summaryrefslogtreecommitdiffstats
path: root/arch/mips/kernel/kprobes.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
commit76cb841cb886eef6b3bee341a2266c76578724ad (patch)
treef5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /arch/mips/kernel/kprobes.c
parentInitial commit. (diff)
downloadlinux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz
linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip
Adding upstream version 4.19.249.upstream/4.19.249upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/mips/kernel/kprobes.c')
-rw-r--r--arch/mips/kernel/kprobes.c578
1 files changed, 578 insertions, 0 deletions
diff --git a/arch/mips/kernel/kprobes.c b/arch/mips/kernel/kprobes.c
new file mode 100644
index 000000000..54cd675c5
--- /dev/null
+++ b/arch/mips/kernel/kprobes.c
@@ -0,0 +1,578 @@
+/*
+ * Kernel Probes (KProbes)
+ * arch/mips/kernel/kprobes.c
+ *
+ * Copyright 2006 Sony Corp.
+ * Copyright 2010 Cavium Networks
+ *
+ * Some portions copied from the powerpc version.
+ *
+ * Copyright (C) IBM Corporation, 2002, 2004
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; version 2 of the License.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#include <linux/kprobes.h>
+#include <linux/preempt.h>
+#include <linux/uaccess.h>
+#include <linux/kdebug.h>
+#include <linux/slab.h>
+
+#include <asm/ptrace.h>
+#include <asm/branch.h>
+#include <asm/break.h>
+
+#include "probes-common.h"
+
+static const union mips_instruction breakpoint_insn = {
+ .b_format = {
+ .opcode = spec_op,
+ .code = BRK_KPROBE_BP,
+ .func = break_op
+ }
+};
+
+static const union mips_instruction breakpoint2_insn = {
+ .b_format = {
+ .opcode = spec_op,
+ .code = BRK_KPROBE_SSTEPBP,
+ .func = break_op
+ }
+};
+
+DEFINE_PER_CPU(struct kprobe *, current_kprobe);
+DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
+
+static int __kprobes insn_has_delayslot(union mips_instruction insn)
+{
+ return __insn_has_delay_slot(insn);
+}
+
+/*
+ * insn_has_ll_or_sc function checks whether instruction is ll or sc
+ * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
+ * so we need to prevent it and refuse kprobes insertion for such
+ * instructions; cannot do much about breakpoint in the middle of
+ * ll/sc pair; it is upto user to avoid those places
+ */
+static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
+{
+ int ret = 0;
+
+ switch (insn.i_format.opcode) {
+ case ll_op:
+ case lld_op:
+ case sc_op:
+ case scd_op:
+ ret = 1;
+ break;
+ default:
+ break;
+ }
+ return ret;
+}
+
+int __kprobes arch_prepare_kprobe(struct kprobe *p)
+{
+ union mips_instruction insn;
+ union mips_instruction prev_insn;
+ int ret = 0;
+
+ insn = p->addr[0];
+
+ if (insn_has_ll_or_sc(insn)) {
+ pr_notice("Kprobes for ll and sc instructions are not"
+ "supported\n");
+ ret = -EINVAL;
+ goto out;
+ }
+
+ if ((probe_kernel_read(&prev_insn, p->addr - 1,
+ sizeof(mips_instruction)) == 0) &&
+ insn_has_delayslot(prev_insn)) {
+ pr_notice("Kprobes for branch delayslot are not supported\n");
+ ret = -EINVAL;
+ goto out;
+ }
+
+ if (__insn_is_compact_branch(insn)) {
+ pr_notice("Kprobes for compact branches are not supported\n");
+ ret = -EINVAL;
+ goto out;
+ }
+
+ /* insn: must be on special executable page on mips. */
+ p->ainsn.insn = get_insn_slot();
+ if (!p->ainsn.insn) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ /*
+ * In the kprobe->ainsn.insn[] array we store the original
+ * instruction at index zero and a break trap instruction at
+ * index one.
+ *
+ * On MIPS arch if the instruction at probed address is a
+ * branch instruction, we need to execute the instruction at
+ * Branch Delayslot (BD) at the time of probe hit. As MIPS also
+ * doesn't have single stepping support, the BD instruction can
+ * not be executed in-line and it would be executed on SSOL slot
+ * using a normal breakpoint instruction in the next slot.
+ * So, read the instruction and save it for later execution.
+ */
+ if (insn_has_delayslot(insn))
+ memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
+ else
+ memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
+
+ p->ainsn.insn[1] = breakpoint2_insn;
+ p->opcode = *p->addr;
+
+out:
+ return ret;
+}
+
+void __kprobes arch_arm_kprobe(struct kprobe *p)
+{
+ *p->addr = breakpoint_insn;
+ flush_insn_slot(p);
+}
+
+void __kprobes arch_disarm_kprobe(struct kprobe *p)
+{
+ *p->addr = p->opcode;
+ flush_insn_slot(p);
+}
+
+void __kprobes arch_remove_kprobe(struct kprobe *p)
+{
+ if (p->ainsn.insn) {
+ free_insn_slot(p->ainsn.insn, 0);
+ p->ainsn.insn = NULL;
+ }
+}
+
+static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
+{
+ kcb->prev_kprobe.kp = kprobe_running();
+ kcb->prev_kprobe.status = kcb->kprobe_status;
+ kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
+ kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
+ kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
+}
+
+static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
+{
+ __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
+ kcb->kprobe_status = kcb->prev_kprobe.status;
+ kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
+ kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
+ kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
+}
+
+static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
+ struct kprobe_ctlblk *kcb)
+{
+ __this_cpu_write(current_kprobe, p);
+ kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
+ kcb->kprobe_saved_epc = regs->cp0_epc;
+}
+
+/**
+ * evaluate_branch_instrucion -
+ *
+ * Evaluate the branch instruction at probed address during probe hit. The
+ * result of evaluation would be the updated epc. The insturction in delayslot
+ * would actually be single stepped using a normal breakpoint) on SSOL slot.
+ *
+ * The result is also saved in the kprobe control block for later use,
+ * in case we need to execute the delayslot instruction. The latter will be
+ * false for NOP instruction in dealyslot and the branch-likely instructions
+ * when the branch is taken. And for those cases we set a flag as
+ * SKIP_DELAYSLOT in the kprobe control block
+ */
+static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
+ struct kprobe_ctlblk *kcb)
+{
+ union mips_instruction insn = p->opcode;
+ long epc;
+ int ret = 0;
+
+ epc = regs->cp0_epc;
+ if (epc & 3)
+ goto unaligned;
+
+ if (p->ainsn.insn->word == 0)
+ kcb->flags |= SKIP_DELAYSLOT;
+ else
+ kcb->flags &= ~SKIP_DELAYSLOT;
+
+ ret = __compute_return_epc_for_insn(regs, insn);
+ if (ret < 0)
+ return ret;
+
+ if (ret == BRANCH_LIKELY_TAKEN)
+ kcb->flags |= SKIP_DELAYSLOT;
+
+ kcb->target_epc = regs->cp0_epc;
+
+ return 0;
+
+unaligned:
+ pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
+ force_sig(SIGBUS, current);
+ return -EFAULT;
+
+}
+
+static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
+ struct kprobe_ctlblk *kcb)
+{
+ int ret = 0;
+
+ regs->cp0_status &= ~ST0_IE;
+
+ /* single step inline if the instruction is a break */
+ if (p->opcode.word == breakpoint_insn.word ||
+ p->opcode.word == breakpoint2_insn.word)
+ regs->cp0_epc = (unsigned long)p->addr;
+ else if (insn_has_delayslot(p->opcode)) {
+ ret = evaluate_branch_instruction(p, regs, kcb);
+ if (ret < 0) {
+ pr_notice("Kprobes: Error in evaluating branch\n");
+ return;
+ }
+ }
+ regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
+}
+
+/*
+ * Called after single-stepping. p->addr is the address of the
+ * instruction whose first byte has been replaced by the "break 0"
+ * instruction. To avoid the SMP problems that can occur when we
+ * temporarily put back the original opcode to single-step, we
+ * single-stepped a copy of the instruction. The address of this
+ * copy is p->ainsn.insn.
+ *
+ * This function prepares to return from the post-single-step
+ * breakpoint trap. In case of branch instructions, the target
+ * epc to be restored.
+ */
+static void __kprobes resume_execution(struct kprobe *p,
+ struct pt_regs *regs,
+ struct kprobe_ctlblk *kcb)
+{
+ if (insn_has_delayslot(p->opcode))
+ regs->cp0_epc = kcb->target_epc;
+ else {
+ unsigned long orig_epc = kcb->kprobe_saved_epc;
+ regs->cp0_epc = orig_epc + 4;
+ }
+}
+
+static int __kprobes kprobe_handler(struct pt_regs *regs)
+{
+ struct kprobe *p;
+ int ret = 0;
+ kprobe_opcode_t *addr;
+ struct kprobe_ctlblk *kcb;
+
+ addr = (kprobe_opcode_t *) regs->cp0_epc;
+
+ /*
+ * We don't want to be preempted for the entire
+ * duration of kprobe processing
+ */
+ preempt_disable();
+ kcb = get_kprobe_ctlblk();
+
+ /* Check we're not actually recursing */
+ if (kprobe_running()) {
+ p = get_kprobe(addr);
+ if (p) {
+ if (kcb->kprobe_status == KPROBE_HIT_SS &&
+ p->ainsn.insn->word == breakpoint_insn.word) {
+ regs->cp0_status &= ~ST0_IE;
+ regs->cp0_status |= kcb->kprobe_saved_SR;
+ goto no_kprobe;
+ }
+ /*
+ * We have reentered the kprobe_handler(), since
+ * another probe was hit while within the handler.
+ * We here save the original kprobes variables and
+ * just single step on the instruction of the new probe
+ * without calling any user handlers.
+ */
+ save_previous_kprobe(kcb);
+ set_current_kprobe(p, regs, kcb);
+ kprobes_inc_nmissed_count(p);
+ prepare_singlestep(p, regs, kcb);
+ kcb->kprobe_status = KPROBE_REENTER;
+ if (kcb->flags & SKIP_DELAYSLOT) {
+ resume_execution(p, regs, kcb);
+ restore_previous_kprobe(kcb);
+ preempt_enable_no_resched();
+ }
+ return 1;
+ } else if (addr->word != breakpoint_insn.word) {
+ /*
+ * The breakpoint instruction was removed by
+ * another cpu right after we hit, no further
+ * handling of this interrupt is appropriate
+ */
+ ret = 1;
+ }
+ goto no_kprobe;
+ }
+
+ p = get_kprobe(addr);
+ if (!p) {
+ if (addr->word != breakpoint_insn.word) {
+ /*
+ * The breakpoint instruction was removed right
+ * after we hit it. Another cpu has removed
+ * either a probepoint or a debugger breakpoint
+ * at this address. In either case, no further
+ * handling of this interrupt is appropriate.
+ */
+ ret = 1;
+ }
+ /* Not one of ours: let kernel handle it */
+ goto no_kprobe;
+ }
+
+ set_current_kprobe(p, regs, kcb);
+ kcb->kprobe_status = KPROBE_HIT_ACTIVE;
+
+ if (p->pre_handler && p->pre_handler(p, regs)) {
+ /* handler has already set things up, so skip ss setup */
+ reset_current_kprobe();
+ preempt_enable_no_resched();
+ return 1;
+ }
+
+ prepare_singlestep(p, regs, kcb);
+ if (kcb->flags & SKIP_DELAYSLOT) {
+ kcb->kprobe_status = KPROBE_HIT_SSDONE;
+ if (p->post_handler)
+ p->post_handler(p, regs, 0);
+ resume_execution(p, regs, kcb);
+ preempt_enable_no_resched();
+ } else
+ kcb->kprobe_status = KPROBE_HIT_SS;
+
+ return 1;
+
+no_kprobe:
+ preempt_enable_no_resched();
+ return ret;
+
+}
+
+static inline int post_kprobe_handler(struct pt_regs *regs)
+{
+ struct kprobe *cur = kprobe_running();
+ struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
+
+ if (!cur)
+ return 0;
+
+ if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
+ kcb->kprobe_status = KPROBE_HIT_SSDONE;
+ cur->post_handler(cur, regs, 0);
+ }
+
+ resume_execution(cur, regs, kcb);
+
+ regs->cp0_status |= kcb->kprobe_saved_SR;
+
+ /* Restore back the original saved kprobes variables and continue. */
+ if (kcb->kprobe_status == KPROBE_REENTER) {
+ restore_previous_kprobe(kcb);
+ goto out;
+ }
+ reset_current_kprobe();
+out:
+ preempt_enable_no_resched();
+
+ return 1;
+}
+
+static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
+{
+ struct kprobe *cur = kprobe_running();
+ struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
+
+ if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
+ return 1;
+
+ if (kcb->kprobe_status & KPROBE_HIT_SS) {
+ resume_execution(cur, regs, kcb);
+ regs->cp0_status |= kcb->kprobe_old_SR;
+
+ reset_current_kprobe();
+ preempt_enable_no_resched();
+ }
+ return 0;
+}
+
+/*
+ * Wrapper routine for handling exceptions.
+ */
+int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
+ unsigned long val, void *data)
+{
+
+ struct die_args *args = (struct die_args *)data;
+ int ret = NOTIFY_DONE;
+
+ switch (val) {
+ case DIE_BREAK:
+ if (kprobe_handler(args->regs))
+ ret = NOTIFY_STOP;
+ break;
+ case DIE_SSTEPBP:
+ if (post_kprobe_handler(args->regs))
+ ret = NOTIFY_STOP;
+ break;
+
+ case DIE_PAGE_FAULT:
+ /* kprobe_running() needs smp_processor_id() */
+ preempt_disable();
+
+ if (kprobe_running()
+ && kprobe_fault_handler(args->regs, args->trapnr))
+ ret = NOTIFY_STOP;
+ preempt_enable();
+ break;
+ default:
+ break;
+ }
+ return ret;
+}
+
+/*
+ * Function return probe trampoline:
+ * - init_kprobes() establishes a probepoint here
+ * - When the probed function returns, this probe causes the
+ * handlers to fire
+ */
+static void __used kretprobe_trampoline_holder(void)
+{
+ asm volatile(
+ ".set push\n\t"
+ /* Keep the assembler from reordering and placing JR here. */
+ ".set noreorder\n\t"
+ "nop\n\t"
+ ".global kretprobe_trampoline\n"
+ "kretprobe_trampoline:\n\t"
+ "nop\n\t"
+ ".set pop"
+ : : : "memory");
+}
+
+void kretprobe_trampoline(void);
+
+void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
+ struct pt_regs *regs)
+{
+ ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
+
+ /* Replace the return addr with trampoline addr */
+ regs->regs[31] = (unsigned long)kretprobe_trampoline;
+}
+
+/*
+ * Called when the probe at kretprobe trampoline is hit
+ */
+static int __kprobes trampoline_probe_handler(struct kprobe *p,
+ struct pt_regs *regs)
+{
+ struct kretprobe_instance *ri = NULL;
+ struct hlist_head *head, empty_rp;
+ struct hlist_node *tmp;
+ unsigned long flags, orig_ret_address = 0;
+ unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
+
+ INIT_HLIST_HEAD(&empty_rp);
+ kretprobe_hash_lock(current, &head, &flags);
+
+ /*
+ * It is possible to have multiple instances associated with a given
+ * task either because an multiple functions in the call path
+ * have a return probe installed on them, and/or more than one return
+ * return probe was registered for a target function.
+ *
+ * We can handle this because:
+ * - instances are always inserted at the head of the list
+ * - when multiple return probes are registered for the same
+ * function, the first instance's ret_addr will point to the
+ * real return address, and all the rest will point to
+ * kretprobe_trampoline
+ */
+ hlist_for_each_entry_safe(ri, tmp, head, hlist) {
+ if (ri->task != current)
+ /* another task is sharing our hash bucket */
+ continue;
+
+ if (ri->rp && ri->rp->handler)
+ ri->rp->handler(ri, regs);
+
+ orig_ret_address = (unsigned long)ri->ret_addr;
+ recycle_rp_inst(ri, &empty_rp);
+
+ if (orig_ret_address != trampoline_address)
+ /*
+ * This is the real return address. Any other
+ * instances associated with this task are for
+ * other calls deeper on the call stack
+ */
+ break;
+ }
+
+ kretprobe_assert(ri, orig_ret_address, trampoline_address);
+ instruction_pointer(regs) = orig_ret_address;
+
+ kretprobe_hash_unlock(current, &flags);
+
+ hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
+ hlist_del(&ri->hlist);
+ kfree(ri);
+ }
+ /*
+ * By returning a non-zero value, we are telling
+ * kprobe_handler() that we don't want the post_handler
+ * to run (and have re-enabled preemption)
+ */
+ return 1;
+}
+
+int __kprobes arch_trampoline_kprobe(struct kprobe *p)
+{
+ if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
+ return 1;
+
+ return 0;
+}
+
+static struct kprobe trampoline_p = {
+ .addr = (kprobe_opcode_t *)kretprobe_trampoline,
+ .pre_handler = trampoline_probe_handler
+};
+
+int __init arch_init_kprobes(void)
+{
+ return register_kprobe(&trampoline_p);
+}