diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
commit | 76cb841cb886eef6b3bee341a2266c76578724ad (patch) | |
tree | f5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /arch/ia64/kernel/perfmon.c | |
parent | Initial commit. (diff) | |
download | linux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip |
Adding upstream version 4.19.249.upstream/4.19.249upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/ia64/kernel/perfmon.c')
-rw-r--r-- | arch/ia64/kernel/perfmon.c | 6760 |
1 files changed, 6760 insertions, 0 deletions
diff --git a/arch/ia64/kernel/perfmon.c b/arch/ia64/kernel/perfmon.c new file mode 100644 index 000000000..46bff1661 --- /dev/null +++ b/arch/ia64/kernel/perfmon.c @@ -0,0 +1,6760 @@ +/* + * This file implements the perfmon-2 subsystem which is used + * to program the IA-64 Performance Monitoring Unit (PMU). + * + * The initial version of perfmon.c was written by + * Ganesh Venkitachalam, IBM Corp. + * + * Then it was modified for perfmon-1.x by Stephane Eranian and + * David Mosberger, Hewlett Packard Co. + * + * Version Perfmon-2.x is a rewrite of perfmon-1.x + * by Stephane Eranian, Hewlett Packard Co. + * + * Copyright (C) 1999-2005 Hewlett Packard Co + * Stephane Eranian <eranian@hpl.hp.com> + * David Mosberger-Tang <davidm@hpl.hp.com> + * + * More information about perfmon available at: + * http://www.hpl.hp.com/research/linux/perfmon + */ + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/sched.h> +#include <linux/sched/task.h> +#include <linux/sched/task_stack.h> +#include <linux/interrupt.h> +#include <linux/proc_fs.h> +#include <linux/seq_file.h> +#include <linux/init.h> +#include <linux/vmalloc.h> +#include <linux/mm.h> +#include <linux/sysctl.h> +#include <linux/list.h> +#include <linux/file.h> +#include <linux/poll.h> +#include <linux/vfs.h> +#include <linux/smp.h> +#include <linux/pagemap.h> +#include <linux/mount.h> +#include <linux/bitops.h> +#include <linux/capability.h> +#include <linux/rcupdate.h> +#include <linux/completion.h> +#include <linux/tracehook.h> +#include <linux/slab.h> +#include <linux/cpu.h> + +#include <asm/errno.h> +#include <asm/intrinsics.h> +#include <asm/page.h> +#include <asm/perfmon.h> +#include <asm/processor.h> +#include <asm/signal.h> +#include <linux/uaccess.h> +#include <asm/delay.h> + +#ifdef CONFIG_PERFMON +/* + * perfmon context state + */ +#define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */ +#define PFM_CTX_LOADED 2 /* context is loaded onto a task */ +#define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */ +#define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */ + +#define PFM_INVALID_ACTIVATION (~0UL) + +#define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */ +#define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */ + +/* + * depth of message queue + */ +#define PFM_MAX_MSGS 32 +#define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail) + +/* + * type of a PMU register (bitmask). + * bitmask structure: + * bit0 : register implemented + * bit1 : end marker + * bit2-3 : reserved + * bit4 : pmc has pmc.pm + * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter + * bit6-7 : register type + * bit8-31: reserved + */ +#define PFM_REG_NOTIMPL 0x0 /* not implemented at all */ +#define PFM_REG_IMPL 0x1 /* register implemented */ +#define PFM_REG_END 0x2 /* end marker */ +#define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */ +#define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */ +#define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */ +#define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */ +#define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */ + +#define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END) +#define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END) + +#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY) + +/* i assumed unsigned */ +#define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL)) +#define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL)) + +/* XXX: these assume that register i is implemented */ +#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING) +#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING) +#define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR) +#define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL) + +#define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value +#define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask +#define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0] +#define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0] + +#define PFM_NUM_IBRS IA64_NUM_DBG_REGS +#define PFM_NUM_DBRS IA64_NUM_DBG_REGS + +#define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0) +#define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling) +#define PFM_CTX_TASK(h) (h)->ctx_task + +#define PMU_PMC_OI 5 /* position of pmc.oi bit */ + +/* XXX: does not support more than 64 PMDs */ +#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask) +#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL) + +#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask) + +#define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64) +#define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64) +#define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1) +#define PFM_CODE_RR 0 /* requesting code range restriction */ +#define PFM_DATA_RR 1 /* requestion data range restriction */ + +#define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v) +#define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v) +#define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info) + +#define RDEP(x) (1UL<<(x)) + +/* + * context protection macros + * in SMP: + * - we need to protect against CPU concurrency (spin_lock) + * - we need to protect against PMU overflow interrupts (local_irq_disable) + * in UP: + * - we need to protect against PMU overflow interrupts (local_irq_disable) + * + * spin_lock_irqsave()/spin_unlock_irqrestore(): + * in SMP: local_irq_disable + spin_lock + * in UP : local_irq_disable + * + * spin_lock()/spin_lock(): + * in UP : removed automatically + * in SMP: protect against context accesses from other CPU. interrupts + * are not masked. This is useful for the PMU interrupt handler + * because we know we will not get PMU concurrency in that code. + */ +#define PROTECT_CTX(c, f) \ + do { \ + DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \ + spin_lock_irqsave(&(c)->ctx_lock, f); \ + DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \ + } while(0) + +#define UNPROTECT_CTX(c, f) \ + do { \ + DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \ + spin_unlock_irqrestore(&(c)->ctx_lock, f); \ + } while(0) + +#define PROTECT_CTX_NOPRINT(c, f) \ + do { \ + spin_lock_irqsave(&(c)->ctx_lock, f); \ + } while(0) + + +#define UNPROTECT_CTX_NOPRINT(c, f) \ + do { \ + spin_unlock_irqrestore(&(c)->ctx_lock, f); \ + } while(0) + + +#define PROTECT_CTX_NOIRQ(c) \ + do { \ + spin_lock(&(c)->ctx_lock); \ + } while(0) + +#define UNPROTECT_CTX_NOIRQ(c) \ + do { \ + spin_unlock(&(c)->ctx_lock); \ + } while(0) + + +#ifdef CONFIG_SMP + +#define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number) +#define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++ +#define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION() + +#else /* !CONFIG_SMP */ +#define SET_ACTIVATION(t) do {} while(0) +#define GET_ACTIVATION(t) do {} while(0) +#define INC_ACTIVATION(t) do {} while(0) +#endif /* CONFIG_SMP */ + +#define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0) +#define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner) +#define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx) + +#define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g) +#define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g) + +#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0) + +/* + * cmp0 must be the value of pmc0 + */ +#define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL) + +#define PFMFS_MAGIC 0xa0b4d889 + +/* + * debugging + */ +#define PFM_DEBUGGING 1 +#ifdef PFM_DEBUGGING +#define DPRINT(a) \ + do { \ + if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \ + } while (0) + +#define DPRINT_ovfl(a) \ + do { \ + if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \ + } while (0) +#endif + +/* + * 64-bit software counter structure + * + * the next_reset_type is applied to the next call to pfm_reset_regs() + */ +typedef struct { + unsigned long val; /* virtual 64bit counter value */ + unsigned long lval; /* last reset value */ + unsigned long long_reset; /* reset value on sampling overflow */ + unsigned long short_reset; /* reset value on overflow */ + unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */ + unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */ + unsigned long seed; /* seed for random-number generator */ + unsigned long mask; /* mask for random-number generator */ + unsigned int flags; /* notify/do not notify */ + unsigned long eventid; /* overflow event identifier */ +} pfm_counter_t; + +/* + * context flags + */ +typedef struct { + unsigned int block:1; /* when 1, task will blocked on user notifications */ + unsigned int system:1; /* do system wide monitoring */ + unsigned int using_dbreg:1; /* using range restrictions (debug registers) */ + unsigned int is_sampling:1; /* true if using a custom format */ + unsigned int excl_idle:1; /* exclude idle task in system wide session */ + unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */ + unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */ + unsigned int no_msg:1; /* no message sent on overflow */ + unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */ + unsigned int reserved:22; +} pfm_context_flags_t; + +#define PFM_TRAP_REASON_NONE 0x0 /* default value */ +#define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */ +#define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */ + + +/* + * perfmon context: encapsulates all the state of a monitoring session + */ + +typedef struct pfm_context { + spinlock_t ctx_lock; /* context protection */ + + pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */ + unsigned int ctx_state; /* state: active/inactive (no bitfield) */ + + struct task_struct *ctx_task; /* task to which context is attached */ + + unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */ + + struct completion ctx_restart_done; /* use for blocking notification mode */ + + unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */ + unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */ + unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */ + + unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */ + unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */ + unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */ + + unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */ + + unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */ + unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */ + unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */ + unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */ + + pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */ + + unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */ + unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */ + + unsigned long ctx_saved_psr_up; /* only contains psr.up value */ + + unsigned long ctx_last_activation; /* context last activation number for last_cpu */ + unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */ + unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */ + + int ctx_fd; /* file descriptor used my this context */ + pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */ + + pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */ + void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */ + unsigned long ctx_smpl_size; /* size of sampling buffer */ + void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */ + + wait_queue_head_t ctx_msgq_wait; + pfm_msg_t ctx_msgq[PFM_MAX_MSGS]; + int ctx_msgq_head; + int ctx_msgq_tail; + struct fasync_struct *ctx_async_queue; + + wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */ +} pfm_context_t; + +/* + * magic number used to verify that structure is really + * a perfmon context + */ +#define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops) + +#define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context) + +#ifdef CONFIG_SMP +#define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v) +#define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu +#else +#define SET_LAST_CPU(ctx, v) do {} while(0) +#define GET_LAST_CPU(ctx) do {} while(0) +#endif + + +#define ctx_fl_block ctx_flags.block +#define ctx_fl_system ctx_flags.system +#define ctx_fl_using_dbreg ctx_flags.using_dbreg +#define ctx_fl_is_sampling ctx_flags.is_sampling +#define ctx_fl_excl_idle ctx_flags.excl_idle +#define ctx_fl_going_zombie ctx_flags.going_zombie +#define ctx_fl_trap_reason ctx_flags.trap_reason +#define ctx_fl_no_msg ctx_flags.no_msg +#define ctx_fl_can_restart ctx_flags.can_restart + +#define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0); +#define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking + +/* + * global information about all sessions + * mostly used to synchronize between system wide and per-process + */ +typedef struct { + spinlock_t pfs_lock; /* lock the structure */ + + unsigned int pfs_task_sessions; /* number of per task sessions */ + unsigned int pfs_sys_sessions; /* number of per system wide sessions */ + unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */ + unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */ + struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */ +} pfm_session_t; + +/* + * information about a PMC or PMD. + * dep_pmd[]: a bitmask of dependent PMD registers + * dep_pmc[]: a bitmask of dependent PMC registers + */ +typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs); +typedef struct { + unsigned int type; + int pm_pos; + unsigned long default_value; /* power-on default value */ + unsigned long reserved_mask; /* bitmask of reserved bits */ + pfm_reg_check_t read_check; + pfm_reg_check_t write_check; + unsigned long dep_pmd[4]; + unsigned long dep_pmc[4]; +} pfm_reg_desc_t; + +/* assume cnum is a valid monitor */ +#define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1) + +/* + * This structure is initialized at boot time and contains + * a description of the PMU main characteristics. + * + * If the probe function is defined, detection is based + * on its return value: + * - 0 means recognized PMU + * - anything else means not supported + * When the probe function is not defined, then the pmu_family field + * is used and it must match the host CPU family such that: + * - cpu->family & config->pmu_family != 0 + */ +typedef struct { + unsigned long ovfl_val; /* overflow value for counters */ + + pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */ + pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */ + + unsigned int num_pmcs; /* number of PMCS: computed at init time */ + unsigned int num_pmds; /* number of PMDS: computed at init time */ + unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */ + unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */ + + char *pmu_name; /* PMU family name */ + unsigned int pmu_family; /* cpuid family pattern used to identify pmu */ + unsigned int flags; /* pmu specific flags */ + unsigned int num_ibrs; /* number of IBRS: computed at init time */ + unsigned int num_dbrs; /* number of DBRS: computed at init time */ + unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */ + int (*probe)(void); /* customized probe routine */ + unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */ +} pmu_config_t; +/* + * PMU specific flags + */ +#define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */ + +/* + * debug register related type definitions + */ +typedef struct { + unsigned long ibr_mask:56; + unsigned long ibr_plm:4; + unsigned long ibr_ig:3; + unsigned long ibr_x:1; +} ibr_mask_reg_t; + +typedef struct { + unsigned long dbr_mask:56; + unsigned long dbr_plm:4; + unsigned long dbr_ig:2; + unsigned long dbr_w:1; + unsigned long dbr_r:1; +} dbr_mask_reg_t; + +typedef union { + unsigned long val; + ibr_mask_reg_t ibr; + dbr_mask_reg_t dbr; +} dbreg_t; + + +/* + * perfmon command descriptions + */ +typedef struct { + int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); + char *cmd_name; + int cmd_flags; + unsigned int cmd_narg; + size_t cmd_argsize; + int (*cmd_getsize)(void *arg, size_t *sz); +} pfm_cmd_desc_t; + +#define PFM_CMD_FD 0x01 /* command requires a file descriptor */ +#define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */ +#define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */ +#define PFM_CMD_STOP 0x08 /* command does not work on zombie context */ + + +#define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name +#define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ) +#define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW) +#define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD) +#define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP) + +#define PFM_CMD_ARG_MANY -1 /* cannot be zero */ + +typedef struct { + unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */ + unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */ + unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */ + unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */ + unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */ + unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */ + unsigned long pfm_smpl_handler_calls; + unsigned long pfm_smpl_handler_cycles; + char pad[SMP_CACHE_BYTES] ____cacheline_aligned; +} pfm_stats_t; + +/* + * perfmon internal variables + */ +static pfm_stats_t pfm_stats[NR_CPUS]; +static pfm_session_t pfm_sessions; /* global sessions information */ + +static DEFINE_SPINLOCK(pfm_alt_install_check); +static pfm_intr_handler_desc_t *pfm_alt_intr_handler; + +static struct proc_dir_entry *perfmon_dir; +static pfm_uuid_t pfm_null_uuid = {0,}; + +static spinlock_t pfm_buffer_fmt_lock; +static LIST_HEAD(pfm_buffer_fmt_list); + +static pmu_config_t *pmu_conf; + +/* sysctl() controls */ +pfm_sysctl_t pfm_sysctl; +EXPORT_SYMBOL(pfm_sysctl); + +static struct ctl_table pfm_ctl_table[] = { + { + .procname = "debug", + .data = &pfm_sysctl.debug, + .maxlen = sizeof(int), + .mode = 0666, + .proc_handler = proc_dointvec, + }, + { + .procname = "debug_ovfl", + .data = &pfm_sysctl.debug_ovfl, + .maxlen = sizeof(int), + .mode = 0666, + .proc_handler = proc_dointvec, + }, + { + .procname = "fastctxsw", + .data = &pfm_sysctl.fastctxsw, + .maxlen = sizeof(int), + .mode = 0600, + .proc_handler = proc_dointvec, + }, + { + .procname = "expert_mode", + .data = &pfm_sysctl.expert_mode, + .maxlen = sizeof(int), + .mode = 0600, + .proc_handler = proc_dointvec, + }, + {} +}; +static struct ctl_table pfm_sysctl_dir[] = { + { + .procname = "perfmon", + .mode = 0555, + .child = pfm_ctl_table, + }, + {} +}; +static struct ctl_table pfm_sysctl_root[] = { + { + .procname = "kernel", + .mode = 0555, + .child = pfm_sysctl_dir, + }, + {} +}; +static struct ctl_table_header *pfm_sysctl_header; + +static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); + +#define pfm_get_cpu_var(v) __ia64_per_cpu_var(v) +#define pfm_get_cpu_data(a,b) per_cpu(a, b) + +static inline void +pfm_put_task(struct task_struct *task) +{ + if (task != current) put_task_struct(task); +} + +static inline void +pfm_reserve_page(unsigned long a) +{ + SetPageReserved(vmalloc_to_page((void *)a)); +} +static inline void +pfm_unreserve_page(unsigned long a) +{ + ClearPageReserved(vmalloc_to_page((void*)a)); +} + +static inline unsigned long +pfm_protect_ctx_ctxsw(pfm_context_t *x) +{ + spin_lock(&(x)->ctx_lock); + return 0UL; +} + +static inline void +pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f) +{ + spin_unlock(&(x)->ctx_lock); +} + +/* forward declaration */ +static const struct dentry_operations pfmfs_dentry_operations; + +static struct dentry * +pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) +{ + return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations, + PFMFS_MAGIC); +} + +static struct file_system_type pfm_fs_type = { + .name = "pfmfs", + .mount = pfmfs_mount, + .kill_sb = kill_anon_super, +}; +MODULE_ALIAS_FS("pfmfs"); + +DEFINE_PER_CPU(unsigned long, pfm_syst_info); +DEFINE_PER_CPU(struct task_struct *, pmu_owner); +DEFINE_PER_CPU(pfm_context_t *, pmu_ctx); +DEFINE_PER_CPU(unsigned long, pmu_activation_number); +EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info); + + +/* forward declaration */ +static const struct file_operations pfm_file_ops; + +/* + * forward declarations + */ +#ifndef CONFIG_SMP +static void pfm_lazy_save_regs (struct task_struct *ta); +#endif + +void dump_pmu_state(const char *); +static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); + +#include "perfmon_itanium.h" +#include "perfmon_mckinley.h" +#include "perfmon_montecito.h" +#include "perfmon_generic.h" + +static pmu_config_t *pmu_confs[]={ + &pmu_conf_mont, + &pmu_conf_mck, + &pmu_conf_ita, + &pmu_conf_gen, /* must be last */ + NULL +}; + + +static int pfm_end_notify_user(pfm_context_t *ctx); + +static inline void +pfm_clear_psr_pp(void) +{ + ia64_rsm(IA64_PSR_PP); + ia64_srlz_i(); +} + +static inline void +pfm_set_psr_pp(void) +{ + ia64_ssm(IA64_PSR_PP); + ia64_srlz_i(); +} + +static inline void +pfm_clear_psr_up(void) +{ + ia64_rsm(IA64_PSR_UP); + ia64_srlz_i(); +} + +static inline void +pfm_set_psr_up(void) +{ + ia64_ssm(IA64_PSR_UP); + ia64_srlz_i(); +} + +static inline unsigned long +pfm_get_psr(void) +{ + unsigned long tmp; + tmp = ia64_getreg(_IA64_REG_PSR); + ia64_srlz_i(); + return tmp; +} + +static inline void +pfm_set_psr_l(unsigned long val) +{ + ia64_setreg(_IA64_REG_PSR_L, val); + ia64_srlz_i(); +} + +static inline void +pfm_freeze_pmu(void) +{ + ia64_set_pmc(0,1UL); + ia64_srlz_d(); +} + +static inline void +pfm_unfreeze_pmu(void) +{ + ia64_set_pmc(0,0UL); + ia64_srlz_d(); +} + +static inline void +pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs) +{ + int i; + + for (i=0; i < nibrs; i++) { + ia64_set_ibr(i, ibrs[i]); + ia64_dv_serialize_instruction(); + } + ia64_srlz_i(); +} + +static inline void +pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs) +{ + int i; + + for (i=0; i < ndbrs; i++) { + ia64_set_dbr(i, dbrs[i]); + ia64_dv_serialize_data(); + } + ia64_srlz_d(); +} + +/* + * PMD[i] must be a counter. no check is made + */ +static inline unsigned long +pfm_read_soft_counter(pfm_context_t *ctx, int i) +{ + return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val); +} + +/* + * PMD[i] must be a counter. no check is made + */ +static inline void +pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val) +{ + unsigned long ovfl_val = pmu_conf->ovfl_val; + + ctx->ctx_pmds[i].val = val & ~ovfl_val; + /* + * writing to unimplemented part is ignore, so we do not need to + * mask off top part + */ + ia64_set_pmd(i, val & ovfl_val); +} + +static pfm_msg_t * +pfm_get_new_msg(pfm_context_t *ctx) +{ + int idx, next; + + next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS; + + DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail)); + if (next == ctx->ctx_msgq_head) return NULL; + + idx = ctx->ctx_msgq_tail; + ctx->ctx_msgq_tail = next; + + DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx)); + + return ctx->ctx_msgq+idx; +} + +static pfm_msg_t * +pfm_get_next_msg(pfm_context_t *ctx) +{ + pfm_msg_t *msg; + + DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail)); + + if (PFM_CTXQ_EMPTY(ctx)) return NULL; + + /* + * get oldest message + */ + msg = ctx->ctx_msgq+ctx->ctx_msgq_head; + + /* + * and move forward + */ + ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS; + + DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type)); + + return msg; +} + +static void +pfm_reset_msgq(pfm_context_t *ctx) +{ + ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0; + DPRINT(("ctx=%p msgq reset\n", ctx)); +} + +static void * +pfm_rvmalloc(unsigned long size) +{ + void *mem; + unsigned long addr; + + size = PAGE_ALIGN(size); + mem = vzalloc(size); + if (mem) { + //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem); + addr = (unsigned long)mem; + while (size > 0) { + pfm_reserve_page(addr); + addr+=PAGE_SIZE; + size-=PAGE_SIZE; + } + } + return mem; +} + +static void +pfm_rvfree(void *mem, unsigned long size) +{ + unsigned long addr; + + if (mem) { + DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size)); + addr = (unsigned long) mem; + while ((long) size > 0) { + pfm_unreserve_page(addr); + addr+=PAGE_SIZE; + size-=PAGE_SIZE; + } + vfree(mem); + } + return; +} + +static pfm_context_t * +pfm_context_alloc(int ctx_flags) +{ + pfm_context_t *ctx; + + /* + * allocate context descriptor + * must be able to free with interrupts disabled + */ + ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL); + if (ctx) { + DPRINT(("alloc ctx @%p\n", ctx)); + + /* + * init context protection lock + */ + spin_lock_init(&ctx->ctx_lock); + + /* + * context is unloaded + */ + ctx->ctx_state = PFM_CTX_UNLOADED; + + /* + * initialization of context's flags + */ + ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0; + ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0; + ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0; + /* + * will move to set properties + * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0; + */ + + /* + * init restart semaphore to locked + */ + init_completion(&ctx->ctx_restart_done); + + /* + * activation is used in SMP only + */ + ctx->ctx_last_activation = PFM_INVALID_ACTIVATION; + SET_LAST_CPU(ctx, -1); + + /* + * initialize notification message queue + */ + ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0; + init_waitqueue_head(&ctx->ctx_msgq_wait); + init_waitqueue_head(&ctx->ctx_zombieq); + + } + return ctx; +} + +static void +pfm_context_free(pfm_context_t *ctx) +{ + if (ctx) { + DPRINT(("free ctx @%p\n", ctx)); + kfree(ctx); + } +} + +static void +pfm_mask_monitoring(struct task_struct *task) +{ + pfm_context_t *ctx = PFM_GET_CTX(task); + unsigned long mask, val, ovfl_mask; + int i; + + DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task))); + + ovfl_mask = pmu_conf->ovfl_val; + /* + * monitoring can only be masked as a result of a valid + * counter overflow. In UP, it means that the PMU still + * has an owner. Note that the owner can be different + * from the current task. However the PMU state belongs + * to the owner. + * In SMP, a valid overflow only happens when task is + * current. Therefore if we come here, we know that + * the PMU state belongs to the current task, therefore + * we can access the live registers. + * + * So in both cases, the live register contains the owner's + * state. We can ONLY touch the PMU registers and NOT the PSR. + * + * As a consequence to this call, the ctx->th_pmds[] array + * contains stale information which must be ignored + * when context is reloaded AND monitoring is active (see + * pfm_restart). + */ + mask = ctx->ctx_used_pmds[0]; + for (i = 0; mask; i++, mask>>=1) { + /* skip non used pmds */ + if ((mask & 0x1) == 0) continue; + val = ia64_get_pmd(i); + + if (PMD_IS_COUNTING(i)) { + /* + * we rebuild the full 64 bit value of the counter + */ + ctx->ctx_pmds[i].val += (val & ovfl_mask); + } else { + ctx->ctx_pmds[i].val = val; + } + DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n", + i, + ctx->ctx_pmds[i].val, + val & ovfl_mask)); + } + /* + * mask monitoring by setting the privilege level to 0 + * we cannot use psr.pp/psr.up for this, it is controlled by + * the user + * + * if task is current, modify actual registers, otherwise modify + * thread save state, i.e., what will be restored in pfm_load_regs() + */ + mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER; + for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) { + if ((mask & 0x1) == 0UL) continue; + ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL); + ctx->th_pmcs[i] &= ~0xfUL; + DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i])); + } + /* + * make all of this visible + */ + ia64_srlz_d(); +} + +/* + * must always be done with task == current + * + * context must be in MASKED state when calling + */ +static void +pfm_restore_monitoring(struct task_struct *task) +{ + pfm_context_t *ctx = PFM_GET_CTX(task); + unsigned long mask, ovfl_mask; + unsigned long psr, val; + int i, is_system; + + is_system = ctx->ctx_fl_system; + ovfl_mask = pmu_conf->ovfl_val; + + if (task != current) { + printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current)); + return; + } + if (ctx->ctx_state != PFM_CTX_MASKED) { + printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__, + task_pid_nr(task), task_pid_nr(current), ctx->ctx_state); + return; + } + psr = pfm_get_psr(); + /* + * monitoring is masked via the PMC. + * As we restore their value, we do not want each counter to + * restart right away. We stop monitoring using the PSR, + * restore the PMC (and PMD) and then re-establish the psr + * as it was. Note that there can be no pending overflow at + * this point, because monitoring was MASKED. + * + * system-wide session are pinned and self-monitoring + */ + if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) { + /* disable dcr pp */ + ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP); + pfm_clear_psr_pp(); + } else { + pfm_clear_psr_up(); + } + /* + * first, we restore the PMD + */ + mask = ctx->ctx_used_pmds[0]; + for (i = 0; mask; i++, mask>>=1) { + /* skip non used pmds */ + if ((mask & 0x1) == 0) continue; + + if (PMD_IS_COUNTING(i)) { + /* + * we split the 64bit value according to + * counter width + */ + val = ctx->ctx_pmds[i].val & ovfl_mask; + ctx->ctx_pmds[i].val &= ~ovfl_mask; + } else { + val = ctx->ctx_pmds[i].val; + } + ia64_set_pmd(i, val); + + DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n", + i, + ctx->ctx_pmds[i].val, + val)); + } + /* + * restore the PMCs + */ + mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER; + for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) { + if ((mask & 0x1) == 0UL) continue; + ctx->th_pmcs[i] = ctx->ctx_pmcs[i]; + ia64_set_pmc(i, ctx->th_pmcs[i]); + DPRINT(("[%d] pmc[%d]=0x%lx\n", + task_pid_nr(task), i, ctx->th_pmcs[i])); + } + ia64_srlz_d(); + + /* + * must restore DBR/IBR because could be modified while masked + * XXX: need to optimize + */ + if (ctx->ctx_fl_using_dbreg) { + pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs); + pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs); + } + + /* + * now restore PSR + */ + if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) { + /* enable dcr pp */ + ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP); + ia64_srlz_i(); + } + pfm_set_psr_l(psr); +} + +static inline void +pfm_save_pmds(unsigned long *pmds, unsigned long mask) +{ + int i; + + ia64_srlz_d(); + + for (i=0; mask; i++, mask>>=1) { + if (mask & 0x1) pmds[i] = ia64_get_pmd(i); + } +} + +/* + * reload from thread state (used for ctxw only) + */ +static inline void +pfm_restore_pmds(unsigned long *pmds, unsigned long mask) +{ + int i; + unsigned long val, ovfl_val = pmu_conf->ovfl_val; + + for (i=0; mask; i++, mask>>=1) { + if ((mask & 0x1) == 0) continue; + val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i]; + ia64_set_pmd(i, val); + } + ia64_srlz_d(); +} + +/* + * propagate PMD from context to thread-state + */ +static inline void +pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx) +{ + unsigned long ovfl_val = pmu_conf->ovfl_val; + unsigned long mask = ctx->ctx_all_pmds[0]; + unsigned long val; + int i; + + DPRINT(("mask=0x%lx\n", mask)); + + for (i=0; mask; i++, mask>>=1) { + + val = ctx->ctx_pmds[i].val; + + /* + * We break up the 64 bit value into 2 pieces + * the lower bits go to the machine state in the + * thread (will be reloaded on ctxsw in). + * The upper part stays in the soft-counter. + */ + if (PMD_IS_COUNTING(i)) { + ctx->ctx_pmds[i].val = val & ~ovfl_val; + val &= ovfl_val; + } + ctx->th_pmds[i] = val; + + DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n", + i, + ctx->th_pmds[i], + ctx->ctx_pmds[i].val)); + } +} + +/* + * propagate PMC from context to thread-state + */ +static inline void +pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx) +{ + unsigned long mask = ctx->ctx_all_pmcs[0]; + int i; + + DPRINT(("mask=0x%lx\n", mask)); + + for (i=0; mask; i++, mask>>=1) { + /* masking 0 with ovfl_val yields 0 */ + ctx->th_pmcs[i] = ctx->ctx_pmcs[i]; + DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i])); + } +} + + + +static inline void +pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask) +{ + int i; + + for (i=0; mask; i++, mask>>=1) { + if ((mask & 0x1) == 0) continue; + ia64_set_pmc(i, pmcs[i]); + } + ia64_srlz_d(); +} + +static inline int +pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b) +{ + return memcmp(a, b, sizeof(pfm_uuid_t)); +} + +static inline int +pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs) +{ + int ret = 0; + if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs); + return ret; +} + +static inline int +pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size) +{ + int ret = 0; + if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size); + return ret; +} + + +static inline int +pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, + int cpu, void *arg) +{ + int ret = 0; + if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg); + return ret; +} + +static inline int +pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags, + int cpu, void *arg) +{ + int ret = 0; + if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg); + return ret; +} + +static inline int +pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs) +{ + int ret = 0; + if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs); + return ret; +} + +static inline int +pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs) +{ + int ret = 0; + if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs); + return ret; +} + +static pfm_buffer_fmt_t * +__pfm_find_buffer_fmt(pfm_uuid_t uuid) +{ + struct list_head * pos; + pfm_buffer_fmt_t * entry; + + list_for_each(pos, &pfm_buffer_fmt_list) { + entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list); + if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0) + return entry; + } + return NULL; +} + +/* + * find a buffer format based on its uuid + */ +static pfm_buffer_fmt_t * +pfm_find_buffer_fmt(pfm_uuid_t uuid) +{ + pfm_buffer_fmt_t * fmt; + spin_lock(&pfm_buffer_fmt_lock); + fmt = __pfm_find_buffer_fmt(uuid); + spin_unlock(&pfm_buffer_fmt_lock); + return fmt; +} + +int +pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt) +{ + int ret = 0; + + /* some sanity checks */ + if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL; + + /* we need at least a handler */ + if (fmt->fmt_handler == NULL) return -EINVAL; + + /* + * XXX: need check validity of fmt_arg_size + */ + + spin_lock(&pfm_buffer_fmt_lock); + + if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) { + printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name); + ret = -EBUSY; + goto out; + } + list_add(&fmt->fmt_list, &pfm_buffer_fmt_list); + printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name); + +out: + spin_unlock(&pfm_buffer_fmt_lock); + return ret; +} +EXPORT_SYMBOL(pfm_register_buffer_fmt); + +int +pfm_unregister_buffer_fmt(pfm_uuid_t uuid) +{ + pfm_buffer_fmt_t *fmt; + int ret = 0; + + spin_lock(&pfm_buffer_fmt_lock); + + fmt = __pfm_find_buffer_fmt(uuid); + if (!fmt) { + printk(KERN_ERR "perfmon: cannot unregister format, not found\n"); + ret = -EINVAL; + goto out; + } + list_del_init(&fmt->fmt_list); + printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name); + +out: + spin_unlock(&pfm_buffer_fmt_lock); + return ret; + +} +EXPORT_SYMBOL(pfm_unregister_buffer_fmt); + +static int +pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu) +{ + unsigned long flags; + /* + * validity checks on cpu_mask have been done upstream + */ + LOCK_PFS(flags); + + DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", + pfm_sessions.pfs_sys_sessions, + pfm_sessions.pfs_task_sessions, + pfm_sessions.pfs_sys_use_dbregs, + is_syswide, + cpu)); + + if (is_syswide) { + /* + * cannot mix system wide and per-task sessions + */ + if (pfm_sessions.pfs_task_sessions > 0UL) { + DPRINT(("system wide not possible, %u conflicting task_sessions\n", + pfm_sessions.pfs_task_sessions)); + goto abort; + } + + if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict; + + DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id())); + + pfm_sessions.pfs_sys_session[cpu] = task; + + pfm_sessions.pfs_sys_sessions++ ; + + } else { + if (pfm_sessions.pfs_sys_sessions) goto abort; + pfm_sessions.pfs_task_sessions++; + } + + DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", + pfm_sessions.pfs_sys_sessions, + pfm_sessions.pfs_task_sessions, + pfm_sessions.pfs_sys_use_dbregs, + is_syswide, + cpu)); + + /* + * Force idle() into poll mode + */ + cpu_idle_poll_ctrl(true); + + UNLOCK_PFS(flags); + + return 0; + +error_conflict: + DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n", + task_pid_nr(pfm_sessions.pfs_sys_session[cpu]), + cpu)); +abort: + UNLOCK_PFS(flags); + + return -EBUSY; + +} + +static int +pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu) +{ + unsigned long flags; + /* + * validity checks on cpu_mask have been done upstream + */ + LOCK_PFS(flags); + + DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", + pfm_sessions.pfs_sys_sessions, + pfm_sessions.pfs_task_sessions, + pfm_sessions.pfs_sys_use_dbregs, + is_syswide, + cpu)); + + + if (is_syswide) { + pfm_sessions.pfs_sys_session[cpu] = NULL; + /* + * would not work with perfmon+more than one bit in cpu_mask + */ + if (ctx && ctx->ctx_fl_using_dbreg) { + if (pfm_sessions.pfs_sys_use_dbregs == 0) { + printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx); + } else { + pfm_sessions.pfs_sys_use_dbregs--; + } + } + pfm_sessions.pfs_sys_sessions--; + } else { + pfm_sessions.pfs_task_sessions--; + } + DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", + pfm_sessions.pfs_sys_sessions, + pfm_sessions.pfs_task_sessions, + pfm_sessions.pfs_sys_use_dbregs, + is_syswide, + cpu)); + + /* Undo forced polling. Last session reenables pal_halt */ + cpu_idle_poll_ctrl(false); + + UNLOCK_PFS(flags); + + return 0; +} + +/* + * removes virtual mapping of the sampling buffer. + * IMPORTANT: cannot be called with interrupts disable, e.g. inside + * a PROTECT_CTX() section. + */ +static int +pfm_remove_smpl_mapping(void *vaddr, unsigned long size) +{ + struct task_struct *task = current; + int r; + + /* sanity checks */ + if (task->mm == NULL || size == 0UL || vaddr == NULL) { + printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm); + return -EINVAL; + } + + DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size)); + + /* + * does the actual unmapping + */ + r = vm_munmap((unsigned long)vaddr, size); + + if (r !=0) { + printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size); + } + + DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r)); + + return 0; +} + +/* + * free actual physical storage used by sampling buffer + */ +#if 0 +static int +pfm_free_smpl_buffer(pfm_context_t *ctx) +{ + pfm_buffer_fmt_t *fmt; + + if (ctx->ctx_smpl_hdr == NULL) goto invalid_free; + + /* + * we won't use the buffer format anymore + */ + fmt = ctx->ctx_buf_fmt; + + DPRINT(("sampling buffer @%p size %lu vaddr=%p\n", + ctx->ctx_smpl_hdr, + ctx->ctx_smpl_size, + ctx->ctx_smpl_vaddr)); + + pfm_buf_fmt_exit(fmt, current, NULL, NULL); + + /* + * free the buffer + */ + pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size); + + ctx->ctx_smpl_hdr = NULL; + ctx->ctx_smpl_size = 0UL; + + return 0; + +invalid_free: + printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current)); + return -EINVAL; +} +#endif + +static inline void +pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt) +{ + if (fmt == NULL) return; + + pfm_buf_fmt_exit(fmt, current, NULL, NULL); + +} + +/* + * pfmfs should _never_ be mounted by userland - too much of security hassle, + * no real gain from having the whole whorehouse mounted. So we don't need + * any operations on the root directory. However, we need a non-trivial + * d_name - pfm: will go nicely and kill the special-casing in procfs. + */ +static struct vfsmount *pfmfs_mnt __read_mostly; + +static int __init +init_pfm_fs(void) +{ + int err = register_filesystem(&pfm_fs_type); + if (!err) { + pfmfs_mnt = kern_mount(&pfm_fs_type); + err = PTR_ERR(pfmfs_mnt); + if (IS_ERR(pfmfs_mnt)) + unregister_filesystem(&pfm_fs_type); + else + err = 0; + } + return err; +} + +static ssize_t +pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos) +{ + pfm_context_t *ctx; + pfm_msg_t *msg; + ssize_t ret; + unsigned long flags; + DECLARE_WAITQUEUE(wait, current); + if (PFM_IS_FILE(filp) == 0) { + printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current)); + return -EINVAL; + } + + ctx = filp->private_data; + if (ctx == NULL) { + printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current)); + return -EINVAL; + } + + /* + * check even when there is no message + */ + if (size < sizeof(pfm_msg_t)) { + DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t))); + return -EINVAL; + } + + PROTECT_CTX(ctx, flags); + + /* + * put ourselves on the wait queue + */ + add_wait_queue(&ctx->ctx_msgq_wait, &wait); + + + for(;;) { + /* + * check wait queue + */ + + set_current_state(TASK_INTERRUPTIBLE); + + DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail)); + + ret = 0; + if(PFM_CTXQ_EMPTY(ctx) == 0) break; + + UNPROTECT_CTX(ctx, flags); + + /* + * check non-blocking read + */ + ret = -EAGAIN; + if(filp->f_flags & O_NONBLOCK) break; + + /* + * check pending signals + */ + if(signal_pending(current)) { + ret = -EINTR; + break; + } + /* + * no message, so wait + */ + schedule(); + + PROTECT_CTX(ctx, flags); + } + DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret)); + set_current_state(TASK_RUNNING); + remove_wait_queue(&ctx->ctx_msgq_wait, &wait); + + if (ret < 0) goto abort; + + ret = -EINVAL; + msg = pfm_get_next_msg(ctx); + if (msg == NULL) { + printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current)); + goto abort_locked; + } + + DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type)); + + ret = -EFAULT; + if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t); + +abort_locked: + UNPROTECT_CTX(ctx, flags); +abort: + return ret; +} + +static ssize_t +pfm_write(struct file *file, const char __user *ubuf, + size_t size, loff_t *ppos) +{ + DPRINT(("pfm_write called\n")); + return -EINVAL; +} + +static __poll_t +pfm_poll(struct file *filp, poll_table * wait) +{ + pfm_context_t *ctx; + unsigned long flags; + __poll_t mask = 0; + + if (PFM_IS_FILE(filp) == 0) { + printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current)); + return 0; + } + + ctx = filp->private_data; + if (ctx == NULL) { + printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current)); + return 0; + } + + + DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd)); + + poll_wait(filp, &ctx->ctx_msgq_wait, wait); + + PROTECT_CTX(ctx, flags); + + if (PFM_CTXQ_EMPTY(ctx) == 0) + mask = EPOLLIN | EPOLLRDNORM; + + UNPROTECT_CTX(ctx, flags); + + DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask)); + + return mask; +} + +static long +pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) +{ + DPRINT(("pfm_ioctl called\n")); + return -EINVAL; +} + +/* + * interrupt cannot be masked when coming here + */ +static inline int +pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on) +{ + int ret; + + ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue); + + DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n", + task_pid_nr(current), + fd, + on, + ctx->ctx_async_queue, ret)); + + return ret; +} + +static int +pfm_fasync(int fd, struct file *filp, int on) +{ + pfm_context_t *ctx; + int ret; + + if (PFM_IS_FILE(filp) == 0) { + printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current)); + return -EBADF; + } + + ctx = filp->private_data; + if (ctx == NULL) { + printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current)); + return -EBADF; + } + /* + * we cannot mask interrupts during this call because this may + * may go to sleep if memory is not readily avalaible. + * + * We are protected from the conetxt disappearing by the get_fd()/put_fd() + * done in caller. Serialization of this function is ensured by caller. + */ + ret = pfm_do_fasync(fd, filp, ctx, on); + + + DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n", + fd, + on, + ctx->ctx_async_queue, ret)); + + return ret; +} + +#ifdef CONFIG_SMP +/* + * this function is exclusively called from pfm_close(). + * The context is not protected at that time, nor are interrupts + * on the remote CPU. That's necessary to avoid deadlocks. + */ +static void +pfm_syswide_force_stop(void *info) +{ + pfm_context_t *ctx = (pfm_context_t *)info; + struct pt_regs *regs = task_pt_regs(current); + struct task_struct *owner; + unsigned long flags; + int ret; + + if (ctx->ctx_cpu != smp_processor_id()) { + printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n", + ctx->ctx_cpu, + smp_processor_id()); + return; + } + owner = GET_PMU_OWNER(); + if (owner != ctx->ctx_task) { + printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n", + smp_processor_id(), + task_pid_nr(owner), task_pid_nr(ctx->ctx_task)); + return; + } + if (GET_PMU_CTX() != ctx) { + printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n", + smp_processor_id(), + GET_PMU_CTX(), ctx); + return; + } + + DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task))); + /* + * the context is already protected in pfm_close(), we simply + * need to mask interrupts to avoid a PMU interrupt race on + * this CPU + */ + local_irq_save(flags); + + ret = pfm_context_unload(ctx, NULL, 0, regs); + if (ret) { + DPRINT(("context_unload returned %d\n", ret)); + } + + /* + * unmask interrupts, PMU interrupts are now spurious here + */ + local_irq_restore(flags); +} + +static void +pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx) +{ + int ret; + + DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu)); + ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1); + DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret)); +} +#endif /* CONFIG_SMP */ + +/* + * called for each close(). Partially free resources. + * When caller is self-monitoring, the context is unloaded. + */ +static int +pfm_flush(struct file *filp, fl_owner_t id) +{ + pfm_context_t *ctx; + struct task_struct *task; + struct pt_regs *regs; + unsigned long flags; + unsigned long smpl_buf_size = 0UL; + void *smpl_buf_vaddr = NULL; + int state, is_system; + + if (PFM_IS_FILE(filp) == 0) { + DPRINT(("bad magic for\n")); + return -EBADF; + } + + ctx = filp->private_data; + if (ctx == NULL) { + printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current)); + return -EBADF; + } + + /* + * remove our file from the async queue, if we use this mode. + * This can be done without the context being protected. We come + * here when the context has become unreachable by other tasks. + * + * We may still have active monitoring at this point and we may + * end up in pfm_overflow_handler(). However, fasync_helper() + * operates with interrupts disabled and it cleans up the + * queue. If the PMU handler is called prior to entering + * fasync_helper() then it will send a signal. If it is + * invoked after, it will find an empty queue and no + * signal will be sent. In both case, we are safe + */ + PROTECT_CTX(ctx, flags); + + state = ctx->ctx_state; + is_system = ctx->ctx_fl_system; + + task = PFM_CTX_TASK(ctx); + regs = task_pt_regs(task); + + DPRINT(("ctx_state=%d is_current=%d\n", + state, + task == current ? 1 : 0)); + + /* + * if state == UNLOADED, then task is NULL + */ + + /* + * we must stop and unload because we are losing access to the context. + */ + if (task == current) { +#ifdef CONFIG_SMP + /* + * the task IS the owner but it migrated to another CPU: that's bad + * but we must handle this cleanly. Unfortunately, the kernel does + * not provide a mechanism to block migration (while the context is loaded). + * + * We need to release the resource on the ORIGINAL cpu. + */ + if (is_system && ctx->ctx_cpu != smp_processor_id()) { + + DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); + /* + * keep context protected but unmask interrupt for IPI + */ + local_irq_restore(flags); + + pfm_syswide_cleanup_other_cpu(ctx); + + /* + * restore interrupt masking + */ + local_irq_save(flags); + + /* + * context is unloaded at this point + */ + } else +#endif /* CONFIG_SMP */ + { + + DPRINT(("forcing unload\n")); + /* + * stop and unload, returning with state UNLOADED + * and session unreserved. + */ + pfm_context_unload(ctx, NULL, 0, regs); + + DPRINT(("ctx_state=%d\n", ctx->ctx_state)); + } + } + + /* + * remove virtual mapping, if any, for the calling task. + * cannot reset ctx field until last user is calling close(). + * + * ctx_smpl_vaddr must never be cleared because it is needed + * by every task with access to the context + * + * When called from do_exit(), the mm context is gone already, therefore + * mm is NULL, i.e., the VMA is already gone and we do not have to + * do anything here + */ + if (ctx->ctx_smpl_vaddr && current->mm) { + smpl_buf_vaddr = ctx->ctx_smpl_vaddr; + smpl_buf_size = ctx->ctx_smpl_size; + } + + UNPROTECT_CTX(ctx, flags); + + /* + * if there was a mapping, then we systematically remove it + * at this point. Cannot be done inside critical section + * because some VM function reenables interrupts. + * + */ + if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size); + + return 0; +} +/* + * called either on explicit close() or from exit_files(). + * Only the LAST user of the file gets to this point, i.e., it is + * called only ONCE. + * + * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero + * (fput()),i.e, last task to access the file. Nobody else can access the + * file at this point. + * + * When called from exit_files(), the VMA has been freed because exit_mm() + * is executed before exit_files(). + * + * When called from exit_files(), the current task is not yet ZOMBIE but we + * flush the PMU state to the context. + */ +static int +pfm_close(struct inode *inode, struct file *filp) +{ + pfm_context_t *ctx; + struct task_struct *task; + struct pt_regs *regs; + DECLARE_WAITQUEUE(wait, current); + unsigned long flags; + unsigned long smpl_buf_size = 0UL; + void *smpl_buf_addr = NULL; + int free_possible = 1; + int state, is_system; + + DPRINT(("pfm_close called private=%p\n", filp->private_data)); + + if (PFM_IS_FILE(filp) == 0) { + DPRINT(("bad magic\n")); + return -EBADF; + } + + ctx = filp->private_data; + if (ctx == NULL) { + printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current)); + return -EBADF; + } + + PROTECT_CTX(ctx, flags); + + state = ctx->ctx_state; + is_system = ctx->ctx_fl_system; + + task = PFM_CTX_TASK(ctx); + regs = task_pt_regs(task); + + DPRINT(("ctx_state=%d is_current=%d\n", + state, + task == current ? 1 : 0)); + + /* + * if task == current, then pfm_flush() unloaded the context + */ + if (state == PFM_CTX_UNLOADED) goto doit; + + /* + * context is loaded/masked and task != current, we need to + * either force an unload or go zombie + */ + + /* + * The task is currently blocked or will block after an overflow. + * we must force it to wakeup to get out of the + * MASKED state and transition to the unloaded state by itself. + * + * This situation is only possible for per-task mode + */ + if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) { + + /* + * set a "partial" zombie state to be checked + * upon return from down() in pfm_handle_work(). + * + * We cannot use the ZOMBIE state, because it is checked + * by pfm_load_regs() which is called upon wakeup from down(). + * In such case, it would free the context and then we would + * return to pfm_handle_work() which would access the + * stale context. Instead, we set a flag invisible to pfm_load_regs() + * but visible to pfm_handle_work(). + * + * For some window of time, we have a zombie context with + * ctx_state = MASKED and not ZOMBIE + */ + ctx->ctx_fl_going_zombie = 1; + + /* + * force task to wake up from MASKED state + */ + complete(&ctx->ctx_restart_done); + + DPRINT(("waking up ctx_state=%d\n", state)); + + /* + * put ourself to sleep waiting for the other + * task to report completion + * + * the context is protected by mutex, therefore there + * is no risk of being notified of completion before + * begin actually on the waitq. + */ + set_current_state(TASK_INTERRUPTIBLE); + add_wait_queue(&ctx->ctx_zombieq, &wait); + + UNPROTECT_CTX(ctx, flags); + + /* + * XXX: check for signals : + * - ok for explicit close + * - not ok when coming from exit_files() + */ + schedule(); + + + PROTECT_CTX(ctx, flags); + + + remove_wait_queue(&ctx->ctx_zombieq, &wait); + set_current_state(TASK_RUNNING); + + /* + * context is unloaded at this point + */ + DPRINT(("after zombie wakeup ctx_state=%d for\n", state)); + } + else if (task != current) { +#ifdef CONFIG_SMP + /* + * switch context to zombie state + */ + ctx->ctx_state = PFM_CTX_ZOMBIE; + + DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task))); + /* + * cannot free the context on the spot. deferred until + * the task notices the ZOMBIE state + */ + free_possible = 0; +#else + pfm_context_unload(ctx, NULL, 0, regs); +#endif + } + +doit: + /* reload state, may have changed during opening of critical section */ + state = ctx->ctx_state; + + /* + * the context is still attached to a task (possibly current) + * we cannot destroy it right now + */ + + /* + * we must free the sampling buffer right here because + * we cannot rely on it being cleaned up later by the + * monitored task. It is not possible to free vmalloc'ed + * memory in pfm_load_regs(). Instead, we remove the buffer + * now. should there be subsequent PMU overflow originally + * meant for sampling, the will be converted to spurious + * and that's fine because the monitoring tools is gone anyway. + */ + if (ctx->ctx_smpl_hdr) { + smpl_buf_addr = ctx->ctx_smpl_hdr; + smpl_buf_size = ctx->ctx_smpl_size; + /* no more sampling */ + ctx->ctx_smpl_hdr = NULL; + ctx->ctx_fl_is_sampling = 0; + } + + DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n", + state, + free_possible, + smpl_buf_addr, + smpl_buf_size)); + + if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt); + + /* + * UNLOADED that the session has already been unreserved. + */ + if (state == PFM_CTX_ZOMBIE) { + pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu); + } + + /* + * disconnect file descriptor from context must be done + * before we unlock. + */ + filp->private_data = NULL; + + /* + * if we free on the spot, the context is now completely unreachable + * from the callers side. The monitored task side is also cut, so we + * can freely cut. + * + * If we have a deferred free, only the caller side is disconnected. + */ + UNPROTECT_CTX(ctx, flags); + + /* + * All memory free operations (especially for vmalloc'ed memory) + * MUST be done with interrupts ENABLED. + */ + if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size); + + /* + * return the memory used by the context + */ + if (free_possible) pfm_context_free(ctx); + + return 0; +} + +static const struct file_operations pfm_file_ops = { + .llseek = no_llseek, + .read = pfm_read, + .write = pfm_write, + .poll = pfm_poll, + .unlocked_ioctl = pfm_ioctl, + .fasync = pfm_fasync, + .release = pfm_close, + .flush = pfm_flush +}; + +static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen) +{ + return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]", + d_inode(dentry)->i_ino); +} + +static const struct dentry_operations pfmfs_dentry_operations = { + .d_delete = always_delete_dentry, + .d_dname = pfmfs_dname, +}; + + +static struct file * +pfm_alloc_file(pfm_context_t *ctx) +{ + struct file *file; + struct inode *inode; + struct path path; + struct qstr this = { .name = "" }; + + /* + * allocate a new inode + */ + inode = new_inode(pfmfs_mnt->mnt_sb); + if (!inode) + return ERR_PTR(-ENOMEM); + + DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode)); + + inode->i_mode = S_IFCHR|S_IRUGO; + inode->i_uid = current_fsuid(); + inode->i_gid = current_fsgid(); + + /* + * allocate a new dcache entry + */ + path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this); + if (!path.dentry) { + iput(inode); + return ERR_PTR(-ENOMEM); + } + path.mnt = mntget(pfmfs_mnt); + + d_add(path.dentry, inode); + + file = alloc_file(&path, FMODE_READ, &pfm_file_ops); + if (IS_ERR(file)) { + path_put(&path); + return file; + } + + file->f_flags = O_RDONLY; + file->private_data = ctx; + + return file; +} + +static int +pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size) +{ + DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size)); + + while (size > 0) { + unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT; + + + if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY)) + return -ENOMEM; + + addr += PAGE_SIZE; + buf += PAGE_SIZE; + size -= PAGE_SIZE; + } + return 0; +} + +/* + * allocate a sampling buffer and remaps it into the user address space of the task + */ +static int +pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr) +{ + struct mm_struct *mm = task->mm; + struct vm_area_struct *vma = NULL; + unsigned long size; + void *smpl_buf; + + + /* + * the fixed header + requested size and align to page boundary + */ + size = PAGE_ALIGN(rsize); + + DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size)); + + /* + * check requested size to avoid Denial-of-service attacks + * XXX: may have to refine this test + * Check against address space limit. + * + * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur) + * return -ENOMEM; + */ + if (size > task_rlimit(task, RLIMIT_MEMLOCK)) + return -ENOMEM; + + /* + * We do the easy to undo allocations first. + * + * pfm_rvmalloc(), clears the buffer, so there is no leak + */ + smpl_buf = pfm_rvmalloc(size); + if (smpl_buf == NULL) { + DPRINT(("Can't allocate sampling buffer\n")); + return -ENOMEM; + } + + DPRINT(("smpl_buf @%p\n", smpl_buf)); + + /* allocate vma */ + vma = vm_area_alloc(mm); + if (!vma) { + DPRINT(("Cannot allocate vma\n")); + goto error_kmem; + } + + /* + * partially initialize the vma for the sampling buffer + */ + vma->vm_file = get_file(filp); + vma->vm_flags = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP; + vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */ + + /* + * Now we have everything we need and we can initialize + * and connect all the data structures + */ + + ctx->ctx_smpl_hdr = smpl_buf; + ctx->ctx_smpl_size = size; /* aligned size */ + + /* + * Let's do the difficult operations next. + * + * now we atomically find some area in the address space and + * remap the buffer in it. + */ + down_write(&task->mm->mmap_sem); + + /* find some free area in address space, must have mmap sem held */ + vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS); + if (IS_ERR_VALUE(vma->vm_start)) { + DPRINT(("Cannot find unmapped area for size %ld\n", size)); + up_write(&task->mm->mmap_sem); + goto error; + } + vma->vm_end = vma->vm_start + size; + vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; + + DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start)); + + /* can only be applied to current task, need to have the mm semaphore held when called */ + if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) { + DPRINT(("Can't remap buffer\n")); + up_write(&task->mm->mmap_sem); + goto error; + } + + /* + * now insert the vma in the vm list for the process, must be + * done with mmap lock held + */ + insert_vm_struct(mm, vma); + + vm_stat_account(vma->vm_mm, vma->vm_flags, vma_pages(vma)); + up_write(&task->mm->mmap_sem); + + /* + * keep track of user level virtual address + */ + ctx->ctx_smpl_vaddr = (void *)vma->vm_start; + *(unsigned long *)user_vaddr = vma->vm_start; + + return 0; + +error: + vm_area_free(vma); +error_kmem: + pfm_rvfree(smpl_buf, size); + + return -ENOMEM; +} + +/* + * XXX: do something better here + */ +static int +pfm_bad_permissions(struct task_struct *task) +{ + const struct cred *tcred; + kuid_t uid = current_uid(); + kgid_t gid = current_gid(); + int ret; + + rcu_read_lock(); + tcred = __task_cred(task); + + /* inspired by ptrace_attach() */ + DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n", + from_kuid(&init_user_ns, uid), + from_kgid(&init_user_ns, gid), + from_kuid(&init_user_ns, tcred->euid), + from_kuid(&init_user_ns, tcred->suid), + from_kuid(&init_user_ns, tcred->uid), + from_kgid(&init_user_ns, tcred->egid), + from_kgid(&init_user_ns, tcred->sgid))); + + ret = ((!uid_eq(uid, tcred->euid)) + || (!uid_eq(uid, tcred->suid)) + || (!uid_eq(uid, tcred->uid)) + || (!gid_eq(gid, tcred->egid)) + || (!gid_eq(gid, tcred->sgid)) + || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE); + + rcu_read_unlock(); + return ret; +} + +static int +pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx) +{ + int ctx_flags; + + /* valid signal */ + + ctx_flags = pfx->ctx_flags; + + if (ctx_flags & PFM_FL_SYSTEM_WIDE) { + + /* + * cannot block in this mode + */ + if (ctx_flags & PFM_FL_NOTIFY_BLOCK) { + DPRINT(("cannot use blocking mode when in system wide monitoring\n")); + return -EINVAL; + } + } else { + } + /* probably more to add here */ + + return 0; +} + +static int +pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags, + unsigned int cpu, pfarg_context_t *arg) +{ + pfm_buffer_fmt_t *fmt = NULL; + unsigned long size = 0UL; + void *uaddr = NULL; + void *fmt_arg = NULL; + int ret = 0; +#define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1) + + /* invoke and lock buffer format, if found */ + fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id); + if (fmt == NULL) { + DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task))); + return -EINVAL; + } + + /* + * buffer argument MUST be contiguous to pfarg_context_t + */ + if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg); + + ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg); + + DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret)); + + if (ret) goto error; + + /* link buffer format and context */ + ctx->ctx_buf_fmt = fmt; + ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */ + + /* + * check if buffer format wants to use perfmon buffer allocation/mapping service + */ + ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size); + if (ret) goto error; + + if (size) { + /* + * buffer is always remapped into the caller's address space + */ + ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr); + if (ret) goto error; + + /* keep track of user address of buffer */ + arg->ctx_smpl_vaddr = uaddr; + } + ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg); + +error: + return ret; +} + +static void +pfm_reset_pmu_state(pfm_context_t *ctx) +{ + int i; + + /* + * install reset values for PMC. + */ + for (i=1; PMC_IS_LAST(i) == 0; i++) { + if (PMC_IS_IMPL(i) == 0) continue; + ctx->ctx_pmcs[i] = PMC_DFL_VAL(i); + DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i])); + } + /* + * PMD registers are set to 0UL when the context in memset() + */ + + /* + * On context switched restore, we must restore ALL pmc and ALL pmd even + * when they are not actively used by the task. In UP, the incoming process + * may otherwise pick up left over PMC, PMD state from the previous process. + * As opposed to PMD, stale PMC can cause harm to the incoming + * process because they may change what is being measured. + * Therefore, we must systematically reinstall the entire + * PMC state. In SMP, the same thing is possible on the + * same CPU but also on between 2 CPUs. + * + * The problem with PMD is information leaking especially + * to user level when psr.sp=0 + * + * There is unfortunately no easy way to avoid this problem + * on either UP or SMP. This definitively slows down the + * pfm_load_regs() function. + */ + + /* + * bitmask of all PMCs accessible to this context + * + * PMC0 is treated differently. + */ + ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1; + + /* + * bitmask of all PMDs that are accessible to this context + */ + ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0]; + + DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0])); + + /* + * useful in case of re-enable after disable + */ + ctx->ctx_used_ibrs[0] = 0UL; + ctx->ctx_used_dbrs[0] = 0UL; +} + +static int +pfm_ctx_getsize(void *arg, size_t *sz) +{ + pfarg_context_t *req = (pfarg_context_t *)arg; + pfm_buffer_fmt_t *fmt; + + *sz = 0; + + if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0; + + fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id); + if (fmt == NULL) { + DPRINT(("cannot find buffer format\n")); + return -EINVAL; + } + /* get just enough to copy in user parameters */ + *sz = fmt->fmt_arg_size; + DPRINT(("arg_size=%lu\n", *sz)); + + return 0; +} + + + +/* + * cannot attach if : + * - kernel task + * - task not owned by caller + * - task incompatible with context mode + */ +static int +pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task) +{ + /* + * no kernel task or task not owner by caller + */ + if (task->mm == NULL) { + DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task))); + return -EPERM; + } + if (pfm_bad_permissions(task)) { + DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task))); + return -EPERM; + } + /* + * cannot block in self-monitoring mode + */ + if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) { + DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task))); + return -EINVAL; + } + + if (task->exit_state == EXIT_ZOMBIE) { + DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task))); + return -EBUSY; + } + + /* + * always ok for self + */ + if (task == current) return 0; + + if (!task_is_stopped_or_traced(task)) { + DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state)); + return -EBUSY; + } + /* + * make sure the task is off any CPU + */ + wait_task_inactive(task, 0); + + /* more to come... */ + + return 0; +} + +static int +pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task) +{ + struct task_struct *p = current; + int ret; + + /* XXX: need to add more checks here */ + if (pid < 2) return -EPERM; + + if (pid != task_pid_vnr(current)) { + /* make sure task cannot go away while we operate on it */ + p = find_get_task_by_vpid(pid); + if (!p) + return -ESRCH; + } + + ret = pfm_task_incompatible(ctx, p); + if (ret == 0) { + *task = p; + } else if (p != current) { + pfm_put_task(p); + } + return ret; +} + + + +static int +pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) +{ + pfarg_context_t *req = (pfarg_context_t *)arg; + struct file *filp; + struct path path; + int ctx_flags; + int fd; + int ret; + + /* let's check the arguments first */ + ret = pfarg_is_sane(current, req); + if (ret < 0) + return ret; + + ctx_flags = req->ctx_flags; + + ret = -ENOMEM; + + fd = get_unused_fd_flags(0); + if (fd < 0) + return fd; + + ctx = pfm_context_alloc(ctx_flags); + if (!ctx) + goto error; + + filp = pfm_alloc_file(ctx); + if (IS_ERR(filp)) { + ret = PTR_ERR(filp); + goto error_file; + } + + req->ctx_fd = ctx->ctx_fd = fd; + + /* + * does the user want to sample? + */ + if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) { + ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req); + if (ret) + goto buffer_error; + } + + DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n", + ctx, + ctx_flags, + ctx->ctx_fl_system, + ctx->ctx_fl_block, + ctx->ctx_fl_excl_idle, + ctx->ctx_fl_no_msg, + ctx->ctx_fd)); + + /* + * initialize soft PMU state + */ + pfm_reset_pmu_state(ctx); + + fd_install(fd, filp); + + return 0; + +buffer_error: + path = filp->f_path; + put_filp(filp); + path_put(&path); + + if (ctx->ctx_buf_fmt) { + pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs); + } +error_file: + pfm_context_free(ctx); + +error: + put_unused_fd(fd); + return ret; +} + +static inline unsigned long +pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset) +{ + unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset; + unsigned long new_seed, old_seed = reg->seed, mask = reg->mask; + extern unsigned long carta_random32 (unsigned long seed); + + if (reg->flags & PFM_REGFL_RANDOM) { + new_seed = carta_random32(old_seed); + val -= (old_seed & mask); /* counter values are negative numbers! */ + if ((mask >> 32) != 0) + /* construct a full 64-bit random value: */ + new_seed |= carta_random32(old_seed >> 32) << 32; + reg->seed = new_seed; + } + reg->lval = val; + return val; +} + +static void +pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset) +{ + unsigned long mask = ovfl_regs[0]; + unsigned long reset_others = 0UL; + unsigned long val; + int i; + + /* + * now restore reset value on sampling overflowed counters + */ + mask >>= PMU_FIRST_COUNTER; + for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) { + + if ((mask & 0x1UL) == 0UL) continue; + + ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset); + reset_others |= ctx->ctx_pmds[i].reset_pmds[0]; + + DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val)); + } + + /* + * Now take care of resetting the other registers + */ + for(i = 0; reset_others; i++, reset_others >>= 1) { + + if ((reset_others & 0x1) == 0) continue; + + ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset); + + DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n", + is_long_reset ? "long" : "short", i, val)); + } +} + +static void +pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset) +{ + unsigned long mask = ovfl_regs[0]; + unsigned long reset_others = 0UL; + unsigned long val; + int i; + + DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset)); + + if (ctx->ctx_state == PFM_CTX_MASKED) { + pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset); + return; + } + + /* + * now restore reset value on sampling overflowed counters + */ + mask >>= PMU_FIRST_COUNTER; + for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) { + + if ((mask & 0x1UL) == 0UL) continue; + + val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset); + reset_others |= ctx->ctx_pmds[i].reset_pmds[0]; + + DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val)); + + pfm_write_soft_counter(ctx, i, val); + } + + /* + * Now take care of resetting the other registers + */ + for(i = 0; reset_others; i++, reset_others >>= 1) { + + if ((reset_others & 0x1) == 0) continue; + + val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset); + + if (PMD_IS_COUNTING(i)) { + pfm_write_soft_counter(ctx, i, val); + } else { + ia64_set_pmd(i, val); + } + DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n", + is_long_reset ? "long" : "short", i, val)); + } + ia64_srlz_d(); +} + +static int +pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) +{ + struct task_struct *task; + pfarg_reg_t *req = (pfarg_reg_t *)arg; + unsigned long value, pmc_pm; + unsigned long smpl_pmds, reset_pmds, impl_pmds; + unsigned int cnum, reg_flags, flags, pmc_type; + int i, can_access_pmu = 0, is_loaded, is_system, expert_mode; + int is_monitor, is_counting, state; + int ret = -EINVAL; + pfm_reg_check_t wr_func; +#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z)) + + state = ctx->ctx_state; + is_loaded = state == PFM_CTX_LOADED ? 1 : 0; + is_system = ctx->ctx_fl_system; + task = ctx->ctx_task; + impl_pmds = pmu_conf->impl_pmds[0]; + + if (state == PFM_CTX_ZOMBIE) return -EINVAL; + + if (is_loaded) { + /* + * In system wide and when the context is loaded, access can only happen + * when the caller is running on the CPU being monitored by the session. + * It does not have to be the owner (ctx_task) of the context per se. + */ + if (is_system && ctx->ctx_cpu != smp_processor_id()) { + DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); + return -EBUSY; + } + can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0; + } + expert_mode = pfm_sysctl.expert_mode; + + for (i = 0; i < count; i++, req++) { + + cnum = req->reg_num; + reg_flags = req->reg_flags; + value = req->reg_value; + smpl_pmds = req->reg_smpl_pmds[0]; + reset_pmds = req->reg_reset_pmds[0]; + flags = 0; + + + if (cnum >= PMU_MAX_PMCS) { + DPRINT(("pmc%u is invalid\n", cnum)); + goto error; + } + + pmc_type = pmu_conf->pmc_desc[cnum].type; + pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1; + is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0; + is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0; + + /* + * we reject all non implemented PMC as well + * as attempts to modify PMC[0-3] which are used + * as status registers by the PMU + */ + if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) { + DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type)); + goto error; + } + wr_func = pmu_conf->pmc_desc[cnum].write_check; + /* + * If the PMC is a monitor, then if the value is not the default: + * - system-wide session: PMCx.pm=1 (privileged monitor) + * - per-task : PMCx.pm=0 (user monitor) + */ + if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) { + DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n", + cnum, + pmc_pm, + is_system)); + goto error; + } + + if (is_counting) { + /* + * enforce generation of overflow interrupt. Necessary on all + * CPUs. + */ + value |= 1 << PMU_PMC_OI; + + if (reg_flags & PFM_REGFL_OVFL_NOTIFY) { + flags |= PFM_REGFL_OVFL_NOTIFY; + } + + if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM; + + /* verify validity of smpl_pmds */ + if ((smpl_pmds & impl_pmds) != smpl_pmds) { + DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum)); + goto error; + } + + /* verify validity of reset_pmds */ + if ((reset_pmds & impl_pmds) != reset_pmds) { + DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum)); + goto error; + } + } else { + if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) { + DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum)); + goto error; + } + /* eventid on non-counting monitors are ignored */ + } + + /* + * execute write checker, if any + */ + if (likely(expert_mode == 0 && wr_func)) { + ret = (*wr_func)(task, ctx, cnum, &value, regs); + if (ret) goto error; + ret = -EINVAL; + } + + /* + * no error on this register + */ + PFM_REG_RETFLAG_SET(req->reg_flags, 0); + + /* + * Now we commit the changes to the software state + */ + + /* + * update overflow information + */ + if (is_counting) { + /* + * full flag update each time a register is programmed + */ + ctx->ctx_pmds[cnum].flags = flags; + + ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds; + ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds; + ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid; + + /* + * Mark all PMDS to be accessed as used. + * + * We do not keep track of PMC because we have to + * systematically restore ALL of them. + * + * We do not update the used_monitors mask, because + * if we have not programmed them, then will be in + * a quiescent state, therefore we will not need to + * mask/restore then when context is MASKED. + */ + CTX_USED_PMD(ctx, reset_pmds); + CTX_USED_PMD(ctx, smpl_pmds); + /* + * make sure we do not try to reset on + * restart because we have established new values + */ + if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum; + } + /* + * Needed in case the user does not initialize the equivalent + * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no + * possible leak here. + */ + CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]); + + /* + * keep track of the monitor PMC that we are using. + * we save the value of the pmc in ctx_pmcs[] and if + * the monitoring is not stopped for the context we also + * place it in the saved state area so that it will be + * picked up later by the context switch code. + * + * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs(). + * + * The value in th_pmcs[] may be modified on overflow, i.e., when + * monitoring needs to be stopped. + */ + if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum); + + /* + * update context state + */ + ctx->ctx_pmcs[cnum] = value; + + if (is_loaded) { + /* + * write thread state + */ + if (is_system == 0) ctx->th_pmcs[cnum] = value; + + /* + * write hardware register if we can + */ + if (can_access_pmu) { + ia64_set_pmc(cnum, value); + } +#ifdef CONFIG_SMP + else { + /* + * per-task SMP only here + * + * we are guaranteed that the task is not running on the other CPU, + * we indicate that this PMD will need to be reloaded if the task + * is rescheduled on the CPU it ran last on. + */ + ctx->ctx_reload_pmcs[0] |= 1UL << cnum; + } +#endif + } + + DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n", + cnum, + value, + is_loaded, + can_access_pmu, + flags, + ctx->ctx_all_pmcs[0], + ctx->ctx_used_pmds[0], + ctx->ctx_pmds[cnum].eventid, + smpl_pmds, + reset_pmds, + ctx->ctx_reload_pmcs[0], + ctx->ctx_used_monitors[0], + ctx->ctx_ovfl_regs[0])); + } + + /* + * make sure the changes are visible + */ + if (can_access_pmu) ia64_srlz_d(); + + return 0; +error: + PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL); + return ret; +} + +static int +pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) +{ + struct task_struct *task; + pfarg_reg_t *req = (pfarg_reg_t *)arg; + unsigned long value, hw_value, ovfl_mask; + unsigned int cnum; + int i, can_access_pmu = 0, state; + int is_counting, is_loaded, is_system, expert_mode; + int ret = -EINVAL; + pfm_reg_check_t wr_func; + + + state = ctx->ctx_state; + is_loaded = state == PFM_CTX_LOADED ? 1 : 0; + is_system = ctx->ctx_fl_system; + ovfl_mask = pmu_conf->ovfl_val; + task = ctx->ctx_task; + + if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL; + + /* + * on both UP and SMP, we can only write to the PMC when the task is + * the owner of the local PMU. + */ + if (likely(is_loaded)) { + /* + * In system wide and when the context is loaded, access can only happen + * when the caller is running on the CPU being monitored by the session. + * It does not have to be the owner (ctx_task) of the context per se. + */ + if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) { + DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); + return -EBUSY; + } + can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0; + } + expert_mode = pfm_sysctl.expert_mode; + + for (i = 0; i < count; i++, req++) { + + cnum = req->reg_num; + value = req->reg_value; + + if (!PMD_IS_IMPL(cnum)) { + DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum)); + goto abort_mission; + } + is_counting = PMD_IS_COUNTING(cnum); + wr_func = pmu_conf->pmd_desc[cnum].write_check; + + /* + * execute write checker, if any + */ + if (unlikely(expert_mode == 0 && wr_func)) { + unsigned long v = value; + + ret = (*wr_func)(task, ctx, cnum, &v, regs); + if (ret) goto abort_mission; + + value = v; + ret = -EINVAL; + } + + /* + * no error on this register + */ + PFM_REG_RETFLAG_SET(req->reg_flags, 0); + + /* + * now commit changes to software state + */ + hw_value = value; + + /* + * update virtualized (64bits) counter + */ + if (is_counting) { + /* + * write context state + */ + ctx->ctx_pmds[cnum].lval = value; + + /* + * when context is load we use the split value + */ + if (is_loaded) { + hw_value = value & ovfl_mask; + value = value & ~ovfl_mask; + } + } + /* + * update reset values (not just for counters) + */ + ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset; + ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset; + + /* + * update randomization parameters (not just for counters) + */ + ctx->ctx_pmds[cnum].seed = req->reg_random_seed; + ctx->ctx_pmds[cnum].mask = req->reg_random_mask; + + /* + * update context value + */ + ctx->ctx_pmds[cnum].val = value; + + /* + * Keep track of what we use + * + * We do not keep track of PMC because we have to + * systematically restore ALL of them. + */ + CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum)); + + /* + * mark this PMD register used as well + */ + CTX_USED_PMD(ctx, RDEP(cnum)); + + /* + * make sure we do not try to reset on + * restart because we have established new values + */ + if (is_counting && state == PFM_CTX_MASKED) { + ctx->ctx_ovfl_regs[0] &= ~1UL << cnum; + } + + if (is_loaded) { + /* + * write thread state + */ + if (is_system == 0) ctx->th_pmds[cnum] = hw_value; + + /* + * write hardware register if we can + */ + if (can_access_pmu) { + ia64_set_pmd(cnum, hw_value); + } else { +#ifdef CONFIG_SMP + /* + * we are guaranteed that the task is not running on the other CPU, + * we indicate that this PMD will need to be reloaded if the task + * is rescheduled on the CPU it ran last on. + */ + ctx->ctx_reload_pmds[0] |= 1UL << cnum; +#endif + } + } + + DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx " + "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n", + cnum, + value, + is_loaded, + can_access_pmu, + hw_value, + ctx->ctx_pmds[cnum].val, + ctx->ctx_pmds[cnum].short_reset, + ctx->ctx_pmds[cnum].long_reset, + PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N', + ctx->ctx_pmds[cnum].seed, + ctx->ctx_pmds[cnum].mask, + ctx->ctx_used_pmds[0], + ctx->ctx_pmds[cnum].reset_pmds[0], + ctx->ctx_reload_pmds[0], + ctx->ctx_all_pmds[0], + ctx->ctx_ovfl_regs[0])); + } + + /* + * make changes visible + */ + if (can_access_pmu) ia64_srlz_d(); + + return 0; + +abort_mission: + /* + * for now, we have only one possibility for error + */ + PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL); + return ret; +} + +/* + * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function. + * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an + * interrupt is delivered during the call, it will be kept pending until we leave, making + * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are + * guaranteed to return consistent data to the user, it may simply be old. It is not + * trivial to treat the overflow while inside the call because you may end up in + * some module sampling buffer code causing deadlocks. + */ +static int +pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) +{ + struct task_struct *task; + unsigned long val = 0UL, lval, ovfl_mask, sval; + pfarg_reg_t *req = (pfarg_reg_t *)arg; + unsigned int cnum, reg_flags = 0; + int i, can_access_pmu = 0, state; + int is_loaded, is_system, is_counting, expert_mode; + int ret = -EINVAL; + pfm_reg_check_t rd_func; + + /* + * access is possible when loaded only for + * self-monitoring tasks or in UP mode + */ + + state = ctx->ctx_state; + is_loaded = state == PFM_CTX_LOADED ? 1 : 0; + is_system = ctx->ctx_fl_system; + ovfl_mask = pmu_conf->ovfl_val; + task = ctx->ctx_task; + + if (state == PFM_CTX_ZOMBIE) return -EINVAL; + + if (likely(is_loaded)) { + /* + * In system wide and when the context is loaded, access can only happen + * when the caller is running on the CPU being monitored by the session. + * It does not have to be the owner (ctx_task) of the context per se. + */ + if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) { + DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); + return -EBUSY; + } + /* + * this can be true when not self-monitoring only in UP + */ + can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0; + + if (can_access_pmu) ia64_srlz_d(); + } + expert_mode = pfm_sysctl.expert_mode; + + DPRINT(("ld=%d apmu=%d ctx_state=%d\n", + is_loaded, + can_access_pmu, + state)); + + /* + * on both UP and SMP, we can only read the PMD from the hardware register when + * the task is the owner of the local PMU. + */ + + for (i = 0; i < count; i++, req++) { + + cnum = req->reg_num; + reg_flags = req->reg_flags; + + if (unlikely(!PMD_IS_IMPL(cnum))) goto error; + /* + * we can only read the register that we use. That includes + * the one we explicitly initialize AND the one we want included + * in the sampling buffer (smpl_regs). + * + * Having this restriction allows optimization in the ctxsw routine + * without compromising security (leaks) + */ + if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error; + + sval = ctx->ctx_pmds[cnum].val; + lval = ctx->ctx_pmds[cnum].lval; + is_counting = PMD_IS_COUNTING(cnum); + + /* + * If the task is not the current one, then we check if the + * PMU state is still in the local live register due to lazy ctxsw. + * If true, then we read directly from the registers. + */ + if (can_access_pmu){ + val = ia64_get_pmd(cnum); + } else { + /* + * context has been saved + * if context is zombie, then task does not exist anymore. + * In this case, we use the full value saved in the context (pfm_flush_regs()). + */ + val = is_loaded ? ctx->th_pmds[cnum] : 0UL; + } + rd_func = pmu_conf->pmd_desc[cnum].read_check; + + if (is_counting) { + /* + * XXX: need to check for overflow when loaded + */ + val &= ovfl_mask; + val += sval; + } + + /* + * execute read checker, if any + */ + if (unlikely(expert_mode == 0 && rd_func)) { + unsigned long v = val; + ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs); + if (ret) goto error; + val = v; + ret = -EINVAL; + } + + PFM_REG_RETFLAG_SET(reg_flags, 0); + + DPRINT(("pmd[%u]=0x%lx\n", cnum, val)); + + /* + * update register return value, abort all if problem during copy. + * we only modify the reg_flags field. no check mode is fine because + * access has been verified upfront in sys_perfmonctl(). + */ + req->reg_value = val; + req->reg_flags = reg_flags; + req->reg_last_reset_val = lval; + } + + return 0; + +error: + PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL); + return ret; +} + +int +pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs) +{ + pfm_context_t *ctx; + + if (req == NULL) return -EINVAL; + + ctx = GET_PMU_CTX(); + + if (ctx == NULL) return -EINVAL; + + /* + * for now limit to current task, which is enough when calling + * from overflow handler + */ + if (task != current && ctx->ctx_fl_system == 0) return -EBUSY; + + return pfm_write_pmcs(ctx, req, nreq, regs); +} +EXPORT_SYMBOL(pfm_mod_write_pmcs); + +int +pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs) +{ + pfm_context_t *ctx; + + if (req == NULL) return -EINVAL; + + ctx = GET_PMU_CTX(); + + if (ctx == NULL) return -EINVAL; + + /* + * for now limit to current task, which is enough when calling + * from overflow handler + */ + if (task != current && ctx->ctx_fl_system == 0) return -EBUSY; + + return pfm_read_pmds(ctx, req, nreq, regs); +} +EXPORT_SYMBOL(pfm_mod_read_pmds); + +/* + * Only call this function when a process it trying to + * write the debug registers (reading is always allowed) + */ +int +pfm_use_debug_registers(struct task_struct *task) +{ + pfm_context_t *ctx = task->thread.pfm_context; + unsigned long flags; + int ret = 0; + + if (pmu_conf->use_rr_dbregs == 0) return 0; + + DPRINT(("called for [%d]\n", task_pid_nr(task))); + + /* + * do it only once + */ + if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0; + + /* + * Even on SMP, we do not need to use an atomic here because + * the only way in is via ptrace() and this is possible only when the + * process is stopped. Even in the case where the ctxsw out is not totally + * completed by the time we come here, there is no way the 'stopped' process + * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine. + * So this is always safe. + */ + if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1; + + LOCK_PFS(flags); + + /* + * We cannot allow setting breakpoints when system wide monitoring + * sessions are using the debug registers. + */ + if (pfm_sessions.pfs_sys_use_dbregs> 0) + ret = -1; + else + pfm_sessions.pfs_ptrace_use_dbregs++; + + DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n", + pfm_sessions.pfs_ptrace_use_dbregs, + pfm_sessions.pfs_sys_use_dbregs, + task_pid_nr(task), ret)); + + UNLOCK_PFS(flags); + + return ret; +} + +/* + * This function is called for every task that exits with the + * IA64_THREAD_DBG_VALID set. This indicates a task which was + * able to use the debug registers for debugging purposes via + * ptrace(). Therefore we know it was not using them for + * performance monitoring, so we only decrement the number + * of "ptraced" debug register users to keep the count up to date + */ +int +pfm_release_debug_registers(struct task_struct *task) +{ + unsigned long flags; + int ret; + + if (pmu_conf->use_rr_dbregs == 0) return 0; + + LOCK_PFS(flags); + if (pfm_sessions.pfs_ptrace_use_dbregs == 0) { + printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task)); + ret = -1; + } else { + pfm_sessions.pfs_ptrace_use_dbregs--; + ret = 0; + } + UNLOCK_PFS(flags); + + return ret; +} + +static int +pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) +{ + struct task_struct *task; + pfm_buffer_fmt_t *fmt; + pfm_ovfl_ctrl_t rst_ctrl; + int state, is_system; + int ret = 0; + + state = ctx->ctx_state; + fmt = ctx->ctx_buf_fmt; + is_system = ctx->ctx_fl_system; + task = PFM_CTX_TASK(ctx); + + switch(state) { + case PFM_CTX_MASKED: + break; + case PFM_CTX_LOADED: + if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break; + /* fall through */ + case PFM_CTX_UNLOADED: + case PFM_CTX_ZOMBIE: + DPRINT(("invalid state=%d\n", state)); + return -EBUSY; + default: + DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state)); + return -EINVAL; + } + + /* + * In system wide and when the context is loaded, access can only happen + * when the caller is running on the CPU being monitored by the session. + * It does not have to be the owner (ctx_task) of the context per se. + */ + if (is_system && ctx->ctx_cpu != smp_processor_id()) { + DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); + return -EBUSY; + } + + /* sanity check */ + if (unlikely(task == NULL)) { + printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current)); + return -EINVAL; + } + + if (task == current || is_system) { + + fmt = ctx->ctx_buf_fmt; + + DPRINT(("restarting self %d ovfl=0x%lx\n", + task_pid_nr(task), + ctx->ctx_ovfl_regs[0])); + + if (CTX_HAS_SMPL(ctx)) { + + prefetch(ctx->ctx_smpl_hdr); + + rst_ctrl.bits.mask_monitoring = 0; + rst_ctrl.bits.reset_ovfl_pmds = 0; + + if (state == PFM_CTX_LOADED) + ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs); + else + ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs); + } else { + rst_ctrl.bits.mask_monitoring = 0; + rst_ctrl.bits.reset_ovfl_pmds = 1; + } + + if (ret == 0) { + if (rst_ctrl.bits.reset_ovfl_pmds) + pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET); + + if (rst_ctrl.bits.mask_monitoring == 0) { + DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task))); + + if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task); + } else { + DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task))); + + // cannot use pfm_stop_monitoring(task, regs); + } + } + /* + * clear overflowed PMD mask to remove any stale information + */ + ctx->ctx_ovfl_regs[0] = 0UL; + + /* + * back to LOADED state + */ + ctx->ctx_state = PFM_CTX_LOADED; + + /* + * XXX: not really useful for self monitoring + */ + ctx->ctx_fl_can_restart = 0; + + return 0; + } + + /* + * restart another task + */ + + /* + * When PFM_CTX_MASKED, we cannot issue a restart before the previous + * one is seen by the task. + */ + if (state == PFM_CTX_MASKED) { + if (ctx->ctx_fl_can_restart == 0) return -EINVAL; + /* + * will prevent subsequent restart before this one is + * seen by other task + */ + ctx->ctx_fl_can_restart = 0; + } + + /* + * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e. + * the task is blocked or on its way to block. That's the normal + * restart path. If the monitoring is not masked, then the task + * can be actively monitoring and we cannot directly intervene. + * Therefore we use the trap mechanism to catch the task and + * force it to reset the buffer/reset PMDs. + * + * if non-blocking, then we ensure that the task will go into + * pfm_handle_work() before returning to user mode. + * + * We cannot explicitly reset another task, it MUST always + * be done by the task itself. This works for system wide because + * the tool that is controlling the session is logically doing + * "self-monitoring". + */ + if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) { + DPRINT(("unblocking [%d]\n", task_pid_nr(task))); + complete(&ctx->ctx_restart_done); + } else { + DPRINT(("[%d] armed exit trap\n", task_pid_nr(task))); + + ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET; + + PFM_SET_WORK_PENDING(task, 1); + + set_notify_resume(task); + + /* + * XXX: send reschedule if task runs on another CPU + */ + } + return 0; +} + +static int +pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) +{ + unsigned int m = *(unsigned int *)arg; + + pfm_sysctl.debug = m == 0 ? 0 : 1; + + printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off"); + + if (m == 0) { + memset(pfm_stats, 0, sizeof(pfm_stats)); + for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL; + } + return 0; +} + +/* + * arg can be NULL and count can be zero for this function + */ +static int +pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) +{ + struct thread_struct *thread = NULL; + struct task_struct *task; + pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg; + unsigned long flags; + dbreg_t dbreg; + unsigned int rnum; + int first_time; + int ret = 0, state; + int i, can_access_pmu = 0; + int is_system, is_loaded; + + if (pmu_conf->use_rr_dbregs == 0) return -EINVAL; + + state = ctx->ctx_state; + is_loaded = state == PFM_CTX_LOADED ? 1 : 0; + is_system = ctx->ctx_fl_system; + task = ctx->ctx_task; + + if (state == PFM_CTX_ZOMBIE) return -EINVAL; + + /* + * on both UP and SMP, we can only write to the PMC when the task is + * the owner of the local PMU. + */ + if (is_loaded) { + thread = &task->thread; + /* + * In system wide and when the context is loaded, access can only happen + * when the caller is running on the CPU being monitored by the session. + * It does not have to be the owner (ctx_task) of the context per se. + */ + if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) { + DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); + return -EBUSY; + } + can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0; + } + + /* + * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w + * ensuring that no real breakpoint can be installed via this call. + * + * IMPORTANT: regs can be NULL in this function + */ + + first_time = ctx->ctx_fl_using_dbreg == 0; + + /* + * don't bother if we are loaded and task is being debugged + */ + if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) { + DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task))); + return -EBUSY; + } + + /* + * check for debug registers in system wide mode + * + * If though a check is done in pfm_context_load(), + * we must repeat it here, in case the registers are + * written after the context is loaded + */ + if (is_loaded) { + LOCK_PFS(flags); + + if (first_time && is_system) { + if (pfm_sessions.pfs_ptrace_use_dbregs) + ret = -EBUSY; + else + pfm_sessions.pfs_sys_use_dbregs++; + } + UNLOCK_PFS(flags); + } + + if (ret != 0) return ret; + + /* + * mark ourself as user of the debug registers for + * perfmon purposes. + */ + ctx->ctx_fl_using_dbreg = 1; + + /* + * clear hardware registers to make sure we don't + * pick up stale state. + * + * for a system wide session, we do not use + * thread.dbr, thread.ibr because this process + * never leaves the current CPU and the state + * is shared by all processes running on it + */ + if (first_time && can_access_pmu) { + DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task))); + for (i=0; i < pmu_conf->num_ibrs; i++) { + ia64_set_ibr(i, 0UL); + ia64_dv_serialize_instruction(); + } + ia64_srlz_i(); + for (i=0; i < pmu_conf->num_dbrs; i++) { + ia64_set_dbr(i, 0UL); + ia64_dv_serialize_data(); + } + ia64_srlz_d(); + } + + /* + * Now install the values into the registers + */ + for (i = 0; i < count; i++, req++) { + + rnum = req->dbreg_num; + dbreg.val = req->dbreg_value; + + ret = -EINVAL; + + if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) { + DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n", + rnum, dbreg.val, mode, i, count)); + + goto abort_mission; + } + + /* + * make sure we do not install enabled breakpoint + */ + if (rnum & 0x1) { + if (mode == PFM_CODE_RR) + dbreg.ibr.ibr_x = 0; + else + dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0; + } + + PFM_REG_RETFLAG_SET(req->dbreg_flags, 0); + + /* + * Debug registers, just like PMC, can only be modified + * by a kernel call. Moreover, perfmon() access to those + * registers are centralized in this routine. The hardware + * does not modify the value of these registers, therefore, + * if we save them as they are written, we can avoid having + * to save them on context switch out. This is made possible + * by the fact that when perfmon uses debug registers, ptrace() + * won't be able to modify them concurrently. + */ + if (mode == PFM_CODE_RR) { + CTX_USED_IBR(ctx, rnum); + + if (can_access_pmu) { + ia64_set_ibr(rnum, dbreg.val); + ia64_dv_serialize_instruction(); + } + + ctx->ctx_ibrs[rnum] = dbreg.val; + + DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n", + rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu)); + } else { + CTX_USED_DBR(ctx, rnum); + + if (can_access_pmu) { + ia64_set_dbr(rnum, dbreg.val); + ia64_dv_serialize_data(); + } + ctx->ctx_dbrs[rnum] = dbreg.val; + + DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n", + rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu)); + } + } + + return 0; + +abort_mission: + /* + * in case it was our first attempt, we undo the global modifications + */ + if (first_time) { + LOCK_PFS(flags); + if (ctx->ctx_fl_system) { + pfm_sessions.pfs_sys_use_dbregs--; + } + UNLOCK_PFS(flags); + ctx->ctx_fl_using_dbreg = 0; + } + /* + * install error return flag + */ + PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL); + + return ret; +} + +static int +pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) +{ + return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs); +} + +static int +pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) +{ + return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs); +} + +int +pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs) +{ + pfm_context_t *ctx; + + if (req == NULL) return -EINVAL; + + ctx = GET_PMU_CTX(); + + if (ctx == NULL) return -EINVAL; + + /* + * for now limit to current task, which is enough when calling + * from overflow handler + */ + if (task != current && ctx->ctx_fl_system == 0) return -EBUSY; + + return pfm_write_ibrs(ctx, req, nreq, regs); +} +EXPORT_SYMBOL(pfm_mod_write_ibrs); + +int +pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs) +{ + pfm_context_t *ctx; + + if (req == NULL) return -EINVAL; + + ctx = GET_PMU_CTX(); + + if (ctx == NULL) return -EINVAL; + + /* + * for now limit to current task, which is enough when calling + * from overflow handler + */ + if (task != current && ctx->ctx_fl_system == 0) return -EBUSY; + + return pfm_write_dbrs(ctx, req, nreq, regs); +} +EXPORT_SYMBOL(pfm_mod_write_dbrs); + + +static int +pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) +{ + pfarg_features_t *req = (pfarg_features_t *)arg; + + req->ft_version = PFM_VERSION; + return 0; +} + +static int +pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) +{ + struct pt_regs *tregs; + struct task_struct *task = PFM_CTX_TASK(ctx); + int state, is_system; + + state = ctx->ctx_state; + is_system = ctx->ctx_fl_system; + + /* + * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE) + */ + if (state == PFM_CTX_UNLOADED) return -EINVAL; + + /* + * In system wide and when the context is loaded, access can only happen + * when the caller is running on the CPU being monitored by the session. + * It does not have to be the owner (ctx_task) of the context per se. + */ + if (is_system && ctx->ctx_cpu != smp_processor_id()) { + DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); + return -EBUSY; + } + DPRINT(("task [%d] ctx_state=%d is_system=%d\n", + task_pid_nr(PFM_CTX_TASK(ctx)), + state, + is_system)); + /* + * in system mode, we need to update the PMU directly + * and the user level state of the caller, which may not + * necessarily be the creator of the context. + */ + if (is_system) { + /* + * Update local PMU first + * + * disable dcr pp + */ + ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP); + ia64_srlz_i(); + + /* + * update local cpuinfo + */ + PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP); + + /* + * stop monitoring, does srlz.i + */ + pfm_clear_psr_pp(); + + /* + * stop monitoring in the caller + */ + ia64_psr(regs)->pp = 0; + + return 0; + } + /* + * per-task mode + */ + + if (task == current) { + /* stop monitoring at kernel level */ + pfm_clear_psr_up(); + + /* + * stop monitoring at the user level + */ + ia64_psr(regs)->up = 0; + } else { + tregs = task_pt_regs(task); + + /* + * stop monitoring at the user level + */ + ia64_psr(tregs)->up = 0; + + /* + * monitoring disabled in kernel at next reschedule + */ + ctx->ctx_saved_psr_up = 0; + DPRINT(("task=[%d]\n", task_pid_nr(task))); + } + return 0; +} + + +static int +pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) +{ + struct pt_regs *tregs; + int state, is_system; + + state = ctx->ctx_state; + is_system = ctx->ctx_fl_system; + + if (state != PFM_CTX_LOADED) return -EINVAL; + + /* + * In system wide and when the context is loaded, access can only happen + * when the caller is running on the CPU being monitored by the session. + * It does not have to be the owner (ctx_task) of the context per se. + */ + if (is_system && ctx->ctx_cpu != smp_processor_id()) { + DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); + return -EBUSY; + } + + /* + * in system mode, we need to update the PMU directly + * and the user level state of the caller, which may not + * necessarily be the creator of the context. + */ + if (is_system) { + + /* + * set user level psr.pp for the caller + */ + ia64_psr(regs)->pp = 1; + + /* + * now update the local PMU and cpuinfo + */ + PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP); + + /* + * start monitoring at kernel level + */ + pfm_set_psr_pp(); + + /* enable dcr pp */ + ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP); + ia64_srlz_i(); + + return 0; + } + + /* + * per-process mode + */ + + if (ctx->ctx_task == current) { + + /* start monitoring at kernel level */ + pfm_set_psr_up(); + + /* + * activate monitoring at user level + */ + ia64_psr(regs)->up = 1; + + } else { + tregs = task_pt_regs(ctx->ctx_task); + + /* + * start monitoring at the kernel level the next + * time the task is scheduled + */ + ctx->ctx_saved_psr_up = IA64_PSR_UP; + + /* + * activate monitoring at user level + */ + ia64_psr(tregs)->up = 1; + } + return 0; +} + +static int +pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) +{ + pfarg_reg_t *req = (pfarg_reg_t *)arg; + unsigned int cnum; + int i; + int ret = -EINVAL; + + for (i = 0; i < count; i++, req++) { + + cnum = req->reg_num; + + if (!PMC_IS_IMPL(cnum)) goto abort_mission; + + req->reg_value = PMC_DFL_VAL(cnum); + + PFM_REG_RETFLAG_SET(req->reg_flags, 0); + + DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value)); + } + return 0; + +abort_mission: + PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL); + return ret; +} + +static int +pfm_check_task_exist(pfm_context_t *ctx) +{ + struct task_struct *g, *t; + int ret = -ESRCH; + + read_lock(&tasklist_lock); + + do_each_thread (g, t) { + if (t->thread.pfm_context == ctx) { + ret = 0; + goto out; + } + } while_each_thread (g, t); +out: + read_unlock(&tasklist_lock); + + DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx)); + + return ret; +} + +static int +pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) +{ + struct task_struct *task; + struct thread_struct *thread; + struct pfm_context_t *old; + unsigned long flags; +#ifndef CONFIG_SMP + struct task_struct *owner_task = NULL; +#endif + pfarg_load_t *req = (pfarg_load_t *)arg; + unsigned long *pmcs_source, *pmds_source; + int the_cpu; + int ret = 0; + int state, is_system, set_dbregs = 0; + + state = ctx->ctx_state; + is_system = ctx->ctx_fl_system; + /* + * can only load from unloaded or terminated state + */ + if (state != PFM_CTX_UNLOADED) { + DPRINT(("cannot load to [%d], invalid ctx_state=%d\n", + req->load_pid, + ctx->ctx_state)); + return -EBUSY; + } + + DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg)); + + if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) { + DPRINT(("cannot use blocking mode on self\n")); + return -EINVAL; + } + + ret = pfm_get_task(ctx, req->load_pid, &task); + if (ret) { + DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret)); + return ret; + } + + ret = -EINVAL; + + /* + * system wide is self monitoring only + */ + if (is_system && task != current) { + DPRINT(("system wide is self monitoring only load_pid=%d\n", + req->load_pid)); + goto error; + } + + thread = &task->thread; + + ret = 0; + /* + * cannot load a context which is using range restrictions, + * into a task that is being debugged. + */ + if (ctx->ctx_fl_using_dbreg) { + if (thread->flags & IA64_THREAD_DBG_VALID) { + ret = -EBUSY; + DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid)); + goto error; + } + LOCK_PFS(flags); + + if (is_system) { + if (pfm_sessions.pfs_ptrace_use_dbregs) { + DPRINT(("cannot load [%d] dbregs in use\n", + task_pid_nr(task))); + ret = -EBUSY; + } else { + pfm_sessions.pfs_sys_use_dbregs++; + DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs)); + set_dbregs = 1; + } + } + + UNLOCK_PFS(flags); + + if (ret) goto error; + } + + /* + * SMP system-wide monitoring implies self-monitoring. + * + * The programming model expects the task to + * be pinned on a CPU throughout the session. + * Here we take note of the current CPU at the + * time the context is loaded. No call from + * another CPU will be allowed. + * + * The pinning via shed_setaffinity() + * must be done by the calling task prior + * to this call. + * + * systemwide: keep track of CPU this session is supposed to run on + */ + the_cpu = ctx->ctx_cpu = smp_processor_id(); + + ret = -EBUSY; + /* + * now reserve the session + */ + ret = pfm_reserve_session(current, is_system, the_cpu); + if (ret) goto error; + + /* + * task is necessarily stopped at this point. + * + * If the previous context was zombie, then it got removed in + * pfm_save_regs(). Therefore we should not see it here. + * If we see a context, then this is an active context + * + * XXX: needs to be atomic + */ + DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n", + thread->pfm_context, ctx)); + + ret = -EBUSY; + old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *)); + if (old != NULL) { + DPRINT(("load_pid [%d] already has a context\n", req->load_pid)); + goto error_unres; + } + + pfm_reset_msgq(ctx); + + ctx->ctx_state = PFM_CTX_LOADED; + + /* + * link context to task + */ + ctx->ctx_task = task; + + if (is_system) { + /* + * we load as stopped + */ + PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE); + PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP); + + if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE); + } else { + thread->flags |= IA64_THREAD_PM_VALID; + } + + /* + * propagate into thread-state + */ + pfm_copy_pmds(task, ctx); + pfm_copy_pmcs(task, ctx); + + pmcs_source = ctx->th_pmcs; + pmds_source = ctx->th_pmds; + + /* + * always the case for system-wide + */ + if (task == current) { + + if (is_system == 0) { + + /* allow user level control */ + ia64_psr(regs)->sp = 0; + DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task))); + + SET_LAST_CPU(ctx, smp_processor_id()); + INC_ACTIVATION(); + SET_ACTIVATION(ctx); +#ifndef CONFIG_SMP + /* + * push the other task out, if any + */ + owner_task = GET_PMU_OWNER(); + if (owner_task) pfm_lazy_save_regs(owner_task); +#endif + } + /* + * load all PMD from ctx to PMU (as opposed to thread state) + * restore all PMC from ctx to PMU + */ + pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]); + pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]); + + ctx->ctx_reload_pmcs[0] = 0UL; + ctx->ctx_reload_pmds[0] = 0UL; + + /* + * guaranteed safe by earlier check against DBG_VALID + */ + if (ctx->ctx_fl_using_dbreg) { + pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs); + pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs); + } + /* + * set new ownership + */ + SET_PMU_OWNER(task, ctx); + + DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task))); + } else { + /* + * when not current, task MUST be stopped, so this is safe + */ + regs = task_pt_regs(task); + + /* force a full reload */ + ctx->ctx_last_activation = PFM_INVALID_ACTIVATION; + SET_LAST_CPU(ctx, -1); + + /* initial saved psr (stopped) */ + ctx->ctx_saved_psr_up = 0UL; + ia64_psr(regs)->up = ia64_psr(regs)->pp = 0; + } + + ret = 0; + +error_unres: + if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu); +error: + /* + * we must undo the dbregs setting (for system-wide) + */ + if (ret && set_dbregs) { + LOCK_PFS(flags); + pfm_sessions.pfs_sys_use_dbregs--; + UNLOCK_PFS(flags); + } + /* + * release task, there is now a link with the context + */ + if (is_system == 0 && task != current) { + pfm_put_task(task); + + if (ret == 0) { + ret = pfm_check_task_exist(ctx); + if (ret) { + ctx->ctx_state = PFM_CTX_UNLOADED; + ctx->ctx_task = NULL; + } + } + } + return ret; +} + +/* + * in this function, we do not need to increase the use count + * for the task via get_task_struct(), because we hold the + * context lock. If the task were to disappear while having + * a context attached, it would go through pfm_exit_thread() + * which also grabs the context lock and would therefore be blocked + * until we are here. + */ +static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx); + +static int +pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) +{ + struct task_struct *task = PFM_CTX_TASK(ctx); + struct pt_regs *tregs; + int prev_state, is_system; + int ret; + + DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1)); + + prev_state = ctx->ctx_state; + is_system = ctx->ctx_fl_system; + + /* + * unload only when necessary + */ + if (prev_state == PFM_CTX_UNLOADED) { + DPRINT(("ctx_state=%d, nothing to do\n", prev_state)); + return 0; + } + + /* + * clear psr and dcr bits + */ + ret = pfm_stop(ctx, NULL, 0, regs); + if (ret) return ret; + + ctx->ctx_state = PFM_CTX_UNLOADED; + + /* + * in system mode, we need to update the PMU directly + * and the user level state of the caller, which may not + * necessarily be the creator of the context. + */ + if (is_system) { + + /* + * Update cpuinfo + * + * local PMU is taken care of in pfm_stop() + */ + PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE); + PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE); + + /* + * save PMDs in context + * release ownership + */ + pfm_flush_pmds(current, ctx); + + /* + * at this point we are done with the PMU + * so we can unreserve the resource. + */ + if (prev_state != PFM_CTX_ZOMBIE) + pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu); + + /* + * disconnect context from task + */ + task->thread.pfm_context = NULL; + /* + * disconnect task from context + */ + ctx->ctx_task = NULL; + + /* + * There is nothing more to cleanup here. + */ + return 0; + } + + /* + * per-task mode + */ + tregs = task == current ? regs : task_pt_regs(task); + + if (task == current) { + /* + * cancel user level control + */ + ia64_psr(regs)->sp = 1; + + DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task))); + } + /* + * save PMDs to context + * release ownership + */ + pfm_flush_pmds(task, ctx); + + /* + * at this point we are done with the PMU + * so we can unreserve the resource. + * + * when state was ZOMBIE, we have already unreserved. + */ + if (prev_state != PFM_CTX_ZOMBIE) + pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu); + + /* + * reset activation counter and psr + */ + ctx->ctx_last_activation = PFM_INVALID_ACTIVATION; + SET_LAST_CPU(ctx, -1); + + /* + * PMU state will not be restored + */ + task->thread.flags &= ~IA64_THREAD_PM_VALID; + + /* + * break links between context and task + */ + task->thread.pfm_context = NULL; + ctx->ctx_task = NULL; + + PFM_SET_WORK_PENDING(task, 0); + + ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE; + ctx->ctx_fl_can_restart = 0; + ctx->ctx_fl_going_zombie = 0; + + DPRINT(("disconnected [%d] from context\n", task_pid_nr(task))); + + return 0; +} + + +/* + * called only from exit_thread() + * we come here only if the task has a context attached (loaded or masked) + */ +void +pfm_exit_thread(struct task_struct *task) +{ + pfm_context_t *ctx; + unsigned long flags; + struct pt_regs *regs = task_pt_regs(task); + int ret, state; + int free_ok = 0; + + ctx = PFM_GET_CTX(task); + + PROTECT_CTX(ctx, flags); + + DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task))); + + state = ctx->ctx_state; + switch(state) { + case PFM_CTX_UNLOADED: + /* + * only comes to this function if pfm_context is not NULL, i.e., cannot + * be in unloaded state + */ + printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task)); + break; + case PFM_CTX_LOADED: + case PFM_CTX_MASKED: + ret = pfm_context_unload(ctx, NULL, 0, regs); + if (ret) { + printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret); + } + DPRINT(("ctx unloaded for current state was %d\n", state)); + + pfm_end_notify_user(ctx); + break; + case PFM_CTX_ZOMBIE: + ret = pfm_context_unload(ctx, NULL, 0, regs); + if (ret) { + printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret); + } + free_ok = 1; + break; + default: + printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state); + break; + } + UNPROTECT_CTX(ctx, flags); + + { u64 psr = pfm_get_psr(); + BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP)); + BUG_ON(GET_PMU_OWNER()); + BUG_ON(ia64_psr(regs)->up); + BUG_ON(ia64_psr(regs)->pp); + } + + /* + * All memory free operations (especially for vmalloc'ed memory) + * MUST be done with interrupts ENABLED. + */ + if (free_ok) pfm_context_free(ctx); +} + +/* + * functions MUST be listed in the increasing order of their index (see permfon.h) + */ +#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz } +#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL } +#define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP) +#define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW) +#define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL} + +static pfm_cmd_desc_t pfm_cmd_tab[]={ +/* 0 */PFM_CMD_NONE, +/* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL), +/* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL), +/* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL), +/* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS), +/* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS), +/* 6 */PFM_CMD_NONE, +/* 7 */PFM_CMD_NONE, +/* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize), +/* 9 */PFM_CMD_NONE, +/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW), +/* 11 */PFM_CMD_NONE, +/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL), +/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL), +/* 14 */PFM_CMD_NONE, +/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL), +/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL), +/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS), +/* 18 */PFM_CMD_NONE, +/* 19 */PFM_CMD_NONE, +/* 20 */PFM_CMD_NONE, +/* 21 */PFM_CMD_NONE, +/* 22 */PFM_CMD_NONE, +/* 23 */PFM_CMD_NONE, +/* 24 */PFM_CMD_NONE, +/* 25 */PFM_CMD_NONE, +/* 26 */PFM_CMD_NONE, +/* 27 */PFM_CMD_NONE, +/* 28 */PFM_CMD_NONE, +/* 29 */PFM_CMD_NONE, +/* 30 */PFM_CMD_NONE, +/* 31 */PFM_CMD_NONE, +/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL), +/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL) +}; +#define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t)) + +static int +pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags) +{ + struct task_struct *task; + int state, old_state; + +recheck: + state = ctx->ctx_state; + task = ctx->ctx_task; + + if (task == NULL) { + DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state)); + return 0; + } + + DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n", + ctx->ctx_fd, + state, + task_pid_nr(task), + task->state, PFM_CMD_STOPPED(cmd))); + + /* + * self-monitoring always ok. + * + * for system-wide the caller can either be the creator of the + * context (to one to which the context is attached to) OR + * a task running on the same CPU as the session. + */ + if (task == current || ctx->ctx_fl_system) return 0; + + /* + * we are monitoring another thread + */ + switch(state) { + case PFM_CTX_UNLOADED: + /* + * if context is UNLOADED we are safe to go + */ + return 0; + case PFM_CTX_ZOMBIE: + /* + * no command can operate on a zombie context + */ + DPRINT(("cmd %d state zombie cannot operate on context\n", cmd)); + return -EINVAL; + case PFM_CTX_MASKED: + /* + * PMU state has been saved to software even though + * the thread may still be running. + */ + if (cmd != PFM_UNLOAD_CONTEXT) return 0; + } + + /* + * context is LOADED or MASKED. Some commands may need to have + * the task stopped. + * + * We could lift this restriction for UP but it would mean that + * the user has no guarantee the task would not run between + * two successive calls to perfmonctl(). That's probably OK. + * If this user wants to ensure the task does not run, then + * the task must be stopped. + */ + if (PFM_CMD_STOPPED(cmd)) { + if (!task_is_stopped_or_traced(task)) { + DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task))); + return -EBUSY; + } + /* + * task is now stopped, wait for ctxsw out + * + * This is an interesting point in the code. + * We need to unprotect the context because + * the pfm_save_regs() routines needs to grab + * the same lock. There are danger in doing + * this because it leaves a window open for + * another task to get access to the context + * and possibly change its state. The one thing + * that is not possible is for the context to disappear + * because we are protected by the VFS layer, i.e., + * get_fd()/put_fd(). + */ + old_state = state; + + UNPROTECT_CTX(ctx, flags); + + wait_task_inactive(task, 0); + + PROTECT_CTX(ctx, flags); + + /* + * we must recheck to verify if state has changed + */ + if (ctx->ctx_state != old_state) { + DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state)); + goto recheck; + } + } + return 0; +} + +/* + * system-call entry point (must return long) + */ +asmlinkage long +sys_perfmonctl (int fd, int cmd, void __user *arg, int count) +{ + struct fd f = {NULL, 0}; + pfm_context_t *ctx = NULL; + unsigned long flags = 0UL; + void *args_k = NULL; + long ret; /* will expand int return types */ + size_t base_sz, sz, xtra_sz = 0; + int narg, completed_args = 0, call_made = 0, cmd_flags; + int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); + int (*getsize)(void *arg, size_t *sz); +#define PFM_MAX_ARGSIZE 4096 + + /* + * reject any call if perfmon was disabled at initialization + */ + if (unlikely(pmu_conf == NULL)) return -ENOSYS; + + if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) { + DPRINT(("invalid cmd=%d\n", cmd)); + return -EINVAL; + } + + func = pfm_cmd_tab[cmd].cmd_func; + narg = pfm_cmd_tab[cmd].cmd_narg; + base_sz = pfm_cmd_tab[cmd].cmd_argsize; + getsize = pfm_cmd_tab[cmd].cmd_getsize; + cmd_flags = pfm_cmd_tab[cmd].cmd_flags; + + if (unlikely(func == NULL)) { + DPRINT(("invalid cmd=%d\n", cmd)); + return -EINVAL; + } + + DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n", + PFM_CMD_NAME(cmd), + cmd, + narg, + base_sz, + count)); + + /* + * check if number of arguments matches what the command expects + */ + if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count))) + return -EINVAL; + +restart_args: + sz = xtra_sz + base_sz*count; + /* + * limit abuse to min page size + */ + if (unlikely(sz > PFM_MAX_ARGSIZE)) { + printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz); + return -E2BIG; + } + + /* + * allocate default-sized argument buffer + */ + if (likely(count && args_k == NULL)) { + args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL); + if (args_k == NULL) return -ENOMEM; + } + + ret = -EFAULT; + + /* + * copy arguments + * + * assume sz = 0 for command without parameters + */ + if (sz && copy_from_user(args_k, arg, sz)) { + DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg)); + goto error_args; + } + + /* + * check if command supports extra parameters + */ + if (completed_args == 0 && getsize) { + /* + * get extra parameters size (based on main argument) + */ + ret = (*getsize)(args_k, &xtra_sz); + if (ret) goto error_args; + + completed_args = 1; + + DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz)); + + /* retry if necessary */ + if (likely(xtra_sz)) goto restart_args; + } + + if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd; + + ret = -EBADF; + + f = fdget(fd); + if (unlikely(f.file == NULL)) { + DPRINT(("invalid fd %d\n", fd)); + goto error_args; + } + if (unlikely(PFM_IS_FILE(f.file) == 0)) { + DPRINT(("fd %d not related to perfmon\n", fd)); + goto error_args; + } + + ctx = f.file->private_data; + if (unlikely(ctx == NULL)) { + DPRINT(("no context for fd %d\n", fd)); + goto error_args; + } + prefetch(&ctx->ctx_state); + + PROTECT_CTX(ctx, flags); + + /* + * check task is stopped + */ + ret = pfm_check_task_state(ctx, cmd, flags); + if (unlikely(ret)) goto abort_locked; + +skip_fd: + ret = (*func)(ctx, args_k, count, task_pt_regs(current)); + + call_made = 1; + +abort_locked: + if (likely(ctx)) { + DPRINT(("context unlocked\n")); + UNPROTECT_CTX(ctx, flags); + } + + /* copy argument back to user, if needed */ + if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT; + +error_args: + if (f.file) + fdput(f); + + kfree(args_k); + + DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret)); + + return ret; +} + +static void +pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs) +{ + pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt; + pfm_ovfl_ctrl_t rst_ctrl; + int state; + int ret = 0; + + state = ctx->ctx_state; + /* + * Unlock sampling buffer and reset index atomically + * XXX: not really needed when blocking + */ + if (CTX_HAS_SMPL(ctx)) { + + rst_ctrl.bits.mask_monitoring = 0; + rst_ctrl.bits.reset_ovfl_pmds = 0; + + if (state == PFM_CTX_LOADED) + ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs); + else + ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs); + } else { + rst_ctrl.bits.mask_monitoring = 0; + rst_ctrl.bits.reset_ovfl_pmds = 1; + } + + if (ret == 0) { + if (rst_ctrl.bits.reset_ovfl_pmds) { + pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET); + } + if (rst_ctrl.bits.mask_monitoring == 0) { + DPRINT(("resuming monitoring\n")); + if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current); + } else { + DPRINT(("stopping monitoring\n")); + //pfm_stop_monitoring(current, regs); + } + ctx->ctx_state = PFM_CTX_LOADED; + } +} + +/* + * context MUST BE LOCKED when calling + * can only be called for current + */ +static void +pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs) +{ + int ret; + + DPRINT(("entering for [%d]\n", task_pid_nr(current))); + + ret = pfm_context_unload(ctx, NULL, 0, regs); + if (ret) { + printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret); + } + + /* + * and wakeup controlling task, indicating we are now disconnected + */ + wake_up_interruptible(&ctx->ctx_zombieq); + + /* + * given that context is still locked, the controlling + * task will only get access when we return from + * pfm_handle_work(). + */ +} + +static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds); + + /* + * pfm_handle_work() can be called with interrupts enabled + * (TIF_NEED_RESCHED) or disabled. The down_interruptible + * call may sleep, therefore we must re-enable interrupts + * to avoid deadlocks. It is safe to do so because this function + * is called ONLY when returning to user level (pUStk=1), in which case + * there is no risk of kernel stack overflow due to deep + * interrupt nesting. + */ +void +pfm_handle_work(void) +{ + pfm_context_t *ctx; + struct pt_regs *regs; + unsigned long flags, dummy_flags; + unsigned long ovfl_regs; + unsigned int reason; + int ret; + + ctx = PFM_GET_CTX(current); + if (ctx == NULL) { + printk(KERN_ERR "perfmon: [%d] has no PFM context\n", + task_pid_nr(current)); + return; + } + + PROTECT_CTX(ctx, flags); + + PFM_SET_WORK_PENDING(current, 0); + + regs = task_pt_regs(current); + + /* + * extract reason for being here and clear + */ + reason = ctx->ctx_fl_trap_reason; + ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE; + ovfl_regs = ctx->ctx_ovfl_regs[0]; + + DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state)); + + /* + * must be done before we check for simple-reset mode + */ + if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) + goto do_zombie; + + //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking; + if (reason == PFM_TRAP_REASON_RESET) + goto skip_blocking; + + /* + * restore interrupt mask to what it was on entry. + * Could be enabled/diasbled. + */ + UNPROTECT_CTX(ctx, flags); + + /* + * force interrupt enable because of down_interruptible() + */ + local_irq_enable(); + + DPRINT(("before block sleeping\n")); + + /* + * may go through without blocking on SMP systems + * if restart has been received already by the time we call down() + */ + ret = wait_for_completion_interruptible(&ctx->ctx_restart_done); + + DPRINT(("after block sleeping ret=%d\n", ret)); + + /* + * lock context and mask interrupts again + * We save flags into a dummy because we may have + * altered interrupts mask compared to entry in this + * function. + */ + PROTECT_CTX(ctx, dummy_flags); + + /* + * we need to read the ovfl_regs only after wake-up + * because we may have had pfm_write_pmds() in between + * and that can changed PMD values and therefore + * ovfl_regs is reset for these new PMD values. + */ + ovfl_regs = ctx->ctx_ovfl_regs[0]; + + if (ctx->ctx_fl_going_zombie) { +do_zombie: + DPRINT(("context is zombie, bailing out\n")); + pfm_context_force_terminate(ctx, regs); + goto nothing_to_do; + } + /* + * in case of interruption of down() we don't restart anything + */ + if (ret < 0) + goto nothing_to_do; + +skip_blocking: + pfm_resume_after_ovfl(ctx, ovfl_regs, regs); + ctx->ctx_ovfl_regs[0] = 0UL; + +nothing_to_do: + /* + * restore flags as they were upon entry + */ + UNPROTECT_CTX(ctx, flags); +} + +static int +pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg) +{ + if (ctx->ctx_state == PFM_CTX_ZOMBIE) { + DPRINT(("ignoring overflow notification, owner is zombie\n")); + return 0; + } + + DPRINT(("waking up somebody\n")); + + if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait); + + /* + * safe, we are not in intr handler, nor in ctxsw when + * we come here + */ + kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN); + + return 0; +} + +static int +pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds) +{ + pfm_msg_t *msg = NULL; + + if (ctx->ctx_fl_no_msg == 0) { + msg = pfm_get_new_msg(ctx); + if (msg == NULL) { + printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n"); + return -1; + } + + msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL; + msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd; + msg->pfm_ovfl_msg.msg_active_set = 0; + msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds; + msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL; + msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL; + msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL; + msg->pfm_ovfl_msg.msg_tstamp = 0UL; + } + + DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n", + msg, + ctx->ctx_fl_no_msg, + ctx->ctx_fd, + ovfl_pmds)); + + return pfm_notify_user(ctx, msg); +} + +static int +pfm_end_notify_user(pfm_context_t *ctx) +{ + pfm_msg_t *msg; + + msg = pfm_get_new_msg(ctx); + if (msg == NULL) { + printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n"); + return -1; + } + /* no leak */ + memset(msg, 0, sizeof(*msg)); + + msg->pfm_end_msg.msg_type = PFM_MSG_END; + msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd; + msg->pfm_ovfl_msg.msg_tstamp = 0UL; + + DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n", + msg, + ctx->ctx_fl_no_msg, + ctx->ctx_fd)); + + return pfm_notify_user(ctx, msg); +} + +/* + * main overflow processing routine. + * it can be called from the interrupt path or explicitly during the context switch code + */ +static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, + unsigned long pmc0, struct pt_regs *regs) +{ + pfm_ovfl_arg_t *ovfl_arg; + unsigned long mask; + unsigned long old_val, ovfl_val, new_val; + unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds; + unsigned long tstamp; + pfm_ovfl_ctrl_t ovfl_ctrl; + unsigned int i, has_smpl; + int must_notify = 0; + + if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring; + + /* + * sanity test. Should never happen + */ + if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check; + + tstamp = ia64_get_itc(); + mask = pmc0 >> PMU_FIRST_COUNTER; + ovfl_val = pmu_conf->ovfl_val; + has_smpl = CTX_HAS_SMPL(ctx); + + DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s " + "used_pmds=0x%lx\n", + pmc0, + task ? task_pid_nr(task): -1, + (regs ? regs->cr_iip : 0), + CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking", + ctx->ctx_used_pmds[0])); + + + /* + * first we update the virtual counters + * assume there was a prior ia64_srlz_d() issued + */ + for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) { + + /* skip pmd which did not overflow */ + if ((mask & 0x1) == 0) continue; + + /* + * Note that the pmd is not necessarily 0 at this point as qualified events + * may have happened before the PMU was frozen. The residual count is not + * taken into consideration here but will be with any read of the pmd via + * pfm_read_pmds(). + */ + old_val = new_val = ctx->ctx_pmds[i].val; + new_val += 1 + ovfl_val; + ctx->ctx_pmds[i].val = new_val; + + /* + * check for overflow condition + */ + if (likely(old_val > new_val)) { + ovfl_pmds |= 1UL << i; + if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i; + } + + DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n", + i, + new_val, + old_val, + ia64_get_pmd(i) & ovfl_val, + ovfl_pmds, + ovfl_notify)); + } + + /* + * there was no 64-bit overflow, nothing else to do + */ + if (ovfl_pmds == 0UL) return; + + /* + * reset all control bits + */ + ovfl_ctrl.val = 0; + reset_pmds = 0UL; + + /* + * if a sampling format module exists, then we "cache" the overflow by + * calling the module's handler() routine. + */ + if (has_smpl) { + unsigned long start_cycles, end_cycles; + unsigned long pmd_mask; + int j, k, ret = 0; + int this_cpu = smp_processor_id(); + + pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER; + ovfl_arg = &ctx->ctx_ovfl_arg; + + prefetch(ctx->ctx_smpl_hdr); + + for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) { + + mask = 1UL << i; + + if ((pmd_mask & 0x1) == 0) continue; + + ovfl_arg->ovfl_pmd = (unsigned char )i; + ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0; + ovfl_arg->active_set = 0; + ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */ + ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0]; + + ovfl_arg->pmd_value = ctx->ctx_pmds[i].val; + ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval; + ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid; + + /* + * copy values of pmds of interest. Sampling format may copy them + * into sampling buffer. + */ + if (smpl_pmds) { + for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) { + if ((smpl_pmds & 0x1) == 0) continue; + ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j); + DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1])); + } + } + + pfm_stats[this_cpu].pfm_smpl_handler_calls++; + + start_cycles = ia64_get_itc(); + + /* + * call custom buffer format record (handler) routine + */ + ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp); + + end_cycles = ia64_get_itc(); + + /* + * For those controls, we take the union because they have + * an all or nothing behavior. + */ + ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user; + ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task; + ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring; + /* + * build the bitmask of pmds to reset now + */ + if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask; + + pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles; + } + /* + * when the module cannot handle the rest of the overflows, we abort right here + */ + if (ret && pmd_mask) { + DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n", + pmd_mask<<PMU_FIRST_COUNTER)); + } + /* + * remove the pmds we reset now from the set of pmds to reset in pfm_restart() + */ + ovfl_pmds &= ~reset_pmds; + } else { + /* + * when no sampling module is used, then the default + * is to notify on overflow if requested by user + */ + ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0; + ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0; + ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */ + ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1; + /* + * if needed, we reset all overflowed pmds + */ + if (ovfl_notify == 0) reset_pmds = ovfl_pmds; + } + + DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds)); + + /* + * reset the requested PMD registers using the short reset values + */ + if (reset_pmds) { + unsigned long bm = reset_pmds; + pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET); + } + + if (ovfl_notify && ovfl_ctrl.bits.notify_user) { + /* + * keep track of what to reset when unblocking + */ + ctx->ctx_ovfl_regs[0] = ovfl_pmds; + + /* + * check for blocking context + */ + if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) { + + ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK; + + /* + * set the perfmon specific checking pending work for the task + */ + PFM_SET_WORK_PENDING(task, 1); + + /* + * when coming from ctxsw, current still points to the + * previous task, therefore we must work with task and not current. + */ + set_notify_resume(task); + } + /* + * defer until state is changed (shorten spin window). the context is locked + * anyway, so the signal receiver would come spin for nothing. + */ + must_notify = 1; + } + + DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n", + GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1, + PFM_GET_WORK_PENDING(task), + ctx->ctx_fl_trap_reason, + ovfl_pmds, + ovfl_notify, + ovfl_ctrl.bits.mask_monitoring ? 1 : 0)); + /* + * in case monitoring must be stopped, we toggle the psr bits + */ + if (ovfl_ctrl.bits.mask_monitoring) { + pfm_mask_monitoring(task); + ctx->ctx_state = PFM_CTX_MASKED; + ctx->ctx_fl_can_restart = 1; + } + + /* + * send notification now + */ + if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify); + + return; + +sanity_check: + printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n", + smp_processor_id(), + task ? task_pid_nr(task) : -1, + pmc0); + return; + +stop_monitoring: + /* + * in SMP, zombie context is never restored but reclaimed in pfm_load_regs(). + * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can + * come here as zombie only if the task is the current task. In which case, we + * can access the PMU hardware directly. + * + * Note that zombies do have PM_VALID set. So here we do the minimal. + * + * In case the context was zombified it could not be reclaimed at the time + * the monitoring program exited. At this point, the PMU reservation has been + * returned, the sampiing buffer has been freed. We must convert this call + * into a spurious interrupt. However, we must also avoid infinite overflows + * by stopping monitoring for this task. We can only come here for a per-task + * context. All we need to do is to stop monitoring using the psr bits which + * are always task private. By re-enabling secure montioring, we ensure that + * the monitored task will not be able to re-activate monitoring. + * The task will eventually be context switched out, at which point the context + * will be reclaimed (that includes releasing ownership of the PMU). + * + * So there might be a window of time where the number of per-task session is zero + * yet one PMU might have a owner and get at most one overflow interrupt for a zombie + * context. This is safe because if a per-task session comes in, it will push this one + * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide + * session is force on that CPU, given that we use task pinning, pfm_save_regs() will + * also push our zombie context out. + * + * Overall pretty hairy stuff.... + */ + DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1)); + pfm_clear_psr_up(); + ia64_psr(regs)->up = 0; + ia64_psr(regs)->sp = 1; + return; +} + +static int +pfm_do_interrupt_handler(void *arg, struct pt_regs *regs) +{ + struct task_struct *task; + pfm_context_t *ctx; + unsigned long flags; + u64 pmc0; + int this_cpu = smp_processor_id(); + int retval = 0; + + pfm_stats[this_cpu].pfm_ovfl_intr_count++; + + /* + * srlz.d done before arriving here + */ + pmc0 = ia64_get_pmc(0); + + task = GET_PMU_OWNER(); + ctx = GET_PMU_CTX(); + + /* + * if we have some pending bits set + * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1 + */ + if (PMC0_HAS_OVFL(pmc0) && task) { + /* + * we assume that pmc0.fr is always set here + */ + + /* sanity check */ + if (!ctx) goto report_spurious1; + + if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0) + goto report_spurious2; + + PROTECT_CTX_NOPRINT(ctx, flags); + + pfm_overflow_handler(task, ctx, pmc0, regs); + + UNPROTECT_CTX_NOPRINT(ctx, flags); + + } else { + pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++; + retval = -1; + } + /* + * keep it unfrozen at all times + */ + pfm_unfreeze_pmu(); + + return retval; + +report_spurious1: + printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n", + this_cpu, task_pid_nr(task)); + pfm_unfreeze_pmu(); + return -1; +report_spurious2: + printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n", + this_cpu, + task_pid_nr(task)); + pfm_unfreeze_pmu(); + return -1; +} + +static irqreturn_t +pfm_interrupt_handler(int irq, void *arg) +{ + unsigned long start_cycles, total_cycles; + unsigned long min, max; + int this_cpu; + int ret; + struct pt_regs *regs = get_irq_regs(); + + this_cpu = get_cpu(); + if (likely(!pfm_alt_intr_handler)) { + min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min; + max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max; + + start_cycles = ia64_get_itc(); + + ret = pfm_do_interrupt_handler(arg, regs); + + total_cycles = ia64_get_itc(); + + /* + * don't measure spurious interrupts + */ + if (likely(ret == 0)) { + total_cycles -= start_cycles; + + if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles; + if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles; + + pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles; + } + } + else { + (*pfm_alt_intr_handler->handler)(irq, arg, regs); + } + + put_cpu(); + return IRQ_HANDLED; +} + +/* + * /proc/perfmon interface, for debug only + */ + +#define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1) + +static void * +pfm_proc_start(struct seq_file *m, loff_t *pos) +{ + if (*pos == 0) { + return PFM_PROC_SHOW_HEADER; + } + + while (*pos <= nr_cpu_ids) { + if (cpu_online(*pos - 1)) { + return (void *)*pos; + } + ++*pos; + } + return NULL; +} + +static void * +pfm_proc_next(struct seq_file *m, void *v, loff_t *pos) +{ + ++*pos; + return pfm_proc_start(m, pos); +} + +static void +pfm_proc_stop(struct seq_file *m, void *v) +{ +} + +static void +pfm_proc_show_header(struct seq_file *m) +{ + struct list_head * pos; + pfm_buffer_fmt_t * entry; + unsigned long flags; + + seq_printf(m, + "perfmon version : %u.%u\n" + "model : %s\n" + "fastctxsw : %s\n" + "expert mode : %s\n" + "ovfl_mask : 0x%lx\n" + "PMU flags : 0x%x\n", + PFM_VERSION_MAJ, PFM_VERSION_MIN, + pmu_conf->pmu_name, + pfm_sysctl.fastctxsw > 0 ? "Yes": "No", + pfm_sysctl.expert_mode > 0 ? "Yes": "No", + pmu_conf->ovfl_val, + pmu_conf->flags); + + LOCK_PFS(flags); + + seq_printf(m, + "proc_sessions : %u\n" + "sys_sessions : %u\n" + "sys_use_dbregs : %u\n" + "ptrace_use_dbregs : %u\n", + pfm_sessions.pfs_task_sessions, + pfm_sessions.pfs_sys_sessions, + pfm_sessions.pfs_sys_use_dbregs, + pfm_sessions.pfs_ptrace_use_dbregs); + + UNLOCK_PFS(flags); + + spin_lock(&pfm_buffer_fmt_lock); + + list_for_each(pos, &pfm_buffer_fmt_list) { + entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list); + seq_printf(m, "format : %16phD %s\n", + entry->fmt_uuid, entry->fmt_name); + } + spin_unlock(&pfm_buffer_fmt_lock); + +} + +static int +pfm_proc_show(struct seq_file *m, void *v) +{ + unsigned long psr; + unsigned int i; + int cpu; + + if (v == PFM_PROC_SHOW_HEADER) { + pfm_proc_show_header(m); + return 0; + } + + /* show info for CPU (v - 1) */ + + cpu = (long)v - 1; + seq_printf(m, + "CPU%-2d overflow intrs : %lu\n" + "CPU%-2d overflow cycles : %lu\n" + "CPU%-2d overflow min : %lu\n" + "CPU%-2d overflow max : %lu\n" + "CPU%-2d smpl handler calls : %lu\n" + "CPU%-2d smpl handler cycles : %lu\n" + "CPU%-2d spurious intrs : %lu\n" + "CPU%-2d replay intrs : %lu\n" + "CPU%-2d syst_wide : %d\n" + "CPU%-2d dcr_pp : %d\n" + "CPU%-2d exclude idle : %d\n" + "CPU%-2d owner : %d\n" + "CPU%-2d context : %p\n" + "CPU%-2d activations : %lu\n", + cpu, pfm_stats[cpu].pfm_ovfl_intr_count, + cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles, + cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min, + cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max, + cpu, pfm_stats[cpu].pfm_smpl_handler_calls, + cpu, pfm_stats[cpu].pfm_smpl_handler_cycles, + cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count, + cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count, + cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0, + cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0, + cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0, + cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1, + cpu, pfm_get_cpu_data(pmu_ctx, cpu), + cpu, pfm_get_cpu_data(pmu_activation_number, cpu)); + + if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) { + + psr = pfm_get_psr(); + + ia64_srlz_d(); + + seq_printf(m, + "CPU%-2d psr : 0x%lx\n" + "CPU%-2d pmc0 : 0x%lx\n", + cpu, psr, + cpu, ia64_get_pmc(0)); + + for (i=0; PMC_IS_LAST(i) == 0; i++) { + if (PMC_IS_COUNTING(i) == 0) continue; + seq_printf(m, + "CPU%-2d pmc%u : 0x%lx\n" + "CPU%-2d pmd%u : 0x%lx\n", + cpu, i, ia64_get_pmc(i), + cpu, i, ia64_get_pmd(i)); + } + } + return 0; +} + +const struct seq_operations pfm_seq_ops = { + .start = pfm_proc_start, + .next = pfm_proc_next, + .stop = pfm_proc_stop, + .show = pfm_proc_show +}; + +/* + * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens + * during pfm_enable() hence before pfm_start(). We cannot assume monitoring + * is active or inactive based on mode. We must rely on the value in + * local_cpu_data->pfm_syst_info + */ +void +pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin) +{ + struct pt_regs *regs; + unsigned long dcr; + unsigned long dcr_pp; + + dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0; + + /* + * pid 0 is guaranteed to be the idle task. There is one such task with pid 0 + * on every CPU, so we can rely on the pid to identify the idle task. + */ + if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) { + regs = task_pt_regs(task); + ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0; + return; + } + /* + * if monitoring has started + */ + if (dcr_pp) { + dcr = ia64_getreg(_IA64_REG_CR_DCR); + /* + * context switching in? + */ + if (is_ctxswin) { + /* mask monitoring for the idle task */ + ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP); + pfm_clear_psr_pp(); + ia64_srlz_i(); + return; + } + /* + * context switching out + * restore monitoring for next task + * + * Due to inlining this odd if-then-else construction generates + * better code. + */ + ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP); + pfm_set_psr_pp(); + ia64_srlz_i(); + } +} + +#ifdef CONFIG_SMP + +static void +pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs) +{ + struct task_struct *task = ctx->ctx_task; + + ia64_psr(regs)->up = 0; + ia64_psr(regs)->sp = 1; + + if (GET_PMU_OWNER() == task) { + DPRINT(("cleared ownership for [%d]\n", + task_pid_nr(ctx->ctx_task))); + SET_PMU_OWNER(NULL, NULL); + } + + /* + * disconnect the task from the context and vice-versa + */ + PFM_SET_WORK_PENDING(task, 0); + + task->thread.pfm_context = NULL; + task->thread.flags &= ~IA64_THREAD_PM_VALID; + + DPRINT(("force cleanup for [%d]\n", task_pid_nr(task))); +} + + +/* + * in 2.6, interrupts are masked when we come here and the runqueue lock is held + */ +void +pfm_save_regs(struct task_struct *task) +{ + pfm_context_t *ctx; + unsigned long flags; + u64 psr; + + + ctx = PFM_GET_CTX(task); + if (ctx == NULL) return; + + /* + * we always come here with interrupts ALREADY disabled by + * the scheduler. So we simply need to protect against concurrent + * access, not CPU concurrency. + */ + flags = pfm_protect_ctx_ctxsw(ctx); + + if (ctx->ctx_state == PFM_CTX_ZOMBIE) { + struct pt_regs *regs = task_pt_regs(task); + + pfm_clear_psr_up(); + + pfm_force_cleanup(ctx, regs); + + BUG_ON(ctx->ctx_smpl_hdr); + + pfm_unprotect_ctx_ctxsw(ctx, flags); + + pfm_context_free(ctx); + return; + } + + /* + * save current PSR: needed because we modify it + */ + ia64_srlz_d(); + psr = pfm_get_psr(); + + BUG_ON(psr & (IA64_PSR_I)); + + /* + * stop monitoring: + * This is the last instruction which may generate an overflow + * + * We do not need to set psr.sp because, it is irrelevant in kernel. + * It will be restored from ipsr when going back to user level + */ + pfm_clear_psr_up(); + + /* + * keep a copy of psr.up (for reload) + */ + ctx->ctx_saved_psr_up = psr & IA64_PSR_UP; + + /* + * release ownership of this PMU. + * PM interrupts are masked, so nothing + * can happen. + */ + SET_PMU_OWNER(NULL, NULL); + + /* + * we systematically save the PMD as we have no + * guarantee we will be schedule at that same + * CPU again. + */ + pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]); + + /* + * save pmc0 ia64_srlz_d() done in pfm_save_pmds() + * we will need it on the restore path to check + * for pending overflow. + */ + ctx->th_pmcs[0] = ia64_get_pmc(0); + + /* + * unfreeze PMU if had pending overflows + */ + if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu(); + + /* + * finally, allow context access. + * interrupts will still be masked after this call. + */ + pfm_unprotect_ctx_ctxsw(ctx, flags); +} + +#else /* !CONFIG_SMP */ +void +pfm_save_regs(struct task_struct *task) +{ + pfm_context_t *ctx; + u64 psr; + + ctx = PFM_GET_CTX(task); + if (ctx == NULL) return; + + /* + * save current PSR: needed because we modify it + */ + psr = pfm_get_psr(); + + BUG_ON(psr & (IA64_PSR_I)); + + /* + * stop monitoring: + * This is the last instruction which may generate an overflow + * + * We do not need to set psr.sp because, it is irrelevant in kernel. + * It will be restored from ipsr when going back to user level + */ + pfm_clear_psr_up(); + + /* + * keep a copy of psr.up (for reload) + */ + ctx->ctx_saved_psr_up = psr & IA64_PSR_UP; +} + +static void +pfm_lazy_save_regs (struct task_struct *task) +{ + pfm_context_t *ctx; + unsigned long flags; + + { u64 psr = pfm_get_psr(); + BUG_ON(psr & IA64_PSR_UP); + } + + ctx = PFM_GET_CTX(task); + + /* + * we need to mask PMU overflow here to + * make sure that we maintain pmc0 until + * we save it. overflow interrupts are + * treated as spurious if there is no + * owner. + * + * XXX: I don't think this is necessary + */ + PROTECT_CTX(ctx,flags); + + /* + * release ownership of this PMU. + * must be done before we save the registers. + * + * after this call any PMU interrupt is treated + * as spurious. + */ + SET_PMU_OWNER(NULL, NULL); + + /* + * save all the pmds we use + */ + pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]); + + /* + * save pmc0 ia64_srlz_d() done in pfm_save_pmds() + * it is needed to check for pended overflow + * on the restore path + */ + ctx->th_pmcs[0] = ia64_get_pmc(0); + + /* + * unfreeze PMU if had pending overflows + */ + if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu(); + + /* + * now get can unmask PMU interrupts, they will + * be treated as purely spurious and we will not + * lose any information + */ + UNPROTECT_CTX(ctx,flags); +} +#endif /* CONFIG_SMP */ + +#ifdef CONFIG_SMP +/* + * in 2.6, interrupts are masked when we come here and the runqueue lock is held + */ +void +pfm_load_regs (struct task_struct *task) +{ + pfm_context_t *ctx; + unsigned long pmc_mask = 0UL, pmd_mask = 0UL; + unsigned long flags; + u64 psr, psr_up; + int need_irq_resend; + + ctx = PFM_GET_CTX(task); + if (unlikely(ctx == NULL)) return; + + BUG_ON(GET_PMU_OWNER()); + + /* + * possible on unload + */ + if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return; + + /* + * we always come here with interrupts ALREADY disabled by + * the scheduler. So we simply need to protect against concurrent + * access, not CPU concurrency. + */ + flags = pfm_protect_ctx_ctxsw(ctx); + psr = pfm_get_psr(); + + need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND; + + BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP)); + BUG_ON(psr & IA64_PSR_I); + + if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) { + struct pt_regs *regs = task_pt_regs(task); + + BUG_ON(ctx->ctx_smpl_hdr); + + pfm_force_cleanup(ctx, regs); + + pfm_unprotect_ctx_ctxsw(ctx, flags); + + /* + * this one (kmalloc'ed) is fine with interrupts disabled + */ + pfm_context_free(ctx); + + return; + } + + /* + * we restore ALL the debug registers to avoid picking up + * stale state. + */ + if (ctx->ctx_fl_using_dbreg) { + pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs); + pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs); + } + /* + * retrieve saved psr.up + */ + psr_up = ctx->ctx_saved_psr_up; + + /* + * if we were the last user of the PMU on that CPU, + * then nothing to do except restore psr + */ + if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) { + + /* + * retrieve partial reload masks (due to user modifications) + */ + pmc_mask = ctx->ctx_reload_pmcs[0]; + pmd_mask = ctx->ctx_reload_pmds[0]; + + } else { + /* + * To avoid leaking information to the user level when psr.sp=0, + * we must reload ALL implemented pmds (even the ones we don't use). + * In the kernel we only allow PFM_READ_PMDS on registers which + * we initialized or requested (sampling) so there is no risk there. + */ + pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0]; + + /* + * ALL accessible PMCs are systematically reloaded, unused registers + * get their default (from pfm_reset_pmu_state()) values to avoid picking + * up stale configuration. + * + * PMC0 is never in the mask. It is always restored separately. + */ + pmc_mask = ctx->ctx_all_pmcs[0]; + } + /* + * when context is MASKED, we will restore PMC with plm=0 + * and PMD with stale information, but that's ok, nothing + * will be captured. + * + * XXX: optimize here + */ + if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask); + if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask); + + /* + * check for pending overflow at the time the state + * was saved. + */ + if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) { + /* + * reload pmc0 with the overflow information + * On McKinley PMU, this will trigger a PMU interrupt + */ + ia64_set_pmc(0, ctx->th_pmcs[0]); + ia64_srlz_d(); + ctx->th_pmcs[0] = 0UL; + + /* + * will replay the PMU interrupt + */ + if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR); + + pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++; + } + + /* + * we just did a reload, so we reset the partial reload fields + */ + ctx->ctx_reload_pmcs[0] = 0UL; + ctx->ctx_reload_pmds[0] = 0UL; + + SET_LAST_CPU(ctx, smp_processor_id()); + + /* + * dump activation value for this PMU + */ + INC_ACTIVATION(); + /* + * record current activation for this context + */ + SET_ACTIVATION(ctx); + + /* + * establish new ownership. + */ + SET_PMU_OWNER(task, ctx); + + /* + * restore the psr.up bit. measurement + * is active again. + * no PMU interrupt can happen at this point + * because we still have interrupts disabled. + */ + if (likely(psr_up)) pfm_set_psr_up(); + + /* + * allow concurrent access to context + */ + pfm_unprotect_ctx_ctxsw(ctx, flags); +} +#else /* !CONFIG_SMP */ +/* + * reload PMU state for UP kernels + * in 2.5 we come here with interrupts disabled + */ +void +pfm_load_regs (struct task_struct *task) +{ + pfm_context_t *ctx; + struct task_struct *owner; + unsigned long pmd_mask, pmc_mask; + u64 psr, psr_up; + int need_irq_resend; + + owner = GET_PMU_OWNER(); + ctx = PFM_GET_CTX(task); + psr = pfm_get_psr(); + + BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP)); + BUG_ON(psr & IA64_PSR_I); + + /* + * we restore ALL the debug registers to avoid picking up + * stale state. + * + * This must be done even when the task is still the owner + * as the registers may have been modified via ptrace() + * (not perfmon) by the previous task. + */ + if (ctx->ctx_fl_using_dbreg) { + pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs); + pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs); + } + + /* + * retrieved saved psr.up + */ + psr_up = ctx->ctx_saved_psr_up; + need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND; + + /* + * short path, our state is still there, just + * need to restore psr and we go + * + * we do not touch either PMC nor PMD. the psr is not touched + * by the overflow_handler. So we are safe w.r.t. to interrupt + * concurrency even without interrupt masking. + */ + if (likely(owner == task)) { + if (likely(psr_up)) pfm_set_psr_up(); + return; + } + + /* + * someone else is still using the PMU, first push it out and + * then we'll be able to install our stuff ! + * + * Upon return, there will be no owner for the current PMU + */ + if (owner) pfm_lazy_save_regs(owner); + + /* + * To avoid leaking information to the user level when psr.sp=0, + * we must reload ALL implemented pmds (even the ones we don't use). + * In the kernel we only allow PFM_READ_PMDS on registers which + * we initialized or requested (sampling) so there is no risk there. + */ + pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0]; + + /* + * ALL accessible PMCs are systematically reloaded, unused registers + * get their default (from pfm_reset_pmu_state()) values to avoid picking + * up stale configuration. + * + * PMC0 is never in the mask. It is always restored separately + */ + pmc_mask = ctx->ctx_all_pmcs[0]; + + pfm_restore_pmds(ctx->th_pmds, pmd_mask); + pfm_restore_pmcs(ctx->th_pmcs, pmc_mask); + + /* + * check for pending overflow at the time the state + * was saved. + */ + if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) { + /* + * reload pmc0 with the overflow information + * On McKinley PMU, this will trigger a PMU interrupt + */ + ia64_set_pmc(0, ctx->th_pmcs[0]); + ia64_srlz_d(); + + ctx->th_pmcs[0] = 0UL; + + /* + * will replay the PMU interrupt + */ + if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR); + + pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++; + } + + /* + * establish new ownership. + */ + SET_PMU_OWNER(task, ctx); + + /* + * restore the psr.up bit. measurement + * is active again. + * no PMU interrupt can happen at this point + * because we still have interrupts disabled. + */ + if (likely(psr_up)) pfm_set_psr_up(); +} +#endif /* CONFIG_SMP */ + +/* + * this function assumes monitoring is stopped + */ +static void +pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx) +{ + u64 pmc0; + unsigned long mask2, val, pmd_val, ovfl_val; + int i, can_access_pmu = 0; + int is_self; + + /* + * is the caller the task being monitored (or which initiated the + * session for system wide measurements) + */ + is_self = ctx->ctx_task == task ? 1 : 0; + + /* + * can access PMU is task is the owner of the PMU state on the current CPU + * or if we are running on the CPU bound to the context in system-wide mode + * (that is not necessarily the task the context is attached to in this mode). + * In system-wide we always have can_access_pmu true because a task running on an + * invalid processor is flagged earlier in the call stack (see pfm_stop). + */ + can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id()); + if (can_access_pmu) { + /* + * Mark the PMU as not owned + * This will cause the interrupt handler to do nothing in case an overflow + * interrupt was in-flight + * This also guarantees that pmc0 will contain the final state + * It virtually gives us full control on overflow processing from that point + * on. + */ + SET_PMU_OWNER(NULL, NULL); + DPRINT(("releasing ownership\n")); + + /* + * read current overflow status: + * + * we are guaranteed to read the final stable state + */ + ia64_srlz_d(); + pmc0 = ia64_get_pmc(0); /* slow */ + + /* + * reset freeze bit, overflow status information destroyed + */ + pfm_unfreeze_pmu(); + } else { + pmc0 = ctx->th_pmcs[0]; + /* + * clear whatever overflow status bits there were + */ + ctx->th_pmcs[0] = 0; + } + ovfl_val = pmu_conf->ovfl_val; + /* + * we save all the used pmds + * we take care of overflows for counting PMDs + * + * XXX: sampling situation is not taken into account here + */ + mask2 = ctx->ctx_used_pmds[0]; + + DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2)); + + for (i = 0; mask2; i++, mask2>>=1) { + + /* skip non used pmds */ + if ((mask2 & 0x1) == 0) continue; + + /* + * can access PMU always true in system wide mode + */ + val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i]; + + if (PMD_IS_COUNTING(i)) { + DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n", + task_pid_nr(task), + i, + ctx->ctx_pmds[i].val, + val & ovfl_val)); + + /* + * we rebuild the full 64 bit value of the counter + */ + val = ctx->ctx_pmds[i].val + (val & ovfl_val); + + /* + * now everything is in ctx_pmds[] and we need + * to clear the saved context from save_regs() such that + * pfm_read_pmds() gets the correct value + */ + pmd_val = 0UL; + + /* + * take care of overflow inline + */ + if (pmc0 & (1UL << i)) { + val += 1 + ovfl_val; + DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i)); + } + } + + DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val)); + + if (is_self) ctx->th_pmds[i] = pmd_val; + + ctx->ctx_pmds[i].val = val; + } +} + +static struct irqaction perfmon_irqaction = { + .handler = pfm_interrupt_handler, + .name = "perfmon" +}; + +static void +pfm_alt_save_pmu_state(void *data) +{ + struct pt_regs *regs; + + regs = task_pt_regs(current); + + DPRINT(("called\n")); + + /* + * should not be necessary but + * let's take not risk + */ + pfm_clear_psr_up(); + pfm_clear_psr_pp(); + ia64_psr(regs)->pp = 0; + + /* + * This call is required + * May cause a spurious interrupt on some processors + */ + pfm_freeze_pmu(); + + ia64_srlz_d(); +} + +void +pfm_alt_restore_pmu_state(void *data) +{ + struct pt_regs *regs; + + regs = task_pt_regs(current); + + DPRINT(("called\n")); + + /* + * put PMU back in state expected + * by perfmon + */ + pfm_clear_psr_up(); + pfm_clear_psr_pp(); + ia64_psr(regs)->pp = 0; + + /* + * perfmon runs with PMU unfrozen at all times + */ + pfm_unfreeze_pmu(); + + ia64_srlz_d(); +} + +int +pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl) +{ + int ret, i; + int reserve_cpu; + + /* some sanity checks */ + if (hdl == NULL || hdl->handler == NULL) return -EINVAL; + + /* do the easy test first */ + if (pfm_alt_intr_handler) return -EBUSY; + + /* one at a time in the install or remove, just fail the others */ + if (!spin_trylock(&pfm_alt_install_check)) { + return -EBUSY; + } + + /* reserve our session */ + for_each_online_cpu(reserve_cpu) { + ret = pfm_reserve_session(NULL, 1, reserve_cpu); + if (ret) goto cleanup_reserve; + } + + /* save the current system wide pmu states */ + ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1); + if (ret) { + DPRINT(("on_each_cpu() failed: %d\n", ret)); + goto cleanup_reserve; + } + + /* officially change to the alternate interrupt handler */ + pfm_alt_intr_handler = hdl; + + spin_unlock(&pfm_alt_install_check); + + return 0; + +cleanup_reserve: + for_each_online_cpu(i) { + /* don't unreserve more than we reserved */ + if (i >= reserve_cpu) break; + + pfm_unreserve_session(NULL, 1, i); + } + + spin_unlock(&pfm_alt_install_check); + + return ret; +} +EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt); + +int +pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl) +{ + int i; + int ret; + + if (hdl == NULL) return -EINVAL; + + /* cannot remove someone else's handler! */ + if (pfm_alt_intr_handler != hdl) return -EINVAL; + + /* one at a time in the install or remove, just fail the others */ + if (!spin_trylock(&pfm_alt_install_check)) { + return -EBUSY; + } + + pfm_alt_intr_handler = NULL; + + ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1); + if (ret) { + DPRINT(("on_each_cpu() failed: %d\n", ret)); + } + + for_each_online_cpu(i) { + pfm_unreserve_session(NULL, 1, i); + } + + spin_unlock(&pfm_alt_install_check); + + return 0; +} +EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt); + +/* + * perfmon initialization routine, called from the initcall() table + */ +static int init_pfm_fs(void); + +static int __init +pfm_probe_pmu(void) +{ + pmu_config_t **p; + int family; + + family = local_cpu_data->family; + p = pmu_confs; + + while(*p) { + if ((*p)->probe) { + if ((*p)->probe() == 0) goto found; + } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) { + goto found; + } + p++; + } + return -1; +found: + pmu_conf = *p; + return 0; +} + +int __init +pfm_init(void) +{ + unsigned int n, n_counters, i; + + printk("perfmon: version %u.%u IRQ %u\n", + PFM_VERSION_MAJ, + PFM_VERSION_MIN, + IA64_PERFMON_VECTOR); + + if (pfm_probe_pmu()) { + printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n", + local_cpu_data->family); + return -ENODEV; + } + + /* + * compute the number of implemented PMD/PMC from the + * description tables + */ + n = 0; + for (i=0; PMC_IS_LAST(i) == 0; i++) { + if (PMC_IS_IMPL(i) == 0) continue; + pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63); + n++; + } + pmu_conf->num_pmcs = n; + + n = 0; n_counters = 0; + for (i=0; PMD_IS_LAST(i) == 0; i++) { + if (PMD_IS_IMPL(i) == 0) continue; + pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63); + n++; + if (PMD_IS_COUNTING(i)) n_counters++; + } + pmu_conf->num_pmds = n; + pmu_conf->num_counters = n_counters; + + /* + * sanity checks on the number of debug registers + */ + if (pmu_conf->use_rr_dbregs) { + if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) { + printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs); + pmu_conf = NULL; + return -1; + } + if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) { + printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs); + pmu_conf = NULL; + return -1; + } + } + + printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n", + pmu_conf->pmu_name, + pmu_conf->num_pmcs, + pmu_conf->num_pmds, + pmu_conf->num_counters, + ffz(pmu_conf->ovfl_val)); + + /* sanity check */ + if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) { + printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n"); + pmu_conf = NULL; + return -1; + } + + /* + * create /proc/perfmon (mostly for debugging purposes) + */ + perfmon_dir = proc_create_seq("perfmon", S_IRUGO, NULL, &pfm_seq_ops); + if (perfmon_dir == NULL) { + printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n"); + pmu_conf = NULL; + return -1; + } + + /* + * create /proc/sys/kernel/perfmon (for debugging purposes) + */ + pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root); + + /* + * initialize all our spinlocks + */ + spin_lock_init(&pfm_sessions.pfs_lock); + spin_lock_init(&pfm_buffer_fmt_lock); + + init_pfm_fs(); + + for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL; + + return 0; +} + +__initcall(pfm_init); + +/* + * this function is called before pfm_init() + */ +void +pfm_init_percpu (void) +{ + static int first_time=1; + /* + * make sure no measurement is active + * (may inherit programmed PMCs from EFI). + */ + pfm_clear_psr_pp(); + pfm_clear_psr_up(); + + /* + * we run with the PMU not frozen at all times + */ + pfm_unfreeze_pmu(); + + if (first_time) { + register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction); + first_time=0; + } + + ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR); + ia64_srlz_d(); +} + +/* + * used for debug purposes only + */ +void +dump_pmu_state(const char *from) +{ + struct task_struct *task; + struct pt_regs *regs; + pfm_context_t *ctx; + unsigned long psr, dcr, info, flags; + int i, this_cpu; + + local_irq_save(flags); + + this_cpu = smp_processor_id(); + regs = task_pt_regs(current); + info = PFM_CPUINFO_GET(); + dcr = ia64_getreg(_IA64_REG_CR_DCR); + + if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) { + local_irq_restore(flags); + return; + } + + printk("CPU%d from %s() current [%d] iip=0x%lx %s\n", + this_cpu, + from, + task_pid_nr(current), + regs->cr_iip, + current->comm); + + task = GET_PMU_OWNER(); + ctx = GET_PMU_CTX(); + + printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx); + + psr = pfm_get_psr(); + + printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n", + this_cpu, + ia64_get_pmc(0), + psr & IA64_PSR_PP ? 1 : 0, + psr & IA64_PSR_UP ? 1 : 0, + dcr & IA64_DCR_PP ? 1 : 0, + info, + ia64_psr(regs)->up, + ia64_psr(regs)->pp); + + ia64_psr(regs)->up = 0; + ia64_psr(regs)->pp = 0; + + for (i=1; PMC_IS_LAST(i) == 0; i++) { + if (PMC_IS_IMPL(i) == 0) continue; + printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]); + } + + for (i=1; PMD_IS_LAST(i) == 0; i++) { + if (PMD_IS_IMPL(i) == 0) continue; + printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]); + } + + if (ctx) { + printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n", + this_cpu, + ctx->ctx_state, + ctx->ctx_smpl_vaddr, + ctx->ctx_smpl_hdr, + ctx->ctx_msgq_head, + ctx->ctx_msgq_tail, + ctx->ctx_saved_psr_up); + } + local_irq_restore(flags); +} + +/* + * called from process.c:copy_thread(). task is new child. + */ +void +pfm_inherit(struct task_struct *task, struct pt_regs *regs) +{ + struct thread_struct *thread; + + DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task))); + + thread = &task->thread; + + /* + * cut links inherited from parent (current) + */ + thread->pfm_context = NULL; + + PFM_SET_WORK_PENDING(task, 0); + + /* + * the psr bits are already set properly in copy_threads() + */ +} +#else /* !CONFIG_PERFMON */ +asmlinkage long +sys_perfmonctl (int fd, int cmd, void *arg, int count) +{ + return -ENOSYS; +} +#endif /* CONFIG_PERFMON */ |