summaryrefslogtreecommitdiffstats
path: root/Documentation/hwmon/pmbus
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--Documentation/hwmon/pmbus216
-rw-r--r--Documentation/hwmon/pmbus-core283
2 files changed, 499 insertions, 0 deletions
diff --git a/Documentation/hwmon/pmbus b/Documentation/hwmon/pmbus
new file mode 100644
index 000000000..dfd9c6599
--- /dev/null
+++ b/Documentation/hwmon/pmbus
@@ -0,0 +1,216 @@
+Kernel driver pmbus
+====================
+
+Supported chips:
+ * Ericsson BMR453, BMR454
+ Prefixes: 'bmr453', 'bmr454'
+ Addresses scanned: -
+ Datasheet:
+ http://archive.ericsson.net/service/internet/picov/get?DocNo=28701-EN/LZT146395
+ * ON Semiconductor ADP4000, NCP4200, NCP4208
+ Prefixes: 'adp4000', 'ncp4200', 'ncp4208'
+ Addresses scanned: -
+ Datasheets:
+ http://www.onsemi.com/pub_link/Collateral/ADP4000-D.PDF
+ http://www.onsemi.com/pub_link/Collateral/NCP4200-D.PDF
+ http://www.onsemi.com/pub_link/Collateral/JUNE%202009-%20REV.%200.PDF
+ * Lineage Power
+ Prefixes: 'mdt040', 'pdt003', 'pdt006', 'pdt012', 'udt020'
+ Addresses scanned: -
+ Datasheets:
+ http://www.lineagepower.com/oem/pdf/PDT003A0X.pdf
+ http://www.lineagepower.com/oem/pdf/PDT006A0X.pdf
+ http://www.lineagepower.com/oem/pdf/PDT012A0X.pdf
+ http://www.lineagepower.com/oem/pdf/UDT020A0X.pdf
+ http://www.lineagepower.com/oem/pdf/MDT040A0X.pdf
+ * Texas Instruments TPS40400, TPS544B20, TPS544B25, TPS544C20, TPS544C25
+ Prefixes: 'tps40400', 'tps544b20', 'tps544b25', 'tps544c20', 'tps544c25'
+ Addresses scanned: -
+ Datasheets:
+ http://www.ti.com/lit/gpn/tps40400
+ http://www.ti.com/lit/gpn/tps544b20
+ http://www.ti.com/lit/gpn/tps544b25
+ http://www.ti.com/lit/gpn/tps544c20
+ http://www.ti.com/lit/gpn/tps544c25
+ * Generic PMBus devices
+ Prefix: 'pmbus'
+ Addresses scanned: -
+ Datasheet: n.a.
+
+Author: Guenter Roeck <linux@roeck-us.net>
+
+
+Description
+-----------
+
+This driver supports hardware monitoring for various PMBus compliant devices.
+It supports voltage, current, power, and temperature sensors as supported
+by the device.
+
+Each monitored channel has its own high and low limits, plus a critical
+limit.
+
+Fan support will be added in a later version of this driver.
+
+
+Usage Notes
+-----------
+
+This driver does not probe for PMBus devices, since there is no register
+which can be safely used to identify the chip (The MFG_ID register is not
+supported by all chips), and since there is no well defined address range for
+PMBus devices. You will have to instantiate the devices explicitly.
+
+Example: the following will load the driver for an LTC2978 at address 0x60
+on I2C bus #1:
+$ modprobe pmbus
+$ echo ltc2978 0x60 > /sys/bus/i2c/devices/i2c-1/new_device
+
+
+Platform data support
+---------------------
+
+Support for additional PMBus chips can be added by defining chip parameters in
+a new chip specific driver file. For example, (untested) code to add support for
+Emerson DS1200 power modules might look as follows.
+
+static struct pmbus_driver_info ds1200_info = {
+ .pages = 1,
+ /* Note: All other sensors are in linear mode */
+ .direct[PSC_VOLTAGE_OUT] = true,
+ .direct[PSC_TEMPERATURE] = true,
+ .direct[PSC_CURRENT_OUT] = true,
+ .m[PSC_VOLTAGE_IN] = 1,
+ .b[PSC_VOLTAGE_IN] = 0,
+ .R[PSC_VOLTAGE_IN] = 3,
+ .m[PSC_VOLTAGE_OUT] = 1,
+ .b[PSC_VOLTAGE_OUT] = 0,
+ .R[PSC_VOLTAGE_OUT] = 3,
+ .m[PSC_TEMPERATURE] = 1,
+ .b[PSC_TEMPERATURE] = 0,
+ .R[PSC_TEMPERATURE] = 3,
+ .func[0] = PMBUS_HAVE_VIN | PMBUS_HAVE_IIN | PMBUS_HAVE_STATUS_INPUT
+ | PMBUS_HAVE_VOUT | PMBUS_HAVE_STATUS_VOUT
+ | PMBUS_HAVE_IOUT | PMBUS_HAVE_STATUS_IOUT
+ | PMBUS_HAVE_PIN | PMBUS_HAVE_POUT
+ | PMBUS_HAVE_TEMP | PMBUS_HAVE_STATUS_TEMP
+ | PMBUS_HAVE_FAN12 | PMBUS_HAVE_STATUS_FAN12,
+};
+
+static int ds1200_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ return pmbus_do_probe(client, id, &ds1200_info);
+}
+
+static int ds1200_remove(struct i2c_client *client)
+{
+ return pmbus_do_remove(client);
+}
+
+static const struct i2c_device_id ds1200_id[] = {
+ {"ds1200", 0},
+ {}
+};
+
+MODULE_DEVICE_TABLE(i2c, ds1200_id);
+
+/* This is the driver that will be inserted */
+static struct i2c_driver ds1200_driver = {
+ .driver = {
+ .name = "ds1200",
+ },
+ .probe = ds1200_probe,
+ .remove = ds1200_remove,
+ .id_table = ds1200_id,
+};
+
+static int __init ds1200_init(void)
+{
+ return i2c_add_driver(&ds1200_driver);
+}
+
+static void __exit ds1200_exit(void)
+{
+ i2c_del_driver(&ds1200_driver);
+}
+
+
+Sysfs entries
+-------------
+
+When probing the chip, the driver identifies which PMBus registers are
+supported, and determines available sensors from this information.
+Attribute files only exist if respective sensors are supported by the chip.
+Labels are provided to inform the user about the sensor associated with
+a given sysfs entry.
+
+The following attributes are supported. Limits are read-write; all other
+attributes are read-only.
+
+inX_input Measured voltage. From READ_VIN or READ_VOUT register.
+inX_min Minimum Voltage.
+ From VIN_UV_WARN_LIMIT or VOUT_UV_WARN_LIMIT register.
+inX_max Maximum voltage.
+ From VIN_OV_WARN_LIMIT or VOUT_OV_WARN_LIMIT register.
+inX_lcrit Critical minimum Voltage.
+ From VIN_UV_FAULT_LIMIT or VOUT_UV_FAULT_LIMIT register.
+inX_crit Critical maximum voltage.
+ From VIN_OV_FAULT_LIMIT or VOUT_OV_FAULT_LIMIT register.
+inX_min_alarm Voltage low alarm. From VOLTAGE_UV_WARNING status.
+inX_max_alarm Voltage high alarm. From VOLTAGE_OV_WARNING status.
+inX_lcrit_alarm Voltage critical low alarm.
+ From VOLTAGE_UV_FAULT status.
+inX_crit_alarm Voltage critical high alarm.
+ From VOLTAGE_OV_FAULT status.
+inX_label "vin", "vcap", or "voutY"
+
+currX_input Measured current. From READ_IIN or READ_IOUT register.
+currX_max Maximum current.
+ From IIN_OC_WARN_LIMIT or IOUT_OC_WARN_LIMIT register.
+currX_lcrit Critical minimum output current.
+ From IOUT_UC_FAULT_LIMIT register.
+currX_crit Critical maximum current.
+ From IIN_OC_FAULT_LIMIT or IOUT_OC_FAULT_LIMIT register.
+currX_alarm Current high alarm.
+ From IIN_OC_WARNING or IOUT_OC_WARNING status.
+currX_max_alarm Current high alarm.
+ From IIN_OC_WARN_LIMIT or IOUT_OC_WARN_LIMIT status.
+currX_lcrit_alarm Output current critical low alarm.
+ From IOUT_UC_FAULT status.
+currX_crit_alarm Current critical high alarm.
+ From IIN_OC_FAULT or IOUT_OC_FAULT status.
+currX_label "iin" or "ioutY"
+
+powerX_input Measured power. From READ_PIN or READ_POUT register.
+powerX_cap Output power cap. From POUT_MAX register.
+powerX_max Power limit. From PIN_OP_WARN_LIMIT or
+ POUT_OP_WARN_LIMIT register.
+powerX_crit Critical output power limit.
+ From POUT_OP_FAULT_LIMIT register.
+powerX_alarm Power high alarm.
+ From PIN_OP_WARNING or POUT_OP_WARNING status.
+powerX_crit_alarm Output power critical high alarm.
+ From POUT_OP_FAULT status.
+powerX_label "pin" or "poutY"
+
+tempX_input Measured temperature.
+ From READ_TEMPERATURE_X register.
+tempX_min Mimimum temperature. From UT_WARN_LIMIT register.
+tempX_max Maximum temperature. From OT_WARN_LIMIT register.
+tempX_lcrit Critical low temperature.
+ From UT_FAULT_LIMIT register.
+tempX_crit Critical high temperature.
+ From OT_FAULT_LIMIT register.
+tempX_min_alarm Chip temperature low alarm. Set by comparing
+ READ_TEMPERATURE_X with UT_WARN_LIMIT if
+ TEMP_UT_WARNING status is set.
+tempX_max_alarm Chip temperature high alarm. Set by comparing
+ READ_TEMPERATURE_X with OT_WARN_LIMIT if
+ TEMP_OT_WARNING status is set.
+tempX_lcrit_alarm Chip temperature critical low alarm. Set by comparing
+ READ_TEMPERATURE_X with UT_FAULT_LIMIT if
+ TEMP_UT_FAULT status is set.
+tempX_crit_alarm Chip temperature critical high alarm. Set by comparing
+ READ_TEMPERATURE_X with OT_FAULT_LIMIT if
+ TEMP_OT_FAULT status is set.
diff --git a/Documentation/hwmon/pmbus-core b/Documentation/hwmon/pmbus-core
new file mode 100644
index 000000000..8ed10e9dd
--- /dev/null
+++ b/Documentation/hwmon/pmbus-core
@@ -0,0 +1,283 @@
+PMBus core driver and internal API
+==================================
+
+Introduction
+============
+
+[from pmbus.org] The Power Management Bus (PMBus) is an open standard
+power-management protocol with a fully defined command language that facilitates
+communication with power converters and other devices in a power system. The
+protocol is implemented over the industry-standard SMBus serial interface and
+enables programming, control, and real-time monitoring of compliant power
+conversion products. This flexible and highly versatile standard allows for
+communication between devices based on both analog and digital technologies, and
+provides true interoperability which will reduce design complexity and shorten
+time to market for power system designers. Pioneered by leading power supply and
+semiconductor companies, this open power system standard is maintained and
+promoted by the PMBus Implementers Forum (PMBus-IF), comprising 30+ adopters
+with the objective to provide support to, and facilitate adoption among, users.
+
+Unfortunately, while PMBus commands are standardized, there are no mandatory
+commands, and manufacturers can add as many non-standard commands as they like.
+Also, different PMBUs devices act differently if non-supported commands are
+executed. Some devices return an error, some devices return 0xff or 0xffff and
+set a status error flag, and some devices may simply hang up.
+
+Despite all those difficulties, a generic PMBus device driver is still useful
+and supported since kernel version 2.6.39. However, it was necessary to support
+device specific extensions in addition to the core PMBus driver, since it is
+simply unknown what new device specific functionality PMBus device developers
+come up with next.
+
+To make device specific extensions as scalable as possible, and to avoid having
+to modify the core PMBus driver repeatedly for new devices, the PMBus driver was
+split into core, generic, and device specific code. The core code (in
+pmbus_core.c) provides generic functionality. The generic code (in pmbus.c)
+provides support for generic PMBus devices. Device specific code is responsible
+for device specific initialization and, if needed, maps device specific
+functionality into generic functionality. This is to some degree comparable
+to PCI code, where generic code is augmented as needed with quirks for all kinds
+of devices.
+
+PMBus device capabilities auto-detection
+========================================
+
+For generic PMBus devices, code in pmbus.c attempts to auto-detect all supported
+PMBus commands. Auto-detection is somewhat limited, since there are simply too
+many variables to consider. For example, it is almost impossible to autodetect
+which PMBus commands are paged and which commands are replicated across all
+pages (see the PMBus specification for details on multi-page PMBus devices).
+
+For this reason, it often makes sense to provide a device specific driver if not
+all commands can be auto-detected. The data structures in this driver can be
+used to inform the core driver about functionality supported by individual
+chips.
+
+Some commands are always auto-detected. This applies to all limit commands
+(lcrit, min, max, and crit attributes) as well as associated alarm attributes.
+Limits and alarm attributes are auto-detected because there are simply too many
+possible combinations to provide a manual configuration interface.
+
+PMBus internal API
+==================
+
+The API between core and device specific PMBus code is defined in
+drivers/hwmon/pmbus/pmbus.h. In addition to the internal API, pmbus.h defines
+standard PMBus commands and virtual PMBus commands.
+
+Standard PMBus commands
+-----------------------
+
+Standard PMBus commands (commands values 0x00 to 0xff) are defined in the PMBUs
+specification.
+
+Virtual PMBus commands
+----------------------
+
+Virtual PMBus commands are provided to enable support for non-standard
+functionality which has been implemented by several chip vendors and is thus
+desirable to support.
+
+Virtual PMBus commands start with command value 0x100 and can thus easily be
+distinguished from standard PMBus commands (which can not have values larger
+than 0xff). Support for virtual PMBus commands is device specific and thus has
+to be implemented in device specific code.
+
+Virtual commands are named PMBUS_VIRT_xxx and start with PMBUS_VIRT_BASE. All
+virtual commands are word sized.
+
+There are currently two types of virtual commands.
+
+- READ commands are read-only; writes are either ignored or return an error.
+- RESET commands are read/write. Reading reset registers returns zero
+ (used for detection), writing any value causes the associated history to be
+ reset.
+
+Virtual commands have to be handled in device specific driver code. Chip driver
+code returns non-negative values if a virtual command is supported, or a
+negative error code if not. The chip driver may return -ENODATA or any other
+Linux error code in this case, though an error code other than -ENODATA is
+handled more efficiently and thus preferred. Either case, the calling PMBus
+core code will abort if the chip driver returns an error code when reading
+or writing virtual registers (in other words, the PMBus core code will never
+send a virtual command to a chip).
+
+PMBus driver information
+------------------------
+
+PMBus driver information, defined in struct pmbus_driver_info, is the main means
+for device specific drivers to pass information to the core PMBus driver.
+Specifically, it provides the following information.
+
+- For devices supporting its data in Direct Data Format, it provides coefficients
+ for converting register values into normalized data. This data is usually
+ provided by chip manufacturers in device datasheets.
+- Supported chip functionality can be provided to the core driver. This may be
+ necessary for chips which react badly if non-supported commands are executed,
+ and/or to speed up device detection and initialization.
+- Several function entry points are provided to support overriding and/or
+ augmenting generic command execution. This functionality can be used to map
+ non-standard PMBus commands to standard commands, or to augment standard
+ command return values with device specific information.
+
+ API functions
+ -------------
+
+ Functions provided by chip driver
+ ---------------------------------
+
+ All functions return the command return value (read) or zero (write) if
+ successful. A return value of -ENODATA indicates that there is no manufacturer
+ specific command, but that a standard PMBus command may exist. Any other
+ negative return value indicates that the commands does not exist for this
+ chip, and that no attempt should be made to read or write the standard
+ command.
+
+ As mentioned above, an exception to this rule applies to virtual commands,
+ which _must_ be handled in driver specific code. See "Virtual PMBus Commands"
+ above for more details.
+
+ Command execution in the core PMBus driver code is as follows.
+
+ if (chip_access_function) {
+ status = chip_access_function();
+ if (status != -ENODATA)
+ return status;
+ }
+ if (command >= PMBUS_VIRT_BASE) /* For word commands/registers only */
+ return -EINVAL;
+ return generic_access();
+
+ Chip drivers may provide pointers to the following functions in struct
+ pmbus_driver_info. All functions are optional.
+
+ int (*read_byte_data)(struct i2c_client *client, int page, int reg);
+
+ Read byte from page <page>, register <reg>.
+ <page> may be -1, which means "current page".
+
+ int (*read_word_data)(struct i2c_client *client, int page, int reg);
+
+ Read word from page <page>, register <reg>.
+
+ int (*write_word_data)(struct i2c_client *client, int page, int reg,
+ u16 word);
+
+ Write word to page <page>, register <reg>.
+
+ int (*write_byte)(struct i2c_client *client, int page, u8 value);
+
+ Write byte to page <page>, register <reg>.
+ <page> may be -1, which means "current page".
+
+ int (*identify)(struct i2c_client *client, struct pmbus_driver_info *info);
+
+ Determine supported PMBus functionality. This function is only necessary
+ if a chip driver supports multiple chips, and the chip functionality is not
+ pre-determined. It is currently only used by the generic pmbus driver
+ (pmbus.c).
+
+ Functions exported by core driver
+ ---------------------------------
+
+ Chip drivers are expected to use the following functions to read or write
+ PMBus registers. Chip drivers may also use direct I2C commands. If direct I2C
+ commands are used, the chip driver code must not directly modify the current
+ page, since the selected page is cached in the core driver and the core driver
+ will assume that it is selected. Using pmbus_set_page() to select a new page
+ is mandatory.
+
+ int pmbus_set_page(struct i2c_client *client, u8 page);
+
+ Set PMBus page register to <page> for subsequent commands.
+
+ int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg);
+
+ Read word data from <page>, <reg>. Similar to i2c_smbus_read_word_data(), but
+ selects page first.
+
+ int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg,
+ u16 word);
+
+ Write word data to <page>, <reg>. Similar to i2c_smbus_write_word_data(), but
+ selects page first.
+
+ int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg);
+
+ Read byte data from <page>, <reg>. Similar to i2c_smbus_read_byte_data(), but
+ selects page first. <page> may be -1, which means "current page".
+
+ int pmbus_write_byte(struct i2c_client *client, int page, u8 value);
+
+ Write byte data to <page>, <reg>. Similar to i2c_smbus_write_byte(), but
+ selects page first. <page> may be -1, which means "current page".
+
+ void pmbus_clear_faults(struct i2c_client *client);
+
+ Execute PMBus "Clear Fault" command on all chip pages.
+ This function calls the device specific write_byte function if defined.
+ Therefore, it must _not_ be called from that function.
+
+ bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg);
+
+ Check if byte register exists. Return true if the register exists, false
+ otherwise.
+ This function calls the device specific write_byte function if defined to
+ obtain the chip status. Therefore, it must _not_ be called from that function.
+
+ bool pmbus_check_word_register(struct i2c_client *client, int page, int reg);
+
+ Check if word register exists. Return true if the register exists, false
+ otherwise.
+ This function calls the device specific write_byte function if defined to
+ obtain the chip status. Therefore, it must _not_ be called from that function.
+
+ int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id,
+ struct pmbus_driver_info *info);
+
+ Execute probe function. Similar to standard probe function for other drivers,
+ with the pointer to struct pmbus_driver_info as additional argument. Calls
+ identify function if supported. Must only be called from device probe
+ function.
+
+ void pmbus_do_remove(struct i2c_client *client);
+
+ Execute driver remove function. Similar to standard driver remove function.
+
+ const struct pmbus_driver_info
+ *pmbus_get_driver_info(struct i2c_client *client);
+
+ Return pointer to struct pmbus_driver_info as passed to pmbus_do_probe().
+
+
+PMBus driver platform data
+==========================
+
+PMBus platform data is defined in include/linux/pmbus.h. Platform data
+currently only provides a flag field with a single bit used.
+
+#define PMBUS_SKIP_STATUS_CHECK (1 << 0)
+
+struct pmbus_platform_data {
+ u32 flags; /* Device specific flags */
+};
+
+
+Flags
+-----
+
+PMBUS_SKIP_STATUS_CHECK
+
+During register detection, skip checking the status register for
+communication or command errors.
+
+Some PMBus chips respond with valid data when trying to read an unsupported
+register. For such chips, checking the status register is mandatory when
+trying to determine if a chip register exists or not.
+Other PMBus chips don't support the STATUS_CML register, or report
+communication errors for no explicable reason. For such chips, checking the
+status register must be disabled.
+
+Some i2c controllers do not support single-byte commands (write commands with
+no data, i2c_smbus_write_byte()). With such controllers, clearing the status
+register is impossible, and the PMBUS_SKIP_STATUS_CHECK flag must be set.