diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
commit | 76cb841cb886eef6b3bee341a2266c76578724ad (patch) | |
tree | f5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /arch/arm64/kernel/process.c | |
parent | Initial commit. (diff) | |
download | linux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip |
Adding upstream version 4.19.249.upstream/4.19.249upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/arm64/kernel/process.c')
-rw-r--r-- | arch/arm64/kernel/process.c | 553 |
1 files changed, 553 insertions, 0 deletions
diff --git a/arch/arm64/kernel/process.c b/arch/arm64/kernel/process.c new file mode 100644 index 000000000..1945b8096 --- /dev/null +++ b/arch/arm64/kernel/process.c @@ -0,0 +1,553 @@ +/* + * Based on arch/arm/kernel/process.c + * + * Original Copyright (C) 1995 Linus Torvalds + * Copyright (C) 1996-2000 Russell King - Converted to ARM. + * Copyright (C) 2012 ARM Ltd. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#include <stdarg.h> + +#include <linux/compat.h> +#include <linux/efi.h> +#include <linux/export.h> +#include <linux/sched.h> +#include <linux/sched/debug.h> +#include <linux/sched/task.h> +#include <linux/sched/task_stack.h> +#include <linux/kernel.h> +#include <linux/mm.h> +#include <linux/stddef.h> +#include <linux/unistd.h> +#include <linux/user.h> +#include <linux/delay.h> +#include <linux/reboot.h> +#include <linux/interrupt.h> +#include <linux/init.h> +#include <linux/cpu.h> +#include <linux/elfcore.h> +#include <linux/pm.h> +#include <linux/tick.h> +#include <linux/utsname.h> +#include <linux/uaccess.h> +#include <linux/random.h> +#include <linux/hw_breakpoint.h> +#include <linux/personality.h> +#include <linux/notifier.h> +#include <trace/events/power.h> +#include <linux/percpu.h> +#include <linux/thread_info.h> + +#include <asm/alternative.h> +#include <asm/compat.h> +#include <asm/cacheflush.h> +#include <asm/exec.h> +#include <asm/fpsimd.h> +#include <asm/mmu_context.h> +#include <asm/processor.h> +#include <asm/stacktrace.h> + +#ifdef CONFIG_STACKPROTECTOR +#include <linux/stackprotector.h> +unsigned long __stack_chk_guard __ro_after_init; +EXPORT_SYMBOL(__stack_chk_guard); +#endif + +/* + * Function pointers to optional machine specific functions + */ +void (*pm_power_off)(void); +EXPORT_SYMBOL_GPL(pm_power_off); + +void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd); + +/* + * This is our default idle handler. + */ +void arch_cpu_idle(void) +{ + /* + * This should do all the clock switching and wait for interrupt + * tricks + */ + trace_cpu_idle_rcuidle(1, smp_processor_id()); + cpu_do_idle(); + local_irq_enable(); + trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); +} + +#ifdef CONFIG_HOTPLUG_CPU +void arch_cpu_idle_dead(void) +{ + cpu_die(); +} +#endif + +/* + * Called by kexec, immediately prior to machine_kexec(). + * + * This must completely disable all secondary CPUs; simply causing those CPUs + * to execute e.g. a RAM-based pin loop is not sufficient. This allows the + * kexec'd kernel to use any and all RAM as it sees fit, without having to + * avoid any code or data used by any SW CPU pin loop. The CPU hotplug + * functionality embodied in disable_nonboot_cpus() to achieve this. + */ +void machine_shutdown(void) +{ + disable_nonboot_cpus(); +} + +/* + * Halting simply requires that the secondary CPUs stop performing any + * activity (executing tasks, handling interrupts). smp_send_stop() + * achieves this. + */ +void machine_halt(void) +{ + local_irq_disable(); + smp_send_stop(); + while (1); +} + +/* + * Power-off simply requires that the secondary CPUs stop performing any + * activity (executing tasks, handling interrupts). smp_send_stop() + * achieves this. When the system power is turned off, it will take all CPUs + * with it. + */ +void machine_power_off(void) +{ + local_irq_disable(); + smp_send_stop(); + if (pm_power_off) + pm_power_off(); +} + +/* + * Restart requires that the secondary CPUs stop performing any activity + * while the primary CPU resets the system. Systems with multiple CPUs must + * provide a HW restart implementation, to ensure that all CPUs reset at once. + * This is required so that any code running after reset on the primary CPU + * doesn't have to co-ordinate with other CPUs to ensure they aren't still + * executing pre-reset code, and using RAM that the primary CPU's code wishes + * to use. Implementing such co-ordination would be essentially impossible. + */ +void machine_restart(char *cmd) +{ + /* Disable interrupts first */ + local_irq_disable(); + smp_send_stop(); + + /* + * UpdateCapsule() depends on the system being reset via + * ResetSystem(). + */ + if (efi_enabled(EFI_RUNTIME_SERVICES)) + efi_reboot(reboot_mode, NULL); + + /* Now call the architecture specific reboot code. */ + if (arm_pm_restart) + arm_pm_restart(reboot_mode, cmd); + else + do_kernel_restart(cmd); + + /* + * Whoops - the architecture was unable to reboot. + */ + printk("Reboot failed -- System halted\n"); + while (1); +} + +static void print_pstate(struct pt_regs *regs) +{ + u64 pstate = regs->pstate; + + if (compat_user_mode(regs)) { + printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n", + pstate, + pstate & PSR_AA32_N_BIT ? 'N' : 'n', + pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', + pstate & PSR_AA32_C_BIT ? 'C' : 'c', + pstate & PSR_AA32_V_BIT ? 'V' : 'v', + pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', + pstate & PSR_AA32_T_BIT ? "T32" : "A32", + pstate & PSR_AA32_E_BIT ? "BE" : "LE", + pstate & PSR_AA32_A_BIT ? 'A' : 'a', + pstate & PSR_AA32_I_BIT ? 'I' : 'i', + pstate & PSR_AA32_F_BIT ? 'F' : 'f'); + } else { + printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n", + pstate, + pstate & PSR_N_BIT ? 'N' : 'n', + pstate & PSR_Z_BIT ? 'Z' : 'z', + pstate & PSR_C_BIT ? 'C' : 'c', + pstate & PSR_V_BIT ? 'V' : 'v', + pstate & PSR_D_BIT ? 'D' : 'd', + pstate & PSR_A_BIT ? 'A' : 'a', + pstate & PSR_I_BIT ? 'I' : 'i', + pstate & PSR_F_BIT ? 'F' : 'f', + pstate & PSR_PAN_BIT ? '+' : '-', + pstate & PSR_UAO_BIT ? '+' : '-'); + } +} + +void __show_regs(struct pt_regs *regs) +{ + int i, top_reg; + u64 lr, sp; + + if (compat_user_mode(regs)) { + lr = regs->compat_lr; + sp = regs->compat_sp; + top_reg = 12; + } else { + lr = regs->regs[30]; + sp = regs->sp; + top_reg = 29; + } + + show_regs_print_info(KERN_DEFAULT); + print_pstate(regs); + + if (!user_mode(regs)) { + printk("pc : %pS\n", (void *)regs->pc); + printk("lr : %pS\n", (void *)lr); + } else { + printk("pc : %016llx\n", regs->pc); + printk("lr : %016llx\n", lr); + } + + printk("sp : %016llx\n", sp); + + i = top_reg; + + while (i >= 0) { + printk("x%-2d: %016llx ", i, regs->regs[i]); + i--; + + if (i % 2 == 0) { + pr_cont("x%-2d: %016llx ", i, regs->regs[i]); + i--; + } + + pr_cont("\n"); + } +} + +void show_regs(struct pt_regs * regs) +{ + __show_regs(regs); + dump_backtrace(regs, NULL); +} + +static void tls_thread_flush(void) +{ + write_sysreg(0, tpidr_el0); + + if (is_compat_task()) { + current->thread.uw.tp_value = 0; + + /* + * We need to ensure ordering between the shadow state and the + * hardware state, so that we don't corrupt the hardware state + * with a stale shadow state during context switch. + */ + barrier(); + write_sysreg(0, tpidrro_el0); + } +} + +void flush_thread(void) +{ + fpsimd_flush_thread(); + tls_thread_flush(); + flush_ptrace_hw_breakpoint(current); +} + +void release_thread(struct task_struct *dead_task) +{ +} + +void arch_release_task_struct(struct task_struct *tsk) +{ + fpsimd_release_task(tsk); +} + +int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) +{ + if (current->mm) + fpsimd_preserve_current_state(); + *dst = *src; + + /* We rely on the above assignment to initialize dst's thread_flags: */ + BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK)); + + /* + * Detach src's sve_state (if any) from dst so that it does not + * get erroneously used or freed prematurely. dst's sve_state + * will be allocated on demand later on if dst uses SVE. + * For consistency, also clear TIF_SVE here: this could be done + * later in copy_process(), but to avoid tripping up future + * maintainers it is best not to leave TIF_SVE and sve_state in + * an inconsistent state, even temporarily. + */ + dst->thread.sve_state = NULL; + clear_tsk_thread_flag(dst, TIF_SVE); + + return 0; +} + +asmlinkage void ret_from_fork(void) asm("ret_from_fork"); + +int copy_thread(unsigned long clone_flags, unsigned long stack_start, + unsigned long stk_sz, struct task_struct *p) +{ + struct pt_regs *childregs = task_pt_regs(p); + + memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); + + /* + * In case p was allocated the same task_struct pointer as some + * other recently-exited task, make sure p is disassociated from + * any cpu that may have run that now-exited task recently. + * Otherwise we could erroneously skip reloading the FPSIMD + * registers for p. + */ + fpsimd_flush_task_state(p); + + if (likely(!(p->flags & PF_KTHREAD))) { + *childregs = *current_pt_regs(); + childregs->regs[0] = 0; + + /* + * Read the current TLS pointer from tpidr_el0 as it may be + * out-of-sync with the saved value. + */ + *task_user_tls(p) = read_sysreg(tpidr_el0); + + if (stack_start) { + if (is_compat_thread(task_thread_info(p))) + childregs->compat_sp = stack_start; + else + childregs->sp = stack_start; + } + + /* + * If a TLS pointer was passed to clone (4th argument), use it + * for the new thread. + */ + if (clone_flags & CLONE_SETTLS) + p->thread.uw.tp_value = childregs->regs[3]; + } else { + memset(childregs, 0, sizeof(struct pt_regs)); + childregs->pstate = PSR_MODE_EL1h; + if (IS_ENABLED(CONFIG_ARM64_UAO) && + cpus_have_const_cap(ARM64_HAS_UAO)) + childregs->pstate |= PSR_UAO_BIT; + + if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) + set_ssbs_bit(childregs); + + p->thread.cpu_context.x19 = stack_start; + p->thread.cpu_context.x20 = stk_sz; + } + p->thread.cpu_context.pc = (unsigned long)ret_from_fork; + p->thread.cpu_context.sp = (unsigned long)childregs; + + ptrace_hw_copy_thread(p); + + return 0; +} + +void tls_preserve_current_state(void) +{ + *task_user_tls(current) = read_sysreg(tpidr_el0); +} + +static void tls_thread_switch(struct task_struct *next) +{ + tls_preserve_current_state(); + + if (is_compat_thread(task_thread_info(next))) + write_sysreg(next->thread.uw.tp_value, tpidrro_el0); + else if (!arm64_kernel_unmapped_at_el0()) + write_sysreg(0, tpidrro_el0); + + write_sysreg(*task_user_tls(next), tpidr_el0); +} + +/* Restore the UAO state depending on next's addr_limit */ +void uao_thread_switch(struct task_struct *next) +{ + if (IS_ENABLED(CONFIG_ARM64_UAO)) { + if (task_thread_info(next)->addr_limit == KERNEL_DS) + asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO)); + else + asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO)); + } +} + +/* + * Force SSBS state on context-switch, since it may be lost after migrating + * from a CPU which treats the bit as RES0 in a heterogeneous system. + */ +static void ssbs_thread_switch(struct task_struct *next) +{ + struct pt_regs *regs = task_pt_regs(next); + + /* + * Nothing to do for kernel threads, but 'regs' may be junk + * (e.g. idle task) so check the flags and bail early. + */ + if (unlikely(next->flags & PF_KTHREAD)) + return; + + /* + * If all CPUs implement the SSBS extension, then we just need to + * context-switch the PSTATE field. + */ + if (cpu_have_feature(cpu_feature(SSBS))) + return; + + /* If the mitigation is enabled, then we leave SSBS clear. */ + if ((arm64_get_ssbd_state() == ARM64_SSBD_FORCE_ENABLE) || + test_tsk_thread_flag(next, TIF_SSBD)) + return; + + if (compat_user_mode(regs)) + set_compat_ssbs_bit(regs); + else if (user_mode(regs)) + set_ssbs_bit(regs); +} + +/* + * We store our current task in sp_el0, which is clobbered by userspace. Keep a + * shadow copy so that we can restore this upon entry from userspace. + * + * This is *only* for exception entry from EL0, and is not valid until we + * __switch_to() a user task. + */ +DEFINE_PER_CPU(struct task_struct *, __entry_task); + +static void entry_task_switch(struct task_struct *next) +{ + __this_cpu_write(__entry_task, next); +} + +/* + * Thread switching. + */ +__notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev, + struct task_struct *next) +{ + struct task_struct *last; + + fpsimd_thread_switch(next); + tls_thread_switch(next); + hw_breakpoint_thread_switch(next); + contextidr_thread_switch(next); + entry_task_switch(next); + uao_thread_switch(next); + ssbs_thread_switch(next); + + /* + * Complete any pending TLB or cache maintenance on this CPU in case + * the thread migrates to a different CPU. + * This full barrier is also required by the membarrier system + * call. + */ + dsb(ish); + + /* the actual thread switch */ + last = cpu_switch_to(prev, next); + + return last; +} + +unsigned long get_wchan(struct task_struct *p) +{ + struct stackframe frame; + unsigned long stack_page, ret = 0; + int count = 0; + if (!p || p == current || p->state == TASK_RUNNING) + return 0; + + stack_page = (unsigned long)try_get_task_stack(p); + if (!stack_page) + return 0; + + frame.fp = thread_saved_fp(p); + frame.pc = thread_saved_pc(p); +#ifdef CONFIG_FUNCTION_GRAPH_TRACER + frame.graph = p->curr_ret_stack; +#endif + do { + if (unwind_frame(p, &frame)) + goto out; + if (!in_sched_functions(frame.pc)) { + ret = frame.pc; + goto out; + } + } while (count ++ < 16); + +out: + put_task_stack(p); + return ret; +} + +unsigned long arch_align_stack(unsigned long sp) +{ + if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) + sp -= get_random_int() & ~PAGE_MASK; + return sp & ~0xf; +} + +unsigned long arch_randomize_brk(struct mm_struct *mm) +{ + if (is_compat_task()) + return randomize_page(mm->brk, SZ_32M); + else + return randomize_page(mm->brk, SZ_1G); +} + +/* + * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. + */ +void arch_setup_new_exec(void) +{ + current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0; +} + +#ifdef CONFIG_GCC_PLUGIN_STACKLEAK +void __used stackleak_check_alloca(unsigned long size) +{ + unsigned long stack_left; + unsigned long current_sp = current_stack_pointer; + struct stack_info info; + + BUG_ON(!on_accessible_stack(current, current_sp, &info)); + + stack_left = current_sp - info.low; + + /* + * There's a good chance we're almost out of stack space if this + * is true. Using panic() over BUG() is more likely to give + * reliable debugging output. + */ + if (size >= stack_left) + panic("alloca() over the kernel stack boundary\n"); +} +EXPORT_SYMBOL(stackleak_check_alloca); +#endif |