summaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_log_recover.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
commit76cb841cb886eef6b3bee341a2266c76578724ad (patch)
treef5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /fs/xfs/xfs_log_recover.c
parentInitial commit. (diff)
downloadlinux-upstream.tar.xz
linux-upstream.zip
Adding upstream version 4.19.249.upstream/4.19.249upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'fs/xfs/xfs_log_recover.c')
-rw-r--r--fs/xfs/xfs_log_recover.c5928
1 files changed, 5928 insertions, 0 deletions
diff --git a/fs/xfs/xfs_log_recover.c b/fs/xfs/xfs_log_recover.c
new file mode 100644
index 000000000..1fc9e9042
--- /dev/null
+++ b/fs/xfs/xfs_log_recover.c
@@ -0,0 +1,5928 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2000-2006 Silicon Graphics, Inc.
+ * All Rights Reserved.
+ */
+#include "xfs.h"
+#include "xfs_fs.h"
+#include "xfs_shared.h"
+#include "xfs_format.h"
+#include "xfs_log_format.h"
+#include "xfs_trans_resv.h"
+#include "xfs_bit.h"
+#include "xfs_sb.h"
+#include "xfs_mount.h"
+#include "xfs_defer.h"
+#include "xfs_da_format.h"
+#include "xfs_da_btree.h"
+#include "xfs_inode.h"
+#include "xfs_trans.h"
+#include "xfs_log.h"
+#include "xfs_log_priv.h"
+#include "xfs_log_recover.h"
+#include "xfs_inode_item.h"
+#include "xfs_extfree_item.h"
+#include "xfs_trans_priv.h"
+#include "xfs_alloc.h"
+#include "xfs_ialloc.h"
+#include "xfs_quota.h"
+#include "xfs_cksum.h"
+#include "xfs_trace.h"
+#include "xfs_icache.h"
+#include "xfs_bmap_btree.h"
+#include "xfs_error.h"
+#include "xfs_dir2.h"
+#include "xfs_rmap_item.h"
+#include "xfs_buf_item.h"
+#include "xfs_refcount_item.h"
+#include "xfs_bmap_item.h"
+
+#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
+
+STATIC int
+xlog_find_zeroed(
+ struct xlog *,
+ xfs_daddr_t *);
+STATIC int
+xlog_clear_stale_blocks(
+ struct xlog *,
+ xfs_lsn_t);
+#if defined(DEBUG)
+STATIC void
+xlog_recover_check_summary(
+ struct xlog *);
+#else
+#define xlog_recover_check_summary(log)
+#endif
+STATIC int
+xlog_do_recovery_pass(
+ struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
+
+/*
+ * This structure is used during recovery to record the buf log items which
+ * have been canceled and should not be replayed.
+ */
+struct xfs_buf_cancel {
+ xfs_daddr_t bc_blkno;
+ uint bc_len;
+ int bc_refcount;
+ struct list_head bc_list;
+};
+
+/*
+ * Sector aligned buffer routines for buffer create/read/write/access
+ */
+
+/*
+ * Verify the log-relative block number and length in basic blocks are valid for
+ * an operation involving the given XFS log buffer. Returns true if the fields
+ * are valid, false otherwise.
+ */
+static inline bool
+xlog_verify_bp(
+ struct xlog *log,
+ xfs_daddr_t blk_no,
+ int bbcount)
+{
+ if (blk_no < 0 || blk_no >= log->l_logBBsize)
+ return false;
+ if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
+ return false;
+ return true;
+}
+
+/*
+ * Allocate a buffer to hold log data. The buffer needs to be able
+ * to map to a range of nbblks basic blocks at any valid (basic
+ * block) offset within the log.
+ */
+STATIC xfs_buf_t *
+xlog_get_bp(
+ struct xlog *log,
+ int nbblks)
+{
+ struct xfs_buf *bp;
+
+ /*
+ * Pass log block 0 since we don't have an addr yet, buffer will be
+ * verified on read.
+ */
+ if (!xlog_verify_bp(log, 0, nbblks)) {
+ xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
+ nbblks);
+ XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
+ return NULL;
+ }
+
+ /*
+ * We do log I/O in units of log sectors (a power-of-2
+ * multiple of the basic block size), so we round up the
+ * requested size to accommodate the basic blocks required
+ * for complete log sectors.
+ *
+ * In addition, the buffer may be used for a non-sector-
+ * aligned block offset, in which case an I/O of the
+ * requested size could extend beyond the end of the
+ * buffer. If the requested size is only 1 basic block it
+ * will never straddle a sector boundary, so this won't be
+ * an issue. Nor will this be a problem if the log I/O is
+ * done in basic blocks (sector size 1). But otherwise we
+ * extend the buffer by one extra log sector to ensure
+ * there's space to accommodate this possibility.
+ */
+ if (nbblks > 1 && log->l_sectBBsize > 1)
+ nbblks += log->l_sectBBsize;
+ nbblks = round_up(nbblks, log->l_sectBBsize);
+
+ bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
+ if (bp)
+ xfs_buf_unlock(bp);
+ return bp;
+}
+
+STATIC void
+xlog_put_bp(
+ xfs_buf_t *bp)
+{
+ xfs_buf_free(bp);
+}
+
+/*
+ * Return the address of the start of the given block number's data
+ * in a log buffer. The buffer covers a log sector-aligned region.
+ */
+STATIC char *
+xlog_align(
+ struct xlog *log,
+ xfs_daddr_t blk_no,
+ int nbblks,
+ struct xfs_buf *bp)
+{
+ xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
+
+ ASSERT(offset + nbblks <= bp->b_length);
+ return bp->b_addr + BBTOB(offset);
+}
+
+
+/*
+ * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
+ */
+STATIC int
+xlog_bread_noalign(
+ struct xlog *log,
+ xfs_daddr_t blk_no,
+ int nbblks,
+ struct xfs_buf *bp)
+{
+ int error;
+
+ if (!xlog_verify_bp(log, blk_no, nbblks)) {
+ xfs_warn(log->l_mp,
+ "Invalid log block/length (0x%llx, 0x%x) for buffer",
+ blk_no, nbblks);
+ XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
+ return -EFSCORRUPTED;
+ }
+
+ blk_no = round_down(blk_no, log->l_sectBBsize);
+ nbblks = round_up(nbblks, log->l_sectBBsize);
+
+ ASSERT(nbblks > 0);
+ ASSERT(nbblks <= bp->b_length);
+
+ XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
+ bp->b_flags |= XBF_READ;
+ bp->b_io_length = nbblks;
+ bp->b_error = 0;
+
+ error = xfs_buf_submit(bp);
+ if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
+ xfs_buf_ioerror_alert(bp, __func__);
+ return error;
+}
+
+STATIC int
+xlog_bread(
+ struct xlog *log,
+ xfs_daddr_t blk_no,
+ int nbblks,
+ struct xfs_buf *bp,
+ char **offset)
+{
+ int error;
+
+ error = xlog_bread_noalign(log, blk_no, nbblks, bp);
+ if (error)
+ return error;
+
+ *offset = xlog_align(log, blk_no, nbblks, bp);
+ return 0;
+}
+
+/*
+ * Read at an offset into the buffer. Returns with the buffer in it's original
+ * state regardless of the result of the read.
+ */
+STATIC int
+xlog_bread_offset(
+ struct xlog *log,
+ xfs_daddr_t blk_no, /* block to read from */
+ int nbblks, /* blocks to read */
+ struct xfs_buf *bp,
+ char *offset)
+{
+ char *orig_offset = bp->b_addr;
+ int orig_len = BBTOB(bp->b_length);
+ int error, error2;
+
+ error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
+ if (error)
+ return error;
+
+ error = xlog_bread_noalign(log, blk_no, nbblks, bp);
+
+ /* must reset buffer pointer even on error */
+ error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
+ if (error)
+ return error;
+ return error2;
+}
+
+/*
+ * Write out the buffer at the given block for the given number of blocks.
+ * The buffer is kept locked across the write and is returned locked.
+ * This can only be used for synchronous log writes.
+ */
+STATIC int
+xlog_bwrite(
+ struct xlog *log,
+ xfs_daddr_t blk_no,
+ int nbblks,
+ struct xfs_buf *bp)
+{
+ int error;
+
+ if (!xlog_verify_bp(log, blk_no, nbblks)) {
+ xfs_warn(log->l_mp,
+ "Invalid log block/length (0x%llx, 0x%x) for buffer",
+ blk_no, nbblks);
+ XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
+ return -EFSCORRUPTED;
+ }
+
+ blk_no = round_down(blk_no, log->l_sectBBsize);
+ nbblks = round_up(nbblks, log->l_sectBBsize);
+
+ ASSERT(nbblks > 0);
+ ASSERT(nbblks <= bp->b_length);
+
+ XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
+ xfs_buf_hold(bp);
+ xfs_buf_lock(bp);
+ bp->b_io_length = nbblks;
+ bp->b_error = 0;
+
+ error = xfs_bwrite(bp);
+ if (error)
+ xfs_buf_ioerror_alert(bp, __func__);
+ xfs_buf_relse(bp);
+ return error;
+}
+
+#ifdef DEBUG
+/*
+ * dump debug superblock and log record information
+ */
+STATIC void
+xlog_header_check_dump(
+ xfs_mount_t *mp,
+ xlog_rec_header_t *head)
+{
+ xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
+ __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
+ xfs_debug(mp, " log : uuid = %pU, fmt = %d",
+ &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
+}
+#else
+#define xlog_header_check_dump(mp, head)
+#endif
+
+/*
+ * check log record header for recovery
+ */
+STATIC int
+xlog_header_check_recover(
+ xfs_mount_t *mp,
+ xlog_rec_header_t *head)
+{
+ ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
+
+ /*
+ * IRIX doesn't write the h_fmt field and leaves it zeroed
+ * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
+ * a dirty log created in IRIX.
+ */
+ if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
+ xfs_warn(mp,
+ "dirty log written in incompatible format - can't recover");
+ xlog_header_check_dump(mp, head);
+ XFS_ERROR_REPORT("xlog_header_check_recover(1)",
+ XFS_ERRLEVEL_HIGH, mp);
+ return -EFSCORRUPTED;
+ } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
+ xfs_warn(mp,
+ "dirty log entry has mismatched uuid - can't recover");
+ xlog_header_check_dump(mp, head);
+ XFS_ERROR_REPORT("xlog_header_check_recover(2)",
+ XFS_ERRLEVEL_HIGH, mp);
+ return -EFSCORRUPTED;
+ }
+ return 0;
+}
+
+/*
+ * read the head block of the log and check the header
+ */
+STATIC int
+xlog_header_check_mount(
+ xfs_mount_t *mp,
+ xlog_rec_header_t *head)
+{
+ ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
+
+ if (uuid_is_null(&head->h_fs_uuid)) {
+ /*
+ * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
+ * h_fs_uuid is null, we assume this log was last mounted
+ * by IRIX and continue.
+ */
+ xfs_warn(mp, "null uuid in log - IRIX style log");
+ } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
+ xfs_warn(mp, "log has mismatched uuid - can't recover");
+ xlog_header_check_dump(mp, head);
+ XFS_ERROR_REPORT("xlog_header_check_mount",
+ XFS_ERRLEVEL_HIGH, mp);
+ return -EFSCORRUPTED;
+ }
+ return 0;
+}
+
+STATIC void
+xlog_recover_iodone(
+ struct xfs_buf *bp)
+{
+ if (bp->b_error) {
+ /*
+ * We're not going to bother about retrying
+ * this during recovery. One strike!
+ */
+ if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
+ xfs_buf_ioerror_alert(bp, __func__);
+ xfs_force_shutdown(bp->b_target->bt_mount,
+ SHUTDOWN_META_IO_ERROR);
+ }
+ }
+
+ /*
+ * On v5 supers, a bli could be attached to update the metadata LSN.
+ * Clean it up.
+ */
+ if (bp->b_log_item)
+ xfs_buf_item_relse(bp);
+ ASSERT(bp->b_log_item == NULL);
+
+ bp->b_iodone = NULL;
+ xfs_buf_ioend(bp);
+}
+
+/*
+ * This routine finds (to an approximation) the first block in the physical
+ * log which contains the given cycle. It uses a binary search algorithm.
+ * Note that the algorithm can not be perfect because the disk will not
+ * necessarily be perfect.
+ */
+STATIC int
+xlog_find_cycle_start(
+ struct xlog *log,
+ struct xfs_buf *bp,
+ xfs_daddr_t first_blk,
+ xfs_daddr_t *last_blk,
+ uint cycle)
+{
+ char *offset;
+ xfs_daddr_t mid_blk;
+ xfs_daddr_t end_blk;
+ uint mid_cycle;
+ int error;
+
+ end_blk = *last_blk;
+ mid_blk = BLK_AVG(first_blk, end_blk);
+ while (mid_blk != first_blk && mid_blk != end_blk) {
+ error = xlog_bread(log, mid_blk, 1, bp, &offset);
+ if (error)
+ return error;
+ mid_cycle = xlog_get_cycle(offset);
+ if (mid_cycle == cycle)
+ end_blk = mid_blk; /* last_half_cycle == mid_cycle */
+ else
+ first_blk = mid_blk; /* first_half_cycle == mid_cycle */
+ mid_blk = BLK_AVG(first_blk, end_blk);
+ }
+ ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
+ (mid_blk == end_blk && mid_blk-1 == first_blk));
+
+ *last_blk = end_blk;
+
+ return 0;
+}
+
+/*
+ * Check that a range of blocks does not contain stop_on_cycle_no.
+ * Fill in *new_blk with the block offset where such a block is
+ * found, or with -1 (an invalid block number) if there is no such
+ * block in the range. The scan needs to occur from front to back
+ * and the pointer into the region must be updated since a later
+ * routine will need to perform another test.
+ */
+STATIC int
+xlog_find_verify_cycle(
+ struct xlog *log,
+ xfs_daddr_t start_blk,
+ int nbblks,
+ uint stop_on_cycle_no,
+ xfs_daddr_t *new_blk)
+{
+ xfs_daddr_t i, j;
+ uint cycle;
+ xfs_buf_t *bp;
+ xfs_daddr_t bufblks;
+ char *buf = NULL;
+ int error = 0;
+
+ /*
+ * Greedily allocate a buffer big enough to handle the full
+ * range of basic blocks we'll be examining. If that fails,
+ * try a smaller size. We need to be able to read at least
+ * a log sector, or we're out of luck.
+ */
+ bufblks = 1 << ffs(nbblks);
+ while (bufblks > log->l_logBBsize)
+ bufblks >>= 1;
+ while (!(bp = xlog_get_bp(log, bufblks))) {
+ bufblks >>= 1;
+ if (bufblks < log->l_sectBBsize)
+ return -ENOMEM;
+ }
+
+ for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
+ int bcount;
+
+ bcount = min(bufblks, (start_blk + nbblks - i));
+
+ error = xlog_bread(log, i, bcount, bp, &buf);
+ if (error)
+ goto out;
+
+ for (j = 0; j < bcount; j++) {
+ cycle = xlog_get_cycle(buf);
+ if (cycle == stop_on_cycle_no) {
+ *new_blk = i+j;
+ goto out;
+ }
+
+ buf += BBSIZE;
+ }
+ }
+
+ *new_blk = -1;
+
+out:
+ xlog_put_bp(bp);
+ return error;
+}
+
+/*
+ * Potentially backup over partial log record write.
+ *
+ * In the typical case, last_blk is the number of the block directly after
+ * a good log record. Therefore, we subtract one to get the block number
+ * of the last block in the given buffer. extra_bblks contains the number
+ * of blocks we would have read on a previous read. This happens when the
+ * last log record is split over the end of the physical log.
+ *
+ * extra_bblks is the number of blocks potentially verified on a previous
+ * call to this routine.
+ */
+STATIC int
+xlog_find_verify_log_record(
+ struct xlog *log,
+ xfs_daddr_t start_blk,
+ xfs_daddr_t *last_blk,
+ int extra_bblks)
+{
+ xfs_daddr_t i;
+ xfs_buf_t *bp;
+ char *offset = NULL;
+ xlog_rec_header_t *head = NULL;
+ int error = 0;
+ int smallmem = 0;
+ int num_blks = *last_blk - start_blk;
+ int xhdrs;
+
+ ASSERT(start_blk != 0 || *last_blk != start_blk);
+
+ if (!(bp = xlog_get_bp(log, num_blks))) {
+ if (!(bp = xlog_get_bp(log, 1)))
+ return -ENOMEM;
+ smallmem = 1;
+ } else {
+ error = xlog_bread(log, start_blk, num_blks, bp, &offset);
+ if (error)
+ goto out;
+ offset += ((num_blks - 1) << BBSHIFT);
+ }
+
+ for (i = (*last_blk) - 1; i >= 0; i--) {
+ if (i < start_blk) {
+ /* valid log record not found */
+ xfs_warn(log->l_mp,
+ "Log inconsistent (didn't find previous header)");
+ ASSERT(0);
+ error = -EIO;
+ goto out;
+ }
+
+ if (smallmem) {
+ error = xlog_bread(log, i, 1, bp, &offset);
+ if (error)
+ goto out;
+ }
+
+ head = (xlog_rec_header_t *)offset;
+
+ if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
+ break;
+
+ if (!smallmem)
+ offset -= BBSIZE;
+ }
+
+ /*
+ * We hit the beginning of the physical log & still no header. Return
+ * to caller. If caller can handle a return of -1, then this routine
+ * will be called again for the end of the physical log.
+ */
+ if (i == -1) {
+ error = 1;
+ goto out;
+ }
+
+ /*
+ * We have the final block of the good log (the first block
+ * of the log record _before_ the head. So we check the uuid.
+ */
+ if ((error = xlog_header_check_mount(log->l_mp, head)))
+ goto out;
+
+ /*
+ * We may have found a log record header before we expected one.
+ * last_blk will be the 1st block # with a given cycle #. We may end
+ * up reading an entire log record. In this case, we don't want to
+ * reset last_blk. Only when last_blk points in the middle of a log
+ * record do we update last_blk.
+ */
+ if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
+ uint h_size = be32_to_cpu(head->h_size);
+
+ xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
+ if (h_size % XLOG_HEADER_CYCLE_SIZE)
+ xhdrs++;
+ } else {
+ xhdrs = 1;
+ }
+
+ if (*last_blk - i + extra_bblks !=
+ BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
+ *last_blk = i;
+
+out:
+ xlog_put_bp(bp);
+ return error;
+}
+
+/*
+ * Head is defined to be the point of the log where the next log write
+ * could go. This means that incomplete LR writes at the end are
+ * eliminated when calculating the head. We aren't guaranteed that previous
+ * LR have complete transactions. We only know that a cycle number of
+ * current cycle number -1 won't be present in the log if we start writing
+ * from our current block number.
+ *
+ * last_blk contains the block number of the first block with a given
+ * cycle number.
+ *
+ * Return: zero if normal, non-zero if error.
+ */
+STATIC int
+xlog_find_head(
+ struct xlog *log,
+ xfs_daddr_t *return_head_blk)
+{
+ xfs_buf_t *bp;
+ char *offset;
+ xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
+ int num_scan_bblks;
+ uint first_half_cycle, last_half_cycle;
+ uint stop_on_cycle;
+ int error, log_bbnum = log->l_logBBsize;
+
+ /* Is the end of the log device zeroed? */
+ error = xlog_find_zeroed(log, &first_blk);
+ if (error < 0) {
+ xfs_warn(log->l_mp, "empty log check failed");
+ return error;
+ }
+ if (error == 1) {
+ *return_head_blk = first_blk;
+
+ /* Is the whole lot zeroed? */
+ if (!first_blk) {
+ /* Linux XFS shouldn't generate totally zeroed logs -
+ * mkfs etc write a dummy unmount record to a fresh
+ * log so we can store the uuid in there
+ */
+ xfs_warn(log->l_mp, "totally zeroed log");
+ }
+
+ return 0;
+ }
+
+ first_blk = 0; /* get cycle # of 1st block */
+ bp = xlog_get_bp(log, 1);
+ if (!bp)
+ return -ENOMEM;
+
+ error = xlog_bread(log, 0, 1, bp, &offset);
+ if (error)
+ goto bp_err;
+
+ first_half_cycle = xlog_get_cycle(offset);
+
+ last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
+ error = xlog_bread(log, last_blk, 1, bp, &offset);
+ if (error)
+ goto bp_err;
+
+ last_half_cycle = xlog_get_cycle(offset);
+ ASSERT(last_half_cycle != 0);
+
+ /*
+ * If the 1st half cycle number is equal to the last half cycle number,
+ * then the entire log is stamped with the same cycle number. In this
+ * case, head_blk can't be set to zero (which makes sense). The below
+ * math doesn't work out properly with head_blk equal to zero. Instead,
+ * we set it to log_bbnum which is an invalid block number, but this
+ * value makes the math correct. If head_blk doesn't changed through
+ * all the tests below, *head_blk is set to zero at the very end rather
+ * than log_bbnum. In a sense, log_bbnum and zero are the same block
+ * in a circular file.
+ */
+ if (first_half_cycle == last_half_cycle) {
+ /*
+ * In this case we believe that the entire log should have
+ * cycle number last_half_cycle. We need to scan backwards
+ * from the end verifying that there are no holes still
+ * containing last_half_cycle - 1. If we find such a hole,
+ * then the start of that hole will be the new head. The
+ * simple case looks like
+ * x | x ... | x - 1 | x
+ * Another case that fits this picture would be
+ * x | x + 1 | x ... | x
+ * In this case the head really is somewhere at the end of the
+ * log, as one of the latest writes at the beginning was
+ * incomplete.
+ * One more case is
+ * x | x + 1 | x ... | x - 1 | x
+ * This is really the combination of the above two cases, and
+ * the head has to end up at the start of the x-1 hole at the
+ * end of the log.
+ *
+ * In the 256k log case, we will read from the beginning to the
+ * end of the log and search for cycle numbers equal to x-1.
+ * We don't worry about the x+1 blocks that we encounter,
+ * because we know that they cannot be the head since the log
+ * started with x.
+ */
+ head_blk = log_bbnum;
+ stop_on_cycle = last_half_cycle - 1;
+ } else {
+ /*
+ * In this case we want to find the first block with cycle
+ * number matching last_half_cycle. We expect the log to be
+ * some variation on
+ * x + 1 ... | x ... | x
+ * The first block with cycle number x (last_half_cycle) will
+ * be where the new head belongs. First we do a binary search
+ * for the first occurrence of last_half_cycle. The binary
+ * search may not be totally accurate, so then we scan back
+ * from there looking for occurrences of last_half_cycle before
+ * us. If that backwards scan wraps around the beginning of
+ * the log, then we look for occurrences of last_half_cycle - 1
+ * at the end of the log. The cases we're looking for look
+ * like
+ * v binary search stopped here
+ * x + 1 ... | x | x + 1 | x ... | x
+ * ^ but we want to locate this spot
+ * or
+ * <---------> less than scan distance
+ * x + 1 ... | x ... | x - 1 | x
+ * ^ we want to locate this spot
+ */
+ stop_on_cycle = last_half_cycle;
+ if ((error = xlog_find_cycle_start(log, bp, first_blk,
+ &head_blk, last_half_cycle)))
+ goto bp_err;
+ }
+
+ /*
+ * Now validate the answer. Scan back some number of maximum possible
+ * blocks and make sure each one has the expected cycle number. The
+ * maximum is determined by the total possible amount of buffering
+ * in the in-core log. The following number can be made tighter if
+ * we actually look at the block size of the filesystem.
+ */
+ num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
+ if (head_blk >= num_scan_bblks) {
+ /*
+ * We are guaranteed that the entire check can be performed
+ * in one buffer.
+ */
+ start_blk = head_blk - num_scan_bblks;
+ if ((error = xlog_find_verify_cycle(log,
+ start_blk, num_scan_bblks,
+ stop_on_cycle, &new_blk)))
+ goto bp_err;
+ if (new_blk != -1)
+ head_blk = new_blk;
+ } else { /* need to read 2 parts of log */
+ /*
+ * We are going to scan backwards in the log in two parts.
+ * First we scan the physical end of the log. In this part
+ * of the log, we are looking for blocks with cycle number
+ * last_half_cycle - 1.
+ * If we find one, then we know that the log starts there, as
+ * we've found a hole that didn't get written in going around
+ * the end of the physical log. The simple case for this is
+ * x + 1 ... | x ... | x - 1 | x
+ * <---------> less than scan distance
+ * If all of the blocks at the end of the log have cycle number
+ * last_half_cycle, then we check the blocks at the start of
+ * the log looking for occurrences of last_half_cycle. If we
+ * find one, then our current estimate for the location of the
+ * first occurrence of last_half_cycle is wrong and we move
+ * back to the hole we've found. This case looks like
+ * x + 1 ... | x | x + 1 | x ...
+ * ^ binary search stopped here
+ * Another case we need to handle that only occurs in 256k
+ * logs is
+ * x + 1 ... | x ... | x+1 | x ...
+ * ^ binary search stops here
+ * In a 256k log, the scan at the end of the log will see the
+ * x + 1 blocks. We need to skip past those since that is
+ * certainly not the head of the log. By searching for
+ * last_half_cycle-1 we accomplish that.
+ */
+ ASSERT(head_blk <= INT_MAX &&
+ (xfs_daddr_t) num_scan_bblks >= head_blk);
+ start_blk = log_bbnum - (num_scan_bblks - head_blk);
+ if ((error = xlog_find_verify_cycle(log, start_blk,
+ num_scan_bblks - (int)head_blk,
+ (stop_on_cycle - 1), &new_blk)))
+ goto bp_err;
+ if (new_blk != -1) {
+ head_blk = new_blk;
+ goto validate_head;
+ }
+
+ /*
+ * Scan beginning of log now. The last part of the physical
+ * log is good. This scan needs to verify that it doesn't find
+ * the last_half_cycle.
+ */
+ start_blk = 0;
+ ASSERT(head_blk <= INT_MAX);
+ if ((error = xlog_find_verify_cycle(log,
+ start_blk, (int)head_blk,
+ stop_on_cycle, &new_blk)))
+ goto bp_err;
+ if (new_blk != -1)
+ head_blk = new_blk;
+ }
+
+validate_head:
+ /*
+ * Now we need to make sure head_blk is not pointing to a block in
+ * the middle of a log record.
+ */
+ num_scan_bblks = XLOG_REC_SHIFT(log);
+ if (head_blk >= num_scan_bblks) {
+ start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
+
+ /* start ptr at last block ptr before head_blk */
+ error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
+ if (error == 1)
+ error = -EIO;
+ if (error)
+ goto bp_err;
+ } else {
+ start_blk = 0;
+ ASSERT(head_blk <= INT_MAX);
+ error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
+ if (error < 0)
+ goto bp_err;
+ if (error == 1) {
+ /* We hit the beginning of the log during our search */
+ start_blk = log_bbnum - (num_scan_bblks - head_blk);
+ new_blk = log_bbnum;
+ ASSERT(start_blk <= INT_MAX &&
+ (xfs_daddr_t) log_bbnum-start_blk >= 0);
+ ASSERT(head_blk <= INT_MAX);
+ error = xlog_find_verify_log_record(log, start_blk,
+ &new_blk, (int)head_blk);
+ if (error == 1)
+ error = -EIO;
+ if (error)
+ goto bp_err;
+ if (new_blk != log_bbnum)
+ head_blk = new_blk;
+ } else if (error)
+ goto bp_err;
+ }
+
+ xlog_put_bp(bp);
+ if (head_blk == log_bbnum)
+ *return_head_blk = 0;
+ else
+ *return_head_blk = head_blk;
+ /*
+ * When returning here, we have a good block number. Bad block
+ * means that during a previous crash, we didn't have a clean break
+ * from cycle number N to cycle number N-1. In this case, we need
+ * to find the first block with cycle number N-1.
+ */
+ return 0;
+
+ bp_err:
+ xlog_put_bp(bp);
+
+ if (error)
+ xfs_warn(log->l_mp, "failed to find log head");
+ return error;
+}
+
+/*
+ * Seek backwards in the log for log record headers.
+ *
+ * Given a starting log block, walk backwards until we find the provided number
+ * of records or hit the provided tail block. The return value is the number of
+ * records encountered or a negative error code. The log block and buffer
+ * pointer of the last record seen are returned in rblk and rhead respectively.
+ */
+STATIC int
+xlog_rseek_logrec_hdr(
+ struct xlog *log,
+ xfs_daddr_t head_blk,
+ xfs_daddr_t tail_blk,
+ int count,
+ struct xfs_buf *bp,
+ xfs_daddr_t *rblk,
+ struct xlog_rec_header **rhead,
+ bool *wrapped)
+{
+ int i;
+ int error;
+ int found = 0;
+ char *offset = NULL;
+ xfs_daddr_t end_blk;
+
+ *wrapped = false;
+
+ /*
+ * Walk backwards from the head block until we hit the tail or the first
+ * block in the log.
+ */
+ end_blk = head_blk > tail_blk ? tail_blk : 0;
+ for (i = (int) head_blk - 1; i >= end_blk; i--) {
+ error = xlog_bread(log, i, 1, bp, &offset);
+ if (error)
+ goto out_error;
+
+ if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
+ *rblk = i;
+ *rhead = (struct xlog_rec_header *) offset;
+ if (++found == count)
+ break;
+ }
+ }
+
+ /*
+ * If we haven't hit the tail block or the log record header count,
+ * start looking again from the end of the physical log. Note that
+ * callers can pass head == tail if the tail is not yet known.
+ */
+ if (tail_blk >= head_blk && found != count) {
+ for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
+ error = xlog_bread(log, i, 1, bp, &offset);
+ if (error)
+ goto out_error;
+
+ if (*(__be32 *)offset ==
+ cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
+ *wrapped = true;
+ *rblk = i;
+ *rhead = (struct xlog_rec_header *) offset;
+ if (++found == count)
+ break;
+ }
+ }
+ }
+
+ return found;
+
+out_error:
+ return error;
+}
+
+/*
+ * Seek forward in the log for log record headers.
+ *
+ * Given head and tail blocks, walk forward from the tail block until we find
+ * the provided number of records or hit the head block. The return value is the
+ * number of records encountered or a negative error code. The log block and
+ * buffer pointer of the last record seen are returned in rblk and rhead
+ * respectively.
+ */
+STATIC int
+xlog_seek_logrec_hdr(
+ struct xlog *log,
+ xfs_daddr_t head_blk,
+ xfs_daddr_t tail_blk,
+ int count,
+ struct xfs_buf *bp,
+ xfs_daddr_t *rblk,
+ struct xlog_rec_header **rhead,
+ bool *wrapped)
+{
+ int i;
+ int error;
+ int found = 0;
+ char *offset = NULL;
+ xfs_daddr_t end_blk;
+
+ *wrapped = false;
+
+ /*
+ * Walk forward from the tail block until we hit the head or the last
+ * block in the log.
+ */
+ end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
+ for (i = (int) tail_blk; i <= end_blk; i++) {
+ error = xlog_bread(log, i, 1, bp, &offset);
+ if (error)
+ goto out_error;
+
+ if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
+ *rblk = i;
+ *rhead = (struct xlog_rec_header *) offset;
+ if (++found == count)
+ break;
+ }
+ }
+
+ /*
+ * If we haven't hit the head block or the log record header count,
+ * start looking again from the start of the physical log.
+ */
+ if (tail_blk > head_blk && found != count) {
+ for (i = 0; i < (int) head_blk; i++) {
+ error = xlog_bread(log, i, 1, bp, &offset);
+ if (error)
+ goto out_error;
+
+ if (*(__be32 *)offset ==
+ cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
+ *wrapped = true;
+ *rblk = i;
+ *rhead = (struct xlog_rec_header *) offset;
+ if (++found == count)
+ break;
+ }
+ }
+ }
+
+ return found;
+
+out_error:
+ return error;
+}
+
+/*
+ * Calculate distance from head to tail (i.e., unused space in the log).
+ */
+static inline int
+xlog_tail_distance(
+ struct xlog *log,
+ xfs_daddr_t head_blk,
+ xfs_daddr_t tail_blk)
+{
+ if (head_blk < tail_blk)
+ return tail_blk - head_blk;
+
+ return tail_blk + (log->l_logBBsize - head_blk);
+}
+
+/*
+ * Verify the log tail. This is particularly important when torn or incomplete
+ * writes have been detected near the front of the log and the head has been
+ * walked back accordingly.
+ *
+ * We also have to handle the case where the tail was pinned and the head
+ * blocked behind the tail right before a crash. If the tail had been pushed
+ * immediately prior to the crash and the subsequent checkpoint was only
+ * partially written, it's possible it overwrote the last referenced tail in the
+ * log with garbage. This is not a coherency problem because the tail must have
+ * been pushed before it can be overwritten, but appears as log corruption to
+ * recovery because we have no way to know the tail was updated if the
+ * subsequent checkpoint didn't write successfully.
+ *
+ * Therefore, CRC check the log from tail to head. If a failure occurs and the
+ * offending record is within max iclog bufs from the head, walk the tail
+ * forward and retry until a valid tail is found or corruption is detected out
+ * of the range of a possible overwrite.
+ */
+STATIC int
+xlog_verify_tail(
+ struct xlog *log,
+ xfs_daddr_t head_blk,
+ xfs_daddr_t *tail_blk,
+ int hsize)
+{
+ struct xlog_rec_header *thead;
+ struct xfs_buf *bp;
+ xfs_daddr_t first_bad;
+ int error = 0;
+ bool wrapped;
+ xfs_daddr_t tmp_tail;
+ xfs_daddr_t orig_tail = *tail_blk;
+
+ bp = xlog_get_bp(log, 1);
+ if (!bp)
+ return -ENOMEM;
+
+ /*
+ * Make sure the tail points to a record (returns positive count on
+ * success).
+ */
+ error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, bp,
+ &tmp_tail, &thead, &wrapped);
+ if (error < 0)
+ goto out;
+ if (*tail_blk != tmp_tail)
+ *tail_blk = tmp_tail;
+
+ /*
+ * Run a CRC check from the tail to the head. We can't just check
+ * MAX_ICLOGS records past the tail because the tail may point to stale
+ * blocks cleared during the search for the head/tail. These blocks are
+ * overwritten with zero-length records and thus record count is not a
+ * reliable indicator of the iclog state before a crash.
+ */
+ first_bad = 0;
+ error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
+ XLOG_RECOVER_CRCPASS, &first_bad);
+ while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
+ int tail_distance;
+
+ /*
+ * Is corruption within range of the head? If so, retry from
+ * the next record. Otherwise return an error.
+ */
+ tail_distance = xlog_tail_distance(log, head_blk, first_bad);
+ if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
+ break;
+
+ /* skip to the next record; returns positive count on success */
+ error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, bp,
+ &tmp_tail, &thead, &wrapped);
+ if (error < 0)
+ goto out;
+
+ *tail_blk = tmp_tail;
+ first_bad = 0;
+ error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
+ XLOG_RECOVER_CRCPASS, &first_bad);
+ }
+
+ if (!error && *tail_blk != orig_tail)
+ xfs_warn(log->l_mp,
+ "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
+ orig_tail, *tail_blk);
+out:
+ xlog_put_bp(bp);
+ return error;
+}
+
+/*
+ * Detect and trim torn writes from the head of the log.
+ *
+ * Storage without sector atomicity guarantees can result in torn writes in the
+ * log in the event of a crash. Our only means to detect this scenario is via
+ * CRC verification. While we can't always be certain that CRC verification
+ * failure is due to a torn write vs. an unrelated corruption, we do know that
+ * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
+ * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
+ * the log and treat failures in this range as torn writes as a matter of
+ * policy. In the event of CRC failure, the head is walked back to the last good
+ * record in the log and the tail is updated from that record and verified.
+ */
+STATIC int
+xlog_verify_head(
+ struct xlog *log,
+ xfs_daddr_t *head_blk, /* in/out: unverified head */
+ xfs_daddr_t *tail_blk, /* out: tail block */
+ struct xfs_buf *bp,
+ xfs_daddr_t *rhead_blk, /* start blk of last record */
+ struct xlog_rec_header **rhead, /* ptr to last record */
+ bool *wrapped) /* last rec. wraps phys. log */
+{
+ struct xlog_rec_header *tmp_rhead;
+ struct xfs_buf *tmp_bp;
+ xfs_daddr_t first_bad;
+ xfs_daddr_t tmp_rhead_blk;
+ int found;
+ int error;
+ bool tmp_wrapped;
+
+ /*
+ * Check the head of the log for torn writes. Search backwards from the
+ * head until we hit the tail or the maximum number of log record I/Os
+ * that could have been in flight at one time. Use a temporary buffer so
+ * we don't trash the rhead/bp pointers from the caller.
+ */
+ tmp_bp = xlog_get_bp(log, 1);
+ if (!tmp_bp)
+ return -ENOMEM;
+ error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
+ XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
+ &tmp_rhead, &tmp_wrapped);
+ xlog_put_bp(tmp_bp);
+ if (error < 0)
+ return error;
+
+ /*
+ * Now run a CRC verification pass over the records starting at the
+ * block found above to the current head. If a CRC failure occurs, the
+ * log block of the first bad record is saved in first_bad.
+ */
+ error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
+ XLOG_RECOVER_CRCPASS, &first_bad);
+ if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
+ /*
+ * We've hit a potential torn write. Reset the error and warn
+ * about it.
+ */
+ error = 0;
+ xfs_warn(log->l_mp,
+"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
+ first_bad, *head_blk);
+
+ /*
+ * Get the header block and buffer pointer for the last good
+ * record before the bad record.
+ *
+ * Note that xlog_find_tail() clears the blocks at the new head
+ * (i.e., the records with invalid CRC) if the cycle number
+ * matches the the current cycle.
+ */
+ found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
+ rhead_blk, rhead, wrapped);
+ if (found < 0)
+ return found;
+ if (found == 0) /* XXX: right thing to do here? */
+ return -EIO;
+
+ /*
+ * Reset the head block to the starting block of the first bad
+ * log record and set the tail block based on the last good
+ * record.
+ *
+ * Bail out if the updated head/tail match as this indicates
+ * possible corruption outside of the acceptable
+ * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
+ */
+ *head_blk = first_bad;
+ *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
+ if (*head_blk == *tail_blk) {
+ ASSERT(0);
+ return 0;
+ }
+ }
+ if (error)
+ return error;
+
+ return xlog_verify_tail(log, *head_blk, tail_blk,
+ be32_to_cpu((*rhead)->h_size));
+}
+
+/*
+ * We need to make sure we handle log wrapping properly, so we can't use the
+ * calculated logbno directly. Make sure it wraps to the correct bno inside the
+ * log.
+ *
+ * The log is limited to 32 bit sizes, so we use the appropriate modulus
+ * operation here and cast it back to a 64 bit daddr on return.
+ */
+static inline xfs_daddr_t
+xlog_wrap_logbno(
+ struct xlog *log,
+ xfs_daddr_t bno)
+{
+ int mod;
+
+ div_s64_rem(bno, log->l_logBBsize, &mod);
+ return mod;
+}
+
+/*
+ * Check whether the head of the log points to an unmount record. In other
+ * words, determine whether the log is clean. If so, update the in-core state
+ * appropriately.
+ */
+static int
+xlog_check_unmount_rec(
+ struct xlog *log,
+ xfs_daddr_t *head_blk,
+ xfs_daddr_t *tail_blk,
+ struct xlog_rec_header *rhead,
+ xfs_daddr_t rhead_blk,
+ struct xfs_buf *bp,
+ bool *clean)
+{
+ struct xlog_op_header *op_head;
+ xfs_daddr_t umount_data_blk;
+ xfs_daddr_t after_umount_blk;
+ int hblks;
+ int error;
+ char *offset;
+
+ *clean = false;
+
+ /*
+ * Look for unmount record. If we find it, then we know there was a
+ * clean unmount. Since 'i' could be the last block in the physical
+ * log, we convert to a log block before comparing to the head_blk.
+ *
+ * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
+ * below. We won't want to clear the unmount record if there is one, so
+ * we pass the lsn of the unmount record rather than the block after it.
+ */
+ if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
+ int h_size = be32_to_cpu(rhead->h_size);
+ int h_version = be32_to_cpu(rhead->h_version);
+
+ if ((h_version & XLOG_VERSION_2) &&
+ (h_size > XLOG_HEADER_CYCLE_SIZE)) {
+ hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
+ if (h_size % XLOG_HEADER_CYCLE_SIZE)
+ hblks++;
+ } else {
+ hblks = 1;
+ }
+ } else {
+ hblks = 1;
+ }
+
+ after_umount_blk = xlog_wrap_logbno(log,
+ rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
+
+ if (*head_blk == after_umount_blk &&
+ be32_to_cpu(rhead->h_num_logops) == 1) {
+ umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
+ error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
+ if (error)
+ return error;
+
+ op_head = (struct xlog_op_header *)offset;
+ if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
+ /*
+ * Set tail and last sync so that newly written log
+ * records will point recovery to after the current
+ * unmount record.
+ */
+ xlog_assign_atomic_lsn(&log->l_tail_lsn,
+ log->l_curr_cycle, after_umount_blk);
+ xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
+ log->l_curr_cycle, after_umount_blk);
+ *tail_blk = after_umount_blk;
+
+ *clean = true;
+ }
+ }
+
+ return 0;
+}
+
+static void
+xlog_set_state(
+ struct xlog *log,
+ xfs_daddr_t head_blk,
+ struct xlog_rec_header *rhead,
+ xfs_daddr_t rhead_blk,
+ bool bump_cycle)
+{
+ /*
+ * Reset log values according to the state of the log when we
+ * crashed. In the case where head_blk == 0, we bump curr_cycle
+ * one because the next write starts a new cycle rather than
+ * continuing the cycle of the last good log record. At this
+ * point we have guaranteed that all partial log records have been
+ * accounted for. Therefore, we know that the last good log record
+ * written was complete and ended exactly on the end boundary
+ * of the physical log.
+ */
+ log->l_prev_block = rhead_blk;
+ log->l_curr_block = (int)head_blk;
+ log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
+ if (bump_cycle)
+ log->l_curr_cycle++;
+ atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
+ atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
+ xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
+ BBTOB(log->l_curr_block));
+ xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
+ BBTOB(log->l_curr_block));
+}
+
+/*
+ * Find the sync block number or the tail of the log.
+ *
+ * This will be the block number of the last record to have its
+ * associated buffers synced to disk. Every log record header has
+ * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
+ * to get a sync block number. The only concern is to figure out which
+ * log record header to believe.
+ *
+ * The following algorithm uses the log record header with the largest
+ * lsn. The entire log record does not need to be valid. We only care
+ * that the header is valid.
+ *
+ * We could speed up search by using current head_blk buffer, but it is not
+ * available.
+ */
+STATIC int
+xlog_find_tail(
+ struct xlog *log,
+ xfs_daddr_t *head_blk,
+ xfs_daddr_t *tail_blk)
+{
+ xlog_rec_header_t *rhead;
+ char *offset = NULL;
+ xfs_buf_t *bp;
+ int error;
+ xfs_daddr_t rhead_blk;
+ xfs_lsn_t tail_lsn;
+ bool wrapped = false;
+ bool clean = false;
+
+ /*
+ * Find previous log record
+ */
+ if ((error = xlog_find_head(log, head_blk)))
+ return error;
+ ASSERT(*head_blk < INT_MAX);
+
+ bp = xlog_get_bp(log, 1);
+ if (!bp)
+ return -ENOMEM;
+ if (*head_blk == 0) { /* special case */
+ error = xlog_bread(log, 0, 1, bp, &offset);
+ if (error)
+ goto done;
+
+ if (xlog_get_cycle(offset) == 0) {
+ *tail_blk = 0;
+ /* leave all other log inited values alone */
+ goto done;
+ }
+ }
+
+ /*
+ * Search backwards through the log looking for the log record header
+ * block. This wraps all the way back around to the head so something is
+ * seriously wrong if we can't find it.
+ */
+ error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
+ &rhead_blk, &rhead, &wrapped);
+ if (error < 0)
+ return error;
+ if (!error) {
+ xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
+ return -EIO;
+ }
+ *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
+
+ /*
+ * Set the log state based on the current head record.
+ */
+ xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
+ tail_lsn = atomic64_read(&log->l_tail_lsn);
+
+ /*
+ * Look for an unmount record at the head of the log. This sets the log
+ * state to determine whether recovery is necessary.
+ */
+ error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
+ rhead_blk, bp, &clean);
+ if (error)
+ goto done;
+
+ /*
+ * Verify the log head if the log is not clean (e.g., we have anything
+ * but an unmount record at the head). This uses CRC verification to
+ * detect and trim torn writes. If discovered, CRC failures are
+ * considered torn writes and the log head is trimmed accordingly.
+ *
+ * Note that we can only run CRC verification when the log is dirty
+ * because there's no guarantee that the log data behind an unmount
+ * record is compatible with the current architecture.
+ */
+ if (!clean) {
+ xfs_daddr_t orig_head = *head_blk;
+
+ error = xlog_verify_head(log, head_blk, tail_blk, bp,
+ &rhead_blk, &rhead, &wrapped);
+ if (error)
+ goto done;
+
+ /* update in-core state again if the head changed */
+ if (*head_blk != orig_head) {
+ xlog_set_state(log, *head_blk, rhead, rhead_blk,
+ wrapped);
+ tail_lsn = atomic64_read(&log->l_tail_lsn);
+ error = xlog_check_unmount_rec(log, head_blk, tail_blk,
+ rhead, rhead_blk, bp,
+ &clean);
+ if (error)
+ goto done;
+ }
+ }
+
+ /*
+ * Note that the unmount was clean. If the unmount was not clean, we
+ * need to know this to rebuild the superblock counters from the perag
+ * headers if we have a filesystem using non-persistent counters.
+ */
+ if (clean)
+ log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
+
+ /*
+ * Make sure that there are no blocks in front of the head
+ * with the same cycle number as the head. This can happen
+ * because we allow multiple outstanding log writes concurrently,
+ * and the later writes might make it out before earlier ones.
+ *
+ * We use the lsn from before modifying it so that we'll never
+ * overwrite the unmount record after a clean unmount.
+ *
+ * Do this only if we are going to recover the filesystem
+ *
+ * NOTE: This used to say "if (!readonly)"
+ * However on Linux, we can & do recover a read-only filesystem.
+ * We only skip recovery if NORECOVERY is specified on mount,
+ * in which case we would not be here.
+ *
+ * But... if the -device- itself is readonly, just skip this.
+ * We can't recover this device anyway, so it won't matter.
+ */
+ if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
+ error = xlog_clear_stale_blocks(log, tail_lsn);
+
+done:
+ xlog_put_bp(bp);
+
+ if (error)
+ xfs_warn(log->l_mp, "failed to locate log tail");
+ return error;
+}
+
+/*
+ * Is the log zeroed at all?
+ *
+ * The last binary search should be changed to perform an X block read
+ * once X becomes small enough. You can then search linearly through
+ * the X blocks. This will cut down on the number of reads we need to do.
+ *
+ * If the log is partially zeroed, this routine will pass back the blkno
+ * of the first block with cycle number 0. It won't have a complete LR
+ * preceding it.
+ *
+ * Return:
+ * 0 => the log is completely written to
+ * 1 => use *blk_no as the first block of the log
+ * <0 => error has occurred
+ */
+STATIC int
+xlog_find_zeroed(
+ struct xlog *log,
+ xfs_daddr_t *blk_no)
+{
+ xfs_buf_t *bp;
+ char *offset;
+ uint first_cycle, last_cycle;
+ xfs_daddr_t new_blk, last_blk, start_blk;
+ xfs_daddr_t num_scan_bblks;
+ int error, log_bbnum = log->l_logBBsize;
+
+ *blk_no = 0;
+
+ /* check totally zeroed log */
+ bp = xlog_get_bp(log, 1);
+ if (!bp)
+ return -ENOMEM;
+ error = xlog_bread(log, 0, 1, bp, &offset);
+ if (error)
+ goto bp_err;
+
+ first_cycle = xlog_get_cycle(offset);
+ if (first_cycle == 0) { /* completely zeroed log */
+ *blk_no = 0;
+ xlog_put_bp(bp);
+ return 1;
+ }
+
+ /* check partially zeroed log */
+ error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
+ if (error)
+ goto bp_err;
+
+ last_cycle = xlog_get_cycle(offset);
+ if (last_cycle != 0) { /* log completely written to */
+ xlog_put_bp(bp);
+ return 0;
+ }
+
+ /* we have a partially zeroed log */
+ last_blk = log_bbnum-1;
+ if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
+ goto bp_err;
+
+ /*
+ * Validate the answer. Because there is no way to guarantee that
+ * the entire log is made up of log records which are the same size,
+ * we scan over the defined maximum blocks. At this point, the maximum
+ * is not chosen to mean anything special. XXXmiken
+ */
+ num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
+ ASSERT(num_scan_bblks <= INT_MAX);
+
+ if (last_blk < num_scan_bblks)
+ num_scan_bblks = last_blk;
+ start_blk = last_blk - num_scan_bblks;
+
+ /*
+ * We search for any instances of cycle number 0 that occur before
+ * our current estimate of the head. What we're trying to detect is
+ * 1 ... | 0 | 1 | 0...
+ * ^ binary search ends here
+ */
+ if ((error = xlog_find_verify_cycle(log, start_blk,
+ (int)num_scan_bblks, 0, &new_blk)))
+ goto bp_err;
+ if (new_blk != -1)
+ last_blk = new_blk;
+
+ /*
+ * Potentially backup over partial log record write. We don't need
+ * to search the end of the log because we know it is zero.
+ */
+ error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
+ if (error == 1)
+ error = -EIO;
+ if (error)
+ goto bp_err;
+
+ *blk_no = last_blk;
+bp_err:
+ xlog_put_bp(bp);
+ if (error)
+ return error;
+ return 1;
+}
+
+/*
+ * These are simple subroutines used by xlog_clear_stale_blocks() below
+ * to initialize a buffer full of empty log record headers and write
+ * them into the log.
+ */
+STATIC void
+xlog_add_record(
+ struct xlog *log,
+ char *buf,
+ int cycle,
+ int block,
+ int tail_cycle,
+ int tail_block)
+{
+ xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
+
+ memset(buf, 0, BBSIZE);
+ recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
+ recp->h_cycle = cpu_to_be32(cycle);
+ recp->h_version = cpu_to_be32(
+ xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
+ recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
+ recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
+ recp->h_fmt = cpu_to_be32(XLOG_FMT);
+ memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
+}
+
+STATIC int
+xlog_write_log_records(
+ struct xlog *log,
+ int cycle,
+ int start_block,
+ int blocks,
+ int tail_cycle,
+ int tail_block)
+{
+ char *offset;
+ xfs_buf_t *bp;
+ int balign, ealign;
+ int sectbb = log->l_sectBBsize;
+ int end_block = start_block + blocks;
+ int bufblks;
+ int error = 0;
+ int i, j = 0;
+
+ /*
+ * Greedily allocate a buffer big enough to handle the full
+ * range of basic blocks to be written. If that fails, try
+ * a smaller size. We need to be able to write at least a
+ * log sector, or we're out of luck.
+ */
+ bufblks = 1 << ffs(blocks);
+ while (bufblks > log->l_logBBsize)
+ bufblks >>= 1;
+ while (!(bp = xlog_get_bp(log, bufblks))) {
+ bufblks >>= 1;
+ if (bufblks < sectbb)
+ return -ENOMEM;
+ }
+
+ /* We may need to do a read at the start to fill in part of
+ * the buffer in the starting sector not covered by the first
+ * write below.
+ */
+ balign = round_down(start_block, sectbb);
+ if (balign != start_block) {
+ error = xlog_bread_noalign(log, start_block, 1, bp);
+ if (error)
+ goto out_put_bp;
+
+ j = start_block - balign;
+ }
+
+ for (i = start_block; i < end_block; i += bufblks) {
+ int bcount, endcount;
+
+ bcount = min(bufblks, end_block - start_block);
+ endcount = bcount - j;
+
+ /* We may need to do a read at the end to fill in part of
+ * the buffer in the final sector not covered by the write.
+ * If this is the same sector as the above read, skip it.
+ */
+ ealign = round_down(end_block, sectbb);
+ if (j == 0 && (start_block + endcount > ealign)) {
+ offset = bp->b_addr + BBTOB(ealign - start_block);
+ error = xlog_bread_offset(log, ealign, sectbb,
+ bp, offset);
+ if (error)
+ break;
+
+ }
+
+ offset = xlog_align(log, start_block, endcount, bp);
+ for (; j < endcount; j++) {
+ xlog_add_record(log, offset, cycle, i+j,
+ tail_cycle, tail_block);
+ offset += BBSIZE;
+ }
+ error = xlog_bwrite(log, start_block, endcount, bp);
+ if (error)
+ break;
+ start_block += endcount;
+ j = 0;
+ }
+
+ out_put_bp:
+ xlog_put_bp(bp);
+ return error;
+}
+
+/*
+ * This routine is called to blow away any incomplete log writes out
+ * in front of the log head. We do this so that we won't become confused
+ * if we come up, write only a little bit more, and then crash again.
+ * If we leave the partial log records out there, this situation could
+ * cause us to think those partial writes are valid blocks since they
+ * have the current cycle number. We get rid of them by overwriting them
+ * with empty log records with the old cycle number rather than the
+ * current one.
+ *
+ * The tail lsn is passed in rather than taken from
+ * the log so that we will not write over the unmount record after a
+ * clean unmount in a 512 block log. Doing so would leave the log without
+ * any valid log records in it until a new one was written. If we crashed
+ * during that time we would not be able to recover.
+ */
+STATIC int
+xlog_clear_stale_blocks(
+ struct xlog *log,
+ xfs_lsn_t tail_lsn)
+{
+ int tail_cycle, head_cycle;
+ int tail_block, head_block;
+ int tail_distance, max_distance;
+ int distance;
+ int error;
+
+ tail_cycle = CYCLE_LSN(tail_lsn);
+ tail_block = BLOCK_LSN(tail_lsn);
+ head_cycle = log->l_curr_cycle;
+ head_block = log->l_curr_block;
+
+ /*
+ * Figure out the distance between the new head of the log
+ * and the tail. We want to write over any blocks beyond the
+ * head that we may have written just before the crash, but
+ * we don't want to overwrite the tail of the log.
+ */
+ if (head_cycle == tail_cycle) {
+ /*
+ * The tail is behind the head in the physical log,
+ * so the distance from the head to the tail is the
+ * distance from the head to the end of the log plus
+ * the distance from the beginning of the log to the
+ * tail.
+ */
+ if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
+ XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
+ XFS_ERRLEVEL_LOW, log->l_mp);
+ return -EFSCORRUPTED;
+ }
+ tail_distance = tail_block + (log->l_logBBsize - head_block);
+ } else {
+ /*
+ * The head is behind the tail in the physical log,
+ * so the distance from the head to the tail is just
+ * the tail block minus the head block.
+ */
+ if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
+ XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
+ XFS_ERRLEVEL_LOW, log->l_mp);
+ return -EFSCORRUPTED;
+ }
+ tail_distance = tail_block - head_block;
+ }
+
+ /*
+ * If the head is right up against the tail, we can't clear
+ * anything.
+ */
+ if (tail_distance <= 0) {
+ ASSERT(tail_distance == 0);
+ return 0;
+ }
+
+ max_distance = XLOG_TOTAL_REC_SHIFT(log);
+ /*
+ * Take the smaller of the maximum amount of outstanding I/O
+ * we could have and the distance to the tail to clear out.
+ * We take the smaller so that we don't overwrite the tail and
+ * we don't waste all day writing from the head to the tail
+ * for no reason.
+ */
+ max_distance = min(max_distance, tail_distance);
+
+ if ((head_block + max_distance) <= log->l_logBBsize) {
+ /*
+ * We can stomp all the blocks we need to without
+ * wrapping around the end of the log. Just do it
+ * in a single write. Use the cycle number of the
+ * current cycle minus one so that the log will look like:
+ * n ... | n - 1 ...
+ */
+ error = xlog_write_log_records(log, (head_cycle - 1),
+ head_block, max_distance, tail_cycle,
+ tail_block);
+ if (error)
+ return error;
+ } else {
+ /*
+ * We need to wrap around the end of the physical log in
+ * order to clear all the blocks. Do it in two separate
+ * I/Os. The first write should be from the head to the
+ * end of the physical log, and it should use the current
+ * cycle number minus one just like above.
+ */
+ distance = log->l_logBBsize - head_block;
+ error = xlog_write_log_records(log, (head_cycle - 1),
+ head_block, distance, tail_cycle,
+ tail_block);
+
+ if (error)
+ return error;
+
+ /*
+ * Now write the blocks at the start of the physical log.
+ * This writes the remainder of the blocks we want to clear.
+ * It uses the current cycle number since we're now on the
+ * same cycle as the head so that we get:
+ * n ... n ... | n - 1 ...
+ * ^^^^^ blocks we're writing
+ */
+ distance = max_distance - (log->l_logBBsize - head_block);
+ error = xlog_write_log_records(log, head_cycle, 0, distance,
+ tail_cycle, tail_block);
+ if (error)
+ return error;
+ }
+
+ return 0;
+}
+
+/******************************************************************************
+ *
+ * Log recover routines
+ *
+ ******************************************************************************
+ */
+
+/*
+ * Sort the log items in the transaction.
+ *
+ * The ordering constraints are defined by the inode allocation and unlink
+ * behaviour. The rules are:
+ *
+ * 1. Every item is only logged once in a given transaction. Hence it
+ * represents the last logged state of the item. Hence ordering is
+ * dependent on the order in which operations need to be performed so
+ * required initial conditions are always met.
+ *
+ * 2. Cancelled buffers are recorded in pass 1 in a separate table and
+ * there's nothing to replay from them so we can simply cull them
+ * from the transaction. However, we can't do that until after we've
+ * replayed all the other items because they may be dependent on the
+ * cancelled buffer and replaying the cancelled buffer can remove it
+ * form the cancelled buffer table. Hence they have tobe done last.
+ *
+ * 3. Inode allocation buffers must be replayed before inode items that
+ * read the buffer and replay changes into it. For filesystems using the
+ * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
+ * treated the same as inode allocation buffers as they create and
+ * initialise the buffers directly.
+ *
+ * 4. Inode unlink buffers must be replayed after inode items are replayed.
+ * This ensures that inodes are completely flushed to the inode buffer
+ * in a "free" state before we remove the unlinked inode list pointer.
+ *
+ * Hence the ordering needs to be inode allocation buffers first, inode items
+ * second, inode unlink buffers third and cancelled buffers last.
+ *
+ * But there's a problem with that - we can't tell an inode allocation buffer
+ * apart from a regular buffer, so we can't separate them. We can, however,
+ * tell an inode unlink buffer from the others, and so we can separate them out
+ * from all the other buffers and move them to last.
+ *
+ * Hence, 4 lists, in order from head to tail:
+ * - buffer_list for all buffers except cancelled/inode unlink buffers
+ * - item_list for all non-buffer items
+ * - inode_buffer_list for inode unlink buffers
+ * - cancel_list for the cancelled buffers
+ *
+ * Note that we add objects to the tail of the lists so that first-to-last
+ * ordering is preserved within the lists. Adding objects to the head of the
+ * list means when we traverse from the head we walk them in last-to-first
+ * order. For cancelled buffers and inode unlink buffers this doesn't matter,
+ * but for all other items there may be specific ordering that we need to
+ * preserve.
+ */
+STATIC int
+xlog_recover_reorder_trans(
+ struct xlog *log,
+ struct xlog_recover *trans,
+ int pass)
+{
+ xlog_recover_item_t *item, *n;
+ int error = 0;
+ LIST_HEAD(sort_list);
+ LIST_HEAD(cancel_list);
+ LIST_HEAD(buffer_list);
+ LIST_HEAD(inode_buffer_list);
+ LIST_HEAD(inode_list);
+
+ list_splice_init(&trans->r_itemq, &sort_list);
+ list_for_each_entry_safe(item, n, &sort_list, ri_list) {
+ xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
+
+ switch (ITEM_TYPE(item)) {
+ case XFS_LI_ICREATE:
+ list_move_tail(&item->ri_list, &buffer_list);
+ break;
+ case XFS_LI_BUF:
+ if (buf_f->blf_flags & XFS_BLF_CANCEL) {
+ trace_xfs_log_recover_item_reorder_head(log,
+ trans, item, pass);
+ list_move(&item->ri_list, &cancel_list);
+ break;
+ }
+ if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
+ list_move(&item->ri_list, &inode_buffer_list);
+ break;
+ }
+ list_move_tail(&item->ri_list, &buffer_list);
+ break;
+ case XFS_LI_INODE:
+ case XFS_LI_DQUOT:
+ case XFS_LI_QUOTAOFF:
+ case XFS_LI_EFD:
+ case XFS_LI_EFI:
+ case XFS_LI_RUI:
+ case XFS_LI_RUD:
+ case XFS_LI_CUI:
+ case XFS_LI_CUD:
+ case XFS_LI_BUI:
+ case XFS_LI_BUD:
+ trace_xfs_log_recover_item_reorder_tail(log,
+ trans, item, pass);
+ list_move_tail(&item->ri_list, &inode_list);
+ break;
+ default:
+ xfs_warn(log->l_mp,
+ "%s: unrecognized type of log operation",
+ __func__);
+ ASSERT(0);
+ /*
+ * return the remaining items back to the transaction
+ * item list so they can be freed in caller.
+ */
+ if (!list_empty(&sort_list))
+ list_splice_init(&sort_list, &trans->r_itemq);
+ error = -EIO;
+ goto out;
+ }
+ }
+out:
+ ASSERT(list_empty(&sort_list));
+ if (!list_empty(&buffer_list))
+ list_splice(&buffer_list, &trans->r_itemq);
+ if (!list_empty(&inode_list))
+ list_splice_tail(&inode_list, &trans->r_itemq);
+ if (!list_empty(&inode_buffer_list))
+ list_splice_tail(&inode_buffer_list, &trans->r_itemq);
+ if (!list_empty(&cancel_list))
+ list_splice_tail(&cancel_list, &trans->r_itemq);
+ return error;
+}
+
+/*
+ * Build up the table of buf cancel records so that we don't replay
+ * cancelled data in the second pass. For buffer records that are
+ * not cancel records, there is nothing to do here so we just return.
+ *
+ * If we get a cancel record which is already in the table, this indicates
+ * that the buffer was cancelled multiple times. In order to ensure
+ * that during pass 2 we keep the record in the table until we reach its
+ * last occurrence in the log, we keep a reference count in the cancel
+ * record in the table to tell us how many times we expect to see this
+ * record during the second pass.
+ */
+STATIC int
+xlog_recover_buffer_pass1(
+ struct xlog *log,
+ struct xlog_recover_item *item)
+{
+ xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
+ struct list_head *bucket;
+ struct xfs_buf_cancel *bcp;
+
+ /*
+ * If this isn't a cancel buffer item, then just return.
+ */
+ if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
+ trace_xfs_log_recover_buf_not_cancel(log, buf_f);
+ return 0;
+ }
+
+ /*
+ * Insert an xfs_buf_cancel record into the hash table of them.
+ * If there is already an identical record, bump its reference count.
+ */
+ bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
+ list_for_each_entry(bcp, bucket, bc_list) {
+ if (bcp->bc_blkno == buf_f->blf_blkno &&
+ bcp->bc_len == buf_f->blf_len) {
+ bcp->bc_refcount++;
+ trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
+ return 0;
+ }
+ }
+
+ bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
+ bcp->bc_blkno = buf_f->blf_blkno;
+ bcp->bc_len = buf_f->blf_len;
+ bcp->bc_refcount = 1;
+ list_add_tail(&bcp->bc_list, bucket);
+
+ trace_xfs_log_recover_buf_cancel_add(log, buf_f);
+ return 0;
+}
+
+/*
+ * Check to see whether the buffer being recovered has a corresponding
+ * entry in the buffer cancel record table. If it is, return the cancel
+ * buffer structure to the caller.
+ */
+STATIC struct xfs_buf_cancel *
+xlog_peek_buffer_cancelled(
+ struct xlog *log,
+ xfs_daddr_t blkno,
+ uint len,
+ unsigned short flags)
+{
+ struct list_head *bucket;
+ struct xfs_buf_cancel *bcp;
+
+ if (!log->l_buf_cancel_table) {
+ /* empty table means no cancelled buffers in the log */
+ ASSERT(!(flags & XFS_BLF_CANCEL));
+ return NULL;
+ }
+
+ bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
+ list_for_each_entry(bcp, bucket, bc_list) {
+ if (bcp->bc_blkno == blkno && bcp->bc_len == len)
+ return bcp;
+ }
+
+ /*
+ * We didn't find a corresponding entry in the table, so return 0 so
+ * that the buffer is NOT cancelled.
+ */
+ ASSERT(!(flags & XFS_BLF_CANCEL));
+ return NULL;
+}
+
+/*
+ * If the buffer is being cancelled then return 1 so that it will be cancelled,
+ * otherwise return 0. If the buffer is actually a buffer cancel item
+ * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
+ * table and remove it from the table if this is the last reference.
+ *
+ * We remove the cancel record from the table when we encounter its last
+ * occurrence in the log so that if the same buffer is re-used again after its
+ * last cancellation we actually replay the changes made at that point.
+ */
+STATIC int
+xlog_check_buffer_cancelled(
+ struct xlog *log,
+ xfs_daddr_t blkno,
+ uint len,
+ unsigned short flags)
+{
+ struct xfs_buf_cancel *bcp;
+
+ bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
+ if (!bcp)
+ return 0;
+
+ /*
+ * We've go a match, so return 1 so that the recovery of this buffer
+ * is cancelled. If this buffer is actually a buffer cancel log
+ * item, then decrement the refcount on the one in the table and
+ * remove it if this is the last reference.
+ */
+ if (flags & XFS_BLF_CANCEL) {
+ if (--bcp->bc_refcount == 0) {
+ list_del(&bcp->bc_list);
+ kmem_free(bcp);
+ }
+ }
+ return 1;
+}
+
+/*
+ * Perform recovery for a buffer full of inodes. In these buffers, the only
+ * data which should be recovered is that which corresponds to the
+ * di_next_unlinked pointers in the on disk inode structures. The rest of the
+ * data for the inodes is always logged through the inodes themselves rather
+ * than the inode buffer and is recovered in xlog_recover_inode_pass2().
+ *
+ * The only time when buffers full of inodes are fully recovered is when the
+ * buffer is full of newly allocated inodes. In this case the buffer will
+ * not be marked as an inode buffer and so will be sent to
+ * xlog_recover_do_reg_buffer() below during recovery.
+ */
+STATIC int
+xlog_recover_do_inode_buffer(
+ struct xfs_mount *mp,
+ xlog_recover_item_t *item,
+ struct xfs_buf *bp,
+ xfs_buf_log_format_t *buf_f)
+{
+ int i;
+ int item_index = 0;
+ int bit = 0;
+ int nbits = 0;
+ int reg_buf_offset = 0;
+ int reg_buf_bytes = 0;
+ int next_unlinked_offset;
+ int inodes_per_buf;
+ xfs_agino_t *logged_nextp;
+ xfs_agino_t *buffer_nextp;
+
+ trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
+
+ /*
+ * Post recovery validation only works properly on CRC enabled
+ * filesystems.
+ */
+ if (xfs_sb_version_hascrc(&mp->m_sb))
+ bp->b_ops = &xfs_inode_buf_ops;
+
+ inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
+ for (i = 0; i < inodes_per_buf; i++) {
+ next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
+ offsetof(xfs_dinode_t, di_next_unlinked);
+
+ while (next_unlinked_offset >=
+ (reg_buf_offset + reg_buf_bytes)) {
+ /*
+ * The next di_next_unlinked field is beyond
+ * the current logged region. Find the next
+ * logged region that contains or is beyond
+ * the current di_next_unlinked field.
+ */
+ bit += nbits;
+ bit = xfs_next_bit(buf_f->blf_data_map,
+ buf_f->blf_map_size, bit);
+
+ /*
+ * If there are no more logged regions in the
+ * buffer, then we're done.
+ */
+ if (bit == -1)
+ return 0;
+
+ nbits = xfs_contig_bits(buf_f->blf_data_map,
+ buf_f->blf_map_size, bit);
+ ASSERT(nbits > 0);
+ reg_buf_offset = bit << XFS_BLF_SHIFT;
+ reg_buf_bytes = nbits << XFS_BLF_SHIFT;
+ item_index++;
+ }
+
+ /*
+ * If the current logged region starts after the current
+ * di_next_unlinked field, then move on to the next
+ * di_next_unlinked field.
+ */
+ if (next_unlinked_offset < reg_buf_offset)
+ continue;
+
+ ASSERT(item->ri_buf[item_index].i_addr != NULL);
+ ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
+ ASSERT((reg_buf_offset + reg_buf_bytes) <=
+ BBTOB(bp->b_io_length));
+
+ /*
+ * The current logged region contains a copy of the
+ * current di_next_unlinked field. Extract its value
+ * and copy it to the buffer copy.
+ */
+ logged_nextp = item->ri_buf[item_index].i_addr +
+ next_unlinked_offset - reg_buf_offset;
+ if (unlikely(*logged_nextp == 0)) {
+ xfs_alert(mp,
+ "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
+ "Trying to replay bad (0) inode di_next_unlinked field.",
+ item, bp);
+ XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
+ XFS_ERRLEVEL_LOW, mp);
+ return -EFSCORRUPTED;
+ }
+
+ buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
+ *buffer_nextp = *logged_nextp;
+
+ /*
+ * If necessary, recalculate the CRC in the on-disk inode. We
+ * have to leave the inode in a consistent state for whoever
+ * reads it next....
+ */
+ xfs_dinode_calc_crc(mp,
+ xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
+
+ }
+
+ return 0;
+}
+
+/*
+ * V5 filesystems know the age of the buffer on disk being recovered. We can
+ * have newer objects on disk than we are replaying, and so for these cases we
+ * don't want to replay the current change as that will make the buffer contents
+ * temporarily invalid on disk.
+ *
+ * The magic number might not match the buffer type we are going to recover
+ * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
+ * extract the LSN of the existing object in the buffer based on it's current
+ * magic number. If we don't recognise the magic number in the buffer, then
+ * return a LSN of -1 so that the caller knows it was an unrecognised block and
+ * so can recover the buffer.
+ *
+ * Note: we cannot rely solely on magic number matches to determine that the
+ * buffer has a valid LSN - we also need to verify that it belongs to this
+ * filesystem, so we need to extract the object's LSN and compare it to that
+ * which we read from the superblock. If the UUIDs don't match, then we've got a
+ * stale metadata block from an old filesystem instance that we need to recover
+ * over the top of.
+ */
+static xfs_lsn_t
+xlog_recover_get_buf_lsn(
+ struct xfs_mount *mp,
+ struct xfs_buf *bp)
+{
+ uint32_t magic32;
+ uint16_t magic16;
+ uint16_t magicda;
+ void *blk = bp->b_addr;
+ uuid_t *uuid;
+ xfs_lsn_t lsn = -1;
+
+ /* v4 filesystems always recover immediately */
+ if (!xfs_sb_version_hascrc(&mp->m_sb))
+ goto recover_immediately;
+
+ magic32 = be32_to_cpu(*(__be32 *)blk);
+ switch (magic32) {
+ case XFS_ABTB_CRC_MAGIC:
+ case XFS_ABTC_CRC_MAGIC:
+ case XFS_ABTB_MAGIC:
+ case XFS_ABTC_MAGIC:
+ case XFS_RMAP_CRC_MAGIC:
+ case XFS_REFC_CRC_MAGIC:
+ case XFS_IBT_CRC_MAGIC:
+ case XFS_IBT_MAGIC: {
+ struct xfs_btree_block *btb = blk;
+
+ lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
+ uuid = &btb->bb_u.s.bb_uuid;
+ break;
+ }
+ case XFS_BMAP_CRC_MAGIC:
+ case XFS_BMAP_MAGIC: {
+ struct xfs_btree_block *btb = blk;
+
+ lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
+ uuid = &btb->bb_u.l.bb_uuid;
+ break;
+ }
+ case XFS_AGF_MAGIC:
+ lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
+ uuid = &((struct xfs_agf *)blk)->agf_uuid;
+ break;
+ case XFS_AGFL_MAGIC:
+ lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
+ uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
+ break;
+ case XFS_AGI_MAGIC:
+ lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
+ uuid = &((struct xfs_agi *)blk)->agi_uuid;
+ break;
+ case XFS_SYMLINK_MAGIC:
+ lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
+ uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
+ break;
+ case XFS_DIR3_BLOCK_MAGIC:
+ case XFS_DIR3_DATA_MAGIC:
+ case XFS_DIR3_FREE_MAGIC:
+ lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
+ uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
+ break;
+ case XFS_ATTR3_RMT_MAGIC:
+ /*
+ * Remote attr blocks are written synchronously, rather than
+ * being logged. That means they do not contain a valid LSN
+ * (i.e. transactionally ordered) in them, and hence any time we
+ * see a buffer to replay over the top of a remote attribute
+ * block we should simply do so.
+ */
+ goto recover_immediately;
+ case XFS_SB_MAGIC:
+ /*
+ * superblock uuids are magic. We may or may not have a
+ * sb_meta_uuid on disk, but it will be set in the in-core
+ * superblock. We set the uuid pointer for verification
+ * according to the superblock feature mask to ensure we check
+ * the relevant UUID in the superblock.
+ */
+ lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
+ if (xfs_sb_version_hasmetauuid(&mp->m_sb))
+ uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
+ else
+ uuid = &((struct xfs_dsb *)blk)->sb_uuid;
+ break;
+ default:
+ break;
+ }
+
+ if (lsn != (xfs_lsn_t)-1) {
+ if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
+ goto recover_immediately;
+ return lsn;
+ }
+
+ magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
+ switch (magicda) {
+ case XFS_DIR3_LEAF1_MAGIC:
+ case XFS_DIR3_LEAFN_MAGIC:
+ case XFS_DA3_NODE_MAGIC:
+ lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
+ uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
+ break;
+ default:
+ break;
+ }
+
+ if (lsn != (xfs_lsn_t)-1) {
+ if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
+ goto recover_immediately;
+ return lsn;
+ }
+
+ /*
+ * We do individual object checks on dquot and inode buffers as they
+ * have their own individual LSN records. Also, we could have a stale
+ * buffer here, so we have to at least recognise these buffer types.
+ *
+ * A notd complexity here is inode unlinked list processing - it logs
+ * the inode directly in the buffer, but we don't know which inodes have
+ * been modified, and there is no global buffer LSN. Hence we need to
+ * recover all inode buffer types immediately. This problem will be
+ * fixed by logical logging of the unlinked list modifications.
+ */
+ magic16 = be16_to_cpu(*(__be16 *)blk);
+ switch (magic16) {
+ case XFS_DQUOT_MAGIC:
+ case XFS_DINODE_MAGIC:
+ goto recover_immediately;
+ default:
+ break;
+ }
+
+ /* unknown buffer contents, recover immediately */
+
+recover_immediately:
+ return (xfs_lsn_t)-1;
+
+}
+
+/*
+ * Validate the recovered buffer is of the correct type and attach the
+ * appropriate buffer operations to them for writeback. Magic numbers are in a
+ * few places:
+ * the first 16 bits of the buffer (inode buffer, dquot buffer),
+ * the first 32 bits of the buffer (most blocks),
+ * inside a struct xfs_da_blkinfo at the start of the buffer.
+ */
+static void
+xlog_recover_validate_buf_type(
+ struct xfs_mount *mp,
+ struct xfs_buf *bp,
+ xfs_buf_log_format_t *buf_f,
+ xfs_lsn_t current_lsn)
+{
+ struct xfs_da_blkinfo *info = bp->b_addr;
+ uint32_t magic32;
+ uint16_t magic16;
+ uint16_t magicda;
+ char *warnmsg = NULL;
+
+ /*
+ * We can only do post recovery validation on items on CRC enabled
+ * fielsystems as we need to know when the buffer was written to be able
+ * to determine if we should have replayed the item. If we replay old
+ * metadata over a newer buffer, then it will enter a temporarily
+ * inconsistent state resulting in verification failures. Hence for now
+ * just avoid the verification stage for non-crc filesystems
+ */
+ if (!xfs_sb_version_hascrc(&mp->m_sb))
+ return;
+
+ magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
+ magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
+ magicda = be16_to_cpu(info->magic);
+ switch (xfs_blft_from_flags(buf_f)) {
+ case XFS_BLFT_BTREE_BUF:
+ switch (magic32) {
+ case XFS_ABTB_CRC_MAGIC:
+ case XFS_ABTC_CRC_MAGIC:
+ case XFS_ABTB_MAGIC:
+ case XFS_ABTC_MAGIC:
+ bp->b_ops = &xfs_allocbt_buf_ops;
+ break;
+ case XFS_IBT_CRC_MAGIC:
+ case XFS_FIBT_CRC_MAGIC:
+ case XFS_IBT_MAGIC:
+ case XFS_FIBT_MAGIC:
+ bp->b_ops = &xfs_inobt_buf_ops;
+ break;
+ case XFS_BMAP_CRC_MAGIC:
+ case XFS_BMAP_MAGIC:
+ bp->b_ops = &xfs_bmbt_buf_ops;
+ break;
+ case XFS_RMAP_CRC_MAGIC:
+ bp->b_ops = &xfs_rmapbt_buf_ops;
+ break;
+ case XFS_REFC_CRC_MAGIC:
+ bp->b_ops = &xfs_refcountbt_buf_ops;
+ break;
+ default:
+ warnmsg = "Bad btree block magic!";
+ break;
+ }
+ break;
+ case XFS_BLFT_AGF_BUF:
+ if (magic32 != XFS_AGF_MAGIC) {
+ warnmsg = "Bad AGF block magic!";
+ break;
+ }
+ bp->b_ops = &xfs_agf_buf_ops;
+ break;
+ case XFS_BLFT_AGFL_BUF:
+ if (magic32 != XFS_AGFL_MAGIC) {
+ warnmsg = "Bad AGFL block magic!";
+ break;
+ }
+ bp->b_ops = &xfs_agfl_buf_ops;
+ break;
+ case XFS_BLFT_AGI_BUF:
+ if (magic32 != XFS_AGI_MAGIC) {
+ warnmsg = "Bad AGI block magic!";
+ break;
+ }
+ bp->b_ops = &xfs_agi_buf_ops;
+ break;
+ case XFS_BLFT_UDQUOT_BUF:
+ case XFS_BLFT_PDQUOT_BUF:
+ case XFS_BLFT_GDQUOT_BUF:
+#ifdef CONFIG_XFS_QUOTA
+ if (magic16 != XFS_DQUOT_MAGIC) {
+ warnmsg = "Bad DQUOT block magic!";
+ break;
+ }
+ bp->b_ops = &xfs_dquot_buf_ops;
+#else
+ xfs_alert(mp,
+ "Trying to recover dquots without QUOTA support built in!");
+ ASSERT(0);
+#endif
+ break;
+ case XFS_BLFT_DINO_BUF:
+ if (magic16 != XFS_DINODE_MAGIC) {
+ warnmsg = "Bad INODE block magic!";
+ break;
+ }
+ bp->b_ops = &xfs_inode_buf_ops;
+ break;
+ case XFS_BLFT_SYMLINK_BUF:
+ if (magic32 != XFS_SYMLINK_MAGIC) {
+ warnmsg = "Bad symlink block magic!";
+ break;
+ }
+ bp->b_ops = &xfs_symlink_buf_ops;
+ break;
+ case XFS_BLFT_DIR_BLOCK_BUF:
+ if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
+ magic32 != XFS_DIR3_BLOCK_MAGIC) {
+ warnmsg = "Bad dir block magic!";
+ break;
+ }
+ bp->b_ops = &xfs_dir3_block_buf_ops;
+ break;
+ case XFS_BLFT_DIR_DATA_BUF:
+ if (magic32 != XFS_DIR2_DATA_MAGIC &&
+ magic32 != XFS_DIR3_DATA_MAGIC) {
+ warnmsg = "Bad dir data magic!";
+ break;
+ }
+ bp->b_ops = &xfs_dir3_data_buf_ops;
+ break;
+ case XFS_BLFT_DIR_FREE_BUF:
+ if (magic32 != XFS_DIR2_FREE_MAGIC &&
+ magic32 != XFS_DIR3_FREE_MAGIC) {
+ warnmsg = "Bad dir3 free magic!";
+ break;
+ }
+ bp->b_ops = &xfs_dir3_free_buf_ops;
+ break;
+ case XFS_BLFT_DIR_LEAF1_BUF:
+ if (magicda != XFS_DIR2_LEAF1_MAGIC &&
+ magicda != XFS_DIR3_LEAF1_MAGIC) {
+ warnmsg = "Bad dir leaf1 magic!";
+ break;
+ }
+ bp->b_ops = &xfs_dir3_leaf1_buf_ops;
+ break;
+ case XFS_BLFT_DIR_LEAFN_BUF:
+ if (magicda != XFS_DIR2_LEAFN_MAGIC &&
+ magicda != XFS_DIR3_LEAFN_MAGIC) {
+ warnmsg = "Bad dir leafn magic!";
+ break;
+ }
+ bp->b_ops = &xfs_dir3_leafn_buf_ops;
+ break;
+ case XFS_BLFT_DA_NODE_BUF:
+ if (magicda != XFS_DA_NODE_MAGIC &&
+ magicda != XFS_DA3_NODE_MAGIC) {
+ warnmsg = "Bad da node magic!";
+ break;
+ }
+ bp->b_ops = &xfs_da3_node_buf_ops;
+ break;
+ case XFS_BLFT_ATTR_LEAF_BUF:
+ if (magicda != XFS_ATTR_LEAF_MAGIC &&
+ magicda != XFS_ATTR3_LEAF_MAGIC) {
+ warnmsg = "Bad attr leaf magic!";
+ break;
+ }
+ bp->b_ops = &xfs_attr3_leaf_buf_ops;
+ break;
+ case XFS_BLFT_ATTR_RMT_BUF:
+ if (magic32 != XFS_ATTR3_RMT_MAGIC) {
+ warnmsg = "Bad attr remote magic!";
+ break;
+ }
+ bp->b_ops = &xfs_attr3_rmt_buf_ops;
+ break;
+ case XFS_BLFT_SB_BUF:
+ if (magic32 != XFS_SB_MAGIC) {
+ warnmsg = "Bad SB block magic!";
+ break;
+ }
+ bp->b_ops = &xfs_sb_buf_ops;
+ break;
+#ifdef CONFIG_XFS_RT
+ case XFS_BLFT_RTBITMAP_BUF:
+ case XFS_BLFT_RTSUMMARY_BUF:
+ /* no magic numbers for verification of RT buffers */
+ bp->b_ops = &xfs_rtbuf_ops;
+ break;
+#endif /* CONFIG_XFS_RT */
+ default:
+ xfs_warn(mp, "Unknown buffer type %d!",
+ xfs_blft_from_flags(buf_f));
+ break;
+ }
+
+ /*
+ * Nothing else to do in the case of a NULL current LSN as this means
+ * the buffer is more recent than the change in the log and will be
+ * skipped.
+ */
+ if (current_lsn == NULLCOMMITLSN)
+ return;
+
+ if (warnmsg) {
+ xfs_warn(mp, warnmsg);
+ ASSERT(0);
+ }
+
+ /*
+ * We must update the metadata LSN of the buffer as it is written out to
+ * ensure that older transactions never replay over this one and corrupt
+ * the buffer. This can occur if log recovery is interrupted at some
+ * point after the current transaction completes, at which point a
+ * subsequent mount starts recovery from the beginning.
+ *
+ * Write verifiers update the metadata LSN from log items attached to
+ * the buffer. Therefore, initialize a bli purely to carry the LSN to
+ * the verifier. We'll clean it up in our ->iodone() callback.
+ */
+ if (bp->b_ops) {
+ struct xfs_buf_log_item *bip;
+
+ ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
+ bp->b_iodone = xlog_recover_iodone;
+ xfs_buf_item_init(bp, mp);
+ bip = bp->b_log_item;
+ bip->bli_item.li_lsn = current_lsn;
+ }
+}
+
+/*
+ * Perform a 'normal' buffer recovery. Each logged region of the
+ * buffer should be copied over the corresponding region in the
+ * given buffer. The bitmap in the buf log format structure indicates
+ * where to place the logged data.
+ */
+STATIC void
+xlog_recover_do_reg_buffer(
+ struct xfs_mount *mp,
+ xlog_recover_item_t *item,
+ struct xfs_buf *bp,
+ xfs_buf_log_format_t *buf_f,
+ xfs_lsn_t current_lsn)
+{
+ int i;
+ int bit;
+ int nbits;
+ xfs_failaddr_t fa;
+
+ trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
+
+ bit = 0;
+ i = 1; /* 0 is the buf format structure */
+ while (1) {
+ bit = xfs_next_bit(buf_f->blf_data_map,
+ buf_f->blf_map_size, bit);
+ if (bit == -1)
+ break;
+ nbits = xfs_contig_bits(buf_f->blf_data_map,
+ buf_f->blf_map_size, bit);
+ ASSERT(nbits > 0);
+ ASSERT(item->ri_buf[i].i_addr != NULL);
+ ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
+ ASSERT(BBTOB(bp->b_io_length) >=
+ ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
+
+ /*
+ * The dirty regions logged in the buffer, even though
+ * contiguous, may span multiple chunks. This is because the
+ * dirty region may span a physical page boundary in a buffer
+ * and hence be split into two separate vectors for writing into
+ * the log. Hence we need to trim nbits back to the length of
+ * the current region being copied out of the log.
+ */
+ if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
+ nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
+
+ /*
+ * Do a sanity check if this is a dquot buffer. Just checking
+ * the first dquot in the buffer should do. XXXThis is
+ * probably a good thing to do for other buf types also.
+ */
+ fa = NULL;
+ if (buf_f->blf_flags &
+ (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
+ if (item->ri_buf[i].i_addr == NULL) {
+ xfs_alert(mp,
+ "XFS: NULL dquot in %s.", __func__);
+ goto next;
+ }
+ if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
+ xfs_alert(mp,
+ "XFS: dquot too small (%d) in %s.",
+ item->ri_buf[i].i_len, __func__);
+ goto next;
+ }
+ fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr,
+ -1, 0);
+ if (fa) {
+ xfs_alert(mp,
+ "dquot corrupt at %pS trying to replay into block 0x%llx",
+ fa, bp->b_bn);
+ goto next;
+ }
+ }
+
+ memcpy(xfs_buf_offset(bp,
+ (uint)bit << XFS_BLF_SHIFT), /* dest */
+ item->ri_buf[i].i_addr, /* source */
+ nbits<<XFS_BLF_SHIFT); /* length */
+ next:
+ i++;
+ bit += nbits;
+ }
+
+ /* Shouldn't be any more regions */
+ ASSERT(i == item->ri_total);
+
+ xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
+}
+
+/*
+ * Perform a dquot buffer recovery.
+ * Simple algorithm: if we have found a QUOTAOFF log item of the same type
+ * (ie. USR or GRP), then just toss this buffer away; don't recover it.
+ * Else, treat it as a regular buffer and do recovery.
+ *
+ * Return false if the buffer was tossed and true if we recovered the buffer to
+ * indicate to the caller if the buffer needs writing.
+ */
+STATIC bool
+xlog_recover_do_dquot_buffer(
+ struct xfs_mount *mp,
+ struct xlog *log,
+ struct xlog_recover_item *item,
+ struct xfs_buf *bp,
+ struct xfs_buf_log_format *buf_f)
+{
+ uint type;
+
+ trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
+
+ /*
+ * Filesystems are required to send in quota flags at mount time.
+ */
+ if (!mp->m_qflags)
+ return false;
+
+ type = 0;
+ if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
+ type |= XFS_DQ_USER;
+ if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
+ type |= XFS_DQ_PROJ;
+ if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
+ type |= XFS_DQ_GROUP;
+ /*
+ * This type of quotas was turned off, so ignore this buffer
+ */
+ if (log->l_quotaoffs_flag & type)
+ return false;
+
+ xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
+ return true;
+}
+
+/*
+ * This routine replays a modification made to a buffer at runtime.
+ * There are actually two types of buffer, regular and inode, which
+ * are handled differently. Inode buffers are handled differently
+ * in that we only recover a specific set of data from them, namely
+ * the inode di_next_unlinked fields. This is because all other inode
+ * data is actually logged via inode records and any data we replay
+ * here which overlaps that may be stale.
+ *
+ * When meta-data buffers are freed at run time we log a buffer item
+ * with the XFS_BLF_CANCEL bit set to indicate that previous copies
+ * of the buffer in the log should not be replayed at recovery time.
+ * This is so that if the blocks covered by the buffer are reused for
+ * file data before we crash we don't end up replaying old, freed
+ * meta-data into a user's file.
+ *
+ * To handle the cancellation of buffer log items, we make two passes
+ * over the log during recovery. During the first we build a table of
+ * those buffers which have been cancelled, and during the second we
+ * only replay those buffers which do not have corresponding cancel
+ * records in the table. See xlog_recover_buffer_pass[1,2] above
+ * for more details on the implementation of the table of cancel records.
+ */
+STATIC int
+xlog_recover_buffer_pass2(
+ struct xlog *log,
+ struct list_head *buffer_list,
+ struct xlog_recover_item *item,
+ xfs_lsn_t current_lsn)
+{
+ xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
+ xfs_mount_t *mp = log->l_mp;
+ xfs_buf_t *bp;
+ int error;
+ uint buf_flags;
+ xfs_lsn_t lsn;
+
+ /*
+ * In this pass we only want to recover all the buffers which have
+ * not been cancelled and are not cancellation buffers themselves.
+ */
+ if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
+ buf_f->blf_len, buf_f->blf_flags)) {
+ trace_xfs_log_recover_buf_cancel(log, buf_f);
+ return 0;
+ }
+
+ trace_xfs_log_recover_buf_recover(log, buf_f);
+
+ buf_flags = 0;
+ if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
+ buf_flags |= XBF_UNMAPPED;
+
+ bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
+ buf_flags, NULL);
+ if (!bp)
+ return -ENOMEM;
+ error = bp->b_error;
+ if (error) {
+ xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
+ goto out_release;
+ }
+
+ /*
+ * Recover the buffer only if we get an LSN from it and it's less than
+ * the lsn of the transaction we are replaying.
+ *
+ * Note that we have to be extremely careful of readahead here.
+ * Readahead does not attach verfiers to the buffers so if we don't
+ * actually do any replay after readahead because of the LSN we found
+ * in the buffer if more recent than that current transaction then we
+ * need to attach the verifier directly. Failure to do so can lead to
+ * future recovery actions (e.g. EFI and unlinked list recovery) can
+ * operate on the buffers and they won't get the verifier attached. This
+ * can lead to blocks on disk having the correct content but a stale
+ * CRC.
+ *
+ * It is safe to assume these clean buffers are currently up to date.
+ * If the buffer is dirtied by a later transaction being replayed, then
+ * the verifier will be reset to match whatever recover turns that
+ * buffer into.
+ */
+ lsn = xlog_recover_get_buf_lsn(mp, bp);
+ if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
+ trace_xfs_log_recover_buf_skip(log, buf_f);
+ xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
+ goto out_release;
+ }
+
+ if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
+ error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
+ if (error)
+ goto out_release;
+ } else if (buf_f->blf_flags &
+ (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
+ bool dirty;
+
+ dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
+ if (!dirty)
+ goto out_release;
+ } else {
+ xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
+ }
+
+ /*
+ * Perform delayed write on the buffer. Asynchronous writes will be
+ * slower when taking into account all the buffers to be flushed.
+ *
+ * Also make sure that only inode buffers with good sizes stay in
+ * the buffer cache. The kernel moves inodes in buffers of 1 block
+ * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
+ * buffers in the log can be a different size if the log was generated
+ * by an older kernel using unclustered inode buffers or a newer kernel
+ * running with a different inode cluster size. Regardless, if the
+ * the inode buffer size isn't max(blocksize, mp->m_inode_cluster_size)
+ * for *our* value of mp->m_inode_cluster_size, then we need to keep
+ * the buffer out of the buffer cache so that the buffer won't
+ * overlap with future reads of those inodes.
+ */
+ if (XFS_DINODE_MAGIC ==
+ be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
+ (BBTOB(bp->b_io_length) != max(log->l_mp->m_sb.sb_blocksize,
+ (uint32_t)log->l_mp->m_inode_cluster_size))) {
+ xfs_buf_stale(bp);
+ error = xfs_bwrite(bp);
+ } else {
+ ASSERT(bp->b_target->bt_mount == mp);
+ bp->b_iodone = xlog_recover_iodone;
+ xfs_buf_delwri_queue(bp, buffer_list);
+ }
+
+out_release:
+ xfs_buf_relse(bp);
+ return error;
+}
+
+/*
+ * Inode fork owner changes
+ *
+ * If we have been told that we have to reparent the inode fork, it's because an
+ * extent swap operation on a CRC enabled filesystem has been done and we are
+ * replaying it. We need to walk the BMBT of the appropriate fork and change the
+ * owners of it.
+ *
+ * The complexity here is that we don't have an inode context to work with, so
+ * after we've replayed the inode we need to instantiate one. This is where the
+ * fun begins.
+ *
+ * We are in the middle of log recovery, so we can't run transactions. That
+ * means we cannot use cache coherent inode instantiation via xfs_iget(), as
+ * that will result in the corresponding iput() running the inode through
+ * xfs_inactive(). If we've just replayed an inode core that changes the link
+ * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
+ * transactions (bad!).
+ *
+ * So, to avoid this, we instantiate an inode directly from the inode core we've
+ * just recovered. We have the buffer still locked, and all we really need to
+ * instantiate is the inode core and the forks being modified. We can do this
+ * manually, then run the inode btree owner change, and then tear down the
+ * xfs_inode without having to run any transactions at all.
+ *
+ * Also, because we don't have a transaction context available here but need to
+ * gather all the buffers we modify for writeback so we pass the buffer_list
+ * instead for the operation to use.
+ */
+
+STATIC int
+xfs_recover_inode_owner_change(
+ struct xfs_mount *mp,
+ struct xfs_dinode *dip,
+ struct xfs_inode_log_format *in_f,
+ struct list_head *buffer_list)
+{
+ struct xfs_inode *ip;
+ int error;
+
+ ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
+
+ ip = xfs_inode_alloc(mp, in_f->ilf_ino);
+ if (!ip)
+ return -ENOMEM;
+
+ /* instantiate the inode */
+ xfs_inode_from_disk(ip, dip);
+ ASSERT(ip->i_d.di_version >= 3);
+
+ error = xfs_iformat_fork(ip, dip);
+ if (error)
+ goto out_free_ip;
+
+ if (!xfs_inode_verify_forks(ip)) {
+ error = -EFSCORRUPTED;
+ goto out_free_ip;
+ }
+
+ if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
+ ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
+ error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
+ ip->i_ino, buffer_list);
+ if (error)
+ goto out_free_ip;
+ }
+
+ if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
+ ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
+ error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
+ ip->i_ino, buffer_list);
+ if (error)
+ goto out_free_ip;
+ }
+
+out_free_ip:
+ xfs_inode_free(ip);
+ return error;
+}
+
+STATIC int
+xlog_recover_inode_pass2(
+ struct xlog *log,
+ struct list_head *buffer_list,
+ struct xlog_recover_item *item,
+ xfs_lsn_t current_lsn)
+{
+ struct xfs_inode_log_format *in_f;
+ xfs_mount_t *mp = log->l_mp;
+ xfs_buf_t *bp;
+ xfs_dinode_t *dip;
+ int len;
+ char *src;
+ char *dest;
+ int error;
+ int attr_index;
+ uint fields;
+ struct xfs_log_dinode *ldip;
+ uint isize;
+ int need_free = 0;
+
+ if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
+ in_f = item->ri_buf[0].i_addr;
+ } else {
+ in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), KM_SLEEP);
+ need_free = 1;
+ error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
+ if (error)
+ goto error;
+ }
+
+ /*
+ * Inode buffers can be freed, look out for it,
+ * and do not replay the inode.
+ */
+ if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
+ in_f->ilf_len, 0)) {
+ error = 0;
+ trace_xfs_log_recover_inode_cancel(log, in_f);
+ goto error;
+ }
+ trace_xfs_log_recover_inode_recover(log, in_f);
+
+ bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
+ &xfs_inode_buf_ops);
+ if (!bp) {
+ error = -ENOMEM;
+ goto error;
+ }
+ error = bp->b_error;
+ if (error) {
+ xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
+ goto out_release;
+ }
+ ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
+ dip = xfs_buf_offset(bp, in_f->ilf_boffset);
+
+ /*
+ * Make sure the place we're flushing out to really looks
+ * like an inode!
+ */
+ if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
+ xfs_alert(mp,
+ "%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld",
+ __func__, dip, bp, in_f->ilf_ino);
+ XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
+ XFS_ERRLEVEL_LOW, mp);
+ error = -EFSCORRUPTED;
+ goto out_release;
+ }
+ ldip = item->ri_buf[1].i_addr;
+ if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
+ xfs_alert(mp,
+ "%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld",
+ __func__, item, in_f->ilf_ino);
+ XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
+ XFS_ERRLEVEL_LOW, mp);
+ error = -EFSCORRUPTED;
+ goto out_release;
+ }
+
+ /*
+ * If the inode has an LSN in it, recover the inode only if it's less
+ * than the lsn of the transaction we are replaying. Note: we still
+ * need to replay an owner change even though the inode is more recent
+ * than the transaction as there is no guarantee that all the btree
+ * blocks are more recent than this transaction, too.
+ */
+ if (dip->di_version >= 3) {
+ xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
+
+ if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
+ trace_xfs_log_recover_inode_skip(log, in_f);
+ error = 0;
+ goto out_owner_change;
+ }
+ }
+
+ /*
+ * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
+ * are transactional and if ordering is necessary we can determine that
+ * more accurately by the LSN field in the V3 inode core. Don't trust
+ * the inode versions we might be changing them here - use the
+ * superblock flag to determine whether we need to look at di_flushiter
+ * to skip replay when the on disk inode is newer than the log one
+ */
+ if (!xfs_sb_version_hascrc(&mp->m_sb) &&
+ ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
+ /*
+ * Deal with the wrap case, DI_MAX_FLUSH is less
+ * than smaller numbers
+ */
+ if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
+ ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
+ /* do nothing */
+ } else {
+ trace_xfs_log_recover_inode_skip(log, in_f);
+ error = 0;
+ goto out_release;
+ }
+ }
+
+ /* Take the opportunity to reset the flush iteration count */
+ ldip->di_flushiter = 0;
+
+ if (unlikely(S_ISREG(ldip->di_mode))) {
+ if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
+ (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
+ XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
+ XFS_ERRLEVEL_LOW, mp, ldip,
+ sizeof(*ldip));
+ xfs_alert(mp,
+ "%s: Bad regular inode log record, rec ptr "PTR_FMT", "
+ "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
+ __func__, item, dip, bp, in_f->ilf_ino);
+ error = -EFSCORRUPTED;
+ goto out_release;
+ }
+ } else if (unlikely(S_ISDIR(ldip->di_mode))) {
+ if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
+ (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
+ (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
+ XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
+ XFS_ERRLEVEL_LOW, mp, ldip,
+ sizeof(*ldip));
+ xfs_alert(mp,
+ "%s: Bad dir inode log record, rec ptr "PTR_FMT", "
+ "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
+ __func__, item, dip, bp, in_f->ilf_ino);
+ error = -EFSCORRUPTED;
+ goto out_release;
+ }
+ }
+ if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
+ XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
+ XFS_ERRLEVEL_LOW, mp, ldip,
+ sizeof(*ldip));
+ xfs_alert(mp,
+ "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
+ "dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld",
+ __func__, item, dip, bp, in_f->ilf_ino,
+ ldip->di_nextents + ldip->di_anextents,
+ ldip->di_nblocks);
+ error = -EFSCORRUPTED;
+ goto out_release;
+ }
+ if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
+ XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
+ XFS_ERRLEVEL_LOW, mp, ldip,
+ sizeof(*ldip));
+ xfs_alert(mp,
+ "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
+ "dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__,
+ item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
+ error = -EFSCORRUPTED;
+ goto out_release;
+ }
+ isize = xfs_log_dinode_size(ldip->di_version);
+ if (unlikely(item->ri_buf[1].i_len > isize)) {
+ XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
+ XFS_ERRLEVEL_LOW, mp, ldip,
+ sizeof(*ldip));
+ xfs_alert(mp,
+ "%s: Bad inode log record length %d, rec ptr "PTR_FMT,
+ __func__, item->ri_buf[1].i_len, item);
+ error = -EFSCORRUPTED;
+ goto out_release;
+ }
+
+ /* recover the log dinode inode into the on disk inode */
+ xfs_log_dinode_to_disk(ldip, dip);
+
+ fields = in_f->ilf_fields;
+ if (fields & XFS_ILOG_DEV)
+ xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
+
+ if (in_f->ilf_size == 2)
+ goto out_owner_change;
+ len = item->ri_buf[2].i_len;
+ src = item->ri_buf[2].i_addr;
+ ASSERT(in_f->ilf_size <= 4);
+ ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
+ ASSERT(!(fields & XFS_ILOG_DFORK) ||
+ (len == in_f->ilf_dsize));
+
+ switch (fields & XFS_ILOG_DFORK) {
+ case XFS_ILOG_DDATA:
+ case XFS_ILOG_DEXT:
+ memcpy(XFS_DFORK_DPTR(dip), src, len);
+ break;
+
+ case XFS_ILOG_DBROOT:
+ xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
+ (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
+ XFS_DFORK_DSIZE(dip, mp));
+ break;
+
+ default:
+ /*
+ * There are no data fork flags set.
+ */
+ ASSERT((fields & XFS_ILOG_DFORK) == 0);
+ break;
+ }
+
+ /*
+ * If we logged any attribute data, recover it. There may or
+ * may not have been any other non-core data logged in this
+ * transaction.
+ */
+ if (in_f->ilf_fields & XFS_ILOG_AFORK) {
+ if (in_f->ilf_fields & XFS_ILOG_DFORK) {
+ attr_index = 3;
+ } else {
+ attr_index = 2;
+ }
+ len = item->ri_buf[attr_index].i_len;
+ src = item->ri_buf[attr_index].i_addr;
+ ASSERT(len == in_f->ilf_asize);
+
+ switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
+ case XFS_ILOG_ADATA:
+ case XFS_ILOG_AEXT:
+ dest = XFS_DFORK_APTR(dip);
+ ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
+ memcpy(dest, src, len);
+ break;
+
+ case XFS_ILOG_ABROOT:
+ dest = XFS_DFORK_APTR(dip);
+ xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
+ len, (xfs_bmdr_block_t*)dest,
+ XFS_DFORK_ASIZE(dip, mp));
+ break;
+
+ default:
+ xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
+ ASSERT(0);
+ error = -EIO;
+ goto out_release;
+ }
+ }
+
+out_owner_change:
+ /* Recover the swapext owner change unless inode has been deleted */
+ if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) &&
+ (dip->di_mode != 0))
+ error = xfs_recover_inode_owner_change(mp, dip, in_f,
+ buffer_list);
+ /* re-generate the checksum. */
+ xfs_dinode_calc_crc(log->l_mp, dip);
+
+ ASSERT(bp->b_target->bt_mount == mp);
+ bp->b_iodone = xlog_recover_iodone;
+ xfs_buf_delwri_queue(bp, buffer_list);
+
+out_release:
+ xfs_buf_relse(bp);
+error:
+ if (need_free)
+ kmem_free(in_f);
+ return error;
+}
+
+/*
+ * Recover QUOTAOFF records. We simply make a note of it in the xlog
+ * structure, so that we know not to do any dquot item or dquot buffer recovery,
+ * of that type.
+ */
+STATIC int
+xlog_recover_quotaoff_pass1(
+ struct xlog *log,
+ struct xlog_recover_item *item)
+{
+ xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
+ ASSERT(qoff_f);
+
+ /*
+ * The logitem format's flag tells us if this was user quotaoff,
+ * group/project quotaoff or both.
+ */
+ if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
+ log->l_quotaoffs_flag |= XFS_DQ_USER;
+ if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
+ log->l_quotaoffs_flag |= XFS_DQ_PROJ;
+ if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
+ log->l_quotaoffs_flag |= XFS_DQ_GROUP;
+
+ return 0;
+}
+
+/*
+ * Recover a dquot record
+ */
+STATIC int
+xlog_recover_dquot_pass2(
+ struct xlog *log,
+ struct list_head *buffer_list,
+ struct xlog_recover_item *item,
+ xfs_lsn_t current_lsn)
+{
+ xfs_mount_t *mp = log->l_mp;
+ xfs_buf_t *bp;
+ struct xfs_disk_dquot *ddq, *recddq;
+ xfs_failaddr_t fa;
+ int error;
+ xfs_dq_logformat_t *dq_f;
+ uint type;
+
+
+ /*
+ * Filesystems are required to send in quota flags at mount time.
+ */
+ if (mp->m_qflags == 0)
+ return 0;
+
+ recddq = item->ri_buf[1].i_addr;
+ if (recddq == NULL) {
+ xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
+ return -EIO;
+ }
+ if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
+ xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
+ item->ri_buf[1].i_len, __func__);
+ return -EIO;
+ }
+
+ /*
+ * This type of quotas was turned off, so ignore this record.
+ */
+ type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
+ ASSERT(type);
+ if (log->l_quotaoffs_flag & type)
+ return 0;
+
+ /*
+ * At this point we know that quota was _not_ turned off.
+ * Since the mount flags are not indicating to us otherwise, this
+ * must mean that quota is on, and the dquot needs to be replayed.
+ * Remember that we may not have fully recovered the superblock yet,
+ * so we can't do the usual trick of looking at the SB quota bits.
+ *
+ * The other possibility, of course, is that the quota subsystem was
+ * removed since the last mount - ENOSYS.
+ */
+ dq_f = item->ri_buf[0].i_addr;
+ ASSERT(dq_f);
+ fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0);
+ if (fa) {
+ xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS",
+ dq_f->qlf_id, fa);
+ return -EIO;
+ }
+ ASSERT(dq_f->qlf_len == 1);
+
+ /*
+ * At this point we are assuming that the dquots have been allocated
+ * and hence the buffer has valid dquots stamped in it. It should,
+ * therefore, pass verifier validation. If the dquot is bad, then the
+ * we'll return an error here, so we don't need to specifically check
+ * the dquot in the buffer after the verifier has run.
+ */
+ error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
+ XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
+ &xfs_dquot_buf_ops);
+ if (error)
+ return error;
+
+ ASSERT(bp);
+ ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
+
+ /*
+ * If the dquot has an LSN in it, recover the dquot only if it's less
+ * than the lsn of the transaction we are replaying.
+ */
+ if (xfs_sb_version_hascrc(&mp->m_sb)) {
+ struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
+ xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
+
+ if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
+ goto out_release;
+ }
+ }
+
+ memcpy(ddq, recddq, item->ri_buf[1].i_len);
+ if (xfs_sb_version_hascrc(&mp->m_sb)) {
+ xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
+ XFS_DQUOT_CRC_OFF);
+ }
+
+ ASSERT(dq_f->qlf_size == 2);
+ ASSERT(bp->b_target->bt_mount == mp);
+ bp->b_iodone = xlog_recover_iodone;
+ xfs_buf_delwri_queue(bp, buffer_list);
+
+out_release:
+ xfs_buf_relse(bp);
+ return 0;
+}
+
+/*
+ * This routine is called to create an in-core extent free intent
+ * item from the efi format structure which was logged on disk.
+ * It allocates an in-core efi, copies the extents from the format
+ * structure into it, and adds the efi to the AIL with the given
+ * LSN.
+ */
+STATIC int
+xlog_recover_efi_pass2(
+ struct xlog *log,
+ struct xlog_recover_item *item,
+ xfs_lsn_t lsn)
+{
+ int error;
+ struct xfs_mount *mp = log->l_mp;
+ struct xfs_efi_log_item *efip;
+ struct xfs_efi_log_format *efi_formatp;
+
+ efi_formatp = item->ri_buf[0].i_addr;
+
+ efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
+ error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
+ if (error) {
+ xfs_efi_item_free(efip);
+ return error;
+ }
+ atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
+
+ spin_lock(&log->l_ailp->ail_lock);
+ /*
+ * The EFI has two references. One for the EFD and one for EFI to ensure
+ * it makes it into the AIL. Insert the EFI into the AIL directly and
+ * drop the EFI reference. Note that xfs_trans_ail_update() drops the
+ * AIL lock.
+ */
+ xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
+ xfs_efi_release(efip);
+ return 0;
+}
+
+
+/*
+ * This routine is called when an EFD format structure is found in a committed
+ * transaction in the log. Its purpose is to cancel the corresponding EFI if it
+ * was still in the log. To do this it searches the AIL for the EFI with an id
+ * equal to that in the EFD format structure. If we find it we drop the EFD
+ * reference, which removes the EFI from the AIL and frees it.
+ */
+STATIC int
+xlog_recover_efd_pass2(
+ struct xlog *log,
+ struct xlog_recover_item *item)
+{
+ xfs_efd_log_format_t *efd_formatp;
+ xfs_efi_log_item_t *efip = NULL;
+ xfs_log_item_t *lip;
+ uint64_t efi_id;
+ struct xfs_ail_cursor cur;
+ struct xfs_ail *ailp = log->l_ailp;
+
+ efd_formatp = item->ri_buf[0].i_addr;
+ ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
+ ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
+ (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
+ ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
+ efi_id = efd_formatp->efd_efi_id;
+
+ /*
+ * Search for the EFI with the id in the EFD format structure in the
+ * AIL.
+ */
+ spin_lock(&ailp->ail_lock);
+ lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
+ while (lip != NULL) {
+ if (lip->li_type == XFS_LI_EFI) {
+ efip = (xfs_efi_log_item_t *)lip;
+ if (efip->efi_format.efi_id == efi_id) {
+ /*
+ * Drop the EFD reference to the EFI. This
+ * removes the EFI from the AIL and frees it.
+ */
+ spin_unlock(&ailp->ail_lock);
+ xfs_efi_release(efip);
+ spin_lock(&ailp->ail_lock);
+ break;
+ }
+ }
+ lip = xfs_trans_ail_cursor_next(ailp, &cur);
+ }
+
+ xfs_trans_ail_cursor_done(&cur);
+ spin_unlock(&ailp->ail_lock);
+
+ return 0;
+}
+
+/*
+ * This routine is called to create an in-core extent rmap update
+ * item from the rui format structure which was logged on disk.
+ * It allocates an in-core rui, copies the extents from the format
+ * structure into it, and adds the rui to the AIL with the given
+ * LSN.
+ */
+STATIC int
+xlog_recover_rui_pass2(
+ struct xlog *log,
+ struct xlog_recover_item *item,
+ xfs_lsn_t lsn)
+{
+ int error;
+ struct xfs_mount *mp = log->l_mp;
+ struct xfs_rui_log_item *ruip;
+ struct xfs_rui_log_format *rui_formatp;
+
+ rui_formatp = item->ri_buf[0].i_addr;
+
+ ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
+ error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
+ if (error) {
+ xfs_rui_item_free(ruip);
+ return error;
+ }
+ atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
+
+ spin_lock(&log->l_ailp->ail_lock);
+ /*
+ * The RUI has two references. One for the RUD and one for RUI to ensure
+ * it makes it into the AIL. Insert the RUI into the AIL directly and
+ * drop the RUI reference. Note that xfs_trans_ail_update() drops the
+ * AIL lock.
+ */
+ xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
+ xfs_rui_release(ruip);
+ return 0;
+}
+
+
+/*
+ * This routine is called when an RUD format structure is found in a committed
+ * transaction in the log. Its purpose is to cancel the corresponding RUI if it
+ * was still in the log. To do this it searches the AIL for the RUI with an id
+ * equal to that in the RUD format structure. If we find it we drop the RUD
+ * reference, which removes the RUI from the AIL and frees it.
+ */
+STATIC int
+xlog_recover_rud_pass2(
+ struct xlog *log,
+ struct xlog_recover_item *item)
+{
+ struct xfs_rud_log_format *rud_formatp;
+ struct xfs_rui_log_item *ruip = NULL;
+ struct xfs_log_item *lip;
+ uint64_t rui_id;
+ struct xfs_ail_cursor cur;
+ struct xfs_ail *ailp = log->l_ailp;
+
+ rud_formatp = item->ri_buf[0].i_addr;
+ ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
+ rui_id = rud_formatp->rud_rui_id;
+
+ /*
+ * Search for the RUI with the id in the RUD format structure in the
+ * AIL.
+ */
+ spin_lock(&ailp->ail_lock);
+ lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
+ while (lip != NULL) {
+ if (lip->li_type == XFS_LI_RUI) {
+ ruip = (struct xfs_rui_log_item *)lip;
+ if (ruip->rui_format.rui_id == rui_id) {
+ /*
+ * Drop the RUD reference to the RUI. This
+ * removes the RUI from the AIL and frees it.
+ */
+ spin_unlock(&ailp->ail_lock);
+ xfs_rui_release(ruip);
+ spin_lock(&ailp->ail_lock);
+ break;
+ }
+ }
+ lip = xfs_trans_ail_cursor_next(ailp, &cur);
+ }
+
+ xfs_trans_ail_cursor_done(&cur);
+ spin_unlock(&ailp->ail_lock);
+
+ return 0;
+}
+
+/*
+ * Copy an CUI format buffer from the given buf, and into the destination
+ * CUI format structure. The CUI/CUD items were designed not to need any
+ * special alignment handling.
+ */
+static int
+xfs_cui_copy_format(
+ struct xfs_log_iovec *buf,
+ struct xfs_cui_log_format *dst_cui_fmt)
+{
+ struct xfs_cui_log_format *src_cui_fmt;
+ uint len;
+
+ src_cui_fmt = buf->i_addr;
+ len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
+
+ if (buf->i_len == len) {
+ memcpy(dst_cui_fmt, src_cui_fmt, len);
+ return 0;
+ }
+ return -EFSCORRUPTED;
+}
+
+/*
+ * This routine is called to create an in-core extent refcount update
+ * item from the cui format structure which was logged on disk.
+ * It allocates an in-core cui, copies the extents from the format
+ * structure into it, and adds the cui to the AIL with the given
+ * LSN.
+ */
+STATIC int
+xlog_recover_cui_pass2(
+ struct xlog *log,
+ struct xlog_recover_item *item,
+ xfs_lsn_t lsn)
+{
+ int error;
+ struct xfs_mount *mp = log->l_mp;
+ struct xfs_cui_log_item *cuip;
+ struct xfs_cui_log_format *cui_formatp;
+
+ cui_formatp = item->ri_buf[0].i_addr;
+
+ cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
+ error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
+ if (error) {
+ xfs_cui_item_free(cuip);
+ return error;
+ }
+ atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
+
+ spin_lock(&log->l_ailp->ail_lock);
+ /*
+ * The CUI has two references. One for the CUD and one for CUI to ensure
+ * it makes it into the AIL. Insert the CUI into the AIL directly and
+ * drop the CUI reference. Note that xfs_trans_ail_update() drops the
+ * AIL lock.
+ */
+ xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
+ xfs_cui_release(cuip);
+ return 0;
+}
+
+
+/*
+ * This routine is called when an CUD format structure is found in a committed
+ * transaction in the log. Its purpose is to cancel the corresponding CUI if it
+ * was still in the log. To do this it searches the AIL for the CUI with an id
+ * equal to that in the CUD format structure. If we find it we drop the CUD
+ * reference, which removes the CUI from the AIL and frees it.
+ */
+STATIC int
+xlog_recover_cud_pass2(
+ struct xlog *log,
+ struct xlog_recover_item *item)
+{
+ struct xfs_cud_log_format *cud_formatp;
+ struct xfs_cui_log_item *cuip = NULL;
+ struct xfs_log_item *lip;
+ uint64_t cui_id;
+ struct xfs_ail_cursor cur;
+ struct xfs_ail *ailp = log->l_ailp;
+
+ cud_formatp = item->ri_buf[0].i_addr;
+ if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format))
+ return -EFSCORRUPTED;
+ cui_id = cud_formatp->cud_cui_id;
+
+ /*
+ * Search for the CUI with the id in the CUD format structure in the
+ * AIL.
+ */
+ spin_lock(&ailp->ail_lock);
+ lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
+ while (lip != NULL) {
+ if (lip->li_type == XFS_LI_CUI) {
+ cuip = (struct xfs_cui_log_item *)lip;
+ if (cuip->cui_format.cui_id == cui_id) {
+ /*
+ * Drop the CUD reference to the CUI. This
+ * removes the CUI from the AIL and frees it.
+ */
+ spin_unlock(&ailp->ail_lock);
+ xfs_cui_release(cuip);
+ spin_lock(&ailp->ail_lock);
+ break;
+ }
+ }
+ lip = xfs_trans_ail_cursor_next(ailp, &cur);
+ }
+
+ xfs_trans_ail_cursor_done(&cur);
+ spin_unlock(&ailp->ail_lock);
+
+ return 0;
+}
+
+/*
+ * Copy an BUI format buffer from the given buf, and into the destination
+ * BUI format structure. The BUI/BUD items were designed not to need any
+ * special alignment handling.
+ */
+static int
+xfs_bui_copy_format(
+ struct xfs_log_iovec *buf,
+ struct xfs_bui_log_format *dst_bui_fmt)
+{
+ struct xfs_bui_log_format *src_bui_fmt;
+ uint len;
+
+ src_bui_fmt = buf->i_addr;
+ len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
+
+ if (buf->i_len == len) {
+ memcpy(dst_bui_fmt, src_bui_fmt, len);
+ return 0;
+ }
+ return -EFSCORRUPTED;
+}
+
+/*
+ * This routine is called to create an in-core extent bmap update
+ * item from the bui format structure which was logged on disk.
+ * It allocates an in-core bui, copies the extents from the format
+ * structure into it, and adds the bui to the AIL with the given
+ * LSN.
+ */
+STATIC int
+xlog_recover_bui_pass2(
+ struct xlog *log,
+ struct xlog_recover_item *item,
+ xfs_lsn_t lsn)
+{
+ int error;
+ struct xfs_mount *mp = log->l_mp;
+ struct xfs_bui_log_item *buip;
+ struct xfs_bui_log_format *bui_formatp;
+
+ bui_formatp = item->ri_buf[0].i_addr;
+
+ if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
+ return -EFSCORRUPTED;
+ buip = xfs_bui_init(mp);
+ error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
+ if (error) {
+ xfs_bui_item_free(buip);
+ return error;
+ }
+ atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
+
+ spin_lock(&log->l_ailp->ail_lock);
+ /*
+ * The RUI has two references. One for the RUD and one for RUI to ensure
+ * it makes it into the AIL. Insert the RUI into the AIL directly and
+ * drop the RUI reference. Note that xfs_trans_ail_update() drops the
+ * AIL lock.
+ */
+ xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
+ xfs_bui_release(buip);
+ return 0;
+}
+
+
+/*
+ * This routine is called when an BUD format structure is found in a committed
+ * transaction in the log. Its purpose is to cancel the corresponding BUI if it
+ * was still in the log. To do this it searches the AIL for the BUI with an id
+ * equal to that in the BUD format structure. If we find it we drop the BUD
+ * reference, which removes the BUI from the AIL and frees it.
+ */
+STATIC int
+xlog_recover_bud_pass2(
+ struct xlog *log,
+ struct xlog_recover_item *item)
+{
+ struct xfs_bud_log_format *bud_formatp;
+ struct xfs_bui_log_item *buip = NULL;
+ struct xfs_log_item *lip;
+ uint64_t bui_id;
+ struct xfs_ail_cursor cur;
+ struct xfs_ail *ailp = log->l_ailp;
+
+ bud_formatp = item->ri_buf[0].i_addr;
+ if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format))
+ return -EFSCORRUPTED;
+ bui_id = bud_formatp->bud_bui_id;
+
+ /*
+ * Search for the BUI with the id in the BUD format structure in the
+ * AIL.
+ */
+ spin_lock(&ailp->ail_lock);
+ lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
+ while (lip != NULL) {
+ if (lip->li_type == XFS_LI_BUI) {
+ buip = (struct xfs_bui_log_item *)lip;
+ if (buip->bui_format.bui_id == bui_id) {
+ /*
+ * Drop the BUD reference to the BUI. This
+ * removes the BUI from the AIL and frees it.
+ */
+ spin_unlock(&ailp->ail_lock);
+ xfs_bui_release(buip);
+ spin_lock(&ailp->ail_lock);
+ break;
+ }
+ }
+ lip = xfs_trans_ail_cursor_next(ailp, &cur);
+ }
+
+ xfs_trans_ail_cursor_done(&cur);
+ spin_unlock(&ailp->ail_lock);
+
+ return 0;
+}
+
+/*
+ * This routine is called when an inode create format structure is found in a
+ * committed transaction in the log. It's purpose is to initialise the inodes
+ * being allocated on disk. This requires us to get inode cluster buffers that
+ * match the range to be initialised, stamped with inode templates and written
+ * by delayed write so that subsequent modifications will hit the cached buffer
+ * and only need writing out at the end of recovery.
+ */
+STATIC int
+xlog_recover_do_icreate_pass2(
+ struct xlog *log,
+ struct list_head *buffer_list,
+ xlog_recover_item_t *item)
+{
+ struct xfs_mount *mp = log->l_mp;
+ struct xfs_icreate_log *icl;
+ xfs_agnumber_t agno;
+ xfs_agblock_t agbno;
+ unsigned int count;
+ unsigned int isize;
+ xfs_agblock_t length;
+ int blks_per_cluster;
+ int bb_per_cluster;
+ int cancel_count;
+ int nbufs;
+ int i;
+
+ icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
+ if (icl->icl_type != XFS_LI_ICREATE) {
+ xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
+ return -EINVAL;
+ }
+
+ if (icl->icl_size != 1) {
+ xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
+ return -EINVAL;
+ }
+
+ agno = be32_to_cpu(icl->icl_ag);
+ if (agno >= mp->m_sb.sb_agcount) {
+ xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
+ return -EINVAL;
+ }
+ agbno = be32_to_cpu(icl->icl_agbno);
+ if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
+ xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
+ return -EINVAL;
+ }
+ isize = be32_to_cpu(icl->icl_isize);
+ if (isize != mp->m_sb.sb_inodesize) {
+ xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
+ return -EINVAL;
+ }
+ count = be32_to_cpu(icl->icl_count);
+ if (!count) {
+ xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
+ return -EINVAL;
+ }
+ length = be32_to_cpu(icl->icl_length);
+ if (!length || length >= mp->m_sb.sb_agblocks) {
+ xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
+ return -EINVAL;
+ }
+
+ /*
+ * The inode chunk is either full or sparse and we only support
+ * m_ialloc_min_blks sized sparse allocations at this time.
+ */
+ if (length != mp->m_ialloc_blks &&
+ length != mp->m_ialloc_min_blks) {
+ xfs_warn(log->l_mp,
+ "%s: unsupported chunk length", __FUNCTION__);
+ return -EINVAL;
+ }
+
+ /* verify inode count is consistent with extent length */
+ if ((count >> mp->m_sb.sb_inopblog) != length) {
+ xfs_warn(log->l_mp,
+ "%s: inconsistent inode count and chunk length",
+ __FUNCTION__);
+ return -EINVAL;
+ }
+
+ /*
+ * The icreate transaction can cover multiple cluster buffers and these
+ * buffers could have been freed and reused. Check the individual
+ * buffers for cancellation so we don't overwrite anything written after
+ * a cancellation.
+ */
+ blks_per_cluster = xfs_icluster_size_fsb(mp);
+ bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
+ nbufs = length / blks_per_cluster;
+ for (i = 0, cancel_count = 0; i < nbufs; i++) {
+ xfs_daddr_t daddr;
+
+ daddr = XFS_AGB_TO_DADDR(mp, agno,
+ agbno + i * blks_per_cluster);
+ if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
+ cancel_count++;
+ }
+
+ /*
+ * We currently only use icreate for a single allocation at a time. This
+ * means we should expect either all or none of the buffers to be
+ * cancelled. Be conservative and skip replay if at least one buffer is
+ * cancelled, but warn the user that something is awry if the buffers
+ * are not consistent.
+ *
+ * XXX: This must be refined to only skip cancelled clusters once we use
+ * icreate for multiple chunk allocations.
+ */
+ ASSERT(!cancel_count || cancel_count == nbufs);
+ if (cancel_count) {
+ if (cancel_count != nbufs)
+ xfs_warn(mp,
+ "WARNING: partial inode chunk cancellation, skipped icreate.");
+ trace_xfs_log_recover_icreate_cancel(log, icl);
+ return 0;
+ }
+
+ trace_xfs_log_recover_icreate_recover(log, icl);
+ return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
+ length, be32_to_cpu(icl->icl_gen));
+}
+
+STATIC void
+xlog_recover_buffer_ra_pass2(
+ struct xlog *log,
+ struct xlog_recover_item *item)
+{
+ struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
+ struct xfs_mount *mp = log->l_mp;
+
+ if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
+ buf_f->blf_len, buf_f->blf_flags)) {
+ return;
+ }
+
+ xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
+ buf_f->blf_len, NULL);
+}
+
+STATIC void
+xlog_recover_inode_ra_pass2(
+ struct xlog *log,
+ struct xlog_recover_item *item)
+{
+ struct xfs_inode_log_format ilf_buf;
+ struct xfs_inode_log_format *ilfp;
+ struct xfs_mount *mp = log->l_mp;
+ int error;
+
+ if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
+ ilfp = item->ri_buf[0].i_addr;
+ } else {
+ ilfp = &ilf_buf;
+ memset(ilfp, 0, sizeof(*ilfp));
+ error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
+ if (error)
+ return;
+ }
+
+ if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
+ return;
+
+ xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
+ ilfp->ilf_len, &xfs_inode_buf_ra_ops);
+}
+
+STATIC void
+xlog_recover_dquot_ra_pass2(
+ struct xlog *log,
+ struct xlog_recover_item *item)
+{
+ struct xfs_mount *mp = log->l_mp;
+ struct xfs_disk_dquot *recddq;
+ struct xfs_dq_logformat *dq_f;
+ uint type;
+ int len;
+
+
+ if (mp->m_qflags == 0)
+ return;
+
+ recddq = item->ri_buf[1].i_addr;
+ if (recddq == NULL)
+ return;
+ if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
+ return;
+
+ type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
+ ASSERT(type);
+ if (log->l_quotaoffs_flag & type)
+ return;
+
+ dq_f = item->ri_buf[0].i_addr;
+ ASSERT(dq_f);
+ ASSERT(dq_f->qlf_len == 1);
+
+ len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
+ if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
+ return;
+
+ xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
+ &xfs_dquot_buf_ra_ops);
+}
+
+STATIC void
+xlog_recover_ra_pass2(
+ struct xlog *log,
+ struct xlog_recover_item *item)
+{
+ switch (ITEM_TYPE(item)) {
+ case XFS_LI_BUF:
+ xlog_recover_buffer_ra_pass2(log, item);
+ break;
+ case XFS_LI_INODE:
+ xlog_recover_inode_ra_pass2(log, item);
+ break;
+ case XFS_LI_DQUOT:
+ xlog_recover_dquot_ra_pass2(log, item);
+ break;
+ case XFS_LI_EFI:
+ case XFS_LI_EFD:
+ case XFS_LI_QUOTAOFF:
+ case XFS_LI_RUI:
+ case XFS_LI_RUD:
+ case XFS_LI_CUI:
+ case XFS_LI_CUD:
+ case XFS_LI_BUI:
+ case XFS_LI_BUD:
+ default:
+ break;
+ }
+}
+
+STATIC int
+xlog_recover_commit_pass1(
+ struct xlog *log,
+ struct xlog_recover *trans,
+ struct xlog_recover_item *item)
+{
+ trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
+
+ switch (ITEM_TYPE(item)) {
+ case XFS_LI_BUF:
+ return xlog_recover_buffer_pass1(log, item);
+ case XFS_LI_QUOTAOFF:
+ return xlog_recover_quotaoff_pass1(log, item);
+ case XFS_LI_INODE:
+ case XFS_LI_EFI:
+ case XFS_LI_EFD:
+ case XFS_LI_DQUOT:
+ case XFS_LI_ICREATE:
+ case XFS_LI_RUI:
+ case XFS_LI_RUD:
+ case XFS_LI_CUI:
+ case XFS_LI_CUD:
+ case XFS_LI_BUI:
+ case XFS_LI_BUD:
+ /* nothing to do in pass 1 */
+ return 0;
+ default:
+ xfs_warn(log->l_mp, "%s: invalid item type (%d)",
+ __func__, ITEM_TYPE(item));
+ ASSERT(0);
+ return -EIO;
+ }
+}
+
+STATIC int
+xlog_recover_commit_pass2(
+ struct xlog *log,
+ struct xlog_recover *trans,
+ struct list_head *buffer_list,
+ struct xlog_recover_item *item)
+{
+ trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
+
+ switch (ITEM_TYPE(item)) {
+ case XFS_LI_BUF:
+ return xlog_recover_buffer_pass2(log, buffer_list, item,
+ trans->r_lsn);
+ case XFS_LI_INODE:
+ return xlog_recover_inode_pass2(log, buffer_list, item,
+ trans->r_lsn);
+ case XFS_LI_EFI:
+ return xlog_recover_efi_pass2(log, item, trans->r_lsn);
+ case XFS_LI_EFD:
+ return xlog_recover_efd_pass2(log, item);
+ case XFS_LI_RUI:
+ return xlog_recover_rui_pass2(log, item, trans->r_lsn);
+ case XFS_LI_RUD:
+ return xlog_recover_rud_pass2(log, item);
+ case XFS_LI_CUI:
+ return xlog_recover_cui_pass2(log, item, trans->r_lsn);
+ case XFS_LI_CUD:
+ return xlog_recover_cud_pass2(log, item);
+ case XFS_LI_BUI:
+ return xlog_recover_bui_pass2(log, item, trans->r_lsn);
+ case XFS_LI_BUD:
+ return xlog_recover_bud_pass2(log, item);
+ case XFS_LI_DQUOT:
+ return xlog_recover_dquot_pass2(log, buffer_list, item,
+ trans->r_lsn);
+ case XFS_LI_ICREATE:
+ return xlog_recover_do_icreate_pass2(log, buffer_list, item);
+ case XFS_LI_QUOTAOFF:
+ /* nothing to do in pass2 */
+ return 0;
+ default:
+ xfs_warn(log->l_mp, "%s: invalid item type (%d)",
+ __func__, ITEM_TYPE(item));
+ ASSERT(0);
+ return -EIO;
+ }
+}
+
+STATIC int
+xlog_recover_items_pass2(
+ struct xlog *log,
+ struct xlog_recover *trans,
+ struct list_head *buffer_list,
+ struct list_head *item_list)
+{
+ struct xlog_recover_item *item;
+ int error = 0;
+
+ list_for_each_entry(item, item_list, ri_list) {
+ error = xlog_recover_commit_pass2(log, trans,
+ buffer_list, item);
+ if (error)
+ return error;
+ }
+
+ return error;
+}
+
+/*
+ * Perform the transaction.
+ *
+ * If the transaction modifies a buffer or inode, do it now. Otherwise,
+ * EFIs and EFDs get queued up by adding entries into the AIL for them.
+ */
+STATIC int
+xlog_recover_commit_trans(
+ struct xlog *log,
+ struct xlog_recover *trans,
+ int pass,
+ struct list_head *buffer_list)
+{
+ int error = 0;
+ int items_queued = 0;
+ struct xlog_recover_item *item;
+ struct xlog_recover_item *next;
+ LIST_HEAD (ra_list);
+ LIST_HEAD (done_list);
+
+ #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
+
+ hlist_del_init(&trans->r_list);
+
+ error = xlog_recover_reorder_trans(log, trans, pass);
+ if (error)
+ return error;
+
+ list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
+ switch (pass) {
+ case XLOG_RECOVER_PASS1:
+ error = xlog_recover_commit_pass1(log, trans, item);
+ break;
+ case XLOG_RECOVER_PASS2:
+ xlog_recover_ra_pass2(log, item);
+ list_move_tail(&item->ri_list, &ra_list);
+ items_queued++;
+ if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
+ error = xlog_recover_items_pass2(log, trans,
+ buffer_list, &ra_list);
+ list_splice_tail_init(&ra_list, &done_list);
+ items_queued = 0;
+ }
+
+ break;
+ default:
+ ASSERT(0);
+ }
+
+ if (error)
+ goto out;
+ }
+
+out:
+ if (!list_empty(&ra_list)) {
+ if (!error)
+ error = xlog_recover_items_pass2(log, trans,
+ buffer_list, &ra_list);
+ list_splice_tail_init(&ra_list, &done_list);
+ }
+
+ if (!list_empty(&done_list))
+ list_splice_init(&done_list, &trans->r_itemq);
+
+ return error;
+}
+
+STATIC void
+xlog_recover_add_item(
+ struct list_head *head)
+{
+ xlog_recover_item_t *item;
+
+ item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
+ INIT_LIST_HEAD(&item->ri_list);
+ list_add_tail(&item->ri_list, head);
+}
+
+STATIC int
+xlog_recover_add_to_cont_trans(
+ struct xlog *log,
+ struct xlog_recover *trans,
+ char *dp,
+ int len)
+{
+ xlog_recover_item_t *item;
+ char *ptr, *old_ptr;
+ int old_len;
+
+ /*
+ * If the transaction is empty, the header was split across this and the
+ * previous record. Copy the rest of the header.
+ */
+ if (list_empty(&trans->r_itemq)) {
+ ASSERT(len <= sizeof(struct xfs_trans_header));
+ if (len > sizeof(struct xfs_trans_header)) {
+ xfs_warn(log->l_mp, "%s: bad header length", __func__);
+ return -EIO;
+ }
+
+ xlog_recover_add_item(&trans->r_itemq);
+ ptr = (char *)&trans->r_theader +
+ sizeof(struct xfs_trans_header) - len;
+ memcpy(ptr, dp, len);
+ return 0;
+ }
+
+ /* take the tail entry */
+ item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
+
+ old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
+ old_len = item->ri_buf[item->ri_cnt-1].i_len;
+
+ ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
+ memcpy(&ptr[old_len], dp, len);
+ item->ri_buf[item->ri_cnt-1].i_len += len;
+ item->ri_buf[item->ri_cnt-1].i_addr = ptr;
+ trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
+ return 0;
+}
+
+/*
+ * The next region to add is the start of a new region. It could be
+ * a whole region or it could be the first part of a new region. Because
+ * of this, the assumption here is that the type and size fields of all
+ * format structures fit into the first 32 bits of the structure.
+ *
+ * This works because all regions must be 32 bit aligned. Therefore, we
+ * either have both fields or we have neither field. In the case we have
+ * neither field, the data part of the region is zero length. We only have
+ * a log_op_header and can throw away the header since a new one will appear
+ * later. If we have at least 4 bytes, then we can determine how many regions
+ * will appear in the current log item.
+ */
+STATIC int
+xlog_recover_add_to_trans(
+ struct xlog *log,
+ struct xlog_recover *trans,
+ char *dp,
+ int len)
+{
+ struct xfs_inode_log_format *in_f; /* any will do */
+ xlog_recover_item_t *item;
+ char *ptr;
+
+ if (!len)
+ return 0;
+ if (list_empty(&trans->r_itemq)) {
+ /* we need to catch log corruptions here */
+ if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
+ xfs_warn(log->l_mp, "%s: bad header magic number",
+ __func__);
+ ASSERT(0);
+ return -EIO;
+ }
+
+ if (len > sizeof(struct xfs_trans_header)) {
+ xfs_warn(log->l_mp, "%s: bad header length", __func__);
+ ASSERT(0);
+ return -EIO;
+ }
+
+ /*
+ * The transaction header can be arbitrarily split across op
+ * records. If we don't have the whole thing here, copy what we
+ * do have and handle the rest in the next record.
+ */
+ if (len == sizeof(struct xfs_trans_header))
+ xlog_recover_add_item(&trans->r_itemq);
+ memcpy(&trans->r_theader, dp, len);
+ return 0;
+ }
+
+ ptr = kmem_alloc(len, KM_SLEEP);
+ memcpy(ptr, dp, len);
+ in_f = (struct xfs_inode_log_format *)ptr;
+
+ /* take the tail entry */
+ item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
+ if (item->ri_total != 0 &&
+ item->ri_total == item->ri_cnt) {
+ /* tail item is in use, get a new one */
+ xlog_recover_add_item(&trans->r_itemq);
+ item = list_entry(trans->r_itemq.prev,
+ xlog_recover_item_t, ri_list);
+ }
+
+ if (item->ri_total == 0) { /* first region to be added */
+ if (in_f->ilf_size == 0 ||
+ in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
+ xfs_warn(log->l_mp,
+ "bad number of regions (%d) in inode log format",
+ in_f->ilf_size);
+ ASSERT(0);
+ kmem_free(ptr);
+ return -EIO;
+ }
+
+ item->ri_total = in_f->ilf_size;
+ item->ri_buf =
+ kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
+ KM_SLEEP);
+ }
+ ASSERT(item->ri_total > item->ri_cnt);
+ /* Description region is ri_buf[0] */
+ item->ri_buf[item->ri_cnt].i_addr = ptr;
+ item->ri_buf[item->ri_cnt].i_len = len;
+ item->ri_cnt++;
+ trace_xfs_log_recover_item_add(log, trans, item, 0);
+ return 0;
+}
+
+/*
+ * Free up any resources allocated by the transaction
+ *
+ * Remember that EFIs, EFDs, and IUNLINKs are handled later.
+ */
+STATIC void
+xlog_recover_free_trans(
+ struct xlog_recover *trans)
+{
+ xlog_recover_item_t *item, *n;
+ int i;
+
+ hlist_del_init(&trans->r_list);
+
+ list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
+ /* Free the regions in the item. */
+ list_del(&item->ri_list);
+ for (i = 0; i < item->ri_cnt; i++)
+ kmem_free(item->ri_buf[i].i_addr);
+ /* Free the item itself */
+ kmem_free(item->ri_buf);
+ kmem_free(item);
+ }
+ /* Free the transaction recover structure */
+ kmem_free(trans);
+}
+
+/*
+ * On error or completion, trans is freed.
+ */
+STATIC int
+xlog_recovery_process_trans(
+ struct xlog *log,
+ struct xlog_recover *trans,
+ char *dp,
+ unsigned int len,
+ unsigned int flags,
+ int pass,
+ struct list_head *buffer_list)
+{
+ int error = 0;
+ bool freeit = false;
+
+ /* mask off ophdr transaction container flags */
+ flags &= ~XLOG_END_TRANS;
+ if (flags & XLOG_WAS_CONT_TRANS)
+ flags &= ~XLOG_CONTINUE_TRANS;
+
+ /*
+ * Callees must not free the trans structure. We'll decide if we need to
+ * free it or not based on the operation being done and it's result.
+ */
+ switch (flags) {
+ /* expected flag values */
+ case 0:
+ case XLOG_CONTINUE_TRANS:
+ error = xlog_recover_add_to_trans(log, trans, dp, len);
+ break;
+ case XLOG_WAS_CONT_TRANS:
+ error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
+ break;
+ case XLOG_COMMIT_TRANS:
+ error = xlog_recover_commit_trans(log, trans, pass,
+ buffer_list);
+ /* success or fail, we are now done with this transaction. */
+ freeit = true;
+ break;
+
+ /* unexpected flag values */
+ case XLOG_UNMOUNT_TRANS:
+ /* just skip trans */
+ xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
+ freeit = true;
+ break;
+ case XLOG_START_TRANS:
+ default:
+ xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
+ ASSERT(0);
+ error = -EIO;
+ break;
+ }
+ if (error || freeit)
+ xlog_recover_free_trans(trans);
+ return error;
+}
+
+/*
+ * Lookup the transaction recovery structure associated with the ID in the
+ * current ophdr. If the transaction doesn't exist and the start flag is set in
+ * the ophdr, then allocate a new transaction for future ID matches to find.
+ * Either way, return what we found during the lookup - an existing transaction
+ * or nothing.
+ */
+STATIC struct xlog_recover *
+xlog_recover_ophdr_to_trans(
+ struct hlist_head rhash[],
+ struct xlog_rec_header *rhead,
+ struct xlog_op_header *ohead)
+{
+ struct xlog_recover *trans;
+ xlog_tid_t tid;
+ struct hlist_head *rhp;
+
+ tid = be32_to_cpu(ohead->oh_tid);
+ rhp = &rhash[XLOG_RHASH(tid)];
+ hlist_for_each_entry(trans, rhp, r_list) {
+ if (trans->r_log_tid == tid)
+ return trans;
+ }
+
+ /*
+ * skip over non-start transaction headers - we could be
+ * processing slack space before the next transaction starts
+ */
+ if (!(ohead->oh_flags & XLOG_START_TRANS))
+ return NULL;
+
+ ASSERT(be32_to_cpu(ohead->oh_len) == 0);
+
+ /*
+ * This is a new transaction so allocate a new recovery container to
+ * hold the recovery ops that will follow.
+ */
+ trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
+ trans->r_log_tid = tid;
+ trans->r_lsn = be64_to_cpu(rhead->h_lsn);
+ INIT_LIST_HEAD(&trans->r_itemq);
+ INIT_HLIST_NODE(&trans->r_list);
+ hlist_add_head(&trans->r_list, rhp);
+
+ /*
+ * Nothing more to do for this ophdr. Items to be added to this new
+ * transaction will be in subsequent ophdr containers.
+ */
+ return NULL;
+}
+
+STATIC int
+xlog_recover_process_ophdr(
+ struct xlog *log,
+ struct hlist_head rhash[],
+ struct xlog_rec_header *rhead,
+ struct xlog_op_header *ohead,
+ char *dp,
+ char *end,
+ int pass,
+ struct list_head *buffer_list)
+{
+ struct xlog_recover *trans;
+ unsigned int len;
+ int error;
+
+ /* Do we understand who wrote this op? */
+ if (ohead->oh_clientid != XFS_TRANSACTION &&
+ ohead->oh_clientid != XFS_LOG) {
+ xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
+ __func__, ohead->oh_clientid);
+ ASSERT(0);
+ return -EIO;
+ }
+
+ /*
+ * Check the ophdr contains all the data it is supposed to contain.
+ */
+ len = be32_to_cpu(ohead->oh_len);
+ if (dp + len > end) {
+ xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
+ WARN_ON(1);
+ return -EIO;
+ }
+
+ trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
+ if (!trans) {
+ /* nothing to do, so skip over this ophdr */
+ return 0;
+ }
+
+ /*
+ * The recovered buffer queue is drained only once we know that all
+ * recovery items for the current LSN have been processed. This is
+ * required because:
+ *
+ * - Buffer write submission updates the metadata LSN of the buffer.
+ * - Log recovery skips items with a metadata LSN >= the current LSN of
+ * the recovery item.
+ * - Separate recovery items against the same metadata buffer can share
+ * a current LSN. I.e., consider that the LSN of a recovery item is
+ * defined as the starting LSN of the first record in which its
+ * transaction appears, that a record can hold multiple transactions,
+ * and/or that a transaction can span multiple records.
+ *
+ * In other words, we are allowed to submit a buffer from log recovery
+ * once per current LSN. Otherwise, we may incorrectly skip recovery
+ * items and cause corruption.
+ *
+ * We don't know up front whether buffers are updated multiple times per
+ * LSN. Therefore, track the current LSN of each commit log record as it
+ * is processed and drain the queue when it changes. Use commit records
+ * because they are ordered correctly by the logging code.
+ */
+ if (log->l_recovery_lsn != trans->r_lsn &&
+ ohead->oh_flags & XLOG_COMMIT_TRANS) {
+ error = xfs_buf_delwri_submit(buffer_list);
+ if (error)
+ return error;
+ log->l_recovery_lsn = trans->r_lsn;
+ }
+
+ return xlog_recovery_process_trans(log, trans, dp, len,
+ ohead->oh_flags, pass, buffer_list);
+}
+
+/*
+ * There are two valid states of the r_state field. 0 indicates that the
+ * transaction structure is in a normal state. We have either seen the
+ * start of the transaction or the last operation we added was not a partial
+ * operation. If the last operation we added to the transaction was a
+ * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
+ *
+ * NOTE: skip LRs with 0 data length.
+ */
+STATIC int
+xlog_recover_process_data(
+ struct xlog *log,
+ struct hlist_head rhash[],
+ struct xlog_rec_header *rhead,
+ char *dp,
+ int pass,
+ struct list_head *buffer_list)
+{
+ struct xlog_op_header *ohead;
+ char *end;
+ int num_logops;
+ int error;
+
+ end = dp + be32_to_cpu(rhead->h_len);
+ num_logops = be32_to_cpu(rhead->h_num_logops);
+
+ /* check the log format matches our own - else we can't recover */
+ if (xlog_header_check_recover(log->l_mp, rhead))
+ return -EIO;
+
+ trace_xfs_log_recover_record(log, rhead, pass);
+ while ((dp < end) && num_logops) {
+
+ ohead = (struct xlog_op_header *)dp;
+ dp += sizeof(*ohead);
+ ASSERT(dp <= end);
+
+ /* errors will abort recovery */
+ error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
+ dp, end, pass, buffer_list);
+ if (error)
+ return error;
+
+ dp += be32_to_cpu(ohead->oh_len);
+ num_logops--;
+ }
+ return 0;
+}
+
+/* Recover the EFI if necessary. */
+STATIC int
+xlog_recover_process_efi(
+ struct xfs_mount *mp,
+ struct xfs_ail *ailp,
+ struct xfs_log_item *lip)
+{
+ struct xfs_efi_log_item *efip;
+ int error;
+
+ /*
+ * Skip EFIs that we've already processed.
+ */
+ efip = container_of(lip, struct xfs_efi_log_item, efi_item);
+ if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
+ return 0;
+
+ spin_unlock(&ailp->ail_lock);
+ error = xfs_efi_recover(mp, efip);
+ spin_lock(&ailp->ail_lock);
+
+ return error;
+}
+
+/* Release the EFI since we're cancelling everything. */
+STATIC void
+xlog_recover_cancel_efi(
+ struct xfs_mount *mp,
+ struct xfs_ail *ailp,
+ struct xfs_log_item *lip)
+{
+ struct xfs_efi_log_item *efip;
+
+ efip = container_of(lip, struct xfs_efi_log_item, efi_item);
+
+ spin_unlock(&ailp->ail_lock);
+ xfs_efi_release(efip);
+ spin_lock(&ailp->ail_lock);
+}
+
+/* Recover the RUI if necessary. */
+STATIC int
+xlog_recover_process_rui(
+ struct xfs_mount *mp,
+ struct xfs_ail *ailp,
+ struct xfs_log_item *lip)
+{
+ struct xfs_rui_log_item *ruip;
+ int error;
+
+ /*
+ * Skip RUIs that we've already processed.
+ */
+ ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
+ if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
+ return 0;
+
+ spin_unlock(&ailp->ail_lock);
+ error = xfs_rui_recover(mp, ruip);
+ spin_lock(&ailp->ail_lock);
+
+ return error;
+}
+
+/* Release the RUI since we're cancelling everything. */
+STATIC void
+xlog_recover_cancel_rui(
+ struct xfs_mount *mp,
+ struct xfs_ail *ailp,
+ struct xfs_log_item *lip)
+{
+ struct xfs_rui_log_item *ruip;
+
+ ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
+
+ spin_unlock(&ailp->ail_lock);
+ xfs_rui_release(ruip);
+ spin_lock(&ailp->ail_lock);
+}
+
+/* Recover the CUI if necessary. */
+STATIC int
+xlog_recover_process_cui(
+ struct xfs_trans *parent_tp,
+ struct xfs_ail *ailp,
+ struct xfs_log_item *lip)
+{
+ struct xfs_cui_log_item *cuip;
+ int error;
+
+ /*
+ * Skip CUIs that we've already processed.
+ */
+ cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
+ if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
+ return 0;
+
+ spin_unlock(&ailp->ail_lock);
+ error = xfs_cui_recover(parent_tp, cuip);
+ spin_lock(&ailp->ail_lock);
+
+ return error;
+}
+
+/* Release the CUI since we're cancelling everything. */
+STATIC void
+xlog_recover_cancel_cui(
+ struct xfs_mount *mp,
+ struct xfs_ail *ailp,
+ struct xfs_log_item *lip)
+{
+ struct xfs_cui_log_item *cuip;
+
+ cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
+
+ spin_unlock(&ailp->ail_lock);
+ xfs_cui_release(cuip);
+ spin_lock(&ailp->ail_lock);
+}
+
+/* Recover the BUI if necessary. */
+STATIC int
+xlog_recover_process_bui(
+ struct xfs_trans *parent_tp,
+ struct xfs_ail *ailp,
+ struct xfs_log_item *lip)
+{
+ struct xfs_bui_log_item *buip;
+ int error;
+
+ /*
+ * Skip BUIs that we've already processed.
+ */
+ buip = container_of(lip, struct xfs_bui_log_item, bui_item);
+ if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
+ return 0;
+
+ spin_unlock(&ailp->ail_lock);
+ error = xfs_bui_recover(parent_tp, buip);
+ spin_lock(&ailp->ail_lock);
+
+ return error;
+}
+
+/* Release the BUI since we're cancelling everything. */
+STATIC void
+xlog_recover_cancel_bui(
+ struct xfs_mount *mp,
+ struct xfs_ail *ailp,
+ struct xfs_log_item *lip)
+{
+ struct xfs_bui_log_item *buip;
+
+ buip = container_of(lip, struct xfs_bui_log_item, bui_item);
+
+ spin_unlock(&ailp->ail_lock);
+ xfs_bui_release(buip);
+ spin_lock(&ailp->ail_lock);
+}
+
+/* Is this log item a deferred action intent? */
+static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
+{
+ switch (lip->li_type) {
+ case XFS_LI_EFI:
+ case XFS_LI_RUI:
+ case XFS_LI_CUI:
+ case XFS_LI_BUI:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/* Take all the collected deferred ops and finish them in order. */
+static int
+xlog_finish_defer_ops(
+ struct xfs_trans *parent_tp)
+{
+ struct xfs_mount *mp = parent_tp->t_mountp;
+ struct xfs_trans *tp;
+ int64_t freeblks;
+ uint resblks;
+ int error;
+
+ /*
+ * We're finishing the defer_ops that accumulated as a result of
+ * recovering unfinished intent items during log recovery. We
+ * reserve an itruncate transaction because it is the largest
+ * permanent transaction type. Since we're the only user of the fs
+ * right now, take 93% (15/16) of the available free blocks. Use
+ * weird math to avoid a 64-bit division.
+ */
+ freeblks = percpu_counter_sum(&mp->m_fdblocks);
+ if (freeblks <= 0)
+ return -ENOSPC;
+ resblks = min_t(int64_t, UINT_MAX, freeblks);
+ resblks = (resblks * 15) >> 4;
+ error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
+ 0, XFS_TRANS_RESERVE, &tp);
+ if (error)
+ return error;
+ /* transfer all collected dfops to this transaction */
+ xfs_defer_move(tp, parent_tp);
+
+ return xfs_trans_commit(tp);
+}
+
+/*
+ * When this is called, all of the log intent items which did not have
+ * corresponding log done items should be in the AIL. What we do now
+ * is update the data structures associated with each one.
+ *
+ * Since we process the log intent items in normal transactions, they
+ * will be removed at some point after the commit. This prevents us
+ * from just walking down the list processing each one. We'll use a
+ * flag in the intent item to skip those that we've already processed
+ * and use the AIL iteration mechanism's generation count to try to
+ * speed this up at least a bit.
+ *
+ * When we start, we know that the intents are the only things in the
+ * AIL. As we process them, however, other items are added to the
+ * AIL.
+ */
+STATIC int
+xlog_recover_process_intents(
+ struct xlog *log)
+{
+ struct xfs_trans *parent_tp;
+ struct xfs_ail_cursor cur;
+ struct xfs_log_item *lip;
+ struct xfs_ail *ailp;
+ int error;
+#if defined(DEBUG) || defined(XFS_WARN)
+ xfs_lsn_t last_lsn;
+#endif
+
+ /*
+ * The intent recovery handlers commit transactions to complete recovery
+ * for individual intents, but any new deferred operations that are
+ * queued during that process are held off until the very end. The
+ * purpose of this transaction is to serve as a container for deferred
+ * operations. Each intent recovery handler must transfer dfops here
+ * before its local transaction commits, and we'll finish the entire
+ * list below.
+ */
+ error = xfs_trans_alloc_empty(log->l_mp, &parent_tp);
+ if (error)
+ return error;
+
+ ailp = log->l_ailp;
+ spin_lock(&ailp->ail_lock);
+ lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
+#if defined(DEBUG) || defined(XFS_WARN)
+ last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
+#endif
+ while (lip != NULL) {
+ /*
+ * We're done when we see something other than an intent.
+ * There should be no intents left in the AIL now.
+ */
+ if (!xlog_item_is_intent(lip)) {
+#ifdef DEBUG
+ for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
+ ASSERT(!xlog_item_is_intent(lip));
+#endif
+ break;
+ }
+
+ /*
+ * We should never see a redo item with a LSN higher than
+ * the last transaction we found in the log at the start
+ * of recovery.
+ */
+ ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
+
+ /*
+ * NOTE: If your intent processing routine can create more
+ * deferred ops, you /must/ attach them to the dfops in this
+ * routine or else those subsequent intents will get
+ * replayed in the wrong order!
+ */
+ switch (lip->li_type) {
+ case XFS_LI_EFI:
+ error = xlog_recover_process_efi(log->l_mp, ailp, lip);
+ break;
+ case XFS_LI_RUI:
+ error = xlog_recover_process_rui(log->l_mp, ailp, lip);
+ break;
+ case XFS_LI_CUI:
+ error = xlog_recover_process_cui(parent_tp, ailp, lip);
+ break;
+ case XFS_LI_BUI:
+ error = xlog_recover_process_bui(parent_tp, ailp, lip);
+ break;
+ }
+ if (error)
+ goto out;
+ lip = xfs_trans_ail_cursor_next(ailp, &cur);
+ }
+out:
+ xfs_trans_ail_cursor_done(&cur);
+ spin_unlock(&ailp->ail_lock);
+ if (!error)
+ error = xlog_finish_defer_ops(parent_tp);
+ xfs_trans_cancel(parent_tp);
+
+ return error;
+}
+
+/*
+ * A cancel occurs when the mount has failed and we're bailing out.
+ * Release all pending log intent items so they don't pin the AIL.
+ */
+STATIC int
+xlog_recover_cancel_intents(
+ struct xlog *log)
+{
+ struct xfs_log_item *lip;
+ int error = 0;
+ struct xfs_ail_cursor cur;
+ struct xfs_ail *ailp;
+
+ ailp = log->l_ailp;
+ spin_lock(&ailp->ail_lock);
+ lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
+ while (lip != NULL) {
+ /*
+ * We're done when we see something other than an intent.
+ * There should be no intents left in the AIL now.
+ */
+ if (!xlog_item_is_intent(lip)) {
+#ifdef DEBUG
+ for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
+ ASSERT(!xlog_item_is_intent(lip));
+#endif
+ break;
+ }
+
+ switch (lip->li_type) {
+ case XFS_LI_EFI:
+ xlog_recover_cancel_efi(log->l_mp, ailp, lip);
+ break;
+ case XFS_LI_RUI:
+ xlog_recover_cancel_rui(log->l_mp, ailp, lip);
+ break;
+ case XFS_LI_CUI:
+ xlog_recover_cancel_cui(log->l_mp, ailp, lip);
+ break;
+ case XFS_LI_BUI:
+ xlog_recover_cancel_bui(log->l_mp, ailp, lip);
+ break;
+ }
+
+ lip = xfs_trans_ail_cursor_next(ailp, &cur);
+ }
+
+ xfs_trans_ail_cursor_done(&cur);
+ spin_unlock(&ailp->ail_lock);
+ return error;
+}
+
+/*
+ * This routine performs a transaction to null out a bad inode pointer
+ * in an agi unlinked inode hash bucket.
+ */
+STATIC void
+xlog_recover_clear_agi_bucket(
+ xfs_mount_t *mp,
+ xfs_agnumber_t agno,
+ int bucket)
+{
+ xfs_trans_t *tp;
+ xfs_agi_t *agi;
+ xfs_buf_t *agibp;
+ int offset;
+ int error;
+
+ error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
+ if (error)
+ goto out_error;
+
+ error = xfs_read_agi(mp, tp, agno, &agibp);
+ if (error)
+ goto out_abort;
+
+ agi = XFS_BUF_TO_AGI(agibp);
+ agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
+ offset = offsetof(xfs_agi_t, agi_unlinked) +
+ (sizeof(xfs_agino_t) * bucket);
+ xfs_trans_log_buf(tp, agibp, offset,
+ (offset + sizeof(xfs_agino_t) - 1));
+
+ error = xfs_trans_commit(tp);
+ if (error)
+ goto out_error;
+ return;
+
+out_abort:
+ xfs_trans_cancel(tp);
+out_error:
+ xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
+ return;
+}
+
+STATIC xfs_agino_t
+xlog_recover_process_one_iunlink(
+ struct xfs_mount *mp,
+ xfs_agnumber_t agno,
+ xfs_agino_t agino,
+ int bucket)
+{
+ struct xfs_buf *ibp;
+ struct xfs_dinode *dip;
+ struct xfs_inode *ip;
+ xfs_ino_t ino;
+ int error;
+
+ ino = XFS_AGINO_TO_INO(mp, agno, agino);
+ error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
+ if (error)
+ goto fail;
+
+ /*
+ * Get the on disk inode to find the next inode in the bucket.
+ */
+ error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
+ if (error)
+ goto fail_iput;
+
+ xfs_iflags_clear(ip, XFS_IRECOVERY);
+ ASSERT(VFS_I(ip)->i_nlink == 0);
+ ASSERT(VFS_I(ip)->i_mode != 0);
+
+ /* setup for the next pass */
+ agino = be32_to_cpu(dip->di_next_unlinked);
+ xfs_buf_relse(ibp);
+
+ /*
+ * Prevent any DMAPI event from being sent when the reference on
+ * the inode is dropped.
+ */
+ ip->i_d.di_dmevmask = 0;
+
+ xfs_irele(ip);
+ return agino;
+
+ fail_iput:
+ xfs_irele(ip);
+ fail:
+ /*
+ * We can't read in the inode this bucket points to, or this inode
+ * is messed up. Just ditch this bucket of inodes. We will lose
+ * some inodes and space, but at least we won't hang.
+ *
+ * Call xlog_recover_clear_agi_bucket() to perform a transaction to
+ * clear the inode pointer in the bucket.
+ */
+ xlog_recover_clear_agi_bucket(mp, agno, bucket);
+ return NULLAGINO;
+}
+
+/*
+ * xlog_iunlink_recover
+ *
+ * This is called during recovery to process any inodes which
+ * we unlinked but not freed when the system crashed. These
+ * inodes will be on the lists in the AGI blocks. What we do
+ * here is scan all the AGIs and fully truncate and free any
+ * inodes found on the lists. Each inode is removed from the
+ * lists when it has been fully truncated and is freed. The
+ * freeing of the inode and its removal from the list must be
+ * atomic.
+ */
+STATIC void
+xlog_recover_process_iunlinks(
+ struct xlog *log)
+{
+ xfs_mount_t *mp;
+ xfs_agnumber_t agno;
+ xfs_agi_t *agi;
+ xfs_buf_t *agibp;
+ xfs_agino_t agino;
+ int bucket;
+ int error;
+
+ mp = log->l_mp;
+
+ for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
+ /*
+ * Find the agi for this ag.
+ */
+ error = xfs_read_agi(mp, NULL, agno, &agibp);
+ if (error) {
+ /*
+ * AGI is b0rked. Don't process it.
+ *
+ * We should probably mark the filesystem as corrupt
+ * after we've recovered all the ag's we can....
+ */
+ continue;
+ }
+ /*
+ * Unlock the buffer so that it can be acquired in the normal
+ * course of the transaction to truncate and free each inode.
+ * Because we are not racing with anyone else here for the AGI
+ * buffer, we don't even need to hold it locked to read the
+ * initial unlinked bucket entries out of the buffer. We keep
+ * buffer reference though, so that it stays pinned in memory
+ * while we need the buffer.
+ */
+ agi = XFS_BUF_TO_AGI(agibp);
+ xfs_buf_unlock(agibp);
+
+ for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
+ agino = be32_to_cpu(agi->agi_unlinked[bucket]);
+ while (agino != NULLAGINO) {
+ agino = xlog_recover_process_one_iunlink(mp,
+ agno, agino, bucket);
+ }
+ }
+ xfs_buf_rele(agibp);
+ }
+}
+
+STATIC int
+xlog_unpack_data(
+ struct xlog_rec_header *rhead,
+ char *dp,
+ struct xlog *log)
+{
+ int i, j, k;
+
+ for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
+ i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
+ *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
+ dp += BBSIZE;
+ }
+
+ if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
+ xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
+ for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
+ j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
+ k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
+ *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
+ dp += BBSIZE;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * CRC check, unpack and process a log record.
+ */
+STATIC int
+xlog_recover_process(
+ struct xlog *log,
+ struct hlist_head rhash[],
+ struct xlog_rec_header *rhead,
+ char *dp,
+ int pass,
+ struct list_head *buffer_list)
+{
+ int error;
+ __le32 old_crc = rhead->h_crc;
+ __le32 crc;
+
+
+ crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
+
+ /*
+ * Nothing else to do if this is a CRC verification pass. Just return
+ * if this a record with a non-zero crc. Unfortunately, mkfs always
+ * sets old_crc to 0 so we must consider this valid even on v5 supers.
+ * Otherwise, return EFSBADCRC on failure so the callers up the stack
+ * know precisely what failed.
+ */
+ if (pass == XLOG_RECOVER_CRCPASS) {
+ if (old_crc && crc != old_crc)
+ return -EFSBADCRC;
+ return 0;
+ }
+
+ /*
+ * We're in the normal recovery path. Issue a warning if and only if the
+ * CRC in the header is non-zero. This is an advisory warning and the
+ * zero CRC check prevents warnings from being emitted when upgrading
+ * the kernel from one that does not add CRCs by default.
+ */
+ if (crc != old_crc) {
+ if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
+ xfs_alert(log->l_mp,
+ "log record CRC mismatch: found 0x%x, expected 0x%x.",
+ le32_to_cpu(old_crc),
+ le32_to_cpu(crc));
+ xfs_hex_dump(dp, 32);
+ }
+
+ /*
+ * If the filesystem is CRC enabled, this mismatch becomes a
+ * fatal log corruption failure.
+ */
+ if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
+ return -EFSCORRUPTED;
+ }
+
+ error = xlog_unpack_data(rhead, dp, log);
+ if (error)
+ return error;
+
+ return xlog_recover_process_data(log, rhash, rhead, dp, pass,
+ buffer_list);
+}
+
+STATIC int
+xlog_valid_rec_header(
+ struct xlog *log,
+ struct xlog_rec_header *rhead,
+ xfs_daddr_t blkno)
+{
+ int hlen;
+
+ if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
+ XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
+ XFS_ERRLEVEL_LOW, log->l_mp);
+ return -EFSCORRUPTED;
+ }
+ if (unlikely(
+ (!rhead->h_version ||
+ (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
+ xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
+ __func__, be32_to_cpu(rhead->h_version));
+ return -EIO;
+ }
+
+ /* LR body must have data or it wouldn't have been written */
+ hlen = be32_to_cpu(rhead->h_len);
+ if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
+ XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
+ XFS_ERRLEVEL_LOW, log->l_mp);
+ return -EFSCORRUPTED;
+ }
+ if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
+ XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
+ XFS_ERRLEVEL_LOW, log->l_mp);
+ return -EFSCORRUPTED;
+ }
+ return 0;
+}
+
+/*
+ * Read the log from tail to head and process the log records found.
+ * Handle the two cases where the tail and head are in the same cycle
+ * and where the active portion of the log wraps around the end of
+ * the physical log separately. The pass parameter is passed through
+ * to the routines called to process the data and is not looked at
+ * here.
+ */
+STATIC int
+xlog_do_recovery_pass(
+ struct xlog *log,
+ xfs_daddr_t head_blk,
+ xfs_daddr_t tail_blk,
+ int pass,
+ xfs_daddr_t *first_bad) /* out: first bad log rec */
+{
+ xlog_rec_header_t *rhead;
+ xfs_daddr_t blk_no, rblk_no;
+ xfs_daddr_t rhead_blk;
+ char *offset;
+ xfs_buf_t *hbp, *dbp;
+ int error = 0, h_size, h_len;
+ int error2 = 0;
+ int bblks, split_bblks;
+ int hblks, split_hblks, wrapped_hblks;
+ int i;
+ struct hlist_head rhash[XLOG_RHASH_SIZE];
+ LIST_HEAD (buffer_list);
+
+ ASSERT(head_blk != tail_blk);
+ blk_no = rhead_blk = tail_blk;
+
+ for (i = 0; i < XLOG_RHASH_SIZE; i++)
+ INIT_HLIST_HEAD(&rhash[i]);
+
+ /*
+ * Read the header of the tail block and get the iclog buffer size from
+ * h_size. Use this to tell how many sectors make up the log header.
+ */
+ if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
+ /*
+ * When using variable length iclogs, read first sector of
+ * iclog header and extract the header size from it. Get a
+ * new hbp that is the correct size.
+ */
+ hbp = xlog_get_bp(log, 1);
+ if (!hbp)
+ return -ENOMEM;
+
+ error = xlog_bread(log, tail_blk, 1, hbp, &offset);
+ if (error)
+ goto bread_err1;
+
+ rhead = (xlog_rec_header_t *)offset;
+ error = xlog_valid_rec_header(log, rhead, tail_blk);
+ if (error)
+ goto bread_err1;
+
+ /*
+ * xfsprogs has a bug where record length is based on lsunit but
+ * h_size (iclog size) is hardcoded to 32k. Now that we
+ * unconditionally CRC verify the unmount record, this means the
+ * log buffer can be too small for the record and cause an
+ * overrun.
+ *
+ * Detect this condition here. Use lsunit for the buffer size as
+ * long as this looks like the mkfs case. Otherwise, return an
+ * error to avoid a buffer overrun.
+ */
+ h_size = be32_to_cpu(rhead->h_size);
+ h_len = be32_to_cpu(rhead->h_len);
+ if (h_len > h_size) {
+ if (h_len <= log->l_mp->m_logbsize &&
+ be32_to_cpu(rhead->h_num_logops) == 1) {
+ xfs_warn(log->l_mp,
+ "invalid iclog size (%d bytes), using lsunit (%d bytes)",
+ h_size, log->l_mp->m_logbsize);
+ h_size = log->l_mp->m_logbsize;
+ } else
+ return -EFSCORRUPTED;
+ }
+
+ if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
+ (h_size > XLOG_HEADER_CYCLE_SIZE)) {
+ hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
+ if (h_size % XLOG_HEADER_CYCLE_SIZE)
+ hblks++;
+ xlog_put_bp(hbp);
+ hbp = xlog_get_bp(log, hblks);
+ } else {
+ hblks = 1;
+ }
+ } else {
+ ASSERT(log->l_sectBBsize == 1);
+ hblks = 1;
+ hbp = xlog_get_bp(log, 1);
+ h_size = XLOG_BIG_RECORD_BSIZE;
+ }
+
+ if (!hbp)
+ return -ENOMEM;
+ dbp = xlog_get_bp(log, BTOBB(h_size));
+ if (!dbp) {
+ xlog_put_bp(hbp);
+ return -ENOMEM;
+ }
+
+ memset(rhash, 0, sizeof(rhash));
+ if (tail_blk > head_blk) {
+ /*
+ * Perform recovery around the end of the physical log.
+ * When the head is not on the same cycle number as the tail,
+ * we can't do a sequential recovery.
+ */
+ while (blk_no < log->l_logBBsize) {
+ /*
+ * Check for header wrapping around physical end-of-log
+ */
+ offset = hbp->b_addr;
+ split_hblks = 0;
+ wrapped_hblks = 0;
+ if (blk_no + hblks <= log->l_logBBsize) {
+ /* Read header in one read */
+ error = xlog_bread(log, blk_no, hblks, hbp,
+ &offset);
+ if (error)
+ goto bread_err2;
+ } else {
+ /* This LR is split across physical log end */
+ if (blk_no != log->l_logBBsize) {
+ /* some data before physical log end */
+ ASSERT(blk_no <= INT_MAX);
+ split_hblks = log->l_logBBsize - (int)blk_no;
+ ASSERT(split_hblks > 0);
+ error = xlog_bread(log, blk_no,
+ split_hblks, hbp,
+ &offset);
+ if (error)
+ goto bread_err2;
+ }
+
+ /*
+ * Note: this black magic still works with
+ * large sector sizes (non-512) only because:
+ * - we increased the buffer size originally
+ * by 1 sector giving us enough extra space
+ * for the second read;
+ * - the log start is guaranteed to be sector
+ * aligned;
+ * - we read the log end (LR header start)
+ * _first_, then the log start (LR header end)
+ * - order is important.
+ */
+ wrapped_hblks = hblks - split_hblks;
+ error = xlog_bread_offset(log, 0,
+ wrapped_hblks, hbp,
+ offset + BBTOB(split_hblks));
+ if (error)
+ goto bread_err2;
+ }
+ rhead = (xlog_rec_header_t *)offset;
+ error = xlog_valid_rec_header(log, rhead,
+ split_hblks ? blk_no : 0);
+ if (error)
+ goto bread_err2;
+
+ bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
+ blk_no += hblks;
+
+ /*
+ * Read the log record data in multiple reads if it
+ * wraps around the end of the log. Note that if the
+ * header already wrapped, blk_no could point past the
+ * end of the log. The record data is contiguous in
+ * that case.
+ */
+ if (blk_no + bblks <= log->l_logBBsize ||
+ blk_no >= log->l_logBBsize) {
+ rblk_no = xlog_wrap_logbno(log, blk_no);
+ error = xlog_bread(log, rblk_no, bblks, dbp,
+ &offset);
+ if (error)
+ goto bread_err2;
+ } else {
+ /* This log record is split across the
+ * physical end of log */
+ offset = dbp->b_addr;
+ split_bblks = 0;
+ if (blk_no != log->l_logBBsize) {
+ /* some data is before the physical
+ * end of log */
+ ASSERT(!wrapped_hblks);
+ ASSERT(blk_no <= INT_MAX);
+ split_bblks =
+ log->l_logBBsize - (int)blk_no;
+ ASSERT(split_bblks > 0);
+ error = xlog_bread(log, blk_no,
+ split_bblks, dbp,
+ &offset);
+ if (error)
+ goto bread_err2;
+ }
+
+ /*
+ * Note: this black magic still works with
+ * large sector sizes (non-512) only because:
+ * - we increased the buffer size originally
+ * by 1 sector giving us enough extra space
+ * for the second read;
+ * - the log start is guaranteed to be sector
+ * aligned;
+ * - we read the log end (LR header start)
+ * _first_, then the log start (LR header end)
+ * - order is important.
+ */
+ error = xlog_bread_offset(log, 0,
+ bblks - split_bblks, dbp,
+ offset + BBTOB(split_bblks));
+ if (error)
+ goto bread_err2;
+ }
+
+ error = xlog_recover_process(log, rhash, rhead, offset,
+ pass, &buffer_list);
+ if (error)
+ goto bread_err2;
+
+ blk_no += bblks;
+ rhead_blk = blk_no;
+ }
+
+ ASSERT(blk_no >= log->l_logBBsize);
+ blk_no -= log->l_logBBsize;
+ rhead_blk = blk_no;
+ }
+
+ /* read first part of physical log */
+ while (blk_no < head_blk) {
+ error = xlog_bread(log, blk_no, hblks, hbp, &offset);
+ if (error)
+ goto bread_err2;
+
+ rhead = (xlog_rec_header_t *)offset;
+ error = xlog_valid_rec_header(log, rhead, blk_no);
+ if (error)
+ goto bread_err2;
+
+ /* blocks in data section */
+ bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
+ error = xlog_bread(log, blk_no+hblks, bblks, dbp,
+ &offset);
+ if (error)
+ goto bread_err2;
+
+ error = xlog_recover_process(log, rhash, rhead, offset, pass,
+ &buffer_list);
+ if (error)
+ goto bread_err2;
+
+ blk_no += bblks + hblks;
+ rhead_blk = blk_no;
+ }
+
+ bread_err2:
+ xlog_put_bp(dbp);
+ bread_err1:
+ xlog_put_bp(hbp);
+
+ /*
+ * Submit buffers that have been added from the last record processed,
+ * regardless of error status.
+ */
+ if (!list_empty(&buffer_list))
+ error2 = xfs_buf_delwri_submit(&buffer_list);
+
+ if (error && first_bad)
+ *first_bad = rhead_blk;
+
+ /*
+ * Transactions are freed at commit time but transactions without commit
+ * records on disk are never committed. Free any that may be left in the
+ * hash table.
+ */
+ for (i = 0; i < XLOG_RHASH_SIZE; i++) {
+ struct hlist_node *tmp;
+ struct xlog_recover *trans;
+
+ hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
+ xlog_recover_free_trans(trans);
+ }
+
+ return error ? error : error2;
+}
+
+/*
+ * Do the recovery of the log. We actually do this in two phases.
+ * The two passes are necessary in order to implement the function
+ * of cancelling a record written into the log. The first pass
+ * determines those things which have been cancelled, and the
+ * second pass replays log items normally except for those which
+ * have been cancelled. The handling of the replay and cancellations
+ * takes place in the log item type specific routines.
+ *
+ * The table of items which have cancel records in the log is allocated
+ * and freed at this level, since only here do we know when all of
+ * the log recovery has been completed.
+ */
+STATIC int
+xlog_do_log_recovery(
+ struct xlog *log,
+ xfs_daddr_t head_blk,
+ xfs_daddr_t tail_blk)
+{
+ int error, i;
+
+ ASSERT(head_blk != tail_blk);
+
+ /*
+ * First do a pass to find all of the cancelled buf log items.
+ * Store them in the buf_cancel_table for use in the second pass.
+ */
+ log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
+ sizeof(struct list_head),
+ KM_SLEEP);
+ for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
+ INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
+
+ error = xlog_do_recovery_pass(log, head_blk, tail_blk,
+ XLOG_RECOVER_PASS1, NULL);
+ if (error != 0) {
+ kmem_free(log->l_buf_cancel_table);
+ log->l_buf_cancel_table = NULL;
+ return error;
+ }
+ /*
+ * Then do a second pass to actually recover the items in the log.
+ * When it is complete free the table of buf cancel items.
+ */
+ error = xlog_do_recovery_pass(log, head_blk, tail_blk,
+ XLOG_RECOVER_PASS2, NULL);
+#ifdef DEBUG
+ if (!error) {
+ int i;
+
+ for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
+ ASSERT(list_empty(&log->l_buf_cancel_table[i]));
+ }
+#endif /* DEBUG */
+
+ kmem_free(log->l_buf_cancel_table);
+ log->l_buf_cancel_table = NULL;
+
+ return error;
+}
+
+/*
+ * Do the actual recovery
+ */
+STATIC int
+xlog_do_recover(
+ struct xlog *log,
+ xfs_daddr_t head_blk,
+ xfs_daddr_t tail_blk)
+{
+ struct xfs_mount *mp = log->l_mp;
+ int error;
+ xfs_buf_t *bp;
+ xfs_sb_t *sbp;
+
+ trace_xfs_log_recover(log, head_blk, tail_blk);
+
+ /*
+ * First replay the images in the log.
+ */
+ error = xlog_do_log_recovery(log, head_blk, tail_blk);
+ if (error)
+ return error;
+
+ /*
+ * If IO errors happened during recovery, bail out.
+ */
+ if (XFS_FORCED_SHUTDOWN(mp)) {
+ return -EIO;
+ }
+
+ /*
+ * We now update the tail_lsn since much of the recovery has completed
+ * and there may be space available to use. If there were no extent
+ * or iunlinks, we can free up the entire log and set the tail_lsn to
+ * be the last_sync_lsn. This was set in xlog_find_tail to be the
+ * lsn of the last known good LR on disk. If there are extent frees
+ * or iunlinks they will have some entries in the AIL; so we look at
+ * the AIL to determine how to set the tail_lsn.
+ */
+ xlog_assign_tail_lsn(mp);
+
+ /*
+ * Now that we've finished replaying all buffer and inode
+ * updates, re-read in the superblock and reverify it.
+ */
+ bp = xfs_getsb(mp, 0);
+ bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
+ ASSERT(!(bp->b_flags & XBF_WRITE));
+ bp->b_flags |= XBF_READ;
+ bp->b_ops = &xfs_sb_buf_ops;
+
+ error = xfs_buf_submit(bp);
+ if (error) {
+ if (!XFS_FORCED_SHUTDOWN(mp)) {
+ xfs_buf_ioerror_alert(bp, __func__);
+ ASSERT(0);
+ }
+ xfs_buf_relse(bp);
+ return error;
+ }
+
+ /* Convert superblock from on-disk format */
+ sbp = &mp->m_sb;
+ xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
+ xfs_buf_relse(bp);
+
+ /* re-initialise in-core superblock and geometry structures */
+ xfs_reinit_percpu_counters(mp);
+ error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
+ if (error) {
+ xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
+ return error;
+ }
+ mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
+
+ xlog_recover_check_summary(log);
+
+ /* Normal transactions can now occur */
+ log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
+ return 0;
+}
+
+/*
+ * Perform recovery and re-initialize some log variables in xlog_find_tail.
+ *
+ * Return error or zero.
+ */
+int
+xlog_recover(
+ struct xlog *log)
+{
+ xfs_daddr_t head_blk, tail_blk;
+ int error;
+
+ /* find the tail of the log */
+ error = xlog_find_tail(log, &head_blk, &tail_blk);
+ if (error)
+ return error;
+
+ /*
+ * The superblock was read before the log was available and thus the LSN
+ * could not be verified. Check the superblock LSN against the current
+ * LSN now that it's known.
+ */
+ if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
+ !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
+ return -EINVAL;
+
+ if (tail_blk != head_blk) {
+ /* There used to be a comment here:
+ *
+ * disallow recovery on read-only mounts. note -- mount
+ * checks for ENOSPC and turns it into an intelligent
+ * error message.
+ * ...but this is no longer true. Now, unless you specify
+ * NORECOVERY (in which case this function would never be
+ * called), we just go ahead and recover. We do this all
+ * under the vfs layer, so we can get away with it unless
+ * the device itself is read-only, in which case we fail.
+ */
+ if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
+ return error;
+ }
+
+ /*
+ * Version 5 superblock log feature mask validation. We know the
+ * log is dirty so check if there are any unknown log features
+ * in what we need to recover. If there are unknown features
+ * (e.g. unsupported transactions, then simply reject the
+ * attempt at recovery before touching anything.
+ */
+ if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
+ xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
+ XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
+ xfs_warn(log->l_mp,
+"Superblock has unknown incompatible log features (0x%x) enabled.",
+ (log->l_mp->m_sb.sb_features_log_incompat &
+ XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
+ xfs_warn(log->l_mp,
+"The log can not be fully and/or safely recovered by this kernel.");
+ xfs_warn(log->l_mp,
+"Please recover the log on a kernel that supports the unknown features.");
+ return -EINVAL;
+ }
+
+ /*
+ * Delay log recovery if the debug hook is set. This is debug
+ * instrumention to coordinate simulation of I/O failures with
+ * log recovery.
+ */
+ if (xfs_globals.log_recovery_delay) {
+ xfs_notice(log->l_mp,
+ "Delaying log recovery for %d seconds.",
+ xfs_globals.log_recovery_delay);
+ msleep(xfs_globals.log_recovery_delay * 1000);
+ }
+
+ xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
+ log->l_mp->m_logname ? log->l_mp->m_logname
+ : "internal");
+
+ error = xlog_do_recover(log, head_blk, tail_blk);
+ log->l_flags |= XLOG_RECOVERY_NEEDED;
+ }
+ return error;
+}
+
+/*
+ * In the first part of recovery we replay inodes and buffers and build
+ * up the list of extent free items which need to be processed. Here
+ * we process the extent free items and clean up the on disk unlinked
+ * inode lists. This is separated from the first part of recovery so
+ * that the root and real-time bitmap inodes can be read in from disk in
+ * between the two stages. This is necessary so that we can free space
+ * in the real-time portion of the file system.
+ */
+int
+xlog_recover_finish(
+ struct xlog *log)
+{
+ /*
+ * Now we're ready to do the transactions needed for the
+ * rest of recovery. Start with completing all the extent
+ * free intent records and then process the unlinked inode
+ * lists. At this point, we essentially run in normal mode
+ * except that we're still performing recovery actions
+ * rather than accepting new requests.
+ */
+ if (log->l_flags & XLOG_RECOVERY_NEEDED) {
+ int error;
+ error = xlog_recover_process_intents(log);
+ if (error) {
+ xfs_alert(log->l_mp, "Failed to recover intents");
+ return error;
+ }
+
+ /*
+ * Sync the log to get all the intents out of the AIL.
+ * This isn't absolutely necessary, but it helps in
+ * case the unlink transactions would have problems
+ * pushing the intents out of the way.
+ */
+ xfs_log_force(log->l_mp, XFS_LOG_SYNC);
+
+ xlog_recover_process_iunlinks(log);
+
+ xlog_recover_check_summary(log);
+
+ xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
+ log->l_mp->m_logname ? log->l_mp->m_logname
+ : "internal");
+ log->l_flags &= ~XLOG_RECOVERY_NEEDED;
+ } else {
+ xfs_info(log->l_mp, "Ending clean mount");
+ }
+ return 0;
+}
+
+int
+xlog_recover_cancel(
+ struct xlog *log)
+{
+ int error = 0;
+
+ if (log->l_flags & XLOG_RECOVERY_NEEDED)
+ error = xlog_recover_cancel_intents(log);
+
+ return error;
+}
+
+#if defined(DEBUG)
+/*
+ * Read all of the agf and agi counters and check that they
+ * are consistent with the superblock counters.
+ */
+STATIC void
+xlog_recover_check_summary(
+ struct xlog *log)
+{
+ xfs_mount_t *mp;
+ xfs_agf_t *agfp;
+ xfs_buf_t *agfbp;
+ xfs_buf_t *agibp;
+ xfs_agnumber_t agno;
+ uint64_t freeblks;
+ uint64_t itotal;
+ uint64_t ifree;
+ int error;
+
+ mp = log->l_mp;
+
+ freeblks = 0LL;
+ itotal = 0LL;
+ ifree = 0LL;
+ for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
+ error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
+ if (error) {
+ xfs_alert(mp, "%s agf read failed agno %d error %d",
+ __func__, agno, error);
+ } else {
+ agfp = XFS_BUF_TO_AGF(agfbp);
+ freeblks += be32_to_cpu(agfp->agf_freeblks) +
+ be32_to_cpu(agfp->agf_flcount);
+ xfs_buf_relse(agfbp);
+ }
+
+ error = xfs_read_agi(mp, NULL, agno, &agibp);
+ if (error) {
+ xfs_alert(mp, "%s agi read failed agno %d error %d",
+ __func__, agno, error);
+ } else {
+ struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
+
+ itotal += be32_to_cpu(agi->agi_count);
+ ifree += be32_to_cpu(agi->agi_freecount);
+ xfs_buf_relse(agibp);
+ }
+ }
+}
+#endif /* DEBUG */