summaryrefslogtreecommitdiffstats
path: root/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt333
1 files changed, 333 insertions, 0 deletions
diff --git a/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt b/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt
new file mode 100644
index 000000000..cef2b5855
--- /dev/null
+++ b/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt
@@ -0,0 +1,333 @@
+== Introduction ==
+
+Hardware modules that control pin multiplexing or configuration parameters
+such as pull-up/down, tri-state, drive-strength etc are designated as pin
+controllers. Each pin controller must be represented as a node in device tree,
+just like any other hardware module.
+
+Hardware modules whose signals are affected by pin configuration are
+designated client devices. Again, each client device must be represented as a
+node in device tree, just like any other hardware module.
+
+For a client device to operate correctly, certain pin controllers must
+set up certain specific pin configurations. Some client devices need a
+single static pin configuration, e.g. set up during initialization. Others
+need to reconfigure pins at run-time, for example to tri-state pins when the
+device is inactive. Hence, each client device can define a set of named
+states. The number and names of those states is defined by the client device's
+own binding.
+
+The common pinctrl bindings defined in this file provide an infrastructure
+for client device device tree nodes to map those state names to the pin
+configuration used by those states.
+
+Note that pin controllers themselves may also be client devices of themselves.
+For example, a pin controller may set up its own "active" state when the
+driver loads. This would allow representing a board's static pin configuration
+in a single place, rather than splitting it across multiple client device
+nodes. The decision to do this or not somewhat rests with the author of
+individual board device tree files, and any requirements imposed by the
+bindings for the individual client devices in use by that board, i.e. whether
+they require certain specific named states for dynamic pin configuration.
+
+== Pinctrl client devices ==
+
+For each client device individually, every pin state is assigned an integer
+ID. These numbers start at 0, and are contiguous. For each state ID, a unique
+property exists to define the pin configuration. Each state may also be
+assigned a name. When names are used, another property exists to map from
+those names to the integer IDs.
+
+Each client device's own binding determines the set of states that must be
+defined in its device tree node, and whether to define the set of state
+IDs that must be provided, or whether to define the set of state names that
+must be provided.
+
+Required properties:
+pinctrl-0: List of phandles, each pointing at a pin configuration
+ node. These referenced pin configuration nodes must be child
+ nodes of the pin controller that they configure. Multiple
+ entries may exist in this list so that multiple pin
+ controllers may be configured, or so that a state may be built
+ from multiple nodes for a single pin controller, each
+ contributing part of the overall configuration. See the next
+ section of this document for details of the format of these
+ pin configuration nodes.
+
+ In some cases, it may be useful to define a state, but for it
+ to be empty. This may be required when a common IP block is
+ used in an SoC either without a pin controller, or where the
+ pin controller does not affect the HW module in question. If
+ the binding for that IP block requires certain pin states to
+ exist, they must still be defined, but may be left empty.
+
+Optional properties:
+pinctrl-1: List of phandles, each pointing at a pin configuration
+ node within a pin controller.
+...
+pinctrl-n: List of phandles, each pointing at a pin configuration
+ node within a pin controller.
+pinctrl-names: The list of names to assign states. List entry 0 defines the
+ name for integer state ID 0, list entry 1 for state ID 1, and
+ so on.
+
+For example:
+
+ /* For a client device requiring named states */
+ device {
+ pinctrl-names = "active", "idle";
+ pinctrl-0 = <&state_0_node_a>;
+ pinctrl-1 = <&state_1_node_a &state_1_node_b>;
+ };
+
+ /* For the same device if using state IDs */
+ device {
+ pinctrl-0 = <&state_0_node_a>;
+ pinctrl-1 = <&state_1_node_a &state_1_node_b>;
+ };
+
+ /*
+ * For an IP block whose binding supports pin configuration,
+ * but in use on an SoC that doesn't have any pin control hardware
+ */
+ device {
+ pinctrl-names = "active", "idle";
+ pinctrl-0 = <>;
+ pinctrl-1 = <>;
+ };
+
+== Pin controller devices ==
+Required properties: See the pin controller driver specific documentation
+
+Optional properties:
+#pinctrl-cells: Number of pin control cells in addition to the index within the
+ pin controller device instance
+
+pinctrl-use-default: Boolean. Indicates that the OS can use the boot default
+ pin configuration. This allows using an OS that does not have a
+ driver for the pin controller. This property can be set either
+ globally for the pin controller or in child nodes for individual
+ pin group control.
+
+Pin controller devices should contain the pin configuration nodes that client
+devices reference.
+
+For example:
+
+ pincontroller {
+ ... /* Standard DT properties for the device itself elided */
+
+ state_0_node_a {
+ ...
+ };
+ state_1_node_a {
+ ...
+ };
+ state_1_node_b {
+ ...
+ };
+ }
+
+The contents of each of those pin configuration child nodes is defined
+entirely by the binding for the individual pin controller device. There
+exists no common standard for this content. The pinctrl framework only
+provides generic helper bindings that the pin controller driver can use.
+
+The pin configuration nodes need not be direct children of the pin controller
+device; they may be grandchildren, for example. Whether this is legal, and
+whether there is any interaction between the child and intermediate parent
+nodes, is again defined entirely by the binding for the individual pin
+controller device.
+
+== Generic pin multiplexing node content ==
+
+pin multiplexing nodes:
+
+function - the mux function to select
+groups - the list of groups to select with this function
+ (either this or "pins" must be specified)
+pins - the list of pins to select with this function (either
+ this or "groups" must be specified)
+
+Example:
+
+state_0_node_a {
+ uart0 {
+ function = "uart0";
+ groups = "u0rxtx", "u0rtscts";
+ };
+};
+state_1_node_a {
+ spi0 {
+ function = "spi0";
+ groups = "spi0pins";
+ };
+};
+state_2_node_a {
+ function = "i2c0";
+ pins = "mfio29", "mfio30";
+};
+
+Optionally an alternative binding can be used if more suitable depending on the
+pin controller hardware. For hardware where there is a large number of identical
+pin controller instances, naming each pin and function can easily become
+unmaintainable. This is especially the case if the same controller is used for
+different pins and functions depending on the SoC revision and packaging.
+
+For cases like this, the pin controller driver may use pinctrl-pin-array helper
+binding with a hardware based index and a number of pin configuration values:
+
+pincontroller {
+ ... /* Standard DT properties for the device itself elided */
+ #pinctrl-cells = <2>;
+
+ state_0_node_a {
+ pinctrl-pin-array = <
+ 0 A_DELAY_PS(0) G_DELAY_PS(120)
+ 4 A_DELAY_PS(0) G_DELAY_PS(360)
+ ...
+ >;
+ };
+ ...
+};
+
+Above #pinctrl-cells specifies the number of value cells in addition to the
+index of the registers. This is similar to the interrupts-extended binding with
+one exception. There is no need to specify the phandle for each entry as that
+is already known as the defined pins are always children of the pin controller
+node. Further having the phandle pointing to another pin controller would not
+currently work as the pinctrl framework uses named modes to group pins for each
+pin control device.
+
+The index for pinctrl-pin-array must relate to the hardware for the pinctrl
+registers, and must not be a virtual index of pin instances. The reason for
+this is to avoid mapping of the index in the dts files and the pin controller
+driver as it can change.
+
+For hardware where pin multiplexing configurations have to be specified for
+each single pin the number of required sub-nodes containing "pin" and
+"function" properties can quickly escalate and become hard to write and
+maintain.
+
+For cases like this, the pin controller driver may use the pinmux helper
+property, where the pin identifier is provided with mux configuration settings
+in a pinmux group. A pinmux group consists of the pin identifier and mux
+settings represented as a single integer or an array of integers.
+
+The pinmux property accepts an array of pinmux groups, each of them describing
+a single pin multiplexing configuration.
+
+pincontroller {
+ state_0_node_a {
+ pinmux = <PINMUX_GROUP>, <PINMUX_GROUP>, ...;
+ };
+};
+
+Each individual pin controller driver bindings documentation shall specify
+how pin IDs and pin multiplexing configuration are defined and assembled
+together in a pinmux group.
+
+== Generic pin configuration node content ==
+
+Many data items that are represented in a pin configuration node are common
+and generic. Pin control bindings should use the properties defined below
+where they are applicable; not all of these properties are relevant or useful
+for all hardware or binding structures. Each individual binding document
+should state which of these generic properties, if any, are used, and the
+structure of the DT nodes that contain these properties.
+
+Supported generic properties are:
+
+pins - the list of pins that properties in the node
+ apply to (either this, "group" or "pinmux" has to be
+ specified)
+group - the group to apply the properties to, if the driver
+ supports configuration of whole groups rather than
+ individual pins (either this, "pins" or "pinmux" has
+ to be specified)
+pinmux - the list of numeric pin ids and their mux settings
+ that properties in the node apply to (either this,
+ "pins" or "groups" have to be specified)
+bias-disable - disable any pin bias
+bias-high-impedance - high impedance mode ("third-state", "floating")
+bias-bus-hold - latch weakly
+bias-pull-up - pull up the pin
+bias-pull-down - pull down the pin
+bias-pull-pin-default - use pin-default pull state
+drive-push-pull - drive actively high and low
+drive-open-drain - drive with open drain
+drive-open-source - drive with open source
+drive-strength - sink or source at most X mA
+input-enable - enable input on pin (no effect on output, such as
+ enabling an input buffer)
+input-disable - disable input on pin (no effect on output, such as
+ disabling an input buffer)
+input-schmitt-enable - enable schmitt-trigger mode
+input-schmitt-disable - disable schmitt-trigger mode
+input-debounce - debounce mode with debound time X
+power-source - select between different power supplies
+low-power-enable - enable low power mode
+low-power-disable - disable low power mode
+output-disable - disable output on a pin (such as disable an output
+ buffer)
+output-enable - enable output on a pin without actively driving it
+ (such as enabling an output buffer)
+output-low - set the pin to output mode with low level
+output-high - set the pin to output mode with high level
+sleep-hardware-state - indicate this is sleep related state which will be programmed
+ into the registers for the sleep state.
+slew-rate - set the slew rate
+skew-delay - this affects the expected clock skew on input pins
+ and the delay before latching a value to an output
+ pin. Typically indicates how many double-inverters are
+ used to delay the signal.
+
+For example:
+
+state_0_node_a {
+ cts_rxd {
+ pins = "GPIO0_AJ5", "GPIO2_AH4"; /* CTS+RXD */
+ bias-pull-up;
+ };
+};
+state_1_node_a {
+ rts_txd {
+ pins = "GPIO1_AJ3", "GPIO3_AH3"; /* RTS+TXD */
+ output-high;
+ };
+};
+state_2_node_a {
+ foo {
+ group = "foo-group";
+ bias-pull-up;
+ };
+};
+state_3_node_a {
+ mux {
+ pinmux = <GPIOx_PINm_MUXn>, <GPIOx_PINj_MUXk)>;
+ input-enable;
+ };
+};
+
+Some of the generic properties take arguments. For those that do, the
+arguments are described below.
+
+- pins takes a list of pin names or IDs as a required argument. The specific
+ binding for the hardware defines:
+ - Whether the entries are integers or strings, and their meaning.
+
+- pinmux takes a list of pin IDs and mux settings as required argument. The
+ specific bindings for the hardware defines:
+ - How pin IDs and mux settings are defined and assembled together in a single
+ integer or an array of integers.
+
+- bias-pull-up, -down and -pin-default take as optional argument on hardware
+ supporting it the pull strength in Ohm. bias-disable will disable the pull.
+
+- drive-strength takes as argument the target strength in mA.
+
+- input-debounce takes the debounce time in usec as argument
+ or 0 to disable debouncing
+
+More in-depth documentation on these parameters can be found in
+<include/linux/pinctrl/pinconf-generic.h>