diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
commit | 76cb841cb886eef6b3bee341a2266c76578724ad (patch) | |
tree | f5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /arch/arm64/kvm/sys_regs.c | |
parent | Initial commit. (diff) | |
download | linux-upstream.tar.xz linux-upstream.zip |
Adding upstream version 4.19.249.upstream/4.19.249upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/arm64/kvm/sys_regs.c')
-rw-r--r-- | arch/arm64/kvm/sys_regs.c | 2606 |
1 files changed, 2606 insertions, 0 deletions
diff --git a/arch/arm64/kvm/sys_regs.c b/arch/arm64/kvm/sys_regs.c new file mode 100644 index 000000000..f06629bf2 --- /dev/null +++ b/arch/arm64/kvm/sys_regs.c @@ -0,0 +1,2606 @@ +/* + * Copyright (C) 2012,2013 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + * + * Derived from arch/arm/kvm/coproc.c: + * Copyright (C) 2012 - Virtual Open Systems and Columbia University + * Authors: Rusty Russell <rusty@rustcorp.com.au> + * Christoffer Dall <c.dall@virtualopensystems.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License, version 2, as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#include <linux/bsearch.h> +#include <linux/kvm_host.h> +#include <linux/mm.h> +#include <linux/printk.h> +#include <linux/uaccess.h> + +#include <asm/cacheflush.h> +#include <asm/cputype.h> +#include <asm/debug-monitors.h> +#include <asm/esr.h> +#include <asm/kvm_arm.h> +#include <asm/kvm_coproc.h> +#include <asm/kvm_emulate.h> +#include <asm/kvm_host.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> +#include <asm/perf_event.h> +#include <asm/sysreg.h> + +#include <trace/events/kvm.h> + +#include "sys_regs.h" + +#include "trace.h" + +/* + * All of this file is extremly similar to the ARM coproc.c, but the + * types are different. My gut feeling is that it should be pretty + * easy to merge, but that would be an ABI breakage -- again. VFP + * would also need to be abstracted. + * + * For AArch32, we only take care of what is being trapped. Anything + * that has to do with init and userspace access has to go via the + * 64bit interface. + */ + +static bool read_from_write_only(struct kvm_vcpu *vcpu, + struct sys_reg_params *params, + const struct sys_reg_desc *r) +{ + WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n"); + print_sys_reg_instr(params); + kvm_inject_undefined(vcpu); + return false; +} + +static bool write_to_read_only(struct kvm_vcpu *vcpu, + struct sys_reg_params *params, + const struct sys_reg_desc *r) +{ + WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n"); + print_sys_reg_instr(params); + kvm_inject_undefined(vcpu); + return false; +} + +u64 vcpu_read_sys_reg(struct kvm_vcpu *vcpu, int reg) +{ + if (!vcpu->arch.sysregs_loaded_on_cpu) + goto immediate_read; + + /* + * System registers listed in the switch are not saved on every + * exit from the guest but are only saved on vcpu_put. + * + * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but + * should never be listed below, because the guest cannot modify its + * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's + * thread when emulating cross-VCPU communication. + */ + switch (reg) { + case CSSELR_EL1: return read_sysreg_s(SYS_CSSELR_EL1); + case SCTLR_EL1: return read_sysreg_s(sctlr_EL12); + case ACTLR_EL1: return read_sysreg_s(SYS_ACTLR_EL1); + case CPACR_EL1: return read_sysreg_s(cpacr_EL12); + case TTBR0_EL1: return read_sysreg_s(ttbr0_EL12); + case TTBR1_EL1: return read_sysreg_s(ttbr1_EL12); + case TCR_EL1: return read_sysreg_s(tcr_EL12); + case ESR_EL1: return read_sysreg_s(esr_EL12); + case AFSR0_EL1: return read_sysreg_s(afsr0_EL12); + case AFSR1_EL1: return read_sysreg_s(afsr1_EL12); + case FAR_EL1: return read_sysreg_s(far_EL12); + case MAIR_EL1: return read_sysreg_s(mair_EL12); + case VBAR_EL1: return read_sysreg_s(vbar_EL12); + case CONTEXTIDR_EL1: return read_sysreg_s(contextidr_EL12); + case TPIDR_EL0: return read_sysreg_s(SYS_TPIDR_EL0); + case TPIDRRO_EL0: return read_sysreg_s(SYS_TPIDRRO_EL0); + case TPIDR_EL1: return read_sysreg_s(SYS_TPIDR_EL1); + case AMAIR_EL1: return read_sysreg_s(amair_EL12); + case CNTKCTL_EL1: return read_sysreg_s(cntkctl_EL12); + case PAR_EL1: return read_sysreg_s(SYS_PAR_EL1); + case DACR32_EL2: return read_sysreg_s(SYS_DACR32_EL2); + case IFSR32_EL2: return read_sysreg_s(SYS_IFSR32_EL2); + case DBGVCR32_EL2: return read_sysreg_s(SYS_DBGVCR32_EL2); + } + +immediate_read: + return __vcpu_sys_reg(vcpu, reg); +} + +void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg) +{ + if (!vcpu->arch.sysregs_loaded_on_cpu) + goto immediate_write; + + /* + * System registers listed in the switch are not restored on every + * entry to the guest but are only restored on vcpu_load. + * + * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but + * should never be listed below, because the the MPIDR should only be + * set once, before running the VCPU, and never changed later. + */ + switch (reg) { + case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); return; + case SCTLR_EL1: write_sysreg_s(val, sctlr_EL12); return; + case ACTLR_EL1: write_sysreg_s(val, SYS_ACTLR_EL1); return; + case CPACR_EL1: write_sysreg_s(val, cpacr_EL12); return; + case TTBR0_EL1: write_sysreg_s(val, ttbr0_EL12); return; + case TTBR1_EL1: write_sysreg_s(val, ttbr1_EL12); return; + case TCR_EL1: write_sysreg_s(val, tcr_EL12); return; + case ESR_EL1: write_sysreg_s(val, esr_EL12); return; + case AFSR0_EL1: write_sysreg_s(val, afsr0_EL12); return; + case AFSR1_EL1: write_sysreg_s(val, afsr1_EL12); return; + case FAR_EL1: write_sysreg_s(val, far_EL12); return; + case MAIR_EL1: write_sysreg_s(val, mair_EL12); return; + case VBAR_EL1: write_sysreg_s(val, vbar_EL12); return; + case CONTEXTIDR_EL1: write_sysreg_s(val, contextidr_EL12); return; + case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); return; + case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); return; + case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); return; + case AMAIR_EL1: write_sysreg_s(val, amair_EL12); return; + case CNTKCTL_EL1: write_sysreg_s(val, cntkctl_EL12); return; + case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); return; + case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); return; + case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); return; + case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); return; + } + +immediate_write: + __vcpu_sys_reg(vcpu, reg) = val; +} + +/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */ +static u32 cache_levels; + +/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ +#define CSSELR_MAX 12 + +/* Which cache CCSIDR represents depends on CSSELR value. */ +static u32 get_ccsidr(u32 csselr) +{ + u32 ccsidr; + + /* Make sure noone else changes CSSELR during this! */ + local_irq_disable(); + write_sysreg(csselr, csselr_el1); + isb(); + ccsidr = read_sysreg(ccsidr_el1); + local_irq_enable(); + + return ccsidr; +} + +/* + * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). + */ +static bool access_dcsw(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (!p->is_write) + return read_from_write_only(vcpu, p, r); + + /* + * Only track S/W ops if we don't have FWB. It still indicates + * that the guest is a bit broken (S/W operations should only + * be done by firmware, knowing that there is only a single + * CPU left in the system, and certainly not from non-secure + * software). + */ + if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) + kvm_set_way_flush(vcpu); + + return true; +} + +/* + * Generic accessor for VM registers. Only called as long as HCR_TVM + * is set. If the guest enables the MMU, we stop trapping the VM + * sys_regs and leave it in complete control of the caches. + */ +static bool access_vm_reg(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + bool was_enabled = vcpu_has_cache_enabled(vcpu); + u64 val; + int reg = r->reg; + + BUG_ON(!p->is_write); + + /* See the 32bit mapping in kvm_host.h */ + if (p->is_aarch32) + reg = r->reg / 2; + + if (!p->is_aarch32 || !p->is_32bit) { + val = p->regval; + } else { + val = vcpu_read_sys_reg(vcpu, reg); + if (r->reg % 2) + val = (p->regval << 32) | (u64)lower_32_bits(val); + else + val = ((u64)upper_32_bits(val) << 32) | + lower_32_bits(p->regval); + } + vcpu_write_sys_reg(vcpu, val, reg); + + kvm_toggle_cache(vcpu, was_enabled); + return true; +} + +/* + * Trap handler for the GICv3 SGI generation system register. + * Forward the request to the VGIC emulation. + * The cp15_64 code makes sure this automatically works + * for both AArch64 and AArch32 accesses. + */ +static bool access_gic_sgi(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + bool g1; + + if (!p->is_write) + return read_from_write_only(vcpu, p, r); + + /* + * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates + * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group, + * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively + * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure + * group. + */ + if (p->is_aarch32) { + switch (p->Op1) { + default: /* Keep GCC quiet */ + case 0: /* ICC_SGI1R */ + g1 = true; + break; + case 1: /* ICC_ASGI1R */ + case 2: /* ICC_SGI0R */ + g1 = false; + break; + } + } else { + switch (p->Op2) { + default: /* Keep GCC quiet */ + case 5: /* ICC_SGI1R_EL1 */ + g1 = true; + break; + case 6: /* ICC_ASGI1R_EL1 */ + case 7: /* ICC_SGI0R_EL1 */ + g1 = false; + break; + } + } + + vgic_v3_dispatch_sgi(vcpu, p->regval, g1); + + return true; +} + +static bool access_gic_sre(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + return ignore_write(vcpu, p); + + p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre; + return true; +} + +static bool trap_raz_wi(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + return ignore_write(vcpu, p); + else + return read_zero(vcpu, p); +} + +static bool trap_undef(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + kvm_inject_undefined(vcpu); + return false; +} + +static bool trap_oslsr_el1(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) { + return ignore_write(vcpu, p); + } else { + p->regval = (1 << 3); + return true; + } +} + +static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) { + return ignore_write(vcpu, p); + } else { + p->regval = read_sysreg(dbgauthstatus_el1); + return true; + } +} + +/* + * We want to avoid world-switching all the DBG registers all the + * time: + * + * - If we've touched any debug register, it is likely that we're + * going to touch more of them. It then makes sense to disable the + * traps and start doing the save/restore dance + * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is + * then mandatory to save/restore the registers, as the guest + * depends on them. + * + * For this, we use a DIRTY bit, indicating the guest has modified the + * debug registers, used as follow: + * + * On guest entry: + * - If the dirty bit is set (because we're coming back from trapping), + * disable the traps, save host registers, restore guest registers. + * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), + * set the dirty bit, disable the traps, save host registers, + * restore guest registers. + * - Otherwise, enable the traps + * + * On guest exit: + * - If the dirty bit is set, save guest registers, restore host + * registers and clear the dirty bit. This ensure that the host can + * now use the debug registers. + */ +static bool trap_debug_regs(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) { + vcpu_write_sys_reg(vcpu, p->regval, r->reg); + vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY; + } else { + p->regval = vcpu_read_sys_reg(vcpu, r->reg); + } + + trace_trap_reg(__func__, r->reg, p->is_write, p->regval); + + return true; +} + +/* + * reg_to_dbg/dbg_to_reg + * + * A 32 bit write to a debug register leave top bits alone + * A 32 bit read from a debug register only returns the bottom bits + * + * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the + * hyp.S code switches between host and guest values in future. + */ +static void reg_to_dbg(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + u64 *dbg_reg) +{ + u64 val = p->regval; + + if (p->is_32bit) { + val &= 0xffffffffUL; + val |= ((*dbg_reg >> 32) << 32); + } + + *dbg_reg = val; + vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY; +} + +static void dbg_to_reg(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + u64 *dbg_reg) +{ + p->regval = *dbg_reg; + if (p->is_32bit) + p->regval &= 0xffffffffUL; +} + +static bool trap_bvr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *rd) +{ + u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; + + if (p->is_write) + reg_to_dbg(vcpu, p, dbg_reg); + else + dbg_to_reg(vcpu, p, dbg_reg); + + trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); + + return true; +} + +static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + const struct kvm_one_reg *reg, void __user *uaddr) +{ + __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; + + if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) + return -EFAULT; + return 0; +} + +static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + const struct kvm_one_reg *reg, void __user *uaddr) +{ + __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; + + if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) + return -EFAULT; + return 0; +} + +static void reset_bvr(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val; +} + +static bool trap_bcr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *rd) +{ + u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; + + if (p->is_write) + reg_to_dbg(vcpu, p, dbg_reg); + else + dbg_to_reg(vcpu, p, dbg_reg); + + trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); + + return true; +} + +static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + const struct kvm_one_reg *reg, void __user *uaddr) +{ + __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; + + if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) + return -EFAULT; + + return 0; +} + +static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + const struct kvm_one_reg *reg, void __user *uaddr) +{ + __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; + + if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) + return -EFAULT; + return 0; +} + +static void reset_bcr(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val; +} + +static bool trap_wvr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *rd) +{ + u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; + + if (p->is_write) + reg_to_dbg(vcpu, p, dbg_reg); + else + dbg_to_reg(vcpu, p, dbg_reg); + + trace_trap_reg(__func__, rd->CRm, p->is_write, + vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]); + + return true; +} + +static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + const struct kvm_one_reg *reg, void __user *uaddr) +{ + __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; + + if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) + return -EFAULT; + return 0; +} + +static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + const struct kvm_one_reg *reg, void __user *uaddr) +{ + __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; + + if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) + return -EFAULT; + return 0; +} + +static void reset_wvr(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val; +} + +static bool trap_wcr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *rd) +{ + u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; + + if (p->is_write) + reg_to_dbg(vcpu, p, dbg_reg); + else + dbg_to_reg(vcpu, p, dbg_reg); + + trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); + + return true; +} + +static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + const struct kvm_one_reg *reg, void __user *uaddr) +{ + __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; + + if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) + return -EFAULT; + return 0; +} + +static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + const struct kvm_one_reg *reg, void __user *uaddr) +{ + __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; + + if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) + return -EFAULT; + return 0; +} + +static void reset_wcr(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val; +} + +static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + u64 amair = read_sysreg(amair_el1); + vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1); +} + +static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + u64 mpidr; + + /* + * Map the vcpu_id into the first three affinity level fields of + * the MPIDR. We limit the number of VCPUs in level 0 due to a + * limitation to 16 CPUs in that level in the ICC_SGIxR registers + * of the GICv3 to be able to address each CPU directly when + * sending IPIs. + */ + mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0); + mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1); + mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2); + vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1); +} + +static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + u64 pmcr, val; + + /* No PMU available, PMCR_EL0 may UNDEF... */ + if (!kvm_arm_support_pmu_v3()) + return; + + pmcr = read_sysreg(pmcr_el0); + /* + * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN + * except PMCR.E resetting to zero. + */ + val = ((pmcr & ~ARMV8_PMU_PMCR_MASK) + | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E); + __vcpu_sys_reg(vcpu, r->reg) = val; +} + +static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags) +{ + u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0); + bool enabled = (reg & flags) || vcpu_mode_priv(vcpu); + + if (!enabled) + kvm_inject_undefined(vcpu); + + return !enabled; +} + +static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu) +{ + return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN); +} + +static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu) +{ + return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN); +} + +static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu) +{ + return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN); +} + +static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu) +{ + return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN); +} + +static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 val; + + if (!kvm_arm_pmu_v3_ready(vcpu)) + return trap_raz_wi(vcpu, p, r); + + if (pmu_access_el0_disabled(vcpu)) + return false; + + if (p->is_write) { + /* Only update writeable bits of PMCR */ + val = __vcpu_sys_reg(vcpu, PMCR_EL0); + val &= ~ARMV8_PMU_PMCR_MASK; + val |= p->regval & ARMV8_PMU_PMCR_MASK; + __vcpu_sys_reg(vcpu, PMCR_EL0) = val; + kvm_pmu_handle_pmcr(vcpu, val); + } else { + /* PMCR.P & PMCR.C are RAZ */ + val = __vcpu_sys_reg(vcpu, PMCR_EL0) + & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C); + p->regval = val; + } + + return true; +} + +static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (!kvm_arm_pmu_v3_ready(vcpu)) + return trap_raz_wi(vcpu, p, r); + + if (pmu_access_event_counter_el0_disabled(vcpu)) + return false; + + if (p->is_write) + __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval; + else + /* return PMSELR.SEL field */ + p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0) + & ARMV8_PMU_COUNTER_MASK; + + return true; +} + +static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 pmceid; + + if (!kvm_arm_pmu_v3_ready(vcpu)) + return trap_raz_wi(vcpu, p, r); + + BUG_ON(p->is_write); + + if (pmu_access_el0_disabled(vcpu)) + return false; + + if (!(p->Op2 & 1)) + pmceid = read_sysreg(pmceid0_el0); + else + pmceid = read_sysreg(pmceid1_el0); + + p->regval = pmceid; + + return true; +} + +static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx) +{ + u64 pmcr, val; + + pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0); + val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK; + if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) { + kvm_inject_undefined(vcpu); + return false; + } + + return true; +} + +static bool access_pmu_evcntr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 idx; + + if (!kvm_arm_pmu_v3_ready(vcpu)) + return trap_raz_wi(vcpu, p, r); + + if (r->CRn == 9 && r->CRm == 13) { + if (r->Op2 == 2) { + /* PMXEVCNTR_EL0 */ + if (pmu_access_event_counter_el0_disabled(vcpu)) + return false; + + idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) + & ARMV8_PMU_COUNTER_MASK; + } else if (r->Op2 == 0) { + /* PMCCNTR_EL0 */ + if (pmu_access_cycle_counter_el0_disabled(vcpu)) + return false; + + idx = ARMV8_PMU_CYCLE_IDX; + } else { + return false; + } + } else if (r->CRn == 0 && r->CRm == 9) { + /* PMCCNTR */ + if (pmu_access_event_counter_el0_disabled(vcpu)) + return false; + + idx = ARMV8_PMU_CYCLE_IDX; + } else if (r->CRn == 14 && (r->CRm & 12) == 8) { + /* PMEVCNTRn_EL0 */ + if (pmu_access_event_counter_el0_disabled(vcpu)) + return false; + + idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); + } else { + return false; + } + + if (!pmu_counter_idx_valid(vcpu, idx)) + return false; + + if (p->is_write) { + if (pmu_access_el0_disabled(vcpu)) + return false; + + kvm_pmu_set_counter_value(vcpu, idx, p->regval); + } else { + p->regval = kvm_pmu_get_counter_value(vcpu, idx); + } + + return true; +} + +static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 idx, reg; + + if (!kvm_arm_pmu_v3_ready(vcpu)) + return trap_raz_wi(vcpu, p, r); + + if (pmu_access_el0_disabled(vcpu)) + return false; + + if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) { + /* PMXEVTYPER_EL0 */ + idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK; + reg = PMEVTYPER0_EL0 + idx; + } else if (r->CRn == 14 && (r->CRm & 12) == 12) { + idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); + if (idx == ARMV8_PMU_CYCLE_IDX) + reg = PMCCFILTR_EL0; + else + /* PMEVTYPERn_EL0 */ + reg = PMEVTYPER0_EL0 + idx; + } else { + BUG(); + } + + if (!pmu_counter_idx_valid(vcpu, idx)) + return false; + + if (p->is_write) { + kvm_pmu_set_counter_event_type(vcpu, p->regval, idx); + __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK; + } else { + p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK; + } + + return true; +} + +static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 val, mask; + + if (!kvm_arm_pmu_v3_ready(vcpu)) + return trap_raz_wi(vcpu, p, r); + + if (pmu_access_el0_disabled(vcpu)) + return false; + + mask = kvm_pmu_valid_counter_mask(vcpu); + if (p->is_write) { + val = p->regval & mask; + if (r->Op2 & 0x1) { + /* accessing PMCNTENSET_EL0 */ + __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val; + kvm_pmu_enable_counter(vcpu, val); + } else { + /* accessing PMCNTENCLR_EL0 */ + __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val; + kvm_pmu_disable_counter(vcpu, val); + } + } else { + p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask; + } + + return true; +} + +static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 mask = kvm_pmu_valid_counter_mask(vcpu); + + if (!kvm_arm_pmu_v3_ready(vcpu)) + return trap_raz_wi(vcpu, p, r); + + if (!vcpu_mode_priv(vcpu)) { + kvm_inject_undefined(vcpu); + return false; + } + + if (p->is_write) { + u64 val = p->regval & mask; + + if (r->Op2 & 0x1) + /* accessing PMINTENSET_EL1 */ + __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val; + else + /* accessing PMINTENCLR_EL1 */ + __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val; + } else { + p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask; + } + + return true; +} + +static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 mask = kvm_pmu_valid_counter_mask(vcpu); + + if (!kvm_arm_pmu_v3_ready(vcpu)) + return trap_raz_wi(vcpu, p, r); + + if (pmu_access_el0_disabled(vcpu)) + return false; + + if (p->is_write) { + if (r->CRm & 0x2) + /* accessing PMOVSSET_EL0 */ + __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask); + else + /* accessing PMOVSCLR_EL0 */ + __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask); + } else { + p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask; + } + + return true; +} + +static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 mask; + + if (!kvm_arm_pmu_v3_ready(vcpu)) + return trap_raz_wi(vcpu, p, r); + + if (!p->is_write) + return read_from_write_only(vcpu, p, r); + + if (pmu_write_swinc_el0_disabled(vcpu)) + return false; + + mask = kvm_pmu_valid_counter_mask(vcpu); + kvm_pmu_software_increment(vcpu, p->regval & mask); + return true; +} + +static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (!kvm_arm_pmu_v3_ready(vcpu)) + return trap_raz_wi(vcpu, p, r); + + if (p->is_write) { + if (!vcpu_mode_priv(vcpu)) { + kvm_inject_undefined(vcpu); + return false; + } + + __vcpu_sys_reg(vcpu, PMUSERENR_EL0) = + p->regval & ARMV8_PMU_USERENR_MASK; + } else { + p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0) + & ARMV8_PMU_USERENR_MASK; + } + + return true; +} + +/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */ +#define DBG_BCR_BVR_WCR_WVR_EL1(n) \ + { SYS_DESC(SYS_DBGBVRn_EL1(n)), \ + trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \ + { SYS_DESC(SYS_DBGBCRn_EL1(n)), \ + trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \ + { SYS_DESC(SYS_DBGWVRn_EL1(n)), \ + trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \ + { SYS_DESC(SYS_DBGWCRn_EL1(n)), \ + trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr } + +/* Macro to expand the PMEVCNTRn_EL0 register */ +#define PMU_PMEVCNTR_EL0(n) \ + { SYS_DESC(SYS_PMEVCNTRn_EL0(n)), \ + access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), } + +/* Macro to expand the PMEVTYPERn_EL0 register */ +#define PMU_PMEVTYPER_EL0(n) \ + { SYS_DESC(SYS_PMEVTYPERn_EL0(n)), \ + access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), } + +static bool access_cntp_tval(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 now = kvm_phys_timer_read(); + u64 cval; + + if (p->is_write) { + kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, + p->regval + now); + } else { + cval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL); + p->regval = cval - now; + } + + return true; +} + +static bool access_cntp_ctl(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, p->regval); + else + p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL); + + return true; +} + +static bool access_cntp_cval(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, p->regval); + else + p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL); + + return true; +} + +/* Read a sanitised cpufeature ID register by sys_reg_desc */ +static u64 read_id_reg(struct sys_reg_desc const *r, bool raz) +{ + u32 id = sys_reg((u32)r->Op0, (u32)r->Op1, + (u32)r->CRn, (u32)r->CRm, (u32)r->Op2); + u64 val = raz ? 0 : read_sanitised_ftr_reg(id); + + if (id == SYS_ID_AA64PFR0_EL1) { + if (val & (0xfUL << ID_AA64PFR0_SVE_SHIFT)) + kvm_debug("SVE unsupported for guests, suppressing\n"); + + val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT); + } else if (id == SYS_ID_AA64MMFR1_EL1) { + if (val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT)) + kvm_debug("LORegions unsupported for guests, suppressing\n"); + + val &= ~(0xfUL << ID_AA64MMFR1_LOR_SHIFT); + } + + return val; +} + +/* cpufeature ID register access trap handlers */ + +static bool __access_id_reg(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r, + bool raz) +{ + if (p->is_write) + return write_to_read_only(vcpu, p, r); + + p->regval = read_id_reg(r, raz); + return true; +} + +static bool access_id_reg(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + return __access_id_reg(vcpu, p, r, false); +} + +static bool access_raz_id_reg(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + return __access_id_reg(vcpu, p, r, true); +} + +static int reg_from_user(u64 *val, const void __user *uaddr, u64 id); +static int reg_to_user(void __user *uaddr, const u64 *val, u64 id); +static u64 sys_reg_to_index(const struct sys_reg_desc *reg); + +/* + * cpufeature ID register user accessors + * + * For now, these registers are immutable for userspace, so no values + * are stored, and for set_id_reg() we don't allow the effective value + * to be changed. + */ +static int __get_id_reg(const struct sys_reg_desc *rd, void __user *uaddr, + bool raz) +{ + const u64 id = sys_reg_to_index(rd); + const u64 val = read_id_reg(rd, raz); + + return reg_to_user(uaddr, &val, id); +} + +static int __set_id_reg(const struct sys_reg_desc *rd, void __user *uaddr, + bool raz) +{ + const u64 id = sys_reg_to_index(rd); + int err; + u64 val; + + err = reg_from_user(&val, uaddr, id); + if (err) + return err; + + /* This is what we mean by invariant: you can't change it. */ + if (val != read_id_reg(rd, raz)) + return -EINVAL; + + return 0; +} + +static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + const struct kvm_one_reg *reg, void __user *uaddr) +{ + return __get_id_reg(rd, uaddr, false); +} + +static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + const struct kvm_one_reg *reg, void __user *uaddr) +{ + return __set_id_reg(rd, uaddr, false); +} + +static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + const struct kvm_one_reg *reg, void __user *uaddr) +{ + return __get_id_reg(rd, uaddr, true); +} + +static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + const struct kvm_one_reg *reg, void __user *uaddr) +{ + return __set_id_reg(rd, uaddr, true); +} + +/* sys_reg_desc initialiser for known cpufeature ID registers */ +#define ID_SANITISED(name) { \ + SYS_DESC(SYS_##name), \ + .access = access_id_reg, \ + .get_user = get_id_reg, \ + .set_user = set_id_reg, \ +} + +/* + * sys_reg_desc initialiser for architecturally unallocated cpufeature ID + * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2 + * (1 <= crm < 8, 0 <= Op2 < 8). + */ +#define ID_UNALLOCATED(crm, op2) { \ + Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \ + .access = access_raz_id_reg, \ + .get_user = get_raz_id_reg, \ + .set_user = set_raz_id_reg, \ +} + +/* + * sys_reg_desc initialiser for known ID registers that we hide from guests. + * For now, these are exposed just like unallocated ID regs: they appear + * RAZ for the guest. + */ +#define ID_HIDDEN(name) { \ + SYS_DESC(SYS_##name), \ + .access = access_raz_id_reg, \ + .get_user = get_raz_id_reg, \ + .set_user = set_raz_id_reg, \ +} + +/* + * Architected system registers. + * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2 + * + * Debug handling: We do trap most, if not all debug related system + * registers. The implementation is good enough to ensure that a guest + * can use these with minimal performance degradation. The drawback is + * that we don't implement any of the external debug, none of the + * OSlock protocol. This should be revisited if we ever encounter a + * more demanding guest... + */ +static const struct sys_reg_desc sys_reg_descs[] = { + { SYS_DESC(SYS_DC_ISW), access_dcsw }, + { SYS_DESC(SYS_DC_CSW), access_dcsw }, + { SYS_DESC(SYS_DC_CISW), access_dcsw }, + + DBG_BCR_BVR_WCR_WVR_EL1(0), + DBG_BCR_BVR_WCR_WVR_EL1(1), + { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 }, + { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 }, + DBG_BCR_BVR_WCR_WVR_EL1(2), + DBG_BCR_BVR_WCR_WVR_EL1(3), + DBG_BCR_BVR_WCR_WVR_EL1(4), + DBG_BCR_BVR_WCR_WVR_EL1(5), + DBG_BCR_BVR_WCR_WVR_EL1(6), + DBG_BCR_BVR_WCR_WVR_EL1(7), + DBG_BCR_BVR_WCR_WVR_EL1(8), + DBG_BCR_BVR_WCR_WVR_EL1(9), + DBG_BCR_BVR_WCR_WVR_EL1(10), + DBG_BCR_BVR_WCR_WVR_EL1(11), + DBG_BCR_BVR_WCR_WVR_EL1(12), + DBG_BCR_BVR_WCR_WVR_EL1(13), + DBG_BCR_BVR_WCR_WVR_EL1(14), + DBG_BCR_BVR_WCR_WVR_EL1(15), + + { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 }, + { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi }, + { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 }, + + { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi }, + { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi }, + // DBGDTR[TR]X_EL0 share the same encoding + { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi }, + + { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 }, + + { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 }, + + /* + * ID regs: all ID_SANITISED() entries here must have corresponding + * entries in arm64_ftr_regs[]. + */ + + /* AArch64 mappings of the AArch32 ID registers */ + /* CRm=1 */ + ID_SANITISED(ID_PFR0_EL1), + ID_SANITISED(ID_PFR1_EL1), + ID_SANITISED(ID_DFR0_EL1), + ID_HIDDEN(ID_AFR0_EL1), + ID_SANITISED(ID_MMFR0_EL1), + ID_SANITISED(ID_MMFR1_EL1), + ID_SANITISED(ID_MMFR2_EL1), + ID_SANITISED(ID_MMFR3_EL1), + + /* CRm=2 */ + ID_SANITISED(ID_ISAR0_EL1), + ID_SANITISED(ID_ISAR1_EL1), + ID_SANITISED(ID_ISAR2_EL1), + ID_SANITISED(ID_ISAR3_EL1), + ID_SANITISED(ID_ISAR4_EL1), + ID_SANITISED(ID_ISAR5_EL1), + ID_SANITISED(ID_MMFR4_EL1), + ID_UNALLOCATED(2,7), + + /* CRm=3 */ + ID_SANITISED(MVFR0_EL1), + ID_SANITISED(MVFR1_EL1), + ID_SANITISED(MVFR2_EL1), + ID_UNALLOCATED(3,3), + ID_UNALLOCATED(3,4), + ID_UNALLOCATED(3,5), + ID_UNALLOCATED(3,6), + ID_UNALLOCATED(3,7), + + /* AArch64 ID registers */ + /* CRm=4 */ + ID_SANITISED(ID_AA64PFR0_EL1), + ID_SANITISED(ID_AA64PFR1_EL1), + ID_UNALLOCATED(4,2), + ID_UNALLOCATED(4,3), + ID_UNALLOCATED(4,4), + ID_UNALLOCATED(4,5), + ID_UNALLOCATED(4,6), + ID_UNALLOCATED(4,7), + + /* CRm=5 */ + ID_SANITISED(ID_AA64DFR0_EL1), + ID_SANITISED(ID_AA64DFR1_EL1), + ID_UNALLOCATED(5,2), + ID_UNALLOCATED(5,3), + ID_HIDDEN(ID_AA64AFR0_EL1), + ID_HIDDEN(ID_AA64AFR1_EL1), + ID_UNALLOCATED(5,6), + ID_UNALLOCATED(5,7), + + /* CRm=6 */ + ID_SANITISED(ID_AA64ISAR0_EL1), + ID_SANITISED(ID_AA64ISAR1_EL1), + ID_SANITISED(ID_AA64ISAR2_EL1), + ID_UNALLOCATED(6,3), + ID_UNALLOCATED(6,4), + ID_UNALLOCATED(6,5), + ID_UNALLOCATED(6,6), + ID_UNALLOCATED(6,7), + + /* CRm=7 */ + ID_SANITISED(ID_AA64MMFR0_EL1), + ID_SANITISED(ID_AA64MMFR1_EL1), + ID_SANITISED(ID_AA64MMFR2_EL1), + ID_UNALLOCATED(7,3), + ID_UNALLOCATED(7,4), + ID_UNALLOCATED(7,5), + ID_UNALLOCATED(7,6), + ID_UNALLOCATED(7,7), + + { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 }, + { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 }, + { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 }, + { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 }, + { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 }, + + { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 }, + { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 }, + { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 }, + + { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi }, + { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi }, + { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi }, + + { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 }, + { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 }, + + { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 }, + { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 }, + + { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 }, + { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 }, + + { SYS_DESC(SYS_LORSA_EL1), trap_undef }, + { SYS_DESC(SYS_LOREA_EL1), trap_undef }, + { SYS_DESC(SYS_LORN_EL1), trap_undef }, + { SYS_DESC(SYS_LORC_EL1), trap_undef }, + { SYS_DESC(SYS_LORID_EL1), trap_undef }, + + { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 }, + { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 }, + + { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only }, + { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only }, + { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only }, + { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only }, + { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only }, + { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi }, + { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi }, + { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi }, + { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only }, + { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only }, + { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only }, + { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre }, + + { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 }, + { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 }, + + { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0}, + + { SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 }, + + { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 }, + { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 }, + { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 }, + { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 }, + { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 }, + { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 }, + { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid }, + { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid }, + { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 }, + { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper }, + { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr }, + /* + * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero + * in 32bit mode. Here we choose to reset it as zero for consistency. + */ + { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 }, + { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 }, + + { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 }, + { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 }, + + { SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval }, + { SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl }, + { SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval }, + + /* PMEVCNTRn_EL0 */ + PMU_PMEVCNTR_EL0(0), + PMU_PMEVCNTR_EL0(1), + PMU_PMEVCNTR_EL0(2), + PMU_PMEVCNTR_EL0(3), + PMU_PMEVCNTR_EL0(4), + PMU_PMEVCNTR_EL0(5), + PMU_PMEVCNTR_EL0(6), + PMU_PMEVCNTR_EL0(7), + PMU_PMEVCNTR_EL0(8), + PMU_PMEVCNTR_EL0(9), + PMU_PMEVCNTR_EL0(10), + PMU_PMEVCNTR_EL0(11), + PMU_PMEVCNTR_EL0(12), + PMU_PMEVCNTR_EL0(13), + PMU_PMEVCNTR_EL0(14), + PMU_PMEVCNTR_EL0(15), + PMU_PMEVCNTR_EL0(16), + PMU_PMEVCNTR_EL0(17), + PMU_PMEVCNTR_EL0(18), + PMU_PMEVCNTR_EL0(19), + PMU_PMEVCNTR_EL0(20), + PMU_PMEVCNTR_EL0(21), + PMU_PMEVCNTR_EL0(22), + PMU_PMEVCNTR_EL0(23), + PMU_PMEVCNTR_EL0(24), + PMU_PMEVCNTR_EL0(25), + PMU_PMEVCNTR_EL0(26), + PMU_PMEVCNTR_EL0(27), + PMU_PMEVCNTR_EL0(28), + PMU_PMEVCNTR_EL0(29), + PMU_PMEVCNTR_EL0(30), + /* PMEVTYPERn_EL0 */ + PMU_PMEVTYPER_EL0(0), + PMU_PMEVTYPER_EL0(1), + PMU_PMEVTYPER_EL0(2), + PMU_PMEVTYPER_EL0(3), + PMU_PMEVTYPER_EL0(4), + PMU_PMEVTYPER_EL0(5), + PMU_PMEVTYPER_EL0(6), + PMU_PMEVTYPER_EL0(7), + PMU_PMEVTYPER_EL0(8), + PMU_PMEVTYPER_EL0(9), + PMU_PMEVTYPER_EL0(10), + PMU_PMEVTYPER_EL0(11), + PMU_PMEVTYPER_EL0(12), + PMU_PMEVTYPER_EL0(13), + PMU_PMEVTYPER_EL0(14), + PMU_PMEVTYPER_EL0(15), + PMU_PMEVTYPER_EL0(16), + PMU_PMEVTYPER_EL0(17), + PMU_PMEVTYPER_EL0(18), + PMU_PMEVTYPER_EL0(19), + PMU_PMEVTYPER_EL0(20), + PMU_PMEVTYPER_EL0(21), + PMU_PMEVTYPER_EL0(22), + PMU_PMEVTYPER_EL0(23), + PMU_PMEVTYPER_EL0(24), + PMU_PMEVTYPER_EL0(25), + PMU_PMEVTYPER_EL0(26), + PMU_PMEVTYPER_EL0(27), + PMU_PMEVTYPER_EL0(28), + PMU_PMEVTYPER_EL0(29), + PMU_PMEVTYPER_EL0(30), + /* + * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero + * in 32bit mode. Here we choose to reset it as zero for consistency. + */ + { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 }, + + { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 }, + { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 }, + { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 }, +}; + +static bool trap_dbgidr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) { + return ignore_write(vcpu, p); + } else { + u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1); + u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); + u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT); + + p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) | + (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) | + (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20) + | (6 << 16) | (el3 << 14) | (el3 << 12)); + return true; + } +} + +static bool trap_debug32(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) { + vcpu_cp14(vcpu, r->reg) = p->regval; + vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY; + } else { + p->regval = vcpu_cp14(vcpu, r->reg); + } + + return true; +} + +/* AArch32 debug register mappings + * + * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0] + * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32] + * + * All control registers and watchpoint value registers are mapped to + * the lower 32 bits of their AArch64 equivalents. We share the trap + * handlers with the above AArch64 code which checks what mode the + * system is in. + */ + +static bool trap_xvr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *rd) +{ + u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg]; + + if (p->is_write) { + u64 val = *dbg_reg; + + val &= 0xffffffffUL; + val |= p->regval << 32; + *dbg_reg = val; + + vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY; + } else { + p->regval = *dbg_reg >> 32; + } + + trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg); + + return true; +} + +#define DBG_BCR_BVR_WCR_WVR(n) \ + /* DBGBVRn */ \ + { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \ + /* DBGBCRn */ \ + { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \ + /* DBGWVRn */ \ + { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \ + /* DBGWCRn */ \ + { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n } + +#define DBGBXVR(n) \ + { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n } + +/* + * Trapped cp14 registers. We generally ignore most of the external + * debug, on the principle that they don't really make sense to a + * guest. Revisit this one day, would this principle change. + */ +static const struct sys_reg_desc cp14_regs[] = { + /* DBGIDR */ + { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr }, + /* DBGDTRRXext */ + { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi }, + + DBG_BCR_BVR_WCR_WVR(0), + /* DBGDSCRint */ + { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi }, + DBG_BCR_BVR_WCR_WVR(1), + /* DBGDCCINT */ + { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32, NULL, cp14_DBGDCCINT }, + /* DBGDSCRext */ + { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32, NULL, cp14_DBGDSCRext }, + DBG_BCR_BVR_WCR_WVR(2), + /* DBGDTR[RT]Xint */ + { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi }, + /* DBGDTR[RT]Xext */ + { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi }, + DBG_BCR_BVR_WCR_WVR(3), + DBG_BCR_BVR_WCR_WVR(4), + DBG_BCR_BVR_WCR_WVR(5), + /* DBGWFAR */ + { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi }, + /* DBGOSECCR */ + { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi }, + DBG_BCR_BVR_WCR_WVR(6), + /* DBGVCR */ + { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32, NULL, cp14_DBGVCR }, + DBG_BCR_BVR_WCR_WVR(7), + DBG_BCR_BVR_WCR_WVR(8), + DBG_BCR_BVR_WCR_WVR(9), + DBG_BCR_BVR_WCR_WVR(10), + DBG_BCR_BVR_WCR_WVR(11), + DBG_BCR_BVR_WCR_WVR(12), + DBG_BCR_BVR_WCR_WVR(13), + DBG_BCR_BVR_WCR_WVR(14), + DBG_BCR_BVR_WCR_WVR(15), + + /* DBGDRAR (32bit) */ + { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi }, + + DBGBXVR(0), + /* DBGOSLAR */ + { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi }, + DBGBXVR(1), + /* DBGOSLSR */ + { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 }, + DBGBXVR(2), + DBGBXVR(3), + /* DBGOSDLR */ + { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi }, + DBGBXVR(4), + /* DBGPRCR */ + { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi }, + DBGBXVR(5), + DBGBXVR(6), + DBGBXVR(7), + DBGBXVR(8), + DBGBXVR(9), + DBGBXVR(10), + DBGBXVR(11), + DBGBXVR(12), + DBGBXVR(13), + DBGBXVR(14), + DBGBXVR(15), + + /* DBGDSAR (32bit) */ + { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi }, + + /* DBGDEVID2 */ + { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi }, + /* DBGDEVID1 */ + { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi }, + /* DBGDEVID */ + { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi }, + /* DBGCLAIMSET */ + { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi }, + /* DBGCLAIMCLR */ + { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi }, + /* DBGAUTHSTATUS */ + { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 }, +}; + +/* Trapped cp14 64bit registers */ +static const struct sys_reg_desc cp14_64_regs[] = { + /* DBGDRAR (64bit) */ + { Op1( 0), CRm( 1), .access = trap_raz_wi }, + + /* DBGDSAR (64bit) */ + { Op1( 0), CRm( 2), .access = trap_raz_wi }, +}; + +/* Macro to expand the PMEVCNTRn register */ +#define PMU_PMEVCNTR(n) \ + /* PMEVCNTRn */ \ + { Op1(0), CRn(0b1110), \ + CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \ + access_pmu_evcntr } + +/* Macro to expand the PMEVTYPERn register */ +#define PMU_PMEVTYPER(n) \ + /* PMEVTYPERn */ \ + { Op1(0), CRn(0b1110), \ + CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \ + access_pmu_evtyper } + +/* + * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding, + * depending on the way they are accessed (as a 32bit or a 64bit + * register). + */ +static const struct sys_reg_desc cp15_regs[] = { + { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR }, + { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 }, + { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 }, + { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR }, + { Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, c2_TTBCR2 }, + { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR }, + { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR }, + { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR }, + { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR }, + { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR }, + { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR }, + { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR }, + + /* + * DC{C,I,CI}SW operations: + */ + { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw }, + { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw }, + { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw }, + + /* PMU */ + { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr }, + { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten }, + { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten }, + { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs }, + { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc }, + { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr }, + { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid }, + { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid }, + { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr }, + { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper }, + { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr }, + { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr }, + { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten }, + { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten }, + { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs }, + + { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR }, + { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR }, + { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 }, + { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 }, + + /* ICC_SRE */ + { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre }, + + { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID }, + + /* CNTP_TVAL */ + { Op1( 0), CRn(14), CRm( 2), Op2( 0), access_cntp_tval }, + /* CNTP_CTL */ + { Op1( 0), CRn(14), CRm( 2), Op2( 1), access_cntp_ctl }, + + /* PMEVCNTRn */ + PMU_PMEVCNTR(0), + PMU_PMEVCNTR(1), + PMU_PMEVCNTR(2), + PMU_PMEVCNTR(3), + PMU_PMEVCNTR(4), + PMU_PMEVCNTR(5), + PMU_PMEVCNTR(6), + PMU_PMEVCNTR(7), + PMU_PMEVCNTR(8), + PMU_PMEVCNTR(9), + PMU_PMEVCNTR(10), + PMU_PMEVCNTR(11), + PMU_PMEVCNTR(12), + PMU_PMEVCNTR(13), + PMU_PMEVCNTR(14), + PMU_PMEVCNTR(15), + PMU_PMEVCNTR(16), + PMU_PMEVCNTR(17), + PMU_PMEVCNTR(18), + PMU_PMEVCNTR(19), + PMU_PMEVCNTR(20), + PMU_PMEVCNTR(21), + PMU_PMEVCNTR(22), + PMU_PMEVCNTR(23), + PMU_PMEVCNTR(24), + PMU_PMEVCNTR(25), + PMU_PMEVCNTR(26), + PMU_PMEVCNTR(27), + PMU_PMEVCNTR(28), + PMU_PMEVCNTR(29), + PMU_PMEVCNTR(30), + /* PMEVTYPERn */ + PMU_PMEVTYPER(0), + PMU_PMEVTYPER(1), + PMU_PMEVTYPER(2), + PMU_PMEVTYPER(3), + PMU_PMEVTYPER(4), + PMU_PMEVTYPER(5), + PMU_PMEVTYPER(6), + PMU_PMEVTYPER(7), + PMU_PMEVTYPER(8), + PMU_PMEVTYPER(9), + PMU_PMEVTYPER(10), + PMU_PMEVTYPER(11), + PMU_PMEVTYPER(12), + PMU_PMEVTYPER(13), + PMU_PMEVTYPER(14), + PMU_PMEVTYPER(15), + PMU_PMEVTYPER(16), + PMU_PMEVTYPER(17), + PMU_PMEVTYPER(18), + PMU_PMEVTYPER(19), + PMU_PMEVTYPER(20), + PMU_PMEVTYPER(21), + PMU_PMEVTYPER(22), + PMU_PMEVTYPER(23), + PMU_PMEVTYPER(24), + PMU_PMEVTYPER(25), + PMU_PMEVTYPER(26), + PMU_PMEVTYPER(27), + PMU_PMEVTYPER(28), + PMU_PMEVTYPER(29), + PMU_PMEVTYPER(30), + /* PMCCFILTR */ + { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper }, +}; + +static const struct sys_reg_desc cp15_64_regs[] = { + { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 }, + { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr }, + { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */ + { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 }, + { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */ + { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */ + { Op1( 2), CRn( 0), CRm(14), Op2( 0), access_cntp_cval }, +}; + +/* Target specific emulation tables */ +static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS]; + +void kvm_register_target_sys_reg_table(unsigned int target, + struct kvm_sys_reg_target_table *table) +{ + target_tables[target] = table; +} + +/* Get specific register table for this target. */ +static const struct sys_reg_desc *get_target_table(unsigned target, + bool mode_is_64, + size_t *num) +{ + struct kvm_sys_reg_target_table *table; + + table = target_tables[target]; + if (mode_is_64) { + *num = table->table64.num; + return table->table64.table; + } else { + *num = table->table32.num; + return table->table32.table; + } +} + +#define reg_to_match_value(x) \ + ({ \ + unsigned long val; \ + val = (x)->Op0 << 14; \ + val |= (x)->Op1 << 11; \ + val |= (x)->CRn << 7; \ + val |= (x)->CRm << 3; \ + val |= (x)->Op2; \ + val; \ + }) + +static int match_sys_reg(const void *key, const void *elt) +{ + const unsigned long pval = (unsigned long)key; + const struct sys_reg_desc *r = elt; + + return pval - reg_to_match_value(r); +} + +static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params, + const struct sys_reg_desc table[], + unsigned int num) +{ + unsigned long pval = reg_to_match_value(params); + + return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg); +} + +int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run) +{ + kvm_inject_undefined(vcpu); + return 1; +} + +static void perform_access(struct kvm_vcpu *vcpu, + struct sys_reg_params *params, + const struct sys_reg_desc *r) +{ + /* + * Not having an accessor means that we have configured a trap + * that we don't know how to handle. This certainly qualifies + * as a gross bug that should be fixed right away. + */ + BUG_ON(!r->access); + + /* Skip instruction if instructed so */ + if (likely(r->access(vcpu, params, r))) + kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); +} + +/* + * emulate_cp -- tries to match a sys_reg access in a handling table, and + * call the corresponding trap handler. + * + * @params: pointer to the descriptor of the access + * @table: array of trap descriptors + * @num: size of the trap descriptor array + * + * Return 0 if the access has been handled, and -1 if not. + */ +static int emulate_cp(struct kvm_vcpu *vcpu, + struct sys_reg_params *params, + const struct sys_reg_desc *table, + size_t num) +{ + const struct sys_reg_desc *r; + + if (!table) + return -1; /* Not handled */ + + r = find_reg(params, table, num); + + if (r) { + perform_access(vcpu, params, r); + return 0; + } + + /* Not handled */ + return -1; +} + +static void unhandled_cp_access(struct kvm_vcpu *vcpu, + struct sys_reg_params *params) +{ + u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu); + int cp = -1; + + switch(hsr_ec) { + case ESR_ELx_EC_CP15_32: + case ESR_ELx_EC_CP15_64: + cp = 15; + break; + case ESR_ELx_EC_CP14_MR: + case ESR_ELx_EC_CP14_64: + cp = 14; + break; + default: + WARN_ON(1); + } + + kvm_err("Unsupported guest CP%d access at: %08lx\n", + cp, *vcpu_pc(vcpu)); + print_sys_reg_instr(params); + kvm_inject_undefined(vcpu); +} + +/** + * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access + * @vcpu: The VCPU pointer + * @run: The kvm_run struct + */ +static int kvm_handle_cp_64(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *global, + size_t nr_global, + const struct sys_reg_desc *target_specific, + size_t nr_specific) +{ + struct sys_reg_params params; + u32 hsr = kvm_vcpu_get_hsr(vcpu); + int Rt = kvm_vcpu_sys_get_rt(vcpu); + int Rt2 = (hsr >> 10) & 0x1f; + + params.is_aarch32 = true; + params.is_32bit = false; + params.CRm = (hsr >> 1) & 0xf; + params.is_write = ((hsr & 1) == 0); + + params.Op0 = 0; + params.Op1 = (hsr >> 16) & 0xf; + params.Op2 = 0; + params.CRn = 0; + + /* + * Make a 64-bit value out of Rt and Rt2. As we use the same trap + * backends between AArch32 and AArch64, we get away with it. + */ + if (params.is_write) { + params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff; + params.regval |= vcpu_get_reg(vcpu, Rt2) << 32; + } + + /* + * Try to emulate the coprocessor access using the target + * specific table first, and using the global table afterwards. + * If either of the tables contains a handler, handle the + * potential register operation in the case of a read and return + * with success. + */ + if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific) || + !emulate_cp(vcpu, ¶ms, global, nr_global)) { + /* Split up the value between registers for the read side */ + if (!params.is_write) { + vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval)); + vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval)); + } + + return 1; + } + + unhandled_cp_access(vcpu, ¶ms); + return 1; +} + +/** + * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access + * @vcpu: The VCPU pointer + * @run: The kvm_run struct + */ +static int kvm_handle_cp_32(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *global, + size_t nr_global, + const struct sys_reg_desc *target_specific, + size_t nr_specific) +{ + struct sys_reg_params params; + u32 hsr = kvm_vcpu_get_hsr(vcpu); + int Rt = kvm_vcpu_sys_get_rt(vcpu); + + params.is_aarch32 = true; + params.is_32bit = true; + params.CRm = (hsr >> 1) & 0xf; + params.regval = vcpu_get_reg(vcpu, Rt); + params.is_write = ((hsr & 1) == 0); + params.CRn = (hsr >> 10) & 0xf; + params.Op0 = 0; + params.Op1 = (hsr >> 14) & 0x7; + params.Op2 = (hsr >> 17) & 0x7; + + if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific) || + !emulate_cp(vcpu, ¶ms, global, nr_global)) { + if (!params.is_write) + vcpu_set_reg(vcpu, Rt, params.regval); + return 1; + } + + unhandled_cp_access(vcpu, ¶ms); + return 1; +} + +int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run) +{ + const struct sys_reg_desc *target_specific; + size_t num; + + target_specific = get_target_table(vcpu->arch.target, false, &num); + return kvm_handle_cp_64(vcpu, + cp15_64_regs, ARRAY_SIZE(cp15_64_regs), + target_specific, num); +} + +int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run) +{ + const struct sys_reg_desc *target_specific; + size_t num; + + target_specific = get_target_table(vcpu->arch.target, false, &num); + return kvm_handle_cp_32(vcpu, + cp15_regs, ARRAY_SIZE(cp15_regs), + target_specific, num); +} + +int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run) +{ + return kvm_handle_cp_64(vcpu, + cp14_64_regs, ARRAY_SIZE(cp14_64_regs), + NULL, 0); +} + +int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run) +{ + return kvm_handle_cp_32(vcpu, + cp14_regs, ARRAY_SIZE(cp14_regs), + NULL, 0); +} + +static int emulate_sys_reg(struct kvm_vcpu *vcpu, + struct sys_reg_params *params) +{ + size_t num; + const struct sys_reg_desc *table, *r; + + table = get_target_table(vcpu->arch.target, true, &num); + + /* Search target-specific then generic table. */ + r = find_reg(params, table, num); + if (!r) + r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); + + if (likely(r)) { + perform_access(vcpu, params, r); + } else { + kvm_err("Unsupported guest sys_reg access at: %lx\n", + *vcpu_pc(vcpu)); + print_sys_reg_instr(params); + kvm_inject_undefined(vcpu); + } + return 1; +} + +static void reset_sys_reg_descs(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *table, size_t num, + unsigned long *bmap) +{ + unsigned long i; + + for (i = 0; i < num; i++) + if (table[i].reset) { + int reg = table[i].reg; + + table[i].reset(vcpu, &table[i]); + if (reg > 0 && reg < NR_SYS_REGS) + set_bit(reg, bmap); + } +} + +/** + * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access + * @vcpu: The VCPU pointer + * @run: The kvm_run struct + */ +int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run) +{ + struct sys_reg_params params; + unsigned long esr = kvm_vcpu_get_hsr(vcpu); + int Rt = kvm_vcpu_sys_get_rt(vcpu); + int ret; + + trace_kvm_handle_sys_reg(esr); + + params.is_aarch32 = false; + params.is_32bit = false; + params.Op0 = (esr >> 20) & 3; + params.Op1 = (esr >> 14) & 0x7; + params.CRn = (esr >> 10) & 0xf; + params.CRm = (esr >> 1) & 0xf; + params.Op2 = (esr >> 17) & 0x7; + params.regval = vcpu_get_reg(vcpu, Rt); + params.is_write = !(esr & 1); + + ret = emulate_sys_reg(vcpu, ¶ms); + + if (!params.is_write) + vcpu_set_reg(vcpu, Rt, params.regval); + return ret; +} + +/****************************************************************************** + * Userspace API + *****************************************************************************/ + +static bool index_to_params(u64 id, struct sys_reg_params *params) +{ + switch (id & KVM_REG_SIZE_MASK) { + case KVM_REG_SIZE_U64: + /* Any unused index bits means it's not valid. */ + if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK + | KVM_REG_ARM_COPROC_MASK + | KVM_REG_ARM64_SYSREG_OP0_MASK + | KVM_REG_ARM64_SYSREG_OP1_MASK + | KVM_REG_ARM64_SYSREG_CRN_MASK + | KVM_REG_ARM64_SYSREG_CRM_MASK + | KVM_REG_ARM64_SYSREG_OP2_MASK)) + return false; + params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK) + >> KVM_REG_ARM64_SYSREG_OP0_SHIFT); + params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK) + >> KVM_REG_ARM64_SYSREG_OP1_SHIFT); + params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK) + >> KVM_REG_ARM64_SYSREG_CRN_SHIFT); + params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK) + >> KVM_REG_ARM64_SYSREG_CRM_SHIFT); + params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK) + >> KVM_REG_ARM64_SYSREG_OP2_SHIFT); + return true; + default: + return false; + } +} + +const struct sys_reg_desc *find_reg_by_id(u64 id, + struct sys_reg_params *params, + const struct sys_reg_desc table[], + unsigned int num) +{ + if (!index_to_params(id, params)) + return NULL; + + return find_reg(params, table, num); +} + +/* Decode an index value, and find the sys_reg_desc entry. */ +static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu, + u64 id) +{ + size_t num; + const struct sys_reg_desc *table, *r; + struct sys_reg_params params; + + /* We only do sys_reg for now. */ + if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG) + return NULL; + + if (!index_to_params(id, ¶ms)) + return NULL; + + table = get_target_table(vcpu->arch.target, true, &num); + r = find_reg(¶ms, table, num); + if (!r) + r = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); + + /* Not saved in the sys_reg array and not otherwise accessible? */ + if (r && !(r->reg || r->get_user)) + r = NULL; + + return r; +} + +/* + * These are the invariant sys_reg registers: we let the guest see the + * host versions of these, so they're part of the guest state. + * + * A future CPU may provide a mechanism to present different values to + * the guest, or a future kvm may trap them. + */ + +#define FUNCTION_INVARIANT(reg) \ + static void get_##reg(struct kvm_vcpu *v, \ + const struct sys_reg_desc *r) \ + { \ + ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \ + } + +FUNCTION_INVARIANT(midr_el1) +FUNCTION_INVARIANT(ctr_el0) +FUNCTION_INVARIANT(revidr_el1) +FUNCTION_INVARIANT(clidr_el1) +FUNCTION_INVARIANT(aidr_el1) + +/* ->val is filled in by kvm_sys_reg_table_init() */ +static struct sys_reg_desc invariant_sys_regs[] = { + { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 }, + { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 }, + { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 }, + { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 }, + { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 }, +}; + +static int reg_from_user(u64 *val, const void __user *uaddr, u64 id) +{ + if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0) + return -EFAULT; + return 0; +} + +static int reg_to_user(void __user *uaddr, const u64 *val, u64 id) +{ + if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0) + return -EFAULT; + return 0; +} + +static int get_invariant_sys_reg(u64 id, void __user *uaddr) +{ + struct sys_reg_params params; + const struct sys_reg_desc *r; + + r = find_reg_by_id(id, ¶ms, invariant_sys_regs, + ARRAY_SIZE(invariant_sys_regs)); + if (!r) + return -ENOENT; + + return reg_to_user(uaddr, &r->val, id); +} + +static int set_invariant_sys_reg(u64 id, void __user *uaddr) +{ + struct sys_reg_params params; + const struct sys_reg_desc *r; + int err; + u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */ + + r = find_reg_by_id(id, ¶ms, invariant_sys_regs, + ARRAY_SIZE(invariant_sys_regs)); + if (!r) + return -ENOENT; + + err = reg_from_user(&val, uaddr, id); + if (err) + return err; + + /* This is what we mean by invariant: you can't change it. */ + if (r->val != val) + return -EINVAL; + + return 0; +} + +static bool is_valid_cache(u32 val) +{ + u32 level, ctype; + + if (val >= CSSELR_MAX) + return false; + + /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */ + level = (val >> 1); + ctype = (cache_levels >> (level * 3)) & 7; + + switch (ctype) { + case 0: /* No cache */ + return false; + case 1: /* Instruction cache only */ + return (val & 1); + case 2: /* Data cache only */ + case 4: /* Unified cache */ + return !(val & 1); + case 3: /* Separate instruction and data caches */ + return true; + default: /* Reserved: we can't know instruction or data. */ + return false; + } +} + +static int demux_c15_get(u64 id, void __user *uaddr) +{ + u32 val; + u32 __user *uval = uaddr; + + /* Fail if we have unknown bits set. */ + if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK + | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) + return -ENOENT; + + switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { + case KVM_REG_ARM_DEMUX_ID_CCSIDR: + if (KVM_REG_SIZE(id) != 4) + return -ENOENT; + val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) + >> KVM_REG_ARM_DEMUX_VAL_SHIFT; + if (!is_valid_cache(val)) + return -ENOENT; + + return put_user(get_ccsidr(val), uval); + default: + return -ENOENT; + } +} + +static int demux_c15_set(u64 id, void __user *uaddr) +{ + u32 val, newval; + u32 __user *uval = uaddr; + + /* Fail if we have unknown bits set. */ + if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK + | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) + return -ENOENT; + + switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { + case KVM_REG_ARM_DEMUX_ID_CCSIDR: + if (KVM_REG_SIZE(id) != 4) + return -ENOENT; + val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) + >> KVM_REG_ARM_DEMUX_VAL_SHIFT; + if (!is_valid_cache(val)) + return -ENOENT; + + if (get_user(newval, uval)) + return -EFAULT; + + /* This is also invariant: you can't change it. */ + if (newval != get_ccsidr(val)) + return -EINVAL; + return 0; + default: + return -ENOENT; + } +} + +int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) +{ + const struct sys_reg_desc *r; + void __user *uaddr = (void __user *)(unsigned long)reg->addr; + + if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) + return demux_c15_get(reg->id, uaddr); + + if (KVM_REG_SIZE(reg->id) != sizeof(__u64)) + return -ENOENT; + + r = index_to_sys_reg_desc(vcpu, reg->id); + if (!r) + return get_invariant_sys_reg(reg->id, uaddr); + + if (r->get_user) + return (r->get_user)(vcpu, r, reg, uaddr); + + return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id); +} + +int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) +{ + const struct sys_reg_desc *r; + void __user *uaddr = (void __user *)(unsigned long)reg->addr; + + if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) + return demux_c15_set(reg->id, uaddr); + + if (KVM_REG_SIZE(reg->id) != sizeof(__u64)) + return -ENOENT; + + r = index_to_sys_reg_desc(vcpu, reg->id); + if (!r) + return set_invariant_sys_reg(reg->id, uaddr); + + if (r->set_user) + return (r->set_user)(vcpu, r, reg, uaddr); + + return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id); +} + +static unsigned int num_demux_regs(void) +{ + unsigned int i, count = 0; + + for (i = 0; i < CSSELR_MAX; i++) + if (is_valid_cache(i)) + count++; + + return count; +} + +static int write_demux_regids(u64 __user *uindices) +{ + u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; + unsigned int i; + + val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; + for (i = 0; i < CSSELR_MAX; i++) { + if (!is_valid_cache(i)) + continue; + if (put_user(val | i, uindices)) + return -EFAULT; + uindices++; + } + return 0; +} + +static u64 sys_reg_to_index(const struct sys_reg_desc *reg) +{ + return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | + KVM_REG_ARM64_SYSREG | + (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) | + (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) | + (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) | + (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) | + (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT)); +} + +static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind) +{ + if (!*uind) + return true; + + if (put_user(sys_reg_to_index(reg), *uind)) + return false; + + (*uind)++; + return true; +} + +static int walk_one_sys_reg(const struct sys_reg_desc *rd, + u64 __user **uind, + unsigned int *total) +{ + /* + * Ignore registers we trap but don't save, + * and for which no custom user accessor is provided. + */ + if (!(rd->reg || rd->get_user)) + return 0; + + if (!copy_reg_to_user(rd, uind)) + return -EFAULT; + + (*total)++; + return 0; +} + +/* Assumed ordered tables, see kvm_sys_reg_table_init. */ +static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind) +{ + const struct sys_reg_desc *i1, *i2, *end1, *end2; + unsigned int total = 0; + size_t num; + int err; + + /* We check for duplicates here, to allow arch-specific overrides. */ + i1 = get_target_table(vcpu->arch.target, true, &num); + end1 = i1 + num; + i2 = sys_reg_descs; + end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs); + + BUG_ON(i1 == end1 || i2 == end2); + + /* Walk carefully, as both tables may refer to the same register. */ + while (i1 || i2) { + int cmp = cmp_sys_reg(i1, i2); + /* target-specific overrides generic entry. */ + if (cmp <= 0) + err = walk_one_sys_reg(i1, &uind, &total); + else + err = walk_one_sys_reg(i2, &uind, &total); + + if (err) + return err; + + if (cmp <= 0 && ++i1 == end1) + i1 = NULL; + if (cmp >= 0 && ++i2 == end2) + i2 = NULL; + } + return total; +} + +unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu) +{ + return ARRAY_SIZE(invariant_sys_regs) + + num_demux_regs() + + walk_sys_regs(vcpu, (u64 __user *)NULL); +} + +int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) +{ + unsigned int i; + int err; + + /* Then give them all the invariant registers' indices. */ + for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) { + if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices)) + return -EFAULT; + uindices++; + } + + err = walk_sys_regs(vcpu, uindices); + if (err < 0) + return err; + uindices += err; + + return write_demux_regids(uindices); +} + +static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n) +{ + unsigned int i; + + for (i = 1; i < n; i++) { + if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) { + kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1); + return 1; + } + } + + return 0; +} + +void kvm_sys_reg_table_init(void) +{ + unsigned int i; + struct sys_reg_desc clidr; + + /* Make sure tables are unique and in order. */ + BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs))); + BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs))); + BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs))); + BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs))); + BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs))); + BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs))); + + /* We abuse the reset function to overwrite the table itself. */ + for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) + invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]); + + /* + * CLIDR format is awkward, so clean it up. See ARM B4.1.20: + * + * If software reads the Cache Type fields from Ctype1 + * upwards, once it has seen a value of 0b000, no caches + * exist at further-out levels of the hierarchy. So, for + * example, if Ctype3 is the first Cache Type field with a + * value of 0b000, the values of Ctype4 to Ctype7 must be + * ignored. + */ + get_clidr_el1(NULL, &clidr); /* Ugly... */ + cache_levels = clidr.val; + for (i = 0; i < 7; i++) + if (((cache_levels >> (i*3)) & 7) == 0) + break; + /* Clear all higher bits. */ + cache_levels &= (1 << (i*3))-1; +} + +/** + * kvm_reset_sys_regs - sets system registers to reset value + * @vcpu: The VCPU pointer + * + * This function finds the right table above and sets the registers on the + * virtual CPU struct to their architecturally defined reset values. + */ +void kvm_reset_sys_regs(struct kvm_vcpu *vcpu) +{ + size_t num; + const struct sys_reg_desc *table; + DECLARE_BITMAP(bmap, NR_SYS_REGS) = { 0, }; + + /* Generic chip reset first (so target could override). */ + reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs), bmap); + + table = get_target_table(vcpu->arch.target, true, &num); + reset_sys_reg_descs(vcpu, table, num, bmap); + + for (num = 1; num < NR_SYS_REGS; num++) { + if (WARN(!test_bit(num, bmap), + "Didn't reset __vcpu_sys_reg(%zi)\n", num)) + break; + } +} |