but don't enable ACPI
+ interpreter
+ acpi=force Force ACPI on (currently not needed)
+
+ acpi=strict Disable out of spec ACPI workarounds.
+
+ acpi_sci={edge,level,high,low} Set up ACPI SCI interrupt.
+
+ acpi=noirq Don't route interrupts
+
+ acpi=nocmcff Disable firmware first mode for corrected errors. This
+ disables parsing the HEST CMC error source to check if
+ firmware has set the FF flag. This may result in
+ duplicate corrected error reports.
+
+PCI
+
+ pci=off Don't use PCI
+ pci=conf1 Use conf1 access.
+ pci=conf2 Use conf2 access.
+ pci=rom Assign ROMs.
+ pci=assign-busses Assign busses
+ pci=irqmask=MASK Set PCI interrupt mask to MASK
+ pci=lastbus=NUMBER Scan up to NUMBER busses, no matter what the mptable says.
+ pci=noacpi Don't use ACPI to set up PCI interrupt routing.
+
+IOMMU (input/output memory management unit)
+
+ Multiple x86-64 PCI-DMA mapping implementations exist, for example:
+
+ 1. <lib/dma-direct.c>: use no hardware/software IOMMU at all
+ (e.g. because you have < 3 GB memory).
+ Kernel boot message: "PCI-DMA: Disabling IOMMU"
+
+ 2. <arch/x86/kernel/amd_gart_64.c>: AMD GART based hardware IOMMU.
+ Kernel boot message: "PCI-DMA: using GART IOMMU"
+
+ 3. <arch/x86_64/kernel/pci-swiotlb.c> : Software IOMMU implementation. Used
+ e.g. if there is no hardware IOMMU in the system and it is need because
+ you have >3GB memory or told the kernel to us it (iommu=soft))
+ Kernel boot message: "PCI-DMA: Using software bounce buffering
+ for IO (SWIOTLB)"
+
+ 4. <arch/x86_64/pci-calgary.c> : IBM Calgary hardware IOMMU. Used in IBM
+ pSeries and xSeries servers. This hardware IOMMU supports DMA address
+ mapping with memory protection, etc.
+ Kernel boot message: "PCI-DMA: Using Calgary IOMMU"
+
+ iommu=[<size>][,noagp][,off][,force][,noforce][,leak[=<nr_of_leak_pages>]
+ [,memaper[=<order>]][,merge][,fullflush][,nomerge]
+ [,noaperture][,calgary]
+
+ General iommu options:
+ off Don't initialize and use any kind of IOMMU.
+ noforce Don't force hardware IOMMU usage when it is not needed.
+ (default).
+ force Force the use of the hardware IOMMU even when it is
+ not actually needed (e.g. because < 3 GB memory).
+ soft Use software bounce buffering (SWIOTLB) (default for
+ Intel machines). This can be used to prevent the usage
+ of an available hardware IOMMU.
+
+ iommu options only relevant to the AMD GART hardware IOMMU:
+ <size> Set the size of the remapping area in bytes.
+ allowed Overwrite iommu off workarounds for specific chipsets.
+ fullflush Flush IOMMU on each allocation (default).
+ nofullflush Don't use IOMMU fullflush.
+ leak Turn on simple iommu leak tracing (only when
+ CONFIG_IOMMU_LEAK is on). Default number of leak pages
+ is 20.
+ memaper[=<order>] Allocate an own aperture over RAM with size 32MB<<order.
+ (default: order=1, i.e. 64MB)
+ merge Do scatter-gather (SG) merging. Implies "force"
+ (experimental).
+ nomerge Don't do scatter-gather (SG) merging.
+ noaperture Ask the IOMMU not to touch the aperture for AGP.
+ noagp Don't initialize the AGP driver and use full aperture.
+ panic Always panic when IOMMU overflows.
+ calgary Use the Calgary IOMMU if it is available
+
+ iommu options only relevant to the software bounce buffering (SWIOTLB) IOMMU
+ implementation:
+ swiotlb=<pages>[,force]
+ <pages> Prereserve that many 128K pages for the software IO
+ bounce buffering.
+ force Force all IO through the software TLB.
+
+ Settings for the IBM Calgary hardware IOMMU currently found in IBM
+ pSeries and xSeries machines:
+
+ calgary=[64k,128k,256k,512k,1M,2M,4M,8M]
+ calgary=[translate_empty_slots]
+ calgary=[disable=<PCI bus number>]
+ panic Always panic when IOMMU overflows
+
+ 64k,...,8M - Set the size of each PCI slot's translation table
+ when using the Calgary IOMMU. This is the size of the translation
+ table itself in main memory. The smallest table, 64k, covers an IO
+ space of 32MB; the largest, 8MB table, can cover an IO space of
+ 4GB. Normally the kernel will make the right choice by itself.
+
+ translate_empty_slots - Enable translation even on slots that have
+ no devices attached to them, in case a device will be hotplugged
+ in the future.
+
+ disable=<PCI bus number> - Disable translation on a given PHB. For
+ example, the built-in graphics adapter resides on the first bridge
+ (PCI bus number 0); if translation (isolation) is enabled on this
+ bridge, X servers that access the hardware directly from user
+ space might stop working. Use this option if you have devices that
+ are accessed from userspace directly on some PCI host bridge.
+
+Miscellaneous
+
+ nogbpages
+ Do not use GB pages for kernel direct mappings.
+ gbpages
+ Use GB pages for kernel direct mappings.
diff --git a/Documentation/x86/x86_64/cpu-hotplug-spec b/Documentation/x86/x86_64/cpu-hotplug-spec
new file mode 100644
index 000000000..3c23e0587
--- /dev/null
+++ b/Documentation/x86/x86_64/cpu-hotplug-spec
@@ -0,0 +1,21 @@
+Firmware support for CPU hotplug under Linux/x86-64
+---------------------------------------------------
+
+Linux/x86-64 supports CPU hotplug now. For various reasons Linux wants to
+know in advance of boot time the maximum number of CPUs that could be plugged
+into the system. ACPI 3.0 currently has no official way to supply
+this information from the firmware to the operating system.
+
+In ACPI each CPU needs an LAPIC object in the MADT table (5.2.11.5 in the
+ACPI 3.0 specification). ACPI already has the concept of disabled LAPIC
+objects by setting the Enabled bit in the LAPIC object to zero.
+
+For CPU hotplug Linux/x86-64 expects now that any possible future hotpluggable
+CPU is already available in the MADT. If the CPU is not available yet
+it should have its LAPIC Enabled bit set to 0. Linux will use the number
+of disabled LAPICs to compute the maximum number of future CPUs.
+
+In the worst case the user can overwrite this choice using a command line
+option (additional_cpus=...), but it is recommended to supply the correct
+number (or a reasonable approximation of it, with erring towards more not less)
+in the MADT to avoid manual configuration.
diff --git a/Documentation/x86/x86_64/fake-numa-for-cpusets b/Documentation/x86/x86_64/fake-numa-for-cpusets
new file mode 100644
index 000000000..4b09f1883
--- /dev/null
+++ b/Documentation/x86/x86_64/fake-numa-for-cpusets
@@ -0,0 +1,67 @@
+Using numa=fake and CPUSets for Resource Management
+Written by David Rientjes <rientjes@cs.washington.edu>
+
+This document describes how the numa=fake x86_64 command-line option can be used
+in conjunction with cpusets for coarse memory management. Using this feature,
+you can create fake NUMA nodes that represent contiguous chunks of memory and
+assign them to cpusets and their attached tasks. This is a way of limiting the
+amount of system memory that are available to a certain class of tasks.
+
+For more information on the features of cpusets, see
+Documentation/cgroup-v1/cpusets.txt.
+There are a number of different configurations you can use for your needs. For
+more information on the numa=fake command line option and its various ways of
+configuring fake nodes, see Documentation/x86/x86_64/boot-options.txt.
+
+For the purposes of this introduction, we'll assume a very primitive NUMA
+emulation setup of "numa=fake=4*512,". This will split our system memory into
+four equal chunks of 512M each that we can now use to assign to cpusets. As
+you become more familiar with using this combination for resource control,
+you'll determine a better setup to minimize the number of nodes you have to deal
+with.
+
+A machine may be split as follows with "numa=fake=4*512," as reported by dmesg:
+
+ Faking node 0 at 0000000000000000-0000000020000000 (512MB)
+ Faking node 1 at 0000000020000000-0000000040000000 (512MB)
+ Faking node 2 at 0000000040000000-0000000060000000 (512MB)
+ Faking node 3 at 0000000060000000-0000000080000000 (512MB)
+ ...
+ On node 0 totalpages: 130975
+ On node 1 totalpages: 131072
+ On node 2 totalpages: 131072
+ On node 3 totalpages: 131072
+
+Now following the instructions for mounting the cpusets filesystem from
+Documentation/cgroup-v1/cpusets.txt, you can assign fake nodes (i.e. contiguous memory
+address spaces) to individual cpusets:
+
+ [root@xroads /]# mkdir exampleset
+ [root@xroads /]# mount -t cpuset none exampleset
+ [root@xroads /]# mkdir exampleset/ddset
+ [root@xroads /]# cd exampleset/ddset
+ [root@xroads /exampleset/ddset]# echo 0-1 > cpus
+ [root@xroads /exampleset/ddset]# echo 0-1 > mems
+
+Now this cpuset, 'ddset', will only allowed access to fake nodes 0 and 1 for
+memory allocations (1G).
+
+You can now assign tasks to these cpusets to limit the memory resources
+available to them according to the fake nodes assigned as mems:
+
+ [root@xroads /exampleset/ddset]# echo $$ > tasks
+ [root@xroads /exampleset/ddset]# dd if=/dev/zero of=tmp bs=1024 count=1G
+ [1] 13425
+
+Notice the difference between the system memory usage as reported by
+/proc/meminfo between the restricted cpuset case above and the unrestricted
+case (i.e. running the same 'dd' command without assigning it to a fake NUMA
+cpuset):
+ Unrestricted Restricted
+ MemTotal: 3091900 kB 3091900 kB
+ MemFree: 42113 kB 1513236 kB
+
+This allows for coarse memory management for the tasks you assign to particular
+cpusets. Since cpusets can form a hierarchy, you can create some pretty
+interesting combinations of use-cases for various classes of tasks for your
+memory management needs.
diff --git a/Documentation/x86/x86_64/machinecheck b/Documentation/x86/x86_64/machinecheck
new file mode 100644
index 000000000..d0648a74f
--- /dev/null
+++ b/Documentation/x86/x86_64/machinecheck
@@ -0,0 +1,83 @@
+
+Configurable sysfs parameters for the x86-64 machine check code.
+
+Machine checks report internal hardware error conditions detected
+by the CPU. Uncorrected errors typically cause a machine check
+(often with panic), corrected ones cause a machine check log entry.
+
+Machine checks are organized in banks (normally associated with
+a hardware subsystem) and subevents in a bank. The exact meaning
+of the banks and subevent is CPU specific.
+
+mcelog knows how to decode them.
+
+When you see the "Machine check errors logged" message in the system
+log then mcelog should run to collect and decode machine check entries
+from /dev/mcelog. Normally mcelog should be run regularly from a cronjob.
+
+Each CPU has a directory in /sys/devices/system/machinecheck/machinecheckN
+(N = CPU number)
+
+The directory contains some configurable entries:
+
+Entries:
+
+bankNctl
+(N bank number)
+ 64bit Hex bitmask enabling/disabling specific subevents for bank N
+ When a bit in the bitmask is zero then the respective
+ subevent will not be reported.
+ By default all events are enabled.
+ Note that BIOS maintain another mask to disable specific events
+ per bank. This is not visible here
+
+The following entries appear for each CPU, but they are truly shared
+between all CPUs.
+
+check_interval
+ How often to poll for corrected machine check errors, in seconds
+ (Note output is hexadecimal). Default 5 minutes. When the poller
+ finds MCEs it triggers an exponential speedup (poll more often) on
+ the polling interval. When the poller stops finding MCEs, it
+ triggers an exponential backoff (poll less often) on the polling
+ interval. The check_interval variable is both the initial and
+ maximum polling interval. 0 means no polling for corrected machine
+ check errors (but some corrected errors might be still reported
+ in other ways)
+
+tolerant
+ Tolerance level. When a machine check exception occurs for a non
+ corrected machine check the kernel can take different actions.
+ Since machine check exceptions can happen any time it is sometimes
+ risky for the kernel to kill a process because it defies
+ normal kernel locking rules. The tolerance level configures
+ how hard the kernel tries to recover even at some risk of
+ deadlock. Higher tolerant values trade potentially better uptime
+ with the risk of a crash or even corruption (for tolerant >= 3).
+
+ 0: always panic on uncorrected errors, log corrected errors
+ 1: panic or SIGBUS on uncorrected errors, log corrected errors
+ 2: SIGBUS or log uncorrected errors, log corrected errors
+ 3: never panic or SIGBUS, log all errors (for testing only)
+
+ Default: 1
+
+ Note this only makes a difference if the CPU allows recovery
+ from a machine check exception. Current x86 CPUs generally do not.
+
+trigger
+ Program to run when a machine check event is detected.
+ This is an alternative to running mcelog regularly from cron
+ and allows to detect events faster.
+monarch_timeout
+ How long to wait for the other CPUs to machine check too on a
+ exception. 0 to disable waiting for other CPUs.
+ Unit: us
+
+TBD document entries for AMD threshold interrupt configuration
+
+For more details about the x86 machine check architecture
+see the Intel and AMD architecture manuals from their developer websites.
+
+For more details about the architecture see
+see http://one.firstfloor.org/~andi/mce.pdf
diff --git a/Documentation/x86/x86_64/mm.txt b/Documentation/x86/x86_64/mm.txt
new file mode 100644
index 000000000..05ef53d83
--- /dev/null
+++ b/Documentation/x86/x86_64/mm.txt
@@ -0,0 +1,81 @@
+
+Virtual memory map with 4 level page tables:
+
+0000000000000000 - 00007fffffffffff (=47 bits) user space, different per mm
+hole caused by [47:63] sign extension
+ffff800000000000 - ffff87ffffffffff (=43 bits) guard hole, reserved for hypervisor
+ffff880000000000 - ffff887fffffffff (=39 bits) LDT remap for PTI
+ffff888000000000 - ffffc87fffffffff (=64 TB) direct mapping of all phys. memory
+ffffc88000000000 - ffffc8ffffffffff (=39 bits) hole
+ffffc90000000000 - ffffe8ffffffffff (=45 bits) vmalloc/ioremap space
+ffffe90000000000 - ffffe9ffffffffff (=40 bits) hole
+ffffea0000000000 - ffffeaffffffffff (=40 bits) virtual memory map (1TB)
+... unused hole ...
+ffffec0000000000 - fffffbffffffffff (=44 bits) kasan shadow memory (16TB)
+... unused hole ...
+ vaddr_end for KASLR
+fffffe0000000000 - fffffe7fffffffff (=39 bits) cpu_entry_area mapping
+fffffe8000000000 - fffffeffffffffff (=39 bits) LDT remap for PTI
+ffffff0000000000 - ffffff7fffffffff (=39 bits) %esp fixup stacks
+... unused hole ...
+ffffffef00000000 - fffffffeffffffff (=64 GB) EFI region mapping space
+... unused hole ...
+ffffffff80000000 - ffffffff9fffffff (=512 MB) kernel text mapping, from phys 0
+ffffffffa0000000 - fffffffffeffffff (1520 MB) module mapping space
+[fixmap start] - ffffffffff5fffff kernel-internal fixmap range
+ffffffffff600000 - ffffffffff600fff (=4 kB) legacy vsyscall ABI
+ffffffffffe00000 - ffffffffffffffff (=2 MB) unused hole
+
+Virtual memory map with 5 level page tables:
+
+0000000000000000 - 00ffffffffffffff (=56 bits) user space, different per mm
+hole caused by [56:63] sign extension
+ff00000000000000 - ff0fffffffffffff (=52 bits) guard hole, reserved for hypervisor
+ff10000000000000 - ff10ffffffffffff (=48 bits) LDT remap for PTI
+ff11000000000000 - ff90ffffffffffff (=55 bits) direct mapping of all phys. memory
+ff91000000000000 - ff9fffffffffffff (=3840 TB) hole
+ffa0000000000000 - ffd1ffffffffffff (=54 bits) vmalloc/ioremap space (12800 TB)
+ffd2000000000000 - ffd3ffffffffffff (=49 bits) hole
+ffd4000000000000 - ffd5ffffffffffff (=49 bits) virtual memory map (512TB)
+... unused hole ...
+ffdf000000000000 - fffffc0000000000 (=53 bits) kasan shadow memory (8PB)
+... unused hole ...
+ vaddr_end for KASLR
+fffffe0000000000 - fffffe7fffffffff (=39 bits) cpu_entry_area mapping
+... unused hole ...
+ffffff0000000000 - ffffff7fffffffff (=39 bits) %esp fixup stacks
+... unused hole ...
+ffffffef00000000 - fffffffeffffffff (=64 GB) EFI region mapping space
+... unused hole ...
+ffffffff80000000 - ffffffff9fffffff (=512 MB) kernel text mapping, from phys 0
+ffffffffa0000000 - fffffffffeffffff (1520 MB) module mapping space
+[fixmap start] - ffffffffff5fffff kernel-internal fixmap range
+ffffffffff600000 - ffffffffff600fff (=4 kB) legacy vsyscall ABI
+ffffffffffe00000 - ffffffffffffffff (=2 MB) unused hole
+
+Architecture defines a 64-bit virtual address. Implementations can support
+less. Currently supported are 48- and 57-bit virtual addresses. Bits 63
+through to the most-significant implemented bit are sign extended.
+This causes hole between user space and kernel addresses if you interpret them
+as unsigned.
+
+The direct mapping covers all memory in the system up to the highest
+memory address (this means in some cases it can also include PCI memory
+holes).
+
+vmalloc space is lazily synchronized into the different PML4/PML5 pages of
+the processes using the page fault handler, with init_top_pgt as
+reference.
+
+We map EFI runtime services in the 'efi_pgd' PGD in a 64Gb large virtual
+memory window (this size is arbitrary, it can be raised later if needed).
+The mappings are not part of any other kernel PGD and are only available
+during EFI runtime calls.
+
+Note that if CONFIG_RANDOMIZE_MEMORY is enabled, the direct mapping of all
+physical memory, vmalloc/ioremap space and virtual memory map are randomized.
+Their order is preserved but their base will be offset early at boot time.
+
+Be very careful vs. KASLR when changing anything here. The KASLR address
+range must not overlap with anything except the KASAN shadow area, which is
+correct as KASAN disables KASLR.
diff --git a/Documentation/x86/x86_64/uefi.txt b/Documentation/x86/x86_64/uefi.txt
new file mode 100644
index 000000000..a5e2b4fdb
--- /dev/null
+++ b/Documentation/x86/x86_64/uefi.txt
@@ -0,0 +1,42 @@
+General note on [U]EFI x86_64 support
+-------------------------------------
+
+The nomenclature EFI and UEFI are used interchangeably in this document.
+
+Although the tools below are _not_ needed for building the kernel,
+the needed bootloader support and associated tools for x86_64 platforms
+with EFI firmware and specifications are listed below.
+
+1. UEFI specification: http://www.uefi.org
+
+2. Booting Linux kernel on UEFI x86_64 platform requires bootloader
+ support. Elilo with x86_64 support can be used.
+
+3. x86_64 platform with EFI/UEFI firmware.
+
+Mechanics:
+---------
+- Build the kernel with the following configuration.
+ CONFIG_FB_EFI=y
+ CONFIG_FRAMEBUFFER_CONSOLE=y
+ If EFI runtime services are expected, the following configuration should
+ be selected.
+ CONFIG_EFI=y
+ CONFIG_EFI_VARS=y or m # optional
+- Create a VFAT partition on the disk
+- Copy the following to the VFAT partition:
+ elilo bootloader with x86_64 support, elilo configuration file,
+ kernel image built in first step and corresponding
+ initrd. Instructions on building elilo and its dependencies
+ can be found in the elilo sourceforge project.
+- Boot to EFI shell and invoke elilo choosing the kernel image built
+ in first step.
+- If some or all EFI runtime services don't work, you can try following
+ kernel command line parameters to turn off some or all EFI runtime
+ services.
+ noefi turn off all EFI runtime services
+ reboot_type=k turn off EFI reboot runtime service
+- If the EFI memory map has additional entries not in the E820 map,
+ you can include those entries in the kernels memory map of available
+ physical RAM by using the following kernel command line parameter.
+ add_efi_memmap include EFI memory map of available physical RAM