diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
commit | 76cb841cb886eef6b3bee341a2266c76578724ad (patch) | |
tree | f5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /lib/refcount.c | |
parent | Initial commit. (diff) | |
download | linux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip |
Adding upstream version 4.19.249.upstream/4.19.249upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | lib/refcount.c | 379 |
1 files changed, 379 insertions, 0 deletions
diff --git a/lib/refcount.c b/lib/refcount.c new file mode 100644 index 000000000..ebcf8cd49 --- /dev/null +++ b/lib/refcount.c @@ -0,0 +1,379 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Variant of atomic_t specialized for reference counts. + * + * The interface matches the atomic_t interface (to aid in porting) but only + * provides the few functions one should use for reference counting. + * + * It differs in that the counter saturates at UINT_MAX and will not move once + * there. This avoids wrapping the counter and causing 'spurious' + * use-after-free issues. + * + * Memory ordering rules are slightly relaxed wrt regular atomic_t functions + * and provide only what is strictly required for refcounts. + * + * The increments are fully relaxed; these will not provide ordering. The + * rationale is that whatever is used to obtain the object we're increasing the + * reference count on will provide the ordering. For locked data structures, + * its the lock acquire, for RCU/lockless data structures its the dependent + * load. + * + * Do note that inc_not_zero() provides a control dependency which will order + * future stores against the inc, this ensures we'll never modify the object + * if we did not in fact acquire a reference. + * + * The decrements will provide release order, such that all the prior loads and + * stores will be issued before, it also provides a control dependency, which + * will order us against the subsequent free(). + * + * The control dependency is against the load of the cmpxchg (ll/sc) that + * succeeded. This means the stores aren't fully ordered, but this is fine + * because the 1->0 transition indicates no concurrency. + * + * Note that the allocator is responsible for ordering things between free() + * and alloc(). + * + */ + +#include <linux/mutex.h> +#include <linux/refcount.h> +#include <linux/spinlock.h> +#include <linux/bug.h> + +/** + * refcount_add_not_zero_checked - add a value to a refcount unless it is 0 + * @i: the value to add to the refcount + * @r: the refcount + * + * Will saturate at UINT_MAX and WARN. + * + * Provides no memory ordering, it is assumed the caller has guaranteed the + * object memory to be stable (RCU, etc.). It does provide a control dependency + * and thereby orders future stores. See the comment on top. + * + * Use of this function is not recommended for the normal reference counting + * use case in which references are taken and released one at a time. In these + * cases, refcount_inc(), or one of its variants, should instead be used to + * increment a reference count. + * + * Return: false if the passed refcount is 0, true otherwise + */ +bool refcount_add_not_zero_checked(unsigned int i, refcount_t *r) +{ + unsigned int new, val = atomic_read(&r->refs); + + do { + if (!val) + return false; + + if (unlikely(val == UINT_MAX)) + return true; + + new = val + i; + if (new < val) + new = UINT_MAX; + + } while (!atomic_try_cmpxchg_relaxed(&r->refs, &val, new)); + + WARN_ONCE(new == UINT_MAX, "refcount_t: saturated; leaking memory.\n"); + + return true; +} +EXPORT_SYMBOL(refcount_add_not_zero_checked); + +/** + * refcount_add_checked - add a value to a refcount + * @i: the value to add to the refcount + * @r: the refcount + * + * Similar to atomic_add(), but will saturate at UINT_MAX and WARN. + * + * Provides no memory ordering, it is assumed the caller has guaranteed the + * object memory to be stable (RCU, etc.). It does provide a control dependency + * and thereby orders future stores. See the comment on top. + * + * Use of this function is not recommended for the normal reference counting + * use case in which references are taken and released one at a time. In these + * cases, refcount_inc(), or one of its variants, should instead be used to + * increment a reference count. + */ +void refcount_add_checked(unsigned int i, refcount_t *r) +{ + WARN_ONCE(!refcount_add_not_zero_checked(i, r), "refcount_t: addition on 0; use-after-free.\n"); +} +EXPORT_SYMBOL(refcount_add_checked); + +/** + * refcount_inc_not_zero_checked - increment a refcount unless it is 0 + * @r: the refcount to increment + * + * Similar to atomic_inc_not_zero(), but will saturate at UINT_MAX and WARN. + * + * Provides no memory ordering, it is assumed the caller has guaranteed the + * object memory to be stable (RCU, etc.). It does provide a control dependency + * and thereby orders future stores. See the comment on top. + * + * Return: true if the increment was successful, false otherwise + */ +bool refcount_inc_not_zero_checked(refcount_t *r) +{ + unsigned int new, val = atomic_read(&r->refs); + + do { + new = val + 1; + + if (!val) + return false; + + if (unlikely(!new)) + return true; + + } while (!atomic_try_cmpxchg_relaxed(&r->refs, &val, new)); + + WARN_ONCE(new == UINT_MAX, "refcount_t: saturated; leaking memory.\n"); + + return true; +} +EXPORT_SYMBOL(refcount_inc_not_zero_checked); + +/** + * refcount_inc_checked - increment a refcount + * @r: the refcount to increment + * + * Similar to atomic_inc(), but will saturate at UINT_MAX and WARN. + * + * Provides no memory ordering, it is assumed the caller already has a + * reference on the object. + * + * Will WARN if the refcount is 0, as this represents a possible use-after-free + * condition. + */ +void refcount_inc_checked(refcount_t *r) +{ + WARN_ONCE(!refcount_inc_not_zero_checked(r), "refcount_t: increment on 0; use-after-free.\n"); +} +EXPORT_SYMBOL(refcount_inc_checked); + +/** + * refcount_sub_and_test_checked - subtract from a refcount and test if it is 0 + * @i: amount to subtract from the refcount + * @r: the refcount + * + * Similar to atomic_dec_and_test(), but it will WARN, return false and + * ultimately leak on underflow and will fail to decrement when saturated + * at UINT_MAX. + * + * Provides release memory ordering, such that prior loads and stores are done + * before, and provides a control dependency such that free() must come after. + * See the comment on top. + * + * Use of this function is not recommended for the normal reference counting + * use case in which references are taken and released one at a time. In these + * cases, refcount_dec(), or one of its variants, should instead be used to + * decrement a reference count. + * + * Return: true if the resulting refcount is 0, false otherwise + */ +bool refcount_sub_and_test_checked(unsigned int i, refcount_t *r) +{ + unsigned int new, val = atomic_read(&r->refs); + + do { + if (unlikely(val == UINT_MAX)) + return false; + + new = val - i; + if (new > val) { + WARN_ONCE(new > val, "refcount_t: underflow; use-after-free.\n"); + return false; + } + + } while (!atomic_try_cmpxchg_release(&r->refs, &val, new)); + + return !new; +} +EXPORT_SYMBOL(refcount_sub_and_test_checked); + +/** + * refcount_dec_and_test_checked - decrement a refcount and test if it is 0 + * @r: the refcount + * + * Similar to atomic_dec_and_test(), it will WARN on underflow and fail to + * decrement when saturated at UINT_MAX. + * + * Provides release memory ordering, such that prior loads and stores are done + * before, and provides a control dependency such that free() must come after. + * See the comment on top. + * + * Return: true if the resulting refcount is 0, false otherwise + */ +bool refcount_dec_and_test_checked(refcount_t *r) +{ + return refcount_sub_and_test_checked(1, r); +} +EXPORT_SYMBOL(refcount_dec_and_test_checked); + +/** + * refcount_dec_checked - decrement a refcount + * @r: the refcount + * + * Similar to atomic_dec(), it will WARN on underflow and fail to decrement + * when saturated at UINT_MAX. + * + * Provides release memory ordering, such that prior loads and stores are done + * before. + */ +void refcount_dec_checked(refcount_t *r) +{ + WARN_ONCE(refcount_dec_and_test_checked(r), "refcount_t: decrement hit 0; leaking memory.\n"); +} +EXPORT_SYMBOL(refcount_dec_checked); + +/** + * refcount_dec_if_one - decrement a refcount if it is 1 + * @r: the refcount + * + * No atomic_t counterpart, it attempts a 1 -> 0 transition and returns the + * success thereof. + * + * Like all decrement operations, it provides release memory order and provides + * a control dependency. + * + * It can be used like a try-delete operator; this explicit case is provided + * and not cmpxchg in generic, because that would allow implementing unsafe + * operations. + * + * Return: true if the resulting refcount is 0, false otherwise + */ +bool refcount_dec_if_one(refcount_t *r) +{ + int val = 1; + + return atomic_try_cmpxchg_release(&r->refs, &val, 0); +} +EXPORT_SYMBOL(refcount_dec_if_one); + +/** + * refcount_dec_not_one - decrement a refcount if it is not 1 + * @r: the refcount + * + * No atomic_t counterpart, it decrements unless the value is 1, in which case + * it will return false. + * + * Was often done like: atomic_add_unless(&var, -1, 1) + * + * Return: true if the decrement operation was successful, false otherwise + */ +bool refcount_dec_not_one(refcount_t *r) +{ + unsigned int new, val = atomic_read(&r->refs); + + do { + if (unlikely(val == UINT_MAX)) + return true; + + if (val == 1) + return false; + + new = val - 1; + if (new > val) { + WARN_ONCE(new > val, "refcount_t: underflow; use-after-free.\n"); + return true; + } + + } while (!atomic_try_cmpxchg_release(&r->refs, &val, new)); + + return true; +} +EXPORT_SYMBOL(refcount_dec_not_one); + +/** + * refcount_dec_and_mutex_lock - return holding mutex if able to decrement + * refcount to 0 + * @r: the refcount + * @lock: the mutex to be locked + * + * Similar to atomic_dec_and_mutex_lock(), it will WARN on underflow and fail + * to decrement when saturated at UINT_MAX. + * + * Provides release memory ordering, such that prior loads and stores are done + * before, and provides a control dependency such that free() must come after. + * See the comment on top. + * + * Return: true and hold mutex if able to decrement refcount to 0, false + * otherwise + */ +bool refcount_dec_and_mutex_lock(refcount_t *r, struct mutex *lock) +{ + if (refcount_dec_not_one(r)) + return false; + + mutex_lock(lock); + if (!refcount_dec_and_test(r)) { + mutex_unlock(lock); + return false; + } + + return true; +} +EXPORT_SYMBOL(refcount_dec_and_mutex_lock); + +/** + * refcount_dec_and_lock - return holding spinlock if able to decrement + * refcount to 0 + * @r: the refcount + * @lock: the spinlock to be locked + * + * Similar to atomic_dec_and_lock(), it will WARN on underflow and fail to + * decrement when saturated at UINT_MAX. + * + * Provides release memory ordering, such that prior loads and stores are done + * before, and provides a control dependency such that free() must come after. + * See the comment on top. + * + * Return: true and hold spinlock if able to decrement refcount to 0, false + * otherwise + */ +bool refcount_dec_and_lock(refcount_t *r, spinlock_t *lock) +{ + if (refcount_dec_not_one(r)) + return false; + + spin_lock(lock); + if (!refcount_dec_and_test(r)) { + spin_unlock(lock); + return false; + } + + return true; +} +EXPORT_SYMBOL(refcount_dec_and_lock); + +/** + * refcount_dec_and_lock_irqsave - return holding spinlock with disabled + * interrupts if able to decrement refcount to 0 + * @r: the refcount + * @lock: the spinlock to be locked + * @flags: saved IRQ-flags if the is acquired + * + * Same as refcount_dec_and_lock() above except that the spinlock is acquired + * with disabled interupts. + * + * Return: true and hold spinlock if able to decrement refcount to 0, false + * otherwise + */ +bool refcount_dec_and_lock_irqsave(refcount_t *r, spinlock_t *lock, + unsigned long *flags) +{ + if (refcount_dec_not_one(r)) + return false; + + spin_lock_irqsave(lock, *flags); + if (!refcount_dec_and_test(r)) { + spin_unlock_irqrestore(lock, *flags); + return false; + } + + return true; +} +EXPORT_SYMBOL(refcount_dec_and_lock_irqsave); |