diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
commit | 76cb841cb886eef6b3bee341a2266c76578724ad (patch) | |
tree | f5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /drivers/mtd/nand/raw/nand_hynix.c | |
parent | Initial commit. (diff) | |
download | linux-upstream.tar.xz linux-upstream.zip |
Adding upstream version 4.19.249.upstream/4.19.249upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | drivers/mtd/nand/raw/nand_hynix.c | 699 |
1 files changed, 699 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/nand_hynix.c b/drivers/mtd/nand/raw/nand_hynix.c new file mode 100644 index 000000000..4ffbb26e7 --- /dev/null +++ b/drivers/mtd/nand/raw/nand_hynix.c @@ -0,0 +1,699 @@ +/* + * Copyright (C) 2017 Free Electrons + * Copyright (C) 2017 NextThing Co + * + * Author: Boris Brezillon <boris.brezillon@free-electrons.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include <linux/mtd/rawnand.h> +#include <linux/sizes.h> +#include <linux/slab.h> + +#define NAND_HYNIX_CMD_SET_PARAMS 0x36 +#define NAND_HYNIX_CMD_APPLY_PARAMS 0x16 + +#define NAND_HYNIX_1XNM_RR_REPEAT 8 + +/** + * struct hynix_read_retry - read-retry data + * @nregs: number of register to set when applying a new read-retry mode + * @regs: register offsets (NAND chip dependent) + * @values: array of values to set in registers. The array size is equal to + * (nregs * nmodes) + */ +struct hynix_read_retry { + int nregs; + const u8 *regs; + u8 values[0]; +}; + +/** + * struct hynix_nand - private Hynix NAND struct + * @nand_technology: manufacturing process expressed in picometer + * @read_retry: read-retry information + */ +struct hynix_nand { + const struct hynix_read_retry *read_retry; +}; + +/** + * struct hynix_read_retry_otp - structure describing how the read-retry OTP + * area + * @nregs: number of hynix private registers to set before reading the reading + * the OTP area + * @regs: registers that should be configured + * @values: values that should be set in regs + * @page: the address to pass to the READ_PAGE command. Depends on the NAND + * chip + * @size: size of the read-retry OTP section + */ +struct hynix_read_retry_otp { + int nregs; + const u8 *regs; + const u8 *values; + int page; + int size; +}; + +static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip) +{ + u8 jedecid[5] = { }; + int ret; + + ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid)); + if (ret) + return false; + + return !strncmp("JEDEC", jedecid, sizeof(jedecid)); +} + +static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (chip->exec_op) { + struct nand_op_instr instrs[] = { + NAND_OP_CMD(cmd, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + return nand_exec_op(chip, &op); + } + + chip->cmdfunc(mtd, cmd, -1, -1); + + return 0; +} + +static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + u16 column = ((u16)addr << 8) | addr; + + if (chip->exec_op) { + struct nand_op_instr instrs[] = { + NAND_OP_ADDR(1, &addr, 0), + NAND_OP_8BIT_DATA_OUT(1, &val, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + return nand_exec_op(chip, &op); + } + + chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1); + chip->write_byte(mtd, val); + + return 0; +} + +static int hynix_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct hynix_nand *hynix = nand_get_manufacturer_data(chip); + const u8 *values; + int i, ret; + + values = hynix->read_retry->values + + (retry_mode * hynix->read_retry->nregs); + + /* Enter 'Set Hynix Parameters' mode */ + ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); + if (ret) + return ret; + + /* + * Configure the NAND in the requested read-retry mode. + * This is done by setting pre-defined values in internal NAND + * registers. + * + * The set of registers is NAND specific, and the values are either + * predefined or extracted from an OTP area on the NAND (values are + * probably tweaked at production in this case). + */ + for (i = 0; i < hynix->read_retry->nregs; i++) { + ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i], + values[i]); + if (ret) + return ret; + } + + /* Apply the new settings. */ + return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); +} + +/** + * hynix_get_majority - get the value that is occurring the most in a given + * set of values + * @in: the array of values to test + * @repeat: the size of the in array + * @out: pointer used to store the output value + * + * This function implements the 'majority check' logic that is supposed to + * overcome the unreliability of MLC NANDs when reading the OTP area storing + * the read-retry parameters. + * + * It's based on a pretty simple assumption: if we repeat the same value + * several times and then take the one that is occurring the most, we should + * find the correct value. + * Let's hope this dummy algorithm prevents us from losing the read-retry + * parameters. + */ +static int hynix_get_majority(const u8 *in, int repeat, u8 *out) +{ + int i, j, half = repeat / 2; + + /* + * We only test the first half of the in array because we must ensure + * that the value is at least occurring repeat / 2 times. + * + * This loop is suboptimal since we may count the occurrences of the + * same value several time, but we are doing that on small sets, which + * makes it acceptable. + */ + for (i = 0; i < half; i++) { + int cnt = 0; + u8 val = in[i]; + + /* Count all values that are matching the one at index i. */ + for (j = i + 1; j < repeat; j++) { + if (in[j] == val) + cnt++; + } + + /* We found a value occurring more than repeat / 2. */ + if (cnt > half) { + *out = val; + return 0; + } + } + + return -EIO; +} + +static int hynix_read_rr_otp(struct nand_chip *chip, + const struct hynix_read_retry_otp *info, + void *buf) +{ + int i, ret; + + ret = nand_reset_op(chip); + if (ret) + return ret; + + ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); + if (ret) + return ret; + + for (i = 0; i < info->nregs; i++) { + ret = hynix_nand_reg_write_op(chip, info->regs[i], + info->values[i]); + if (ret) + return ret; + } + + ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); + if (ret) + return ret; + + /* Sequence to enter OTP mode? */ + ret = hynix_nand_cmd_op(chip, 0x17); + if (ret) + return ret; + + ret = hynix_nand_cmd_op(chip, 0x4); + if (ret) + return ret; + + ret = hynix_nand_cmd_op(chip, 0x19); + if (ret) + return ret; + + /* Now read the page */ + ret = nand_read_page_op(chip, info->page, 0, buf, info->size); + if (ret) + return ret; + + /* Put everything back to normal */ + ret = nand_reset_op(chip); + if (ret) + return ret; + + ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); + if (ret) + return ret; + + ret = hynix_nand_reg_write_op(chip, 0x38, 0); + if (ret) + return ret; + + ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); + if (ret) + return ret; + + return nand_read_page_op(chip, 0, 0, NULL, 0); +} + +#define NAND_HYNIX_1XNM_RR_COUNT_OFFS 0 +#define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS 8 +#define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv) \ + (16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize))) + +static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs, + int mode, int reg, bool inv, u8 *val) +{ + u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT]; + int val_offs = (mode * nregs) + reg; + int set_size = nmodes * nregs; + int i, ret; + + for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) { + int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv); + + tmp[i] = buf[val_offs + set_offs]; + } + + ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val); + if (ret) + return ret; + + if (inv) + *val = ~*val; + + return 0; +} + +static u8 hynix_1xnm_mlc_read_retry_regs[] = { + 0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf +}; + +static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip, + const struct hynix_read_retry_otp *info) +{ + struct hynix_nand *hynix = nand_get_manufacturer_data(chip); + struct hynix_read_retry *rr = NULL; + int ret, i, j; + u8 nregs, nmodes; + u8 *buf; + + buf = kmalloc(info->size, GFP_KERNEL); + if (!buf) + return -ENOMEM; + + ret = hynix_read_rr_otp(chip, info, buf); + if (ret) + goto out; + + ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT, + &nmodes); + if (ret) + goto out; + + ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT, + NAND_HYNIX_1XNM_RR_REPEAT, + &nregs); + if (ret) + goto out; + + rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL); + if (!rr) { + ret = -ENOMEM; + goto out; + } + + for (i = 0; i < nmodes; i++) { + for (j = 0; j < nregs; j++) { + u8 *val = rr->values + (i * nregs); + + ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j, + false, val); + if (!ret) + continue; + + ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j, + true, val); + if (ret) + goto out; + } + } + + rr->nregs = nregs; + rr->regs = hynix_1xnm_mlc_read_retry_regs; + hynix->read_retry = rr; + chip->setup_read_retry = hynix_nand_setup_read_retry; + chip->read_retries = nmodes; + +out: + kfree(buf); + + if (ret) + kfree(rr); + + return ret; +} + +static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 }; +static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 }; + +static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = { + { + .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs), + .regs = hynix_mlc_1xnm_rr_otp_regs, + .values = hynix_mlc_1xnm_rr_otp_values, + .page = 0x21f, + .size = 784 + }, + { + .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs), + .regs = hynix_mlc_1xnm_rr_otp_regs, + .values = hynix_mlc_1xnm_rr_otp_values, + .page = 0x200, + .size = 528, + }, +}; + +static int hynix_nand_rr_init(struct nand_chip *chip) +{ + int i, ret = 0; + bool valid_jedecid; + + valid_jedecid = hynix_nand_has_valid_jedecid(chip); + + /* + * We only support read-retry for 1xnm NANDs, and those NANDs all + * expose a valid JEDEC ID. + */ + if (valid_jedecid) { + u8 nand_tech = chip->id.data[5] >> 4; + + /* 1xnm technology */ + if (nand_tech == 4) { + for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps); + i++) { + /* + * FIXME: Hynix recommend to copy the + * read-retry OTP area into a normal page. + */ + ret = hynix_mlc_1xnm_rr_init(chip, + hynix_mlc_1xnm_rr_otps); + if (!ret) + break; + } + } + } + + if (ret) + pr_warn("failed to initialize read-retry infrastructure"); + + return 0; +} + +static void hynix_nand_extract_oobsize(struct nand_chip *chip, + bool valid_jedecid) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + u8 oobsize; + + oobsize = ((chip->id.data[3] >> 2) & 0x3) | + ((chip->id.data[3] >> 4) & 0x4); + + if (valid_jedecid) { + switch (oobsize) { + case 0: + mtd->oobsize = 2048; + break; + case 1: + mtd->oobsize = 1664; + break; + case 2: + mtd->oobsize = 1024; + break; + case 3: + mtd->oobsize = 640; + break; + default: + /* + * We should never reach this case, but if that + * happens, this probably means Hynix decided to use + * a different extended ID format, and we should find + * a way to support it. + */ + WARN(1, "Invalid OOB size"); + break; + } + } else { + switch (oobsize) { + case 0: + mtd->oobsize = 128; + break; + case 1: + mtd->oobsize = 224; + break; + case 2: + mtd->oobsize = 448; + break; + case 3: + mtd->oobsize = 64; + break; + case 4: + mtd->oobsize = 32; + break; + case 5: + mtd->oobsize = 16; + break; + case 6: + mtd->oobsize = 640; + break; + default: + /* + * We should never reach this case, but if that + * happens, this probably means Hynix decided to use + * a different extended ID format, and we should find + * a way to support it. + */ + WARN(1, "Invalid OOB size"); + break; + } + + /* + * The datasheet of H27UCG8T2BTR mentions that the "Redundant + * Area Size" is encoded "per 8KB" (page size). This chip uses + * a page size of 16KiB. The datasheet mentions an OOB size of + * 1.280 bytes, but the OOB size encoded in the ID bytes (using + * the existing logic above) is 640 bytes. + * Update the OOB size for this chip by taking the value + * determined above and scaling it to the actual page size (so + * the actual OOB size for this chip is: 640 * 16k / 8k). + */ + if (chip->id.data[1] == 0xde) + mtd->oobsize *= mtd->writesize / SZ_8K; + } +} + +static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip, + bool valid_jedecid) +{ + u8 ecc_level = (chip->id.data[4] >> 4) & 0x7; + + if (valid_jedecid) { + /* Reference: H27UCG8T2E datasheet */ + chip->ecc_step_ds = 1024; + + switch (ecc_level) { + case 0: + chip->ecc_step_ds = 0; + chip->ecc_strength_ds = 0; + break; + case 1: + chip->ecc_strength_ds = 4; + break; + case 2: + chip->ecc_strength_ds = 24; + break; + case 3: + chip->ecc_strength_ds = 32; + break; + case 4: + chip->ecc_strength_ds = 40; + break; + case 5: + chip->ecc_strength_ds = 50; + break; + case 6: + chip->ecc_strength_ds = 60; + break; + default: + /* + * We should never reach this case, but if that + * happens, this probably means Hynix decided to use + * a different extended ID format, and we should find + * a way to support it. + */ + WARN(1, "Invalid ECC requirements"); + } + } else { + /* + * The ECC requirements field meaning depends on the + * NAND technology. + */ + u8 nand_tech = chip->id.data[5] & 0x7; + + if (nand_tech < 3) { + /* > 26nm, reference: H27UBG8T2A datasheet */ + if (ecc_level < 5) { + chip->ecc_step_ds = 512; + chip->ecc_strength_ds = 1 << ecc_level; + } else if (ecc_level < 7) { + if (ecc_level == 5) + chip->ecc_step_ds = 2048; + else + chip->ecc_step_ds = 1024; + chip->ecc_strength_ds = 24; + } else { + /* + * We should never reach this case, but if that + * happens, this probably means Hynix decided + * to use a different extended ID format, and + * we should find a way to support it. + */ + WARN(1, "Invalid ECC requirements"); + } + } else { + /* <= 26nm, reference: H27UBG8T2B datasheet */ + if (!ecc_level) { + chip->ecc_step_ds = 0; + chip->ecc_strength_ds = 0; + } else if (ecc_level < 5) { + chip->ecc_step_ds = 512; + chip->ecc_strength_ds = 1 << (ecc_level - 1); + } else { + chip->ecc_step_ds = 1024; + chip->ecc_strength_ds = 24 + + (8 * (ecc_level - 5)); + } + } + } +} + +static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip, + bool valid_jedecid) +{ + u8 nand_tech; + + /* We need scrambling on all TLC NANDs*/ + if (chip->bits_per_cell > 2) + chip->options |= NAND_NEED_SCRAMBLING; + + /* And on MLC NANDs with sub-3xnm process */ + if (valid_jedecid) { + nand_tech = chip->id.data[5] >> 4; + + /* < 3xnm */ + if (nand_tech > 0) + chip->options |= NAND_NEED_SCRAMBLING; + } else { + nand_tech = chip->id.data[5] & 0x7; + + /* < 32nm */ + if (nand_tech > 2) + chip->options |= NAND_NEED_SCRAMBLING; + } +} + +static void hynix_nand_decode_id(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + bool valid_jedecid; + u8 tmp; + + /* + * Exclude all SLC NANDs from this advanced detection scheme. + * According to the ranges defined in several datasheets, it might + * appear that even SLC NANDs could fall in this extended ID scheme. + * If that the case rework the test to let SLC NANDs go through the + * detection process. + */ + if (chip->id.len < 6 || nand_is_slc(chip)) { + nand_decode_ext_id(chip); + return; + } + + /* Extract pagesize */ + mtd->writesize = 2048 << (chip->id.data[3] & 0x03); + + tmp = (chip->id.data[3] >> 4) & 0x3; + /* + * When bit7 is set that means we start counting at 1MiB, otherwise + * we start counting at 128KiB and shift this value the content of + * ID[3][4:5]. + * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in + * this case the erasesize is set to 768KiB. + */ + if (chip->id.data[3] & 0x80) + mtd->erasesize = SZ_1M << tmp; + else if (tmp == 3) + mtd->erasesize = SZ_512K + SZ_256K; + else + mtd->erasesize = SZ_128K << tmp; + + /* + * Modern Toggle DDR NANDs have a valid JEDECID even though they are + * not exposing a valid JEDEC parameter table. + * These NANDs use a different NAND ID scheme. + */ + valid_jedecid = hynix_nand_has_valid_jedecid(chip); + + hynix_nand_extract_oobsize(chip, valid_jedecid); + hynix_nand_extract_ecc_requirements(chip, valid_jedecid); + hynix_nand_extract_scrambling_requirements(chip, valid_jedecid); +} + +static void hynix_nand_cleanup(struct nand_chip *chip) +{ + struct hynix_nand *hynix = nand_get_manufacturer_data(chip); + + if (!hynix) + return; + + kfree(hynix->read_retry); + kfree(hynix); + nand_set_manufacturer_data(chip, NULL); +} + +static int hynix_nand_init(struct nand_chip *chip) +{ + struct hynix_nand *hynix; + int ret; + + if (!nand_is_slc(chip)) + chip->bbt_options |= NAND_BBT_SCANLASTPAGE; + else + chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; + + hynix = kzalloc(sizeof(*hynix), GFP_KERNEL); + if (!hynix) + return -ENOMEM; + + nand_set_manufacturer_data(chip, hynix); + + ret = hynix_nand_rr_init(chip); + if (ret) + hynix_nand_cleanup(chip); + + return ret; +} + +const struct nand_manufacturer_ops hynix_nand_manuf_ops = { + .detect = hynix_nand_decode_id, + .init = hynix_nand_init, + .cleanup = hynix_nand_cleanup, +}; |