summaryrefslogtreecommitdiffstats
path: root/drivers/scsi/sym53c8xx_2/sym_fw2.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
commit76cb841cb886eef6b3bee341a2266c76578724ad (patch)
treef5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /drivers/scsi/sym53c8xx_2/sym_fw2.h
parentInitial commit. (diff)
downloadlinux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz
linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip
Adding upstream version 4.19.249.upstream/4.19.249upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/scsi/sym53c8xx_2/sym_fw2.h')
-rw-r--r--drivers/scsi/sym53c8xx_2/sym_fw2.h1875
1 files changed, 1875 insertions, 0 deletions
diff --git a/drivers/scsi/sym53c8xx_2/sym_fw2.h b/drivers/scsi/sym53c8xx_2/sym_fw2.h
new file mode 100644
index 000000000..c87d72443
--- /dev/null
+++ b/drivers/scsi/sym53c8xx_2/sym_fw2.h
@@ -0,0 +1,1875 @@
+/*
+ * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
+ * of PCI-SCSI IO processors.
+ *
+ * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
+ *
+ * This driver is derived from the Linux sym53c8xx driver.
+ * Copyright (C) 1998-2000 Gerard Roudier
+ *
+ * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
+ * a port of the FreeBSD ncr driver to Linux-1.2.13.
+ *
+ * The original ncr driver has been written for 386bsd and FreeBSD by
+ * Wolfgang Stanglmeier <wolf@cologne.de>
+ * Stefan Esser <se@mi.Uni-Koeln.de>
+ * Copyright (C) 1994 Wolfgang Stanglmeier
+ *
+ * Other major contributions:
+ *
+ * NVRAM detection and reading.
+ * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
+ *
+ *-----------------------------------------------------------------------------
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+/*
+ * Scripts for SYMBIOS-Processor
+ *
+ * We have to know the offsets of all labels before we reach
+ * them (for forward jumps). Therefore we declare a struct
+ * here. If you make changes inside the script,
+ *
+ * DONT FORGET TO CHANGE THE LENGTHS HERE!
+ */
+
+/*
+ * Script fragments which are loaded into the on-chip RAM
+ * of 825A, 875, 876, 895, 895A, 896 and 1010 chips.
+ * Must not exceed 4K bytes.
+ */
+struct SYM_FWA_SCR {
+ u32 start [ 14];
+ u32 getjob_begin [ 4];
+ u32 getjob_end [ 4];
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+ u32 select [ 6];
+#else
+ u32 select [ 4];
+#endif
+#if SYM_CONF_DMA_ADDRESSING_MODE == 2
+ u32 is_dmap_dirty [ 4];
+#endif
+ u32 wf_sel_done [ 2];
+ u32 sel_done [ 2];
+ u32 send_ident [ 2];
+#ifdef SYM_CONF_IARB_SUPPORT
+ u32 select2 [ 8];
+#else
+ u32 select2 [ 2];
+#endif
+ u32 command [ 2];
+ u32 dispatch [ 28];
+ u32 sel_no_cmd [ 10];
+ u32 init [ 6];
+ u32 clrack [ 4];
+ u32 datai_done [ 10];
+ u32 datai_done_wsr [ 20];
+ u32 datao_done [ 10];
+ u32 datao_done_wss [ 6];
+ u32 datai_phase [ 4];
+ u32 datao_phase [ 6];
+ u32 msg_in [ 2];
+ u32 msg_in2 [ 10];
+#ifdef SYM_CONF_IARB_SUPPORT
+ u32 status [ 14];
+#else
+ u32 status [ 10];
+#endif
+ u32 complete [ 6];
+ u32 complete2 [ 12];
+ u32 done [ 14];
+ u32 done_end [ 2];
+ u32 complete_error [ 4];
+ u32 save_dp [ 12];
+ u32 restore_dp [ 8];
+ u32 disconnect [ 12];
+#ifdef SYM_CONF_IARB_SUPPORT
+ u32 idle [ 4];
+#else
+ u32 idle [ 2];
+#endif
+#ifdef SYM_CONF_IARB_SUPPORT
+ u32 ungetjob [ 6];
+#else
+ u32 ungetjob [ 4];
+#endif
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+ u32 reselect [ 4];
+#else
+ u32 reselect [ 2];
+#endif
+ u32 reselected [ 22];
+ u32 resel_scntl4 [ 20];
+ u32 resel_lun0 [ 6];
+#if SYM_CONF_MAX_TASK*4 > 512
+ u32 resel_tag [ 26];
+#elif SYM_CONF_MAX_TASK*4 > 256
+ u32 resel_tag [ 20];
+#else
+ u32 resel_tag [ 16];
+#endif
+ u32 resel_dsa [ 2];
+ u32 resel_dsa1 [ 4];
+ u32 resel_no_tag [ 6];
+ u32 data_in [SYM_CONF_MAX_SG * 2];
+ u32 data_in2 [ 4];
+ u32 data_out [SYM_CONF_MAX_SG * 2];
+ u32 data_out2 [ 4];
+ u32 pm0_data [ 12];
+ u32 pm0_data_out [ 6];
+ u32 pm0_data_end [ 6];
+ u32 pm1_data [ 12];
+ u32 pm1_data_out [ 6];
+ u32 pm1_data_end [ 6];
+};
+
+/*
+ * Script fragments which stay in main memory for all chips
+ * except for chips that support 8K on-chip RAM.
+ */
+struct SYM_FWB_SCR {
+ u32 start64 [ 2];
+ u32 no_data [ 2];
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+ u32 sel_for_abort [ 18];
+#else
+ u32 sel_for_abort [ 16];
+#endif
+ u32 sel_for_abort_1 [ 2];
+ u32 msg_in_etc [ 12];
+ u32 msg_received [ 4];
+ u32 msg_weird_seen [ 4];
+ u32 msg_extended [ 20];
+ u32 msg_bad [ 6];
+ u32 msg_weird [ 4];
+ u32 msg_weird1 [ 8];
+
+ u32 wdtr_resp [ 6];
+ u32 send_wdtr [ 4];
+ u32 sdtr_resp [ 6];
+ u32 send_sdtr [ 4];
+ u32 ppr_resp [ 6];
+ u32 send_ppr [ 4];
+ u32 nego_bad_phase [ 4];
+ u32 msg_out [ 4];
+ u32 msg_out_done [ 4];
+ u32 data_ovrun [ 2];
+ u32 data_ovrun1 [ 22];
+ u32 data_ovrun2 [ 8];
+ u32 abort_resel [ 16];
+ u32 resend_ident [ 4];
+ u32 ident_break [ 4];
+ u32 ident_break_atn [ 4];
+ u32 sdata_in [ 6];
+ u32 resel_bad_lun [ 4];
+ u32 bad_i_t_l [ 4];
+ u32 bad_i_t_l_q [ 4];
+ u32 bad_status [ 6];
+ u32 pm_handle [ 20];
+ u32 pm_handle1 [ 4];
+ u32 pm_save [ 4];
+ u32 pm0_save [ 12];
+ u32 pm_save_end [ 4];
+ u32 pm1_save [ 14];
+
+ /* WSR handling */
+ u32 pm_wsr_handle [ 38];
+ u32 wsr_ma_helper [ 4];
+
+ /* Data area */
+ u32 zero [ 1];
+ u32 scratch [ 1];
+ u32 pm0_data_addr [ 1];
+ u32 pm1_data_addr [ 1];
+ u32 done_pos [ 1];
+ u32 startpos [ 1];
+ u32 targtbl [ 1];
+};
+
+/*
+ * Script fragments used at initialisations.
+ * Only runs out of main memory.
+ */
+struct SYM_FWZ_SCR {
+ u32 snooptest [ 6];
+ u32 snoopend [ 2];
+};
+
+static struct SYM_FWA_SCR SYM_FWA_SCR = {
+/*--------------------------< START >----------------------------*/ {
+ /*
+ * Switch the LED on.
+ * Will be patched with a NO_OP if LED
+ * not needed or not desired.
+ */
+ SCR_REG_REG (gpreg, SCR_AND, 0xfe),
+ 0,
+ /*
+ * Clear SIGP.
+ */
+ SCR_FROM_REG (ctest2),
+ 0,
+ /*
+ * Stop here if the C code wants to perform
+ * some error recovery procedure manually.
+ * (Indicate this by setting SEM in ISTAT)
+ */
+ SCR_FROM_REG (istat),
+ 0,
+ /*
+ * Report to the C code the next position in
+ * the start queue the SCRIPTS will schedule.
+ * The C code must not change SCRATCHA.
+ */
+ SCR_LOAD_ABS (scratcha, 4),
+ PADDR_B (startpos),
+ SCR_INT ^ IFTRUE (MASK (SEM, SEM)),
+ SIR_SCRIPT_STOPPED,
+ /*
+ * Start the next job.
+ *
+ * @DSA = start point for this job.
+ * SCRATCHA = address of this job in the start queue.
+ *
+ * We will restore startpos with SCRATCHA if we fails the
+ * arbitration or if it is the idle job.
+ *
+ * The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS
+ * is a critical path. If it is partially executed, it then
+ * may happen that the job address is not yet in the DSA
+ * and the next queue position points to the next JOB.
+ */
+ SCR_LOAD_ABS (dsa, 4),
+ PADDR_B (startpos),
+ SCR_LOAD_REL (temp, 4),
+ 4,
+}/*-------------------------< GETJOB_BEGIN >---------------------*/,{
+ SCR_STORE_ABS (temp, 4),
+ PADDR_B (startpos),
+ SCR_LOAD_REL (dsa, 4),
+ 0,
+}/*-------------------------< GETJOB_END >-----------------------*/,{
+ SCR_LOAD_REL (temp, 4),
+ 0,
+ SCR_RETURN,
+ 0,
+}/*-------------------------< SELECT >---------------------------*/,{
+ /*
+ * DSA contains the address of a scheduled
+ * data structure.
+ *
+ * SCRATCHA contains the address of the start queue
+ * entry which points to the next job.
+ *
+ * Set Initiator mode.
+ *
+ * (Target mode is left as an exercise for the reader)
+ */
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+ SCR_CLR (SCR_TRG),
+ 0,
+#endif
+ /*
+ * And try to select this target.
+ */
+ SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select),
+ PADDR_A (ungetjob),
+ /*
+ * Now there are 4 possibilities:
+ *
+ * (1) The chip loses arbitration.
+ * This is ok, because it will try again,
+ * when the bus becomes idle.
+ * (But beware of the timeout function!)
+ *
+ * (2) The chip is reselected.
+ * Then the script processor takes the jump
+ * to the RESELECT label.
+ *
+ * (3) The chip wins arbitration.
+ * Then it will execute SCRIPTS instruction until
+ * the next instruction that checks SCSI phase.
+ * Then will stop and wait for selection to be
+ * complete or selection time-out to occur.
+ *
+ * After having won arbitration, the SCRIPTS
+ * processor is able to execute instructions while
+ * the SCSI core is performing SCSI selection.
+ */
+ /*
+ * Initialize the status registers
+ */
+ SCR_LOAD_REL (scr0, 4),
+ offsetof (struct sym_ccb, phys.head.status),
+ /*
+ * We may need help from CPU if the DMA segment
+ * registers aren't up-to-date for this IO.
+ * Patched with NOOP for chips that donnot
+ * support DAC addressing.
+ */
+#if SYM_CONF_DMA_ADDRESSING_MODE == 2
+}/*-------------------------< IS_DMAP_DIRTY >--------------------*/,{
+ SCR_FROM_REG (HX_REG),
+ 0,
+ SCR_INT ^ IFTRUE (MASK (HX_DMAP_DIRTY, HX_DMAP_DIRTY)),
+ SIR_DMAP_DIRTY,
+#endif
+}/*-------------------------< WF_SEL_DONE >----------------------*/,{
+ SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)),
+ SIR_SEL_ATN_NO_MSG_OUT,
+}/*-------------------------< SEL_DONE >-------------------------*/,{
+ /*
+ * C1010-33 errata work-around.
+ * Due to a race, the SCSI core may not have
+ * loaded SCNTL3 on SEL_TBL instruction.
+ * We reload it once phase is stable.
+ * Patched with a NOOP for other chips.
+ */
+ SCR_LOAD_REL (scntl3, 1),
+ offsetof(struct sym_dsb, select.sel_scntl3),
+}/*-------------------------< SEND_IDENT >-----------------------*/,{
+ /*
+ * Selection complete.
+ * Send the IDENTIFY and possibly the TAG message
+ * and negotiation message if present.
+ */
+ SCR_MOVE_TBL ^ SCR_MSG_OUT,
+ offsetof (struct sym_dsb, smsg),
+}/*-------------------------< SELECT2 >--------------------------*/,{
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * Set IMMEDIATE ARBITRATION if we have been given
+ * a hint to do so. (Some job to do after this one).
+ */
+ SCR_FROM_REG (HF_REG),
+ 0,
+ SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)),
+ 8,
+ SCR_REG_REG (scntl1, SCR_OR, IARB),
+ 0,
+#endif
+ /*
+ * Anticipate the COMMAND phase.
+ * This is the PHASE we expect at this point.
+ */
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
+ PADDR_A (sel_no_cmd),
+}/*-------------------------< COMMAND >--------------------------*/,{
+ /*
+ * ... and send the command
+ */
+ SCR_MOVE_TBL ^ SCR_COMMAND,
+ offsetof (struct sym_dsb, cmd),
+}/*-------------------------< DISPATCH >-------------------------*/,{
+ /*
+ * MSG_IN is the only phase that shall be
+ * entered at least once for each (re)selection.
+ * So we test it first.
+ */
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
+ PADDR_A (msg_in),
+ SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)),
+ PADDR_A (datao_phase),
+ SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)),
+ PADDR_A (datai_phase),
+ SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
+ PADDR_A (status),
+ SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
+ PADDR_A (command),
+ SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
+ PADDR_B (msg_out),
+ /*
+ * Discard as many illegal phases as
+ * required and tell the C code about.
+ */
+ SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)),
+ 16,
+ SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
+ HADDR_1 (scratch),
+ SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)),
+ -16,
+ SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)),
+ 16,
+ SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
+ HADDR_1 (scratch),
+ SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)),
+ -16,
+ SCR_INT,
+ SIR_BAD_PHASE,
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< SEL_NO_CMD >-----------------------*/,{
+ /*
+ * The target does not switch to command
+ * phase after IDENTIFY has been sent.
+ *
+ * If it stays in MSG OUT phase send it
+ * the IDENTIFY again.
+ */
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
+ PADDR_B (resend_ident),
+ /*
+ * If target does not switch to MSG IN phase
+ * and we sent a negotiation, assert the
+ * failure immediately.
+ */
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
+ PADDR_A (dispatch),
+ SCR_FROM_REG (HS_REG),
+ 0,
+ SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
+ SIR_NEGO_FAILED,
+ /*
+ * Jump to dispatcher.
+ */
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< INIT >-----------------------------*/,{
+ /*
+ * Wait for the SCSI RESET signal to be
+ * inactive before restarting operations,
+ * since the chip may hang on SEL_ATN
+ * if SCSI RESET is active.
+ */
+ SCR_FROM_REG (sstat0),
+ 0,
+ SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)),
+ -16,
+ SCR_JUMP,
+ PADDR_A (start),
+}/*-------------------------< CLRACK >---------------------------*/,{
+ /*
+ * Terminate possible pending message phase.
+ */
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< DATAI_DONE >-----------------------*/,{
+ /*
+ * Save current pointer to LASTP.
+ */
+ SCR_STORE_REL (temp, 4),
+ offsetof (struct sym_ccb, phys.head.lastp),
+ /*
+ * If the SWIDE is not full, jump to dispatcher.
+ * We anticipate a STATUS phase.
+ */
+ SCR_FROM_REG (scntl2),
+ 0,
+ SCR_JUMP ^ IFTRUE (MASK (WSR, WSR)),
+ PADDR_A (datai_done_wsr),
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
+ PADDR_A (status),
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< DATAI_DONE_WSR >-------------------*/,{
+ /*
+ * The SWIDE is full.
+ * Clear this condition.
+ */
+ SCR_REG_REG (scntl2, SCR_OR, WSR),
+ 0,
+ /*
+ * We are expecting an IGNORE RESIDUE message
+ * from the device, otherwise we are in data
+ * overrun condition. Check against MSG_IN phase.
+ */
+ SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
+ SIR_SWIDE_OVERRUN,
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
+ PADDR_A (dispatch),
+ /*
+ * We are in MSG_IN phase,
+ * Read the first byte of the message.
+ * If it is not an IGNORE RESIDUE message,
+ * signal overrun and jump to message
+ * processing.
+ */
+ SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+ HADDR_1 (msgin[0]),
+ SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)),
+ SIR_SWIDE_OVERRUN,
+ SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)),
+ PADDR_A (msg_in2),
+ /*
+ * We got the message we expected.
+ * Read the 2nd byte, and jump to dispatcher.
+ */
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+ HADDR_1 (msgin[1]),
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< DATAO_DONE >-----------------------*/,{
+ /*
+ * Save current pointer to LASTP.
+ */
+ SCR_STORE_REL (temp, 4),
+ offsetof (struct sym_ccb, phys.head.lastp),
+ /*
+ * If the SODL is not full jump to dispatcher.
+ * We anticipate a STATUS phase.
+ */
+ SCR_FROM_REG (scntl2),
+ 0,
+ SCR_JUMP ^ IFTRUE (MASK (WSS, WSS)),
+ PADDR_A (datao_done_wss),
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
+ PADDR_A (status),
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< DATAO_DONE_WSS >-------------------*/,{
+ /*
+ * The SODL is full, clear this condition.
+ */
+ SCR_REG_REG (scntl2, SCR_OR, WSS),
+ 0,
+ /*
+ * And signal a DATA UNDERRUN condition
+ * to the C code.
+ */
+ SCR_INT,
+ SIR_SODL_UNDERRUN,
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< DATAI_PHASE >----------------------*/,{
+ /*
+ * Jump to current pointer.
+ */
+ SCR_LOAD_REL (temp, 4),
+ offsetof (struct sym_ccb, phys.head.lastp),
+ SCR_RETURN,
+ 0,
+}/*-------------------------< DATAO_PHASE >----------------------*/,{
+ /*
+ * C1010-66 errata work-around.
+ * Extra clocks of data hold must be inserted
+ * in DATA OUT phase on 33 MHz PCI BUS.
+ * Patched with a NOOP for other chips.
+ */
+ SCR_REG_REG (scntl4, SCR_OR, (XCLKH_DT|XCLKH_ST)),
+ 0,
+ /*
+ * Jump to current pointer.
+ */
+ SCR_LOAD_REL (temp, 4),
+ offsetof (struct sym_ccb, phys.head.lastp),
+ SCR_RETURN,
+ 0,
+}/*-------------------------< MSG_IN >---------------------------*/,{
+ /*
+ * Get the first byte of the message.
+ *
+ * The script processor doesn't negate the
+ * ACK signal after this transfer.
+ */
+ SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+ HADDR_1 (msgin[0]),
+}/*-------------------------< MSG_IN2 >--------------------------*/,{
+ /*
+ * Check first against 1 byte messages
+ * that we handle from SCRIPTS.
+ */
+ SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
+ PADDR_A (complete),
+ SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
+ PADDR_A (disconnect),
+ SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
+ PADDR_A (save_dp),
+ SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
+ PADDR_A (restore_dp),
+ /*
+ * We handle all other messages from the
+ * C code, so no need to waste on-chip RAM
+ * for those ones.
+ */
+ SCR_JUMP,
+ PADDR_B (msg_in_etc),
+}/*-------------------------< STATUS >---------------------------*/,{
+ /*
+ * get the status
+ */
+ SCR_MOVE_ABS (1) ^ SCR_STATUS,
+ HADDR_1 (scratch),
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * If STATUS is not GOOD, clear IMMEDIATE ARBITRATION,
+ * since we may have to tamper the start queue from
+ * the C code.
+ */
+ SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)),
+ 8,
+ SCR_REG_REG (scntl1, SCR_AND, ~IARB),
+ 0,
+#endif
+ /*
+ * save status to scsi_status.
+ * mark as complete.
+ */
+ SCR_TO_REG (SS_REG),
+ 0,
+ SCR_LOAD_REG (HS_REG, HS_COMPLETE),
+ 0,
+ /*
+ * Anticipate the MESSAGE PHASE for
+ * the TASK COMPLETE message.
+ */
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
+ PADDR_A (msg_in),
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< COMPLETE >-------------------------*/,{
+ /*
+ * Complete message.
+ *
+ * When we terminate the cycle by clearing ACK,
+ * the target may disconnect immediately.
+ *
+ * We don't want to be told of an "unexpected disconnect",
+ * so we disable this feature.
+ */
+ SCR_REG_REG (scntl2, SCR_AND, 0x7f),
+ 0,
+ /*
+ * Terminate cycle ...
+ */
+ SCR_CLR (SCR_ACK|SCR_ATN),
+ 0,
+ /*
+ * ... and wait for the disconnect.
+ */
+ SCR_WAIT_DISC,
+ 0,
+}/*-------------------------< COMPLETE2 >------------------------*/,{
+ /*
+ * Save host status.
+ */
+ SCR_STORE_REL (scr0, 4),
+ offsetof (struct sym_ccb, phys.head.status),
+ /*
+ * Some bridges may reorder DMA writes to memory.
+ * We donnot want the CPU to deal with completions
+ * without all the posted write having been flushed
+ * to memory. This DUMMY READ should flush posted
+ * buffers prior to the CPU having to deal with
+ * completions.
+ */
+ SCR_LOAD_REL (scr0, 4), /* DUMMY READ */
+ offsetof (struct sym_ccb, phys.head.status),
+
+ /*
+ * If command resulted in not GOOD status,
+ * call the C code if needed.
+ */
+ SCR_FROM_REG (SS_REG),
+ 0,
+ SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
+ PADDR_B (bad_status),
+ /*
+ * If we performed an auto-sense, call
+ * the C code to synchronyze task aborts
+ * with UNIT ATTENTION conditions.
+ */
+ SCR_FROM_REG (HF_REG),
+ 0,
+ SCR_JUMP ^ IFFALSE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))),
+ PADDR_A (complete_error),
+}/*-------------------------< DONE >-----------------------------*/,{
+ /*
+ * Copy the DSA to the DONE QUEUE and
+ * signal completion to the host.
+ * If we are interrupted between DONE
+ * and DONE_END, we must reset, otherwise
+ * the completed CCB may be lost.
+ */
+ SCR_STORE_ABS (dsa, 4),
+ PADDR_B (scratch),
+ SCR_LOAD_ABS (dsa, 4),
+ PADDR_B (done_pos),
+ SCR_LOAD_ABS (scratcha, 4),
+ PADDR_B (scratch),
+ SCR_STORE_REL (scratcha, 4),
+ 0,
+ /*
+ * The instruction below reads the DONE QUEUE next
+ * free position from memory.
+ * In addition it ensures that all PCI posted writes
+ * are flushed and so the DSA value of the done
+ * CCB is visible by the CPU before INTFLY is raised.
+ */
+ SCR_LOAD_REL (scratcha, 4),
+ 4,
+ SCR_INT_FLY,
+ 0,
+ SCR_STORE_ABS (scratcha, 4),
+ PADDR_B (done_pos),
+}/*-------------------------< DONE_END >-------------------------*/,{
+ SCR_JUMP,
+ PADDR_A (start),
+}/*-------------------------< COMPLETE_ERROR >-------------------*/,{
+ SCR_LOAD_ABS (scratcha, 4),
+ PADDR_B (startpos),
+ SCR_INT,
+ SIR_COMPLETE_ERROR,
+}/*-------------------------< SAVE_DP >--------------------------*/,{
+ /*
+ * Clear ACK immediately.
+ * No need to delay it.
+ */
+ SCR_CLR (SCR_ACK),
+ 0,
+ /*
+ * Keep track we received a SAVE DP, so
+ * we will switch to the other PM context
+ * on the next PM since the DP may point
+ * to the current PM context.
+ */
+ SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
+ 0,
+ /*
+ * SAVE_DP message:
+ * Copy LASTP to SAVEP.
+ */
+ SCR_LOAD_REL (scratcha, 4),
+ offsetof (struct sym_ccb, phys.head.lastp),
+ SCR_STORE_REL (scratcha, 4),
+ offsetof (struct sym_ccb, phys.head.savep),
+ /*
+ * Anticipate the MESSAGE PHASE for
+ * the DISCONNECT message.
+ */
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
+ PADDR_A (msg_in),
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< RESTORE_DP >-----------------------*/,{
+ /*
+ * Clear ACK immediately.
+ * No need to delay it.
+ */
+ SCR_CLR (SCR_ACK),
+ 0,
+ /*
+ * Copy SAVEP to LASTP.
+ */
+ SCR_LOAD_REL (scratcha, 4),
+ offsetof (struct sym_ccb, phys.head.savep),
+ SCR_STORE_REL (scratcha, 4),
+ offsetof (struct sym_ccb, phys.head.lastp),
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< DISCONNECT >-----------------------*/,{
+ /*
+ * DISCONNECTing ...
+ *
+ * disable the "unexpected disconnect" feature,
+ * and remove the ACK signal.
+ */
+ SCR_REG_REG (scntl2, SCR_AND, 0x7f),
+ 0,
+ SCR_CLR (SCR_ACK|SCR_ATN),
+ 0,
+ /*
+ * Wait for the disconnect.
+ */
+ SCR_WAIT_DISC,
+ 0,
+ /*
+ * Status is: DISCONNECTED.
+ */
+ SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
+ 0,
+ /*
+ * Save host status.
+ */
+ SCR_STORE_REL (scr0, 4),
+ offsetof (struct sym_ccb, phys.head.status),
+ SCR_JUMP,
+ PADDR_A (start),
+}/*-------------------------< IDLE >-----------------------------*/,{
+ /*
+ * Nothing to do?
+ * Switch the LED off and wait for reselect.
+ * Will be patched with a NO_OP if LED
+ * not needed or not desired.
+ */
+ SCR_REG_REG (gpreg, SCR_OR, 0x01),
+ 0,
+#ifdef SYM_CONF_IARB_SUPPORT
+ SCR_JUMPR,
+ 8,
+#endif
+}/*-------------------------< UNGETJOB >-------------------------*/,{
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * Set IMMEDIATE ARBITRATION, for the next time.
+ * This will give us better chance to win arbitration
+ * for the job we just wanted to do.
+ */
+ SCR_REG_REG (scntl1, SCR_OR, IARB),
+ 0,
+#endif
+ /*
+ * We are not able to restart the SCRIPTS if we are
+ * interrupted and these instruction haven't been
+ * all executed. BTW, this is very unlikely to
+ * happen, but we check that from the C code.
+ */
+ SCR_LOAD_REG (dsa, 0xff),
+ 0,
+ SCR_STORE_ABS (scratcha, 4),
+ PADDR_B (startpos),
+}/*-------------------------< RESELECT >-------------------------*/,{
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+ /*
+ * Make sure we are in initiator mode.
+ */
+ SCR_CLR (SCR_TRG),
+ 0,
+#endif
+ /*
+ * Sleep waiting for a reselection.
+ */
+ SCR_WAIT_RESEL,
+ PADDR_A(start),
+}/*-------------------------< RESELECTED >-----------------------*/,{
+ /*
+ * Switch the LED on.
+ * Will be patched with a NO_OP if LED
+ * not needed or not desired.
+ */
+ SCR_REG_REG (gpreg, SCR_AND, 0xfe),
+ 0,
+ /*
+ * load the target id into the sdid
+ */
+ SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
+ 0,
+ SCR_TO_REG (sdid),
+ 0,
+ /*
+ * Load the target control block address
+ */
+ SCR_LOAD_ABS (dsa, 4),
+ PADDR_B (targtbl),
+ SCR_SFBR_REG (dsa, SCR_SHL, 0),
+ 0,
+ SCR_REG_REG (dsa, SCR_SHL, 0),
+ 0,
+ SCR_REG_REG (dsa, SCR_AND, 0x3c),
+ 0,
+ SCR_LOAD_REL (dsa, 4),
+ 0,
+ /*
+ * We expect MESSAGE IN phase.
+ * If not, get help from the C code.
+ */
+ SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
+ SIR_RESEL_NO_MSG_IN,
+ /*
+ * Load the legacy synchronous transfer registers.
+ */
+ SCR_LOAD_REL (scntl3, 1),
+ offsetof(struct sym_tcb, head.wval),
+ SCR_LOAD_REL (sxfer, 1),
+ offsetof(struct sym_tcb, head.sval),
+}/*-------------------------< RESEL_SCNTL4 >---------------------*/,{
+ /*
+ * The C1010 uses a new synchronous timing scheme.
+ * Will be patched with a NO_OP if not a C1010.
+ */
+ SCR_LOAD_REL (scntl4, 1),
+ offsetof(struct sym_tcb, head.uval),
+ /*
+ * Get the IDENTIFY message.
+ */
+ SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+ HADDR_1 (msgin),
+ /*
+ * If IDENTIFY LUN #0, use a faster path
+ * to find the LCB structure.
+ */
+ SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)),
+ PADDR_A (resel_lun0),
+ /*
+ * If message isn't an IDENTIFY,
+ * tell the C code about.
+ */
+ SCR_INT ^ IFFALSE (MASK (0x80, 0x80)),
+ SIR_RESEL_NO_IDENTIFY,
+ /*
+ * It is an IDENTIFY message,
+ * Load the LUN control block address.
+ */
+ SCR_LOAD_REL (dsa, 4),
+ offsetof(struct sym_tcb, head.luntbl_sa),
+ SCR_SFBR_REG (dsa, SCR_SHL, 0),
+ 0,
+ SCR_REG_REG (dsa, SCR_SHL, 0),
+ 0,
+ SCR_REG_REG (dsa, SCR_AND, 0xfc),
+ 0,
+ SCR_LOAD_REL (dsa, 4),
+ 0,
+ SCR_JUMPR,
+ 8,
+}/*-------------------------< RESEL_LUN0 >-----------------------*/,{
+ /*
+ * LUN 0 special case (but usual one :))
+ */
+ SCR_LOAD_REL (dsa, 4),
+ offsetof(struct sym_tcb, head.lun0_sa),
+ /*
+ * Jump indirectly to the reselect action for this LUN.
+ */
+ SCR_LOAD_REL (temp, 4),
+ offsetof(struct sym_lcb, head.resel_sa),
+ SCR_RETURN,
+ 0,
+ /* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */
+}/*-------------------------< RESEL_TAG >------------------------*/,{
+ /*
+ * ACK the IDENTIFY previously received.
+ */
+ SCR_CLR (SCR_ACK),
+ 0,
+ /*
+ * It shall be a tagged command.
+ * Read SIMPLE+TAG.
+ * The C code will deal with errors.
+ * Aggressive optimization, isn't it? :)
+ */
+ SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
+ HADDR_1 (msgin),
+ /*
+ * Load the pointer to the tagged task
+ * table for this LUN.
+ */
+ SCR_LOAD_REL (dsa, 4),
+ offsetof(struct sym_lcb, head.itlq_tbl_sa),
+ /*
+ * The SIDL still contains the TAG value.
+ * Aggressive optimization, isn't it? :):)
+ */
+ SCR_REG_SFBR (sidl, SCR_SHL, 0),
+ 0,
+#if SYM_CONF_MAX_TASK*4 > 512
+ SCR_JUMPR ^ IFFALSE (CARRYSET),
+ 8,
+ SCR_REG_REG (dsa1, SCR_OR, 2),
+ 0,
+ SCR_REG_REG (sfbr, SCR_SHL, 0),
+ 0,
+ SCR_JUMPR ^ IFFALSE (CARRYSET),
+ 8,
+ SCR_REG_REG (dsa1, SCR_OR, 1),
+ 0,
+#elif SYM_CONF_MAX_TASK*4 > 256
+ SCR_JUMPR ^ IFFALSE (CARRYSET),
+ 8,
+ SCR_REG_REG (dsa1, SCR_OR, 1),
+ 0,
+#endif
+ /*
+ * Retrieve the DSA of this task.
+ * JUMP indirectly to the restart point of the CCB.
+ */
+ SCR_SFBR_REG (dsa, SCR_AND, 0xfc),
+ 0,
+ SCR_LOAD_REL (dsa, 4),
+ 0,
+ SCR_LOAD_REL (temp, 4),
+ offsetof(struct sym_ccb, phys.head.go.restart),
+ SCR_RETURN,
+ 0,
+ /* In normal situations we branch to RESEL_DSA */
+}/*-------------------------< RESEL_DSA >------------------------*/,{
+ /*
+ * ACK the IDENTIFY or TAG previously received.
+ */
+ SCR_CLR (SCR_ACK),
+ 0,
+}/*-------------------------< RESEL_DSA1 >-----------------------*/,{
+ /*
+ * Initialize the status registers
+ */
+ SCR_LOAD_REL (scr0, 4),
+ offsetof (struct sym_ccb, phys.head.status),
+ /*
+ * Jump to dispatcher.
+ */
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< RESEL_NO_TAG >---------------------*/,{
+ /*
+ * Load the DSA with the unique ITL task.
+ */
+ SCR_LOAD_REL (dsa, 4),
+ offsetof(struct sym_lcb, head.itl_task_sa),
+ /*
+ * JUMP indirectly to the restart point of the CCB.
+ */
+ SCR_LOAD_REL (temp, 4),
+ offsetof(struct sym_ccb, phys.head.go.restart),
+ SCR_RETURN,
+ 0,
+ /* In normal situations we branch to RESEL_DSA */
+}/*-------------------------< DATA_IN >--------------------------*/,{
+/*
+ * Because the size depends on the
+ * #define SYM_CONF_MAX_SG parameter,
+ * it is filled in at runtime.
+ *
+ * ##===========< i=0; i<SYM_CONF_MAX_SG >=========
+ * || SCR_CHMOV_TBL ^ SCR_DATA_IN,
+ * || offsetof (struct sym_dsb, data[ i]),
+ * ##==========================================
+ */
+0
+}/*-------------------------< DATA_IN2 >-------------------------*/,{
+ SCR_CALL,
+ PADDR_A (datai_done),
+ SCR_JUMP,
+ PADDR_B (data_ovrun),
+}/*-------------------------< DATA_OUT >-------------------------*/,{
+/*
+ * Because the size depends on the
+ * #define SYM_CONF_MAX_SG parameter,
+ * it is filled in at runtime.
+ *
+ * ##===========< i=0; i<SYM_CONF_MAX_SG >=========
+ * || SCR_CHMOV_TBL ^ SCR_DATA_OUT,
+ * || offsetof (struct sym_dsb, data[ i]),
+ * ##==========================================
+ */
+0
+}/*-------------------------< DATA_OUT2 >------------------------*/,{
+ SCR_CALL,
+ PADDR_A (datao_done),
+ SCR_JUMP,
+ PADDR_B (data_ovrun),
+}/*-------------------------< PM0_DATA >-------------------------*/,{
+ /*
+ * Read our host flags to SFBR, so we will be able
+ * to check against the data direction we expect.
+ */
+ SCR_FROM_REG (HF_REG),
+ 0,
+ /*
+ * Check against actual DATA PHASE.
+ */
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
+ PADDR_A (pm0_data_out),
+ /*
+ * Actual phase is DATA IN.
+ * Check against expected direction.
+ */
+ SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
+ PADDR_B (data_ovrun),
+ /*
+ * Keep track we are moving data from the
+ * PM0 DATA mini-script.
+ */
+ SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
+ 0,
+ /*
+ * Move the data to memory.
+ */
+ SCR_CHMOV_TBL ^ SCR_DATA_IN,
+ offsetof (struct sym_ccb, phys.pm0.sg),
+ SCR_JUMP,
+ PADDR_A (pm0_data_end),
+}/*-------------------------< PM0_DATA_OUT >---------------------*/,{
+ /*
+ * Actual phase is DATA OUT.
+ * Check against expected direction.
+ */
+ SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
+ PADDR_B (data_ovrun),
+ /*
+ * Keep track we are moving data from the
+ * PM0 DATA mini-script.
+ */
+ SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
+ 0,
+ /*
+ * Move the data from memory.
+ */
+ SCR_CHMOV_TBL ^ SCR_DATA_OUT,
+ offsetof (struct sym_ccb, phys.pm0.sg),
+}/*-------------------------< PM0_DATA_END >---------------------*/,{
+ /*
+ * Clear the flag that told we were moving
+ * data from the PM0 DATA mini-script.
+ */
+ SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)),
+ 0,
+ /*
+ * Return to the previous DATA script which
+ * is guaranteed by design (if no bug) to be
+ * the main DATA script for this transfer.
+ */
+ SCR_LOAD_REL (temp, 4),
+ offsetof (struct sym_ccb, phys.pm0.ret),
+ SCR_RETURN,
+ 0,
+}/*-------------------------< PM1_DATA >-------------------------*/,{
+ /*
+ * Read our host flags to SFBR, so we will be able
+ * to check against the data direction we expect.
+ */
+ SCR_FROM_REG (HF_REG),
+ 0,
+ /*
+ * Check against actual DATA PHASE.
+ */
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
+ PADDR_A (pm1_data_out),
+ /*
+ * Actual phase is DATA IN.
+ * Check against expected direction.
+ */
+ SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
+ PADDR_B (data_ovrun),
+ /*
+ * Keep track we are moving data from the
+ * PM1 DATA mini-script.
+ */
+ SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
+ 0,
+ /*
+ * Move the data to memory.
+ */
+ SCR_CHMOV_TBL ^ SCR_DATA_IN,
+ offsetof (struct sym_ccb, phys.pm1.sg),
+ SCR_JUMP,
+ PADDR_A (pm1_data_end),
+}/*-------------------------< PM1_DATA_OUT >---------------------*/,{
+ /*
+ * Actual phase is DATA OUT.
+ * Check against expected direction.
+ */
+ SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
+ PADDR_B (data_ovrun),
+ /*
+ * Keep track we are moving data from the
+ * PM1 DATA mini-script.
+ */
+ SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
+ 0,
+ /*
+ * Move the data from memory.
+ */
+ SCR_CHMOV_TBL ^ SCR_DATA_OUT,
+ offsetof (struct sym_ccb, phys.pm1.sg),
+}/*-------------------------< PM1_DATA_END >---------------------*/,{
+ /*
+ * Clear the flag that told we were moving
+ * data from the PM1 DATA mini-script.
+ */
+ SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)),
+ 0,
+ /*
+ * Return to the previous DATA script which
+ * is guaranteed by design (if no bug) to be
+ * the main DATA script for this transfer.
+ */
+ SCR_LOAD_REL (temp, 4),
+ offsetof (struct sym_ccb, phys.pm1.ret),
+ SCR_RETURN,
+ 0,
+}/*-------------------------<>-----------------------------------*/
+};
+
+static struct SYM_FWB_SCR SYM_FWB_SCR = {
+/*--------------------------< START64 >--------------------------*/ {
+ /*
+ * SCRIPT entry point for the 895A, 896 and 1010.
+ * For now, there is no specific stuff for those
+ * chips at this point, but this may come.
+ */
+ SCR_JUMP,
+ PADDR_A (init),
+}/*-------------------------< NO_DATA >--------------------------*/,{
+ SCR_JUMP,
+ PADDR_B (data_ovrun),
+}/*-------------------------< SEL_FOR_ABORT >--------------------*/,{
+ /*
+ * We are jumped here by the C code, if we have
+ * some target to reset or some disconnected
+ * job to abort. Since error recovery is a serious
+ * busyness, we will really reset the SCSI BUS, if
+ * case of a SCSI interrupt occurring in this path.
+ */
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+ /*
+ * Set initiator mode.
+ */
+ SCR_CLR (SCR_TRG),
+ 0,
+#endif
+ /*
+ * And try to select this target.
+ */
+ SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel),
+ PADDR_A (reselect),
+ /*
+ * Wait for the selection to complete or
+ * the selection to time out.
+ */
+ SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
+ -8,
+ /*
+ * Call the C code.
+ */
+ SCR_INT,
+ SIR_TARGET_SELECTED,
+ /*
+ * The C code should let us continue here.
+ * Send the 'kiss of death' message.
+ * We expect an immediate disconnect once
+ * the target has eaten the message.
+ */
+ SCR_REG_REG (scntl2, SCR_AND, 0x7f),
+ 0,
+ SCR_MOVE_TBL ^ SCR_MSG_OUT,
+ offsetof (struct sym_hcb, abrt_tbl),
+ SCR_CLR (SCR_ACK|SCR_ATN),
+ 0,
+ SCR_WAIT_DISC,
+ 0,
+ /*
+ * Tell the C code that we are done.
+ */
+ SCR_INT,
+ SIR_ABORT_SENT,
+}/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{
+ /*
+ * Jump at scheduler.
+ */
+ SCR_JUMP,
+ PADDR_A (start),
+}/*-------------------------< MSG_IN_ETC >-----------------------*/,{
+ /*
+ * If it is an EXTENDED (variable size message)
+ * Handle it.
+ */
+ SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
+ PADDR_B (msg_extended),
+ /*
+ * Let the C code handle any other
+ * 1 byte message.
+ */
+ SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)),
+ PADDR_B (msg_received),
+ SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)),
+ PADDR_B (msg_received),
+ /*
+ * We donnot handle 2 bytes messages from SCRIPTS.
+ * So, let the C code deal with these ones too.
+ */
+ SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)),
+ PADDR_B (msg_weird_seen),
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+ HADDR_1 (msgin[1]),
+}/*-------------------------< MSG_RECEIVED >---------------------*/,{
+ SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */
+ 0,
+ SCR_INT,
+ SIR_MSG_RECEIVED,
+}/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{
+ SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */
+ 0,
+ SCR_INT,
+ SIR_MSG_WEIRD,
+}/*-------------------------< MSG_EXTENDED >---------------------*/,{
+ /*
+ * Clear ACK and get the next byte
+ * assumed to be the message length.
+ */
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+ HADDR_1 (msgin[1]),
+ /*
+ * Try to catch some unlikely situations as 0 length
+ * or too large the length.
+ */
+ SCR_JUMP ^ IFTRUE (DATA (0)),
+ PADDR_B (msg_weird_seen),
+ SCR_TO_REG (scratcha),
+ 0,
+ SCR_REG_REG (sfbr, SCR_ADD, (256-8)),
+ 0,
+ SCR_JUMP ^ IFTRUE (CARRYSET),
+ PADDR_B (msg_weird_seen),
+ /*
+ * We donnot handle extended messages from SCRIPTS.
+ * Read the amount of data corresponding to the
+ * message length and call the C code.
+ */
+ SCR_STORE_REL (scratcha, 1),
+ offsetof (struct sym_dsb, smsg_ext.size),
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_MOVE_TBL ^ SCR_MSG_IN,
+ offsetof (struct sym_dsb, smsg_ext),
+ SCR_JUMP,
+ PADDR_B (msg_received),
+}/*-------------------------< MSG_BAD >--------------------------*/,{
+ /*
+ * unimplemented message - reject it.
+ */
+ SCR_INT,
+ SIR_REJECT_TO_SEND,
+ SCR_SET (SCR_ATN),
+ 0,
+ SCR_JUMP,
+ PADDR_A (clrack),
+}/*-------------------------< MSG_WEIRD >------------------------*/,{
+ /*
+ * weird message received
+ * ignore all MSG IN phases and reject it.
+ */
+ SCR_INT,
+ SIR_REJECT_TO_SEND,
+ SCR_SET (SCR_ATN),
+ 0,
+}/*-------------------------< MSG_WEIRD1 >-----------------------*/,{
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
+ PADDR_A (dispatch),
+ SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+ HADDR_1 (scratch),
+ SCR_JUMP,
+ PADDR_B (msg_weird1),
+}/*-------------------------< WDTR_RESP >------------------------*/,{
+ /*
+ * let the target fetch our answer.
+ */
+ SCR_SET (SCR_ATN),
+ 0,
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
+ PADDR_B (nego_bad_phase),
+}/*-------------------------< SEND_WDTR >------------------------*/,{
+ /*
+ * Send the M_X_WIDE_REQ
+ */
+ SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
+ HADDR_1 (msgout),
+ SCR_JUMP,
+ PADDR_B (msg_out_done),
+}/*-------------------------< SDTR_RESP >------------------------*/,{
+ /*
+ * let the target fetch our answer.
+ */
+ SCR_SET (SCR_ATN),
+ 0,
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
+ PADDR_B (nego_bad_phase),
+}/*-------------------------< SEND_SDTR >------------------------*/,{
+ /*
+ * Send the M_X_SYNC_REQ
+ */
+ SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
+ HADDR_1 (msgout),
+ SCR_JUMP,
+ PADDR_B (msg_out_done),
+}/*-------------------------< PPR_RESP >-------------------------*/,{
+ /*
+ * let the target fetch our answer.
+ */
+ SCR_SET (SCR_ATN),
+ 0,
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
+ PADDR_B (nego_bad_phase),
+}/*-------------------------< SEND_PPR >-------------------------*/,{
+ /*
+ * Send the M_X_PPR_REQ
+ */
+ SCR_MOVE_ABS (8) ^ SCR_MSG_OUT,
+ HADDR_1 (msgout),
+ SCR_JUMP,
+ PADDR_B (msg_out_done),
+}/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{
+ SCR_INT,
+ SIR_NEGO_PROTO,
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< MSG_OUT >--------------------------*/,{
+ /*
+ * The target requests a message.
+ * We donnot send messages that may
+ * require the device to go to bus free.
+ */
+ SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
+ HADDR_1 (msgout),
+ /*
+ * ... wait for the next phase
+ * if it's a message out, send it again, ...
+ */
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
+ PADDR_B (msg_out),
+}/*-------------------------< MSG_OUT_DONE >---------------------*/,{
+ /*
+ * Let the C code be aware of the
+ * sent message and clear the message.
+ */
+ SCR_INT,
+ SIR_MSG_OUT_DONE,
+ /*
+ * ... and process the next phase
+ */
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< DATA_OVRUN >-----------------------*/,{
+ /*
+ * Use scratcha to count the extra bytes.
+ */
+ SCR_LOAD_ABS (scratcha, 4),
+ PADDR_B (zero),
+}/*-------------------------< DATA_OVRUN1 >----------------------*/,{
+ /*
+ * The target may want to transfer too much data.
+ *
+ * If phase is DATA OUT write 1 byte and count it.
+ */
+ SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
+ 16,
+ SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT,
+ HADDR_1 (scratch),
+ SCR_JUMP,
+ PADDR_B (data_ovrun2),
+ /*
+ * If WSR is set, clear this condition, and
+ * count this byte.
+ */
+ SCR_FROM_REG (scntl2),
+ 0,
+ SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
+ 16,
+ SCR_REG_REG (scntl2, SCR_OR, WSR),
+ 0,
+ SCR_JUMP,
+ PADDR_B (data_ovrun2),
+ /*
+ * Finally check against DATA IN phase.
+ * Signal data overrun to the C code
+ * and jump to dispatcher if not so.
+ * Read 1 byte otherwise and count it.
+ */
+ SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)),
+ 16,
+ SCR_INT,
+ SIR_DATA_OVERRUN,
+ SCR_JUMP,
+ PADDR_A (dispatch),
+ SCR_CHMOV_ABS (1) ^ SCR_DATA_IN,
+ HADDR_1 (scratch),
+}/*-------------------------< DATA_OVRUN2 >----------------------*/,{
+ /*
+ * Count this byte.
+ * This will allow to return a negative
+ * residual to user.
+ */
+ SCR_REG_REG (scratcha, SCR_ADD, 0x01),
+ 0,
+ SCR_REG_REG (scratcha1, SCR_ADDC, 0),
+ 0,
+ SCR_REG_REG (scratcha2, SCR_ADDC, 0),
+ 0,
+ /*
+ * .. and repeat as required.
+ */
+ SCR_JUMP,
+ PADDR_B (data_ovrun1),
+}/*-------------------------< ABORT_RESEL >----------------------*/,{
+ SCR_SET (SCR_ATN),
+ 0,
+ SCR_CLR (SCR_ACK),
+ 0,
+ /*
+ * send the abort/abortag/reset message
+ * we expect an immediate disconnect
+ */
+ SCR_REG_REG (scntl2, SCR_AND, 0x7f),
+ 0,
+ SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
+ HADDR_1 (msgout),
+ SCR_CLR (SCR_ACK|SCR_ATN),
+ 0,
+ SCR_WAIT_DISC,
+ 0,
+ SCR_INT,
+ SIR_RESEL_ABORTED,
+ SCR_JUMP,
+ PADDR_A (start),
+}/*-------------------------< RESEND_IDENT >---------------------*/,{
+ /*
+ * The target stays in MSG OUT phase after having acked
+ * Identify [+ Tag [+ Extended message ]]. Targets shall
+ * behave this way on parity error.
+ * We must send it again all the messages.
+ */
+ SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */
+ 0, /* 1rst ACK = 90 ns. Hope the chip isn't too fast */
+ SCR_JUMP,
+ PADDR_A (send_ident),
+}/*-------------------------< IDENT_BREAK >----------------------*/,{
+ SCR_CLR (SCR_ATN),
+ 0,
+ SCR_JUMP,
+ PADDR_A (select2),
+}/*-------------------------< IDENT_BREAK_ATN >------------------*/,{
+ SCR_SET (SCR_ATN),
+ 0,
+ SCR_JUMP,
+ PADDR_A (select2),
+}/*-------------------------< SDATA_IN >-------------------------*/,{
+ SCR_CHMOV_TBL ^ SCR_DATA_IN,
+ offsetof (struct sym_dsb, sense),
+ SCR_CALL,
+ PADDR_A (datai_done),
+ SCR_JUMP,
+ PADDR_B (data_ovrun),
+}/*-------------------------< RESEL_BAD_LUN >--------------------*/,{
+ /*
+ * Message is an IDENTIFY, but lun is unknown.
+ * Signal problem to C code for logging the event.
+ * Send a M_ABORT to clear all pending tasks.
+ */
+ SCR_INT,
+ SIR_RESEL_BAD_LUN,
+ SCR_JUMP,
+ PADDR_B (abort_resel),
+}/*-------------------------< BAD_I_T_L >------------------------*/,{
+ /*
+ * We donnot have a task for that I_T_L.
+ * Signal problem to C code for logging the event.
+ * Send a M_ABORT message.
+ */
+ SCR_INT,
+ SIR_RESEL_BAD_I_T_L,
+ SCR_JUMP,
+ PADDR_B (abort_resel),
+}/*-------------------------< BAD_I_T_L_Q >----------------------*/,{
+ /*
+ * We donnot have a task that matches the tag.
+ * Signal problem to C code for logging the event.
+ * Send a M_ABORTTAG message.
+ */
+ SCR_INT,
+ SIR_RESEL_BAD_I_T_L_Q,
+ SCR_JUMP,
+ PADDR_B (abort_resel),
+}/*-------------------------< BAD_STATUS >-----------------------*/,{
+ /*
+ * Anything different from INTERMEDIATE
+ * CONDITION MET should be a bad SCSI status,
+ * given that GOOD status has already been tested.
+ * Call the C code.
+ */
+ SCR_LOAD_ABS (scratcha, 4),
+ PADDR_B (startpos),
+ SCR_INT ^ IFFALSE (DATA (S_COND_MET)),
+ SIR_BAD_SCSI_STATUS,
+ SCR_RETURN,
+ 0,
+}/*-------------------------< PM_HANDLE >------------------------*/,{
+ /*
+ * Phase mismatch handling.
+ *
+ * Since we have to deal with 2 SCSI data pointers
+ * (current and saved), we need at least 2 contexts.
+ * Each context (pm0 and pm1) has a saved area, a
+ * SAVE mini-script and a DATA phase mini-script.
+ */
+ /*
+ * Get the PM handling flags.
+ */
+ SCR_FROM_REG (HF_REG),
+ 0,
+ /*
+ * If no flags (1rst PM for example), avoid
+ * all the below heavy flags testing.
+ * This makes the normal case a bit faster.
+ */
+ SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))),
+ PADDR_B (pm_handle1),
+ /*
+ * If we received a SAVE DP, switch to the
+ * other PM context since the savep may point
+ * to the current PM context.
+ */
+ SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)),
+ 8,
+ SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM),
+ 0,
+ /*
+ * If we have been interrupt in a PM DATA mini-script,
+ * we take the return address from the corresponding
+ * saved area.
+ * This ensure the return address always points to the
+ * main DATA script for this transfer.
+ */
+ SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))),
+ PADDR_B (pm_handle1),
+ SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)),
+ 16,
+ SCR_LOAD_REL (ia, 4),
+ offsetof(struct sym_ccb, phys.pm0.ret),
+ SCR_JUMP,
+ PADDR_B (pm_save),
+ SCR_LOAD_REL (ia, 4),
+ offsetof(struct sym_ccb, phys.pm1.ret),
+ SCR_JUMP,
+ PADDR_B (pm_save),
+}/*-------------------------< PM_HANDLE1 >-----------------------*/,{
+ /*
+ * Normal case.
+ * Update the return address so that it
+ * will point after the interrupted MOVE.
+ */
+ SCR_REG_REG (ia, SCR_ADD, 8),
+ 0,
+ SCR_REG_REG (ia1, SCR_ADDC, 0),
+ 0,
+}/*-------------------------< PM_SAVE >--------------------------*/,{
+ /*
+ * Clear all the flags that told us if we were
+ * interrupted in a PM DATA mini-script and/or
+ * we received a SAVE DP.
+ */
+ SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))),
+ 0,
+ /*
+ * Choose the current PM context.
+ */
+ SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)),
+ PADDR_B (pm1_save),
+}/*-------------------------< PM0_SAVE >-------------------------*/,{
+ SCR_STORE_REL (ia, 4),
+ offsetof(struct sym_ccb, phys.pm0.ret),
+ /*
+ * If WSR bit is set, either UA and RBC may
+ * have to be changed whether the device wants
+ * to ignore this residue or not.
+ */
+ SCR_FROM_REG (scntl2),
+ 0,
+ SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
+ PADDR_B (pm_wsr_handle),
+ /*
+ * Save the remaining byte count, the updated
+ * address and the return address.
+ */
+ SCR_STORE_REL (rbc, 4),
+ offsetof(struct sym_ccb, phys.pm0.sg.size),
+ SCR_STORE_REL (ua, 4),
+ offsetof(struct sym_ccb, phys.pm0.sg.addr),
+ /*
+ * Set the current pointer at the PM0 DATA mini-script.
+ */
+ SCR_LOAD_ABS (ia, 4),
+ PADDR_B (pm0_data_addr),
+}/*-------------------------< PM_SAVE_END >----------------------*/,{
+ SCR_STORE_REL (ia, 4),
+ offsetof(struct sym_ccb, phys.head.lastp),
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< PM1_SAVE >-------------------------*/,{
+ SCR_STORE_REL (ia, 4),
+ offsetof(struct sym_ccb, phys.pm1.ret),
+ /*
+ * If WSR bit is set, either UA and RBC may
+ * have to be changed whether the device wants
+ * to ignore this residue or not.
+ */
+ SCR_FROM_REG (scntl2),
+ 0,
+ SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
+ PADDR_B (pm_wsr_handle),
+ /*
+ * Save the remaining byte count, the updated
+ * address and the return address.
+ */
+ SCR_STORE_REL (rbc, 4),
+ offsetof(struct sym_ccb, phys.pm1.sg.size),
+ SCR_STORE_REL (ua, 4),
+ offsetof(struct sym_ccb, phys.pm1.sg.addr),
+ /*
+ * Set the current pointer at the PM1 DATA mini-script.
+ */
+ SCR_LOAD_ABS (ia, 4),
+ PADDR_B (pm1_data_addr),
+ SCR_JUMP,
+ PADDR_B (pm_save_end),
+}/*-------------------------< PM_WSR_HANDLE >--------------------*/,{
+ /*
+ * Phase mismatch handling from SCRIPT with WSR set.
+ * Such a condition can occur if the chip wants to
+ * execute a CHMOV(size > 1) when the WSR bit is
+ * set and the target changes PHASE.
+ *
+ * We must move the residual byte to memory.
+ *
+ * UA contains bit 0..31 of the address to
+ * move the residual byte.
+ * Move it to the table indirect.
+ */
+ SCR_STORE_REL (ua, 4),
+ offsetof (struct sym_ccb, phys.wresid.addr),
+ /*
+ * Increment UA (move address to next position).
+ */
+ SCR_REG_REG (ua, SCR_ADD, 1),
+ 0,
+ SCR_REG_REG (ua1, SCR_ADDC, 0),
+ 0,
+ SCR_REG_REG (ua2, SCR_ADDC, 0),
+ 0,
+ SCR_REG_REG (ua3, SCR_ADDC, 0),
+ 0,
+ /*
+ * Compute SCRATCHA as:
+ * - size to transfer = 1 byte.
+ * - bit 24..31 = high address bit [32...39].
+ */
+ SCR_LOAD_ABS (scratcha, 4),
+ PADDR_B (zero),
+ SCR_REG_REG (scratcha, SCR_OR, 1),
+ 0,
+ SCR_FROM_REG (rbc3),
+ 0,
+ SCR_TO_REG (scratcha3),
+ 0,
+ /*
+ * Move this value to the table indirect.
+ */
+ SCR_STORE_REL (scratcha, 4),
+ offsetof (struct sym_ccb, phys.wresid.size),
+ /*
+ * Wait for a valid phase.
+ * While testing with bogus QUANTUM drives, the C1010
+ * sometimes raised a spurious phase mismatch with
+ * WSR and the CHMOV(1) triggered another PM.
+ * Waiting explicitly for the PHASE seemed to avoid
+ * the nested phase mismatch. Btw, this didn't happen
+ * using my IBM drives.
+ */
+ SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
+ 0,
+ /*
+ * Perform the move of the residual byte.
+ */
+ SCR_CHMOV_TBL ^ SCR_DATA_IN,
+ offsetof (struct sym_ccb, phys.wresid),
+ /*
+ * We can now handle the phase mismatch with UA fixed.
+ * RBC[0..23]=0 is a special case that does not require
+ * a PM context. The C code also checks against this.
+ */
+ SCR_FROM_REG (rbc),
+ 0,
+ SCR_RETURN ^ IFFALSE (DATA (0)),
+ 0,
+ SCR_FROM_REG (rbc1),
+ 0,
+ SCR_RETURN ^ IFFALSE (DATA (0)),
+ 0,
+ SCR_FROM_REG (rbc2),
+ 0,
+ SCR_RETURN ^ IFFALSE (DATA (0)),
+ 0,
+ /*
+ * RBC[0..23]=0.
+ * Not only we donnot need a PM context, but this would
+ * lead to a bogus CHMOV(0). This condition means that
+ * the residual was the last byte to move from this CHMOV.
+ * So, we just have to move the current data script pointer
+ * (i.e. TEMP) to the SCRIPTS address following the
+ * interrupted CHMOV and jump to dispatcher.
+ * IA contains the data pointer to save.
+ */
+ SCR_JUMP,
+ PADDR_B (pm_save_end),
+}/*-------------------------< WSR_MA_HELPER >--------------------*/,{
+ /*
+ * Helper for the C code when WSR bit is set.
+ * Perform the move of the residual byte.
+ */
+ SCR_CHMOV_TBL ^ SCR_DATA_IN,
+ offsetof (struct sym_ccb, phys.wresid),
+ SCR_JUMP,
+ PADDR_A (dispatch),
+
+}/*-------------------------< ZERO >-----------------------------*/,{
+ SCR_DATA_ZERO,
+}/*-------------------------< SCRATCH >--------------------------*/,{
+ SCR_DATA_ZERO,
+}/*-------------------------< PM0_DATA_ADDR >--------------------*/,{
+ SCR_DATA_ZERO,
+}/*-------------------------< PM1_DATA_ADDR >--------------------*/,{
+ SCR_DATA_ZERO,
+}/*-------------------------< DONE_POS >-------------------------*/,{
+ SCR_DATA_ZERO,
+}/*-------------------------< STARTPOS >-------------------------*/,{
+ SCR_DATA_ZERO,
+}/*-------------------------< TARGTBL >--------------------------*/,{
+ SCR_DATA_ZERO,
+}/*-------------------------<>-----------------------------------*/
+};
+
+static struct SYM_FWZ_SCR SYM_FWZ_SCR = {
+ /*-------------------------< SNOOPTEST >------------------------*/{
+ /*
+ * Read the variable from memory.
+ */
+ SCR_LOAD_REL (scratcha, 4),
+ offsetof(struct sym_hcb, scratch),
+ /*
+ * Write the variable to memory.
+ */
+ SCR_STORE_REL (temp, 4),
+ offsetof(struct sym_hcb, scratch),
+ /*
+ * Read back the variable from memory.
+ */
+ SCR_LOAD_REL (temp, 4),
+ offsetof(struct sym_hcb, scratch),
+}/*-------------------------< SNOOPEND >-------------------------*/,{
+ /*
+ * And stop.
+ */
+ SCR_INT,
+ 99,
+}/*-------------------------<>-----------------------------------*/
+};