diff options
Diffstat (limited to 'Documentation/usb')
27 files changed, 5984 insertions, 0 deletions
diff --git a/Documentation/usb/CREDITS b/Documentation/usb/CREDITS new file mode 100644 index 000000000..67c59cdc9 --- /dev/null +++ b/Documentation/usb/CREDITS @@ -0,0 +1,175 @@ +Credits for the Simple Linux USB Driver: + +The following people have contributed to this code (in alphabetical +order by last name). I'm sure this list should be longer, its +difficult to maintain, add yourself with a patch if desired. + + Georg Acher <acher@informatik.tu-muenchen.de> + David Brownell <dbrownell@users.sourceforge.net> + Alan Cox <alan@lxorguk.ukuu.org.uk> + Randy Dunlap <randy.dunlap@intel.com> + Johannes Erdfelt <johannes@erdfelt.com> + Deti Fliegl <deti@fliegl.de> + ham <ham@unsuave.com> + Bradley M Keryan <keryan@andrew.cmu.edu> + Greg Kroah-Hartman <greg@kroah.com> + Pavel Machek <pavel@suse.cz> + Paul Mackerras <paulus@cs.anu.edu.au> + Petko Manlolov <petkan@dce.bg> + David E. Nelson <dnelson@jump.net> + Vojtech Pavlik <vojtech@suse.cz> + Bill Ryder <bryder@sgi.com> + Thomas Sailer <sailer@ife.ee.ethz.ch> + Gregory P. Smith <greg@electricrain.com> + Linus Torvalds <torvalds@linux-foundation.org> + Roman Weissgaerber <weissg@vienna.at> + <Kazuki.Yasumatsu@fujixerox.co.jp> + +Special thanks to: + + Inaky Perez Gonzalez <inaky@peloncho.fis.ucm.es> for starting the + Linux USB driver effort and writing much of the larger uusbd driver. + Much has been learned from that effort. + + The NetBSD & FreeBSD USB developers. For being on the Linux USB list + and offering suggestions and sharing implementation experiences. + +Additional thanks to the following companies and people for donations +of hardware, support, time and development (this is from the original +THANKS file in Inaky's driver): + + The following corporations have helped us in the development + of Linux USB / UUSBD: + + - 3Com GmbH for donating a ISDN Pro TA and supporting me + in technical questions and with test equipment. I'd never + expect such a great help. + + - USAR Systems provided us with one of their excellent USB + Evaluation Kits. It allows us to test the Linux-USB driver + for compliance with the latest USB specification. USAR + Systems recognized the importance of an up-to-date open + Operating System and supports this project with + Hardware. Thanks!. + + - Thanks to Intel Corporation for their precious help. + + - We teamed up with Cherry to make Linux the first OS with + built-in USB support. Cherry is one of the biggest keyboard + makers in the world. + + - CMD Technology, Inc. sponsored us kindly donating a CSA-6700 + PCI-to-USB Controller Board to test the OHCI implementation. + + - Due to their support to us, Keytronic can be sure that they + will sell keyboards to some of the 3 million (at least) + Linux users. + + - Many thanks to ing büro h doran [http://www.ibhdoran.com]! + It was almost impossible to get a PC backplate USB connector + for the motherboard here at Europe (mine, home-made, was + quite lousy :). Now I know where to acquire nice USB stuff! + + - Genius Germany donated a USB mouse to test the mouse boot + protocol. They've also donated a F-23 digital joystick and a + NetMouse Pro. Thanks! + + - AVM GmbH Berlin is supporting the development of the Linux + USB driver for the AVM ISDN Controller B1 USB. AVM is a + leading manufacturer for active and passive ISDN Controllers + and CAPI 2.0-based software. The active design of the AVM B1 + is open for all OS platforms, including Linux. + + - Thanks to Y-E Data, Inc. for donating their FlashBuster-U + USB Floppy Disk Drive, so we could test the bulk transfer + code. + + - Many thanks to Logitech for contributing a three axis USB + mouse. + + Logitech designs, manufactures and markets + Human Interface Devices, having a long history and + experience in making devices such as keyboards, mice, + trackballs, cameras, loudspeakers and control devices for + gaming and professional use. + + Being a recognized vendor and seller for all these devices, + they have donated USB mice, a joystick and a scanner, as a + way to acknowledge the importance of Linux and to allow + Logitech customers to enjoy support in their favorite + operating systems and all Linux users to use Logitech and + other USB hardware. + + Logitech is official sponsor of the Linux Conference on + Feb. 11th 1999 in Vienna, where we'll will present the + current state of the Linux USB effort. + + - CATC has provided means to uncover dark corners of the UHCI + inner workings with a USB Inspector. + + - Thanks to Entrega for providing PCI to USB cards, hubs and + converter products for development. + + - Thanks to ConnectTech for providing a WhiteHEAT usb to + serial converter, and the documentation for the device to + allow a driver to be written. + + - Thanks to ADMtek for providing Pegasus and Pegasus II + evaluation boards, specs and valuable advices during + the driver development. + + And thanks go to (hey! in no particular order :) + + - Oren Tirosh <orenti@hishome.net>, for standing so patiently + all my doubts'bout USB and giving lots of cool ideas. + + - Jochen Karrer <karrer@wpfd25.physik.uni-wuerzburg.de>, for + pointing out mortal bugs and giving advice. + + - Edmund Humemberger <ed@atnet.at>, for it's great work on + public relationships and general management stuff for the + Linux-USB effort. + + - Alberto Menegazzi <flash@flash.iol.it> is starting the + documentation for the UUSBD. Go for it! + + - Ric Klaren <ia_ric@cs.utwente.nl> for doing nice + introductory documents (competing with Alberto's :). + + - Christian Groessler <cpg@aladdin.de>, for it's help on those + itchy bits ... :) + + - Paul MacKerras for polishing OHCI and pushing me harder for + the iMac support, giving improvements and enhancements. + + - Fernando Herrera <fherrera@eurielec.etsit.upm.es> has taken + charge of composing, maintaining and feeding the + long-awaited, unique and marvelous UUSBD FAQ! Tadaaaa!!! + + - Rasca Gmelch <thron@gmx.de> has revived the raw driver and + pointed bugs, as well as started the uusbd-utils package. + + - Peter Dettori <dettori@ozy.dec.com> is uncovering bugs like + crazy, as well as making cool suggestions, great :) + + - All the Free Software and Linux community, the FSF & the GNU + project, the MIT X consortium, the TeX people ... everyone! + You know who you are! + + - Big thanks to Richard Stallman for creating Emacs! + + - The people at the linux-usb mailing list, for reading so + many messages :) Ok, no more kidding; for all your advises! + + - All the people at the USB Implementors Forum for their + help and assistance. + + - Nathan Myers <ncm@cantrip.org>, for his advice! (hope you + liked Cibeles' party). + + - Linus Torvalds, for starting, developing and managing Linux. + + - Mike Smith, Craig Keithley, Thierry Giron and Janet Schank + for convincing me USB Standard hubs are not that standard + and that's good to allow for vendor specific quirks on the + standard hub driver. diff --git a/Documentation/usb/WUSB-Design-overview.txt b/Documentation/usb/WUSB-Design-overview.txt new file mode 100644 index 000000000..fdb476377 --- /dev/null +++ b/Documentation/usb/WUSB-Design-overview.txt @@ -0,0 +1,439 @@ + +Linux UWB + Wireless USB + WiNET + + (C) 2005-2006 Intel Corporation + Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com> + + This program is free software; you can redistribute it and/or + modify it under the terms of the GNU General Public License version + 2 as published by the Free Software Foundation. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA + 02110-1301, USA. + + +Please visit http://bughost.org/thewiki/Design-overview.txt-1.8 for +updated content. + + * Design-overview.txt-1.8 + +This code implements a Ultra Wide Band stack for Linux, as well as +drivers for the USB based UWB radio controllers defined in the +Wireless USB 1.0 specification (including Wireless USB host controller +and an Intel WiNET controller). + + 1. Introduction + 1. HWA: Host Wire adapters, your Wireless USB dongle + + 2. DWA: Device Wired Adaptor, a Wireless USB hub for wired + devices + 3. WHCI: Wireless Host Controller Interface, the PCI WUSB host + adapter + 2. The UWB stack + 1. Devices and hosts: the basic structure + + 2. Host Controller life cycle + + 3. On the air: beacons and enumerating the radio neighborhood + + 4. Device lists + 5. Bandwidth allocation + + 3. Wireless USB Host Controller drivers + + 4. Glossary + + + Introduction + +UWB is a wide-band communication protocol that is to serve also as the +low-level protocol for others (much like TCP sits on IP). Currently +these others are Wireless USB and TCP/IP, but seems Bluetooth and +Firewire/1394 are coming along. + +UWB uses a band from roughly 3 to 10 GHz, transmitting at a max of +~-41dB (or 0.074 uW/MHz--geography specific data is still being +negotiated w/ regulators, so watch for changes). That band is divided in +a bunch of ~1.5 GHz wide channels (or band groups) composed of three +subbands/subchannels (528 MHz each). Each channel is independent of each +other, so you could consider them different "busses". Initially this +driver considers them all a single one. + +Radio time is divided in 65536 us long /superframes/, each one divided +in 256 256us long /MASs/ (Media Allocation Slots), which are the basic +time/media allocation units for transferring data. At the beginning of +each superframe there is a Beacon Period (BP), where every device +transmit its beacon on a single MAS. The length of the BP depends on how +many devices are present and the length of their beacons. + +Devices have a MAC (fixed, 48 bit address) and a device (changeable, 16 +bit address) and send periodic beacons to advertise themselves and pass +info on what they are and do. They advertise their capabilities and a +bunch of other stuff. + +The different logical parts of this driver are: + + * + + *UWB*: the Ultra-Wide-Band stack -- manages the radio and + associated spectrum to allow for devices sharing it. Allows to + control bandwidth assignment, beaconing, scanning, etc + + * + + *WUSB*: the layer that sits on top of UWB to provide Wireless USB. + The Wireless USB spec defines means to control a UWB radio and to + do the actual WUSB. + + + HWA: Host Wire adapters, your Wireless USB dongle + +WUSB also defines a device called a Host Wire Adaptor (HWA), which in +mere terms is a USB dongle that enables your PC to have UWB and Wireless +USB. The Wireless USB Host Controller in a HWA looks to the host like a +[Wireless] USB controller connected via USB (!) + +The HWA itself is broken in two or three main interfaces: + + * + + *RC*: Radio control -- this implements an interface to the + Ultra-Wide-Band radio controller. The driver for this implements a + USB-based UWB Radio Controller to the UWB stack. + + * + + *HC*: the wireless USB host controller. It looks like a USB host + whose root port is the radio and the WUSB devices connect to it. + To the system it looks like a separate USB host. The driver (will) + implement a USB host controller (similar to UHCI, OHCI or EHCI) + for which the root hub is the radio...To reiterate: it is a USB + controller that is connected via USB instead of PCI. + + * + + *WINET*: some HW provide a WiNET interface (IP over UWB). This + package provides a driver for it (it looks like a network + interface, winetX). The driver detects when there is a link up for + their type and kick into gear. + + + DWA: Device Wired Adaptor, a Wireless USB hub for wired devices + +These are the complement to HWAs. They are a USB host for connecting +wired devices, but it is connected to your PC connected via Wireless +USB. To the system it looks like yet another USB host. To the untrained +eye, it looks like a hub that connects upstream wirelessly. + +We still offer no support for this; however, it should share a lot of +code with the HWA-RC driver; there is a bunch of factorization work that +has been done to support that in upcoming releases. + + + WHCI: Wireless Host Controller Interface, the PCI WUSB host adapter + +This is your usual PCI device that implements WHCI. Similar in concept +to EHCI, it allows your wireless USB devices (including DWAs) to connect +to your host via a PCI interface. As in the case of the HWA, it has a +Radio Control interface and the WUSB Host Controller interface per se. + +There is still no driver support for this, but will be in upcoming +releases. + + + The UWB stack + +The main mission of the UWB stack is to keep a tally of which devices +are in radio proximity to allow drivers to connect to them. As well, it +provides an API for controlling the local radio controllers (RCs from +now on), such as to start/stop beaconing, scan, allocate bandwidth, etc. + + + Devices and hosts: the basic structure + +The main building block here is the UWB device (struct uwb_dev). For +each device that pops up in radio presence (ie: the UWB host receives a +beacon from it) you get a struct uwb_dev that will show up in +/sys/bus/uwb/devices. + +For each RC that is detected, a new struct uwb_rc and struct uwb_dev are +created. An entry is also created in /sys/class/uwb_rc for each RC. + +Each RC driver is implemented by a separate driver that plugs into the +interface that the UWB stack provides through a struct uwb_rc_ops. The +spec creators have been nice enough to make the message format the same +for HWA and WHCI RCs, so the driver is really a very thin transport that +moves the requests from the UWB API to the device [/uwb_rc_ops->cmd()/] +and sends the replies and notifications back to the API +[/uwb_rc_neh_grok()/]. Notifications are handled to the UWB daemon, that +is chartered, among other things, to keep the tab of how the UWB radio +neighborhood looks, creating and destroying devices as they show up or +disappear. + +Command execution is very simple: a command block is sent and a event +block or reply is expected back. For sending/receiving command/events, a +handle called /neh/ (Notification/Event Handle) is opened with +/uwb_rc_neh_open()/. + +The HWA-RC (USB dongle) driver (drivers/uwb/hwa-rc.c) does this job for +the USB connected HWA. Eventually, drivers/whci-rc.c will do the same +for the PCI connected WHCI controller. + + + Host Controller life cycle + +So let's say we connect a dongle to the system: it is detected and +firmware uploaded if needed [for Intel's i1480 +/drivers/uwb/ptc/usb.c:ptc_usb_probe()/] and then it is reenumerated. +Now we have a real HWA device connected and +/drivers/uwb/hwa-rc.c:hwarc_probe()/ picks it up, that will set up the +Wire-Adaptor environment and then suck it into the UWB stack's vision of +the world [/drivers/uwb/lc-rc.c:uwb_rc_add()/]. + + * + + [*] The stack should put a new RC to scan for devices + [/uwb_rc_scan()/] so it finds what's available around and tries to + connect to them, but this is policy stuff and should be driven + from user space. As of now, the operator is expected to do it + manually; see the release notes for documentation on the procedure. + +When a dongle is disconnected, /drivers/uwb/hwa-rc.c:hwarc_disconnect()/ +takes time of tearing everything down safely (or not...). + + + On the air: beacons and enumerating the radio neighborhood + +So assuming we have devices and we have agreed for a channel to connect +on (let's say 9), we put the new RC to beacon: + + * + + $ echo 9 0 > /sys/class/uwb_rc/uwb0/beacon + +Now it is visible. If there were other devices in the same radio channel +and beacon group (that's what the zero is for), the dongle's radio +control interface will send beacon notifications on its +notification/event endpoint (NEEP). The beacon notifications are part of +the event stream that is funneled into the API with +/drivers/uwb/neh.c:uwb_rc_neh_grok()/ and delivered to the UWBD, the UWB +daemon through a notification list. + +UWBD wakes up and scans the event list; finds a beacon and adds it to +the BEACON CACHE (/uwb_beca/). If he receives a number of beacons from +the same device, he considers it to be 'onair' and creates a new device +[/drivers/uwb/lc-dev.c:uwbd_dev_onair()/]. Similarly, when no beacons +are received in some time, the device is considered gone and wiped out +[uwbd calls periodically /uwb/beacon.c:uwb_beca_purge()/ that will purge +the beacon cache of dead devices]. + + + Device lists + +All UWB devices are kept in the list of the struct bus_type uwb_bus_type. + + + Bandwidth allocation + +The UWB stack maintains a local copy of DRP availability through +processing of incoming *DRP Availability Change* notifications. This +local copy is currently used to present the current bandwidth +availability to the user through the sysfs file +/sys/class/uwb_rc/uwbx/bw_avail. In the future the bandwidth +availability information will be used by the bandwidth reservation +routines. + +The bandwidth reservation routines are in progress and are thus not +present in the current release. When completed they will enable a user +to initiate DRP reservation requests through interaction with sysfs. DRP +reservation requests from remote UWB devices will also be handled. The +bandwidth management done by the UWB stack will include callbacks to the +higher layers will enable the higher layers to use the reservations upon +completion. [Note: The bandwidth reservation work is in progress and +subject to change.] + + + Wireless USB Host Controller drivers + +*WARNING* This section needs a lot of work! + +As explained above, there are three different types of HCs in the WUSB +world: HWA-HC, DWA-HC and WHCI-HC. + +HWA-HC and DWA-HC share that they are Wire-Adapters (USB or WUSB +connected controllers), and their transfer management system is almost +identical. So is their notification delivery system. + +HWA-HC and WHCI-HC share that they are both WUSB host controllers, so +they have to deal with WUSB device life cycle and maintenance, wireless +root-hub + +HWA exposes a Host Controller interface (HWA-HC 0xe0/02/02). This has +three endpoints (Notifications, Data Transfer In and Data Transfer +Out--known as NEP, DTI and DTO in the code). + +We reserve UWB bandwidth for our Wireless USB Cluster, create a Cluster +ID and tell the HC to use all that. Then we start it. This means the HC +starts sending MMCs. + + * + + The MMCs are blocks of data defined somewhere in the WUSB1.0 spec + that define a stream in the UWB channel time allocated for sending + WUSB IEs (host to device commands/notifications) and Device + Notifications (device initiated to host). Each host defines a + unique Wireless USB cluster through MMCs. Devices can connect to a + single cluster at the time. The IEs are Information Elements, and + among them are the bandwidth allocations that tell each device + when can they transmit or receive. + +Now it all depends on external stimuli. + +*New device connection* + +A new device pops up, it scans the radio looking for MMCs that give out +the existence of Wireless USB channels. Once one (or more) are found, +selects which one to connect to. Sends a /DN_Connect/ (device +notification connect) during the DNTS (Device Notification Time +Slot--announced in the MMCs + +HC picks the /DN_Connect/ out (nep module sends to notif.c for delivery +into /devconnect/). This process starts the authentication process for +the device. First we allocate a /fake port/ and assign an +unauthenticated address (128 to 255--what we really do is +0x80 | fake_port_idx). We fiddle with the fake port status and /hub_wq/ +sees a new connection, so he moves on to enable the fake port with a reset. + +So now we are in the reset path -- we know we have a non-yet enumerated +device with an unauthorized address; we ask user space to authenticate +(FIXME: not yet done, similar to bluetooth pairing), then we do the key +exchange (FIXME: not yet done) and issue a /set address 0/ to bring the +device to the default state. Device is authenticated. + +From here, the USB stack takes control through the usb_hcd ops. hub_wq +has seen the port status changes, as we have been toggling them. It will +start enumerating and doing transfers through usb_hcd->urb_enqueue() to +read descriptors and move our data. + +*Device life cycle and keep alives* + +Every time there is a successful transfer to/from a device, we update a +per-device activity timestamp. If not, every now and then we check and +if the activity timestamp gets old, we ping the device by sending it a +Keep Alive IE; it responds with a /DN_Alive/ pong during the DNTS (this +arrives to us as a notification through +devconnect.c:wusb_handle_dn_alive(). If a device times out, we +disconnect it from the system (cleaning up internal information and +toggling the bits in the fake hub port, which kicks hub_wq into removing +the rest of the stuff). + +This is done through devconnect:__wusb_check_devs(), which will scan the +device list looking for whom needs refreshing. + +If the device wants to disconnect, it will either die (ugly) or send a +/DN_Disconnect/ that will prompt a disconnection from the system. + +*Sending and receiving data* + +Data is sent and received through /Remote Pipes/ (rpipes). An rpipe is +/aimed/ at an endpoint in a WUSB device. This is the same for HWAs and +DWAs. + +Each HC has a number of rpipes and buffers that can be assigned to them; +when doing a data transfer (xfer), first the rpipe has to be aimed and +prepared (buffers assigned), then we can start queueing requests for +data in or out. + +Data buffers have to be segmented out before sending--so we send first a +header (segment request) and then if there is any data, a data buffer +immediately after to the DTI interface (yep, even the request). If our +buffer is bigger than the max segment size, then we just do multiple +requests. + +[This sucks, because doing USB scatter gatter in Linux is resource +intensive, if any...not that the current approach is not. It just has to +be cleaned up a lot :)]. + +If reading, we don't send data buffers, just the segment headers saying +we want to read segments. + +When the xfer is executed, we receive a notification that says data is +ready in the DTI endpoint (handled through +xfer.c:wa_handle_notif_xfer()). In there we read from the DTI endpoint a +descriptor that gives us the status of the transfer, its identification +(given when we issued it) and the segment number. If it was a data read, +we issue another URB to read into the destination buffer the chunk of +data coming out of the remote endpoint. Done, wait for the next guy. The +callbacks for the URBs issued from here are the ones that will declare +the xfer complete at some point and call its callback. + +Seems simple, but the implementation is not trivial. + + * + + *WARNING* Old!! + +The main xfer descriptor, wa_xfer (equivalent to a URB) contains an +array of segments, tallys on segments and buffers and callback +information. Buried in there is a lot of URBs for executing the segments +and buffer transfers. + +For OUT xfers, there is an array of segments, one URB for each, another +one of buffer URB. When submitting, we submit URBs for segment request +1, buffer 1, segment 2, buffer 2...etc. Then we wait on the DTI for xfer +result data; when all the segments are complete, we call the callback to +finalize the transfer. + +For IN xfers, we only issue URBs for the segments we want to read and +then wait for the xfer result data. + +*URB mapping into xfers* + +This is done by hwahc_op_urb_[en|de]queue(). In enqueue() we aim an +rpipe to the endpoint where we have to transmit, create a transfer +context (wa_xfer) and submit it. When the xfer is done, our callback is +called and we assign the status bits and release the xfer resources. + +In dequeue() we are basically cancelling/aborting the transfer. We issue +a xfer abort request to the HC, cancel all the URBs we had submitted +and not yet done and when all that is done, the xfer callback will be +called--this will call the URB callback. + + + Glossary + +*DWA* -- Device Wire Adapter + +USB host, wired for downstream devices, upstream connects wirelessly +with Wireless USB. + +*EVENT* -- Response to a command on the NEEP + +*HWA* -- Host Wire Adapter / USB dongle for UWB and Wireless USB + +*NEH* -- Notification/Event Handle + +Handle/file descriptor for receiving notifications or events. The WA +code requires you to get one of this to listen for notifications or +events on the NEEP. + +*NEEP* -- Notification/Event EndPoint + +Stuff related to the management of the first endpoint of a HWA USB +dongle that is used to deliver an stream of events and notifications to +the host. + +*NOTIFICATION* -- Message coming in the NEEP as response to something. + +*RC* -- Radio Control + +Design-overview.txt-1.8 (last edited 2006-11-04 12:22:24 by +InakyPerezGonzalez) + diff --git a/Documentation/usb/acm.txt b/Documentation/usb/acm.txt new file mode 100644 index 000000000..903abca10 --- /dev/null +++ b/Documentation/usb/acm.txt @@ -0,0 +1,128 @@ + Linux ACM driver v0.16 + (c) 1999 Vojtech Pavlik <vojtech@suse.cz> + Sponsored by SuSE +---------------------------------------------------------------------------- + +0. Disclaimer +~~~~~~~~~~~~~ + This program is free software; you can redistribute it and/or modify it +under the terms of the GNU General Public License as published by the Free +Software Foundation; either version 2 of the License, or (at your option) +any later version. + + This program is distributed in the hope that it will be useful, but +WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for +more details. + + You should have received a copy of the GNU General Public License along +with this program; if not, write to the Free Software Foundation, Inc., 59 +Temple Place, Suite 330, Boston, MA 02111-1307 USA + + Should you need to contact me, the author, you can do so either by e-mail +- mail your message to <vojtech@suse.cz>, or by paper mail: Vojtech Pavlik, +Ucitelska 1576, Prague 8, 182 00 Czech Republic + + For your convenience, the GNU General Public License version 2 is included +in the package: See the file COPYING. + +1. Usage +~~~~~~~~ + The drivers/usb/class/cdc-acm.c drivers works with USB modems and USB ISDN terminal +adapters that conform to the Universal Serial Bus Communication Device Class +Abstract Control Model (USB CDC ACM) specification. + + Many modems do, here is a list of those I know of: + + 3Com OfficeConnect 56k + 3Com Voice FaxModem Pro + 3Com Sportster + MultiTech MultiModem 56k + Zoom 2986L FaxModem + Compaq 56k FaxModem + ELSA Microlink 56k + + I know of one ISDN TA that does work with the acm driver: + + 3Com USR ISDN Pro TA + + Some cell phones also connect via USB. I know the following phones work: + + SonyEricsson K800i + + Unfortunately many modems and most ISDN TAs use proprietary interfaces and +thus won't work with this drivers. Check for ACM compliance before buying. + + To use the modems you need these modules loaded: + + usbcore.ko + uhci-hcd.ko ohci-hcd.ko or ehci-hcd.ko + cdc-acm.ko + + After that, the modem[s] should be accessible. You should be able to use +minicom, ppp and mgetty with them. + +2. Verifying that it works +~~~~~~~~~~~~~~~~~~~~~~~~~~ + The first step would be to check /sys/kernel/debug/usb/devices, it should look +like this: + +T: Bus=01 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2 +B: Alloc= 0/900 us ( 0%), #Int= 0, #Iso= 0 +D: Ver= 1.00 Cls=09(hub ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1 +P: Vendor=0000 ProdID=0000 Rev= 0.00 +S: Product=USB UHCI Root Hub +S: SerialNumber=6800 +C:* #Ifs= 1 Cfg#= 1 Atr=40 MxPwr= 0mA +I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub +E: Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl=255ms +T: Bus=01 Lev=01 Prnt=01 Port=01 Cnt=01 Dev#= 2 Spd=12 MxCh= 0 +D: Ver= 1.00 Cls=02(comm.) Sub=00 Prot=00 MxPS= 8 #Cfgs= 2 +P: Vendor=04c1 ProdID=008f Rev= 2.07 +S: Manufacturer=3Com Inc. +S: Product=3Com U.S. Robotics Pro ISDN TA +S: SerialNumber=UFT53A49BVT7 +C: #Ifs= 1 Cfg#= 1 Atr=60 MxPwr= 0mA +I: If#= 0 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=ff Prot=ff Driver=acm +E: Ad=85(I) Atr=02(Bulk) MxPS= 64 Ivl= 0ms +E: Ad=04(O) Atr=02(Bulk) MxPS= 64 Ivl= 0ms +E: Ad=81(I) Atr=03(Int.) MxPS= 16 Ivl=128ms +C:* #Ifs= 2 Cfg#= 2 Atr=60 MxPwr= 0mA +I: If#= 0 Alt= 0 #EPs= 1 Cls=02(comm.) Sub=02 Prot=01 Driver=acm +E: Ad=81(I) Atr=03(Int.) MxPS= 16 Ivl=128ms +I: If#= 1 Alt= 0 #EPs= 2 Cls=0a(data ) Sub=00 Prot=00 Driver=acm +E: Ad=85(I) Atr=02(Bulk) MxPS= 64 Ivl= 0ms +E: Ad=04(O) Atr=02(Bulk) MxPS= 64 Ivl= 0ms + +The presence of these three lines (and the Cls= 'comm' and 'data' classes) +is important, it means it's an ACM device. The Driver=acm means the acm +driver is used for the device. If you see only Cls=ff(vend.) then you're out +of luck, you have a device with vendor specific-interface. + +D: Ver= 1.00 Cls=02(comm.) Sub=00 Prot=00 MxPS= 8 #Cfgs= 2 +I: If#= 0 Alt= 0 #EPs= 1 Cls=02(comm.) Sub=02 Prot=01 Driver=acm +I: If#= 1 Alt= 0 #EPs= 2 Cls=0a(data ) Sub=00 Prot=00 Driver=acm + +In the system log you should see: + +usb.c: USB new device connect, assigned device number 2 +usb.c: kmalloc IF c7691fa0, numif 1 +usb.c: kmalloc IF c7b5f3e0, numif 2 +usb.c: skipped 4 class/vendor specific interface descriptors +usb.c: new device strings: Mfr=1, Product=2, SerialNumber=3 +usb.c: USB device number 2 default language ID 0x409 +Manufacturer: 3Com Inc. +Product: 3Com U.S. Robotics Pro ISDN TA +SerialNumber: UFT53A49BVT7 +acm.c: probing config 1 +acm.c: probing config 2 +ttyACM0: USB ACM device +acm.c: acm_control_msg: rq: 0x22 val: 0x0 len: 0x0 result: 0 +acm.c: acm_control_msg: rq: 0x20 val: 0x0 len: 0x7 result: 7 +usb.c: acm driver claimed interface c7b5f3e0 +usb.c: acm driver claimed interface c7b5f3f8 +usb.c: acm driver claimed interface c7691fa0 + +If all this seems to be OK, fire up minicom and set it to talk to the ttyACM +device and try typing 'at'. If it responds with 'OK', then everything is +working. diff --git a/Documentation/usb/authorization.txt b/Documentation/usb/authorization.txt new file mode 100644 index 000000000..c7e985f05 --- /dev/null +++ b/Documentation/usb/authorization.txt @@ -0,0 +1,123 @@ + +Authorizing (or not) your USB devices to connect to the system + +(C) 2007 Inaky Perez-Gonzalez <inaky@linux.intel.com> Intel Corporation + +This feature allows you to control if a USB device can be used (or +not) in a system. This feature will allow you to implement a lock-down +of USB devices, fully controlled by user space. + +As of now, when a USB device is connected it is configured and +its interfaces are immediately made available to the users. With this +modification, only if root authorizes the device to be configured will +then it be possible to use it. + +Usage: + +Authorize a device to connect: + +$ echo 1 > /sys/bus/usb/devices/DEVICE/authorized + +Deauthorize a device: + +$ echo 0 > /sys/bus/usb/devices/DEVICE/authorized + +Set new devices connected to hostX to be deauthorized by default (ie: +lock down): + +$ echo 0 > /sys/bus/usb/devices/usbX/authorized_default + +Remove the lock down: + +$ echo 1 > /sys/bus/usb/devices/usbX/authorized_default + +By default, Wired USB devices are authorized by default to +connect. Wireless USB hosts deauthorize by default all new connected +devices (this is so because we need to do an authentication phase +before authorizing). + + +Example system lockdown (lame) +----------------------- + +Imagine you want to implement a lockdown so only devices of type XYZ +can be connected (for example, it is a kiosk machine with a visible +USB port): + +boot up +rc.local -> + + for host in /sys/bus/usb/devices/usb* + do + echo 0 > $host/authorized_default + done + +Hookup an script to udev, for new USB devices + + if device_is_my_type $DEV + then + echo 1 > $device_path/authorized + done + + +Now, device_is_my_type() is where the juice for a lockdown is. Just +checking if the class, type and protocol match something is the worse +security verification you can make (or the best, for someone willing +to break it). If you need something secure, use crypto and Certificate +Authentication or stuff like that. Something simple for an storage key +could be: + +function device_is_my_type() +{ + echo 1 > authorized # temporarily authorize it + # FIXME: make sure none can mount it + mount DEVICENODE /mntpoint + sum=$(md5sum /mntpoint/.signature) + if [ $sum = $(cat /etc/lockdown/keysum) ] + then + echo "We are good, connected" + umount /mntpoint + # Other stuff so others can use it + else + echo 0 > authorized + fi +} + + +Of course, this is lame, you'd want to do a real certificate +verification stuff with PKI, so you don't depend on a shared secret, +etc, but you get the idea. Anybody with access to a device gadget kit +can fake descriptors and device info. Don't trust that. You are +welcome. + + +Interface authorization +----------------------- +There is a similar approach to allow or deny specific USB interfaces. +That allows to block only a subset of an USB device. + +Authorize an interface: +$ echo 1 > /sys/bus/usb/devices/INTERFACE/authorized + +Deauthorize an interface: +$ echo 0 > /sys/bus/usb/devices/INTERFACE/authorized + +The default value for new interfaces +on a particular USB bus can be changed, too. + +Allow interfaces per default: +$ echo 1 > /sys/bus/usb/devices/usbX/interface_authorized_default + +Deny interfaces per default: +$ echo 0 > /sys/bus/usb/devices/usbX/interface_authorized_default + +Per default the interface_authorized_default bit is 1. +So all interfaces would authorized per default. + +Note: +If a deauthorized interface will be authorized so the driver probing must +be triggered manually by writing INTERFACE to /sys/bus/usb/drivers_probe + +For drivers that need multiple interfaces all needed interfaces should be +authroized first. After that the drivers should be probed. +This avoids side effects. diff --git a/Documentation/usb/chipidea.txt b/Documentation/usb/chipidea.txt new file mode 100644 index 000000000..d1eedc01b --- /dev/null +++ b/Documentation/usb/chipidea.txt @@ -0,0 +1,96 @@ +1. How to test OTG FSM(HNP and SRP) +----------------------------------- +To show how to demo OTG HNP and SRP functions via sys input files +with 2 Freescale i.MX6Q sabre SD boards. + +1.1 How to enable OTG FSM +--------------------------------------- +1.1.1 Select CONFIG_USB_OTG_FSM in menuconfig, rebuild kernel +Image and modules. If you want to check some internal +variables for otg fsm, mount debugfs, there are 2 files +which can show otg fsm variables and some controller registers value: +cat /sys/kernel/debug/ci_hdrc.0/otg +cat /sys/kernel/debug/ci_hdrc.0/registers +1.1.2 Add below entries in your dts file for your controller node + otg-rev = <0x0200>; + adp-disable; + +1.2 Test operations +------------------- +1) Power up 2 Freescale i.MX6Q sabre SD boards with gadget class driver loaded + (e.g. g_mass_storage). + +2) Connect 2 boards with usb cable with one end is micro A plug, the other end + is micro B plug. + + The A-device(with micro A plug inserted) should enumerate B-device. + +3) Role switch + On B-device: + echo 1 > /sys/bus/platform/devices/ci_hdrc.0/inputs/b_bus_req + + B-device should take host role and enumerate A-device. + +4) A-device switch back to host. + On B-device: + echo 0 > /sys/bus/platform/devices/ci_hdrc.0/inputs/b_bus_req + + or, by introducing HNP polling, B-Host can know when A-peripheral wish + to be host role, so this role switch also can be trigged in A-peripheral + side by answering the polling from B-Host, this can be done on A-device: + echo 1 > /sys/bus/platform/devices/ci_hdrc.0/inputs/a_bus_req + + A-device should switch back to host and enumerate B-device. + +5) Remove B-device(unplug micro B plug) and insert again in 10 seconds, + A-device should enumerate B-device again. + +6) Remove B-device(unplug micro B plug) and insert again after 10 seconds, + A-device should NOT enumerate B-device. + + if A-device wants to use bus: + On A-device: + echo 0 > /sys/bus/platform/devices/ci_hdrc.0/inputs/a_bus_drop + echo 1 > /sys/bus/platform/devices/ci_hdrc.0/inputs/a_bus_req + + if B-device wants to use bus: + On B-device: + echo 1 > /sys/bus/platform/devices/ci_hdrc.0/inputs/b_bus_req + +7) A-device power down the bus. + On A-device: + echo 1 > /sys/bus/platform/devices/ci_hdrc.0/inputs/a_bus_drop + + A-device should disconnect with B-device and power down the bus. + +8) B-device does data pulse for SRP. + On B-device: + echo 1 > /sys/bus/platform/devices/ci_hdrc.0/inputs/b_bus_req + + A-device should resume usb bus and enumerate B-device. + +1.3 Reference document +---------------------- +"On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification +July 27, 2012 Revision 2.0 version 1.1a" + +2. How to enable USB as system wakeup source +----------------------------------- +Below is the example for how to enable USB as system wakeup source +at imx6 platform. + +2.1 Enable core's wakeup +echo enabled > /sys/bus/platform/devices/ci_hdrc.0/power/wakeup +2.2 Enable glue layer's wakeup +echo enabled > /sys/bus/platform/devices/2184000.usb/power/wakeup +2.3 Enable PHY's wakeup (optional) +echo enabled > /sys/bus/platform/devices/20c9000.usbphy/power/wakeup +2.4 Enable roothub's wakeup +echo enabled > /sys/bus/usb/devices/usb1/power/wakeup +2.5 Enable related device's wakeup +echo enabled > /sys/bus/usb/devices/1-1/power/wakeup + +If the system has only one usb port, and you want usb wakeup at this port, you +can use below script to enable usb wakeup. +for i in $(find /sys -name wakeup | grep usb);do echo enabled > $i;done; + diff --git a/Documentation/usb/dwc3.txt b/Documentation/usb/dwc3.txt new file mode 100644 index 000000000..1d02c01d1 --- /dev/null +++ b/Documentation/usb/dwc3.txt @@ -0,0 +1,45 @@ + + TODO +~~~~~~ +Please pick something while reading :) + +- Convert interrupt handler to per-ep-thread-irq + + As it turns out some DWC3-commands ~1ms to complete. Currently we spin + until the command completes which is bad. + + Implementation idea: + - dwc core implements a demultiplexing irq chip for interrupts per + endpoint. The interrupt numbers are allocated during probe and belong + to the device. If MSI provides per-endpoint interrupt this dummy + interrupt chip can be replaced with "real" interrupts. + - interrupts are requested / allocated on usb_ep_enable() and removed on + usb_ep_disable(). Worst case are 32 interrupts, the lower limit is two + for ep0/1. + - dwc3_send_gadget_ep_cmd() will sleep in wait_for_completion_timeout() + until the command completes. + - the interrupt handler is split into the following pieces: + - primary handler of the device + goes through every event and calls generic_handle_irq() for event + it. On return from generic_handle_irq() in acknowledges the event + counter so interrupt goes away (eventually). + + - threaded handler of the device + none + + - primary handler of the EP-interrupt + reads the event and tries to process it. Everything that requires + sleeping is handed over to the Thread. The event is saved in an + per-endpoint data-structure. + We probably have to pay attention not to process events once we + handed something to thread so we don't process event X prio Y + where X > Y. + + - threaded handler of the EP-interrupt + handles the remaining EP work which might sleep such as waiting + for command completion. + + Latency: + There should be no increase in latency since the interrupt-thread has a + high priority and will be run before an average task in user land + (except the user changed priorities). diff --git a/Documentation/usb/ehci.txt b/Documentation/usb/ehci.txt new file mode 100644 index 000000000..160bd6c3a --- /dev/null +++ b/Documentation/usb/ehci.txt @@ -0,0 +1,214 @@ +27-Dec-2002 + +The EHCI driver is used to talk to high speed USB 2.0 devices using +USB 2.0-capable host controller hardware. The USB 2.0 standard is +compatible with the USB 1.1 standard. It defines three transfer speeds: + + - "High Speed" 480 Mbit/sec (60 MByte/sec) + - "Full Speed" 12 Mbit/sec (1.5 MByte/sec) + - "Low Speed" 1.5 Mbit/sec + +USB 1.1 only addressed full speed and low speed. High speed devices +can be used on USB 1.1 systems, but they slow down to USB 1.1 speeds. + +USB 1.1 devices may also be used on USB 2.0 systems. When plugged +into an EHCI controller, they are given to a USB 1.1 "companion" +controller, which is a OHCI or UHCI controller as normally used with +such devices. When USB 1.1 devices plug into USB 2.0 hubs, they +interact with the EHCI controller through a "Transaction Translator" +(TT) in the hub, which turns low or full speed transactions into +high speed "split transactions" that don't waste transfer bandwidth. + +At this writing, this driver has been seen to work with implementations +of EHCI from (in alphabetical order): Intel, NEC, Philips, and VIA. +Other EHCI implementations are becoming available from other vendors; +you should expect this driver to work with them too. + +While usb-storage devices have been available since mid-2001 (working +quite speedily on the 2.4 version of this driver), hubs have only +been available since late 2001, and other kinds of high speed devices +appear to be on hold until more systems come with USB 2.0 built-in. +Such new systems have been available since early 2002, and became much +more typical in the second half of 2002. + +Note that USB 2.0 support involves more than just EHCI. It requires +other changes to the Linux-USB core APIs, including the hub driver, +but those changes haven't needed to really change the basic "usbcore" +APIs exposed to USB device drivers. + +- David Brownell + <dbrownell@users.sourceforge.net> + + +FUNCTIONALITY + +This driver is regularly tested on x86 hardware, and has also been +used on PPC hardware so big/little endianness issues should be gone. +It's believed to do all the right PCI magic so that I/O works even on +systems with interesting DMA mapping issues. + +Transfer Types + +At this writing the driver should comfortably handle all control, bulk, +and interrupt transfers, including requests to USB 1.1 devices through +transaction translators (TTs) in USB 2.0 hubs. But you may find bugs. + +High Speed Isochronous (ISO) transfer support is also functional, but +at this writing no Linux drivers have been using that support. + +Full Speed Isochronous transfer support, through transaction translators, +is not yet available. Note that split transaction support for ISO +transfers can't share much code with the code for high speed ISO transfers, +since EHCI represents these with a different data structure. So for now, +most USB audio and video devices can't be connected to high speed buses. + +Driver Behavior + +Transfers of all types can be queued. This means that control transfers +from a driver on one interface (or through usbfs) won't interfere with +ones from another driver, and that interrupt transfers can use periods +of one frame without risking data loss due to interrupt processing costs. + +The EHCI root hub code hands off USB 1.1 devices to its companion +controller. This driver doesn't need to know anything about those +drivers; a OHCI or UHCI driver that works already doesn't need to change +just because the EHCI driver is also present. + +There are some issues with power management; suspend/resume doesn't +behave quite right at the moment. + +Also, some shortcuts have been taken with the scheduling periodic +transactions (interrupt and isochronous transfers). These place some +limits on the number of periodic transactions that can be scheduled, +and prevent use of polling intervals of less than one frame. + + +USE BY + +Assuming you have an EHCI controller (on a PCI card or motherboard) +and have compiled this driver as a module, load this like: + + # modprobe ehci-hcd + +and remove it by: + + # rmmod ehci-hcd + +You should also have a driver for a "companion controller", such as +"ohci-hcd" or "uhci-hcd". In case of any trouble with the EHCI driver, +remove its module and then the driver for that companion controller will +take over (at lower speed) all the devices that were previously handled +by the EHCI driver. + +Module parameters (pass to "modprobe") include: + + log2_irq_thresh (default 0): + Log2 of default interrupt delay, in microframes. The default + value is 0, indicating 1 microframe (125 usec). Maximum value + is 6, indicating 2^6 = 64 microframes. This controls how often + the EHCI controller can issue interrupts. + +If you're using this driver on a 2.5 kernel, and you've enabled USB +debugging support, you'll see three files in the "sysfs" directory for +any EHCI controller: + + "async" dumps the asynchronous schedule, used for control + and bulk transfers. Shows each active qh and the qtds + pending, usually one qtd per urb. (Look at it with + usb-storage doing disk I/O; watch the request queues!) + "periodic" dumps the periodic schedule, used for interrupt + and isochronous transfers. Doesn't show qtds. + "registers" show controller register state, and + +The contents of those files can help identify driver problems. + + +Device drivers shouldn't care whether they're running over EHCI or not, +but they may want to check for "usb_device->speed == USB_SPEED_HIGH". +High speed devices can do things that full speed (or low speed) ones +can't, such as "high bandwidth" periodic (interrupt or ISO) transfers. +Also, some values in device descriptors (such as polling intervals for +periodic transfers) use different encodings when operating at high speed. + +However, do make a point of testing device drivers through USB 2.0 hubs. +Those hubs report some failures, such as disconnections, differently when +transaction translators are in use; some drivers have been seen to behave +badly when they see different faults than OHCI or UHCI report. + + +PERFORMANCE + +USB 2.0 throughput is gated by two main factors: how fast the host +controller can process requests, and how fast devices can respond to +them. The 480 Mbit/sec "raw transfer rate" is obeyed by all devices, +but aggregate throughput is also affected by issues like delays between +individual high speed packets, driver intelligence, and of course the +overall system load. Latency is also a performance concern. + +Bulk transfers are most often used where throughput is an issue. It's +good to keep in mind that bulk transfers are always in 512 byte packets, +and at most 13 of those fit into one USB 2.0 microframe. Eight USB 2.0 +microframes fit in a USB 1.1 frame; a microframe is 1 msec/8 = 125 usec. + +So more than 50 MByte/sec is available for bulk transfers, when both +hardware and device driver software allow it. Periodic transfer modes +(isochronous and interrupt) allow the larger packet sizes which let you +approach the quoted 480 MBit/sec transfer rate. + +Hardware Performance + +At this writing, individual USB 2.0 devices tend to max out at around +20 MByte/sec transfer rates. This is of course subject to change; +and some devices now go faster, while others go slower. + +The first NEC implementation of EHCI seems to have a hardware bottleneck +at around 28 MByte/sec aggregate transfer rate. While this is clearly +enough for a single device at 20 MByte/sec, putting three such devices +onto one bus does not get you 60 MByte/sec. The issue appears to be +that the controller hardware won't do concurrent USB and PCI access, +so that it's only trying six (or maybe seven) USB transactions each +microframe rather than thirteen. (Seems like a reasonable trade off +for a product that beat all the others to market by over a year!) + +It's expected that newer implementations will better this, throwing +more silicon real estate at the problem so that new motherboard chip +sets will get closer to that 60 MByte/sec target. That includes an +updated implementation from NEC, as well as other vendors' silicon. + +There's a minimum latency of one microframe (125 usec) for the host +to receive interrupts from the EHCI controller indicating completion +of requests. That latency is tunable; there's a module option. By +default ehci-hcd driver uses the minimum latency, which means that if +you issue a control or bulk request you can often expect to learn that +it completed in less than 250 usec (depending on transfer size). + +Software Performance + +To get even 20 MByte/sec transfer rates, Linux-USB device drivers will +need to keep the EHCI queue full. That means issuing large requests, +or using bulk queuing if a series of small requests needs to be issued. +When drivers don't do that, their performance results will show it. + +In typical situations, a usb_bulk_msg() loop writing out 4 KB chunks is +going to waste more than half the USB 2.0 bandwidth. Delays between the +I/O completion and the driver issuing the next request will take longer +than the I/O. If that same loop used 16 KB chunks, it'd be better; a +sequence of 128 KB chunks would waste a lot less. + +But rather than depending on such large I/O buffers to make synchronous +I/O be efficient, it's better to just queue up several (bulk) requests +to the HC, and wait for them all to complete (or be canceled on error). +Such URB queuing should work with all the USB 1.1 HC drivers too. + +In the Linux 2.5 kernels, new usb_sg_*() api calls have been defined; they +queue all the buffers from a scatterlist. They also use scatterlist DMA +mapping (which might apply an IOMMU) and IRQ reduction, all of which will +help make high speed transfers run as fast as they can. + + +TBD: Interrupt and ISO transfer performance issues. Those periodic +transfers are fully scheduled, so the main issue is likely to be how +to trigger "high bandwidth" modes. + +TBD: More than standard 80% periodic bandwidth allocation is possible +through sysfs uframe_periodic_max parameter. Describe that. diff --git a/Documentation/usb/functionfs.txt b/Documentation/usb/functionfs.txt new file mode 100644 index 000000000..eaaaea019 --- /dev/null +++ b/Documentation/usb/functionfs.txt @@ -0,0 +1,67 @@ +*How FunctionFS works* + +From kernel point of view it is just a composite function with some +unique behaviour. It may be added to an USB configuration only after +the user space driver has registered by writing descriptors and +strings (the user space program has to provide the same information +that kernel level composite functions provide when they are added to +the configuration). + +This in particular means that the composite initialisation functions +may not be in init section (ie. may not use the __init tag). + +From user space point of view it is a file system which when +mounted provides an "ep0" file. User space driver need to +write descriptors and strings to that file. It does not need +to worry about endpoints, interfaces or strings numbers but +simply provide descriptors such as if the function was the +only one (endpoints and strings numbers starting from one and +interface numbers starting from zero). The FunctionFS changes +them as needed also handling situation when numbers differ in +different configurations. + +When descriptors and strings are written "ep#" files appear +(one for each declared endpoint) which handle communication on +a single endpoint. Again, FunctionFS takes care of the real +numbers and changing of the configuration (which means that +"ep1" file may be really mapped to (say) endpoint 3 (and when +configuration changes to (say) endpoint 2)). "ep0" is used +for receiving events and handling setup requests. + +When all files are closed the function disables itself. + +What I also want to mention is that the FunctionFS is designed in such +a way that it is possible to mount it several times so in the end +a gadget could use several FunctionFS functions. The idea is that +each FunctionFS instance is identified by the device name used +when mounting. + +One can imagine a gadget that has an Ethernet, MTP and HID interfaces +where the last two are implemented via FunctionFS. On user space +level it would look like this: + +$ insmod g_ffs.ko idVendor=<ID> iSerialNumber=<string> functions=mtp,hid +$ mkdir /dev/ffs-mtp && mount -t functionfs mtp /dev/ffs-mtp +$ ( cd /dev/ffs-mtp && mtp-daemon ) & +$ mkdir /dev/ffs-hid && mount -t functionfs hid /dev/ffs-hid +$ ( cd /dev/ffs-hid && hid-daemon ) & + +On kernel level the gadget checks ffs_data->dev_name to identify +whether it's FunctionFS designed for MTP ("mtp") or HID ("hid"). + +If no "functions" module parameters is supplied, the driver accepts +just one function with any name. + +When "functions" module parameter is supplied, only functions +with listed names are accepted. In particular, if the "functions" +parameter's value is just a one-element list, then the behaviour +is similar to when there is no "functions" at all; however, +only a function with the specified name is accepted. + +The gadget is registered only after all the declared function +filesystems have been mounted and USB descriptors of all functions +have been written to their ep0's. + +Conversely, the gadget is unregistered after the first USB function +closes its endpoints. + diff --git a/Documentation/usb/gadget-testing.txt b/Documentation/usb/gadget-testing.txt new file mode 100644 index 000000000..5908a21fd --- /dev/null +++ b/Documentation/usb/gadget-testing.txt @@ -0,0 +1,819 @@ +This file summarizes information on basic testing of USB functions +provided by gadgets. + +1. ACM function +2. ECM function +3. ECM subset function +4. EEM function +5. FFS function +6. HID function +7. LOOPBACK function +8. MASS STORAGE function +9. MIDI function +10. NCM function +11. OBEX function +12. PHONET function +13. RNDIS function +14. SERIAL function +15. SOURCESINK function +16. UAC1 function (legacy implementation) +17. UAC2 function +18. UVC function +19. PRINTER function +20. UAC1 function (new API) + + +1. ACM function +=============== + +The function is provided by usb_f_acm.ko module. + +Function-specific configfs interface +------------------------------------ + +The function name to use when creating the function directory is "acm". +The ACM function provides just one attribute in its function directory: + + port_num + +The attribute is read-only. + +There can be at most 4 ACM/generic serial/OBEX ports in the system. + + +Testing the ACM function +------------------------ + +On the host: cat > /dev/ttyACM<X> +On the device : cat /dev/ttyGS<Y> + +then the other way round + +On the device: cat > /dev/ttyGS<Y> +On the host: cat /dev/ttyACM<X> + +2. ECM function +=============== + +The function is provided by usb_f_ecm.ko module. + +Function-specific configfs interface +------------------------------------ + +The function name to use when creating the function directory is "ecm". +The ECM function provides these attributes in its function directory: + + ifname - network device interface name associated with this + function instance + qmult - queue length multiplier for high and super speed + host_addr - MAC address of host's end of this + Ethernet over USB link + dev_addr - MAC address of device's end of this + Ethernet over USB link + +and after creating the functions/ecm.<instance name> they contain default +values: qmult is 5, dev_addr and host_addr are randomly selected. +Except for ifname they can be written to until the function is linked to a +configuration. The ifname is read-only and contains the name of the interface +which was assigned by the net core, e. g. usb0. + +Testing the ECM function +------------------------ + +Configure IP addresses of the device and the host. Then: + +On the device: ping <host's IP> +On the host: ping <device's IP> + +3. ECM subset function +====================== + +The function is provided by usb_f_ecm_subset.ko module. + +Function-specific configfs interface +------------------------------------ + +The function name to use when creating the function directory is "geth". +The ECM subset function provides these attributes in its function directory: + + ifname - network device interface name associated with this + function instance + qmult - queue length multiplier for high and super speed + host_addr - MAC address of host's end of this + Ethernet over USB link + dev_addr - MAC address of device's end of this + Ethernet over USB link + +and after creating the functions/ecm.<instance name> they contain default +values: qmult is 5, dev_addr and host_addr are randomly selected. +Except for ifname they can be written to until the function is linked to a +configuration. The ifname is read-only and contains the name of the interface +which was assigned by the net core, e. g. usb0. + +Testing the ECM subset function +------------------------------- + +Configure IP addresses of the device and the host. Then: + +On the device: ping <host's IP> +On the host: ping <device's IP> + +4. EEM function +=============== + +The function is provided by usb_f_eem.ko module. + +Function-specific configfs interface +------------------------------------ + +The function name to use when creating the function directory is "eem". +The EEM function provides these attributes in its function directory: + + ifname - network device interface name associated with this + function instance + qmult - queue length multiplier for high and super speed + host_addr - MAC address of host's end of this + Ethernet over USB link + dev_addr - MAC address of device's end of this + Ethernet over USB link + +and after creating the functions/eem.<instance name> they contain default +values: qmult is 5, dev_addr and host_addr are randomly selected. +Except for ifname they can be written to until the function is linked to a +configuration. The ifname is read-only and contains the name of the interface +which was assigned by the net core, e. g. usb0. + +Testing the EEM function +------------------------ + +Configure IP addresses of the device and the host. Then: + +On the device: ping <host's IP> +On the host: ping <device's IP> + +5. FFS function +=============== + +The function is provided by usb_f_fs.ko module. + +Function-specific configfs interface +------------------------------------ + +The function name to use when creating the function directory is "ffs". +The function directory is intentionally empty and not modifiable. + +After creating the directory there is a new instance (a "device") of FunctionFS +available in the system. Once a "device" is available, the user should follow +the standard procedure for using FunctionFS (mount it, run the userspace +process which implements the function proper). The gadget should be enabled +by writing a suitable string to usb_gadget/<gadget>/UDC. + +Testing the FFS function +------------------------ + +On the device: start the function's userspace daemon, enable the gadget +On the host: use the USB function provided by the device + +6. HID function +=============== + +The function is provided by usb_f_hid.ko module. + +Function-specific configfs interface +------------------------------------ + +The function name to use when creating the function directory is "hid". +The HID function provides these attributes in its function directory: + + protocol - HID protocol to use + report_desc - data to be used in HID reports, except data + passed with /dev/hidg<X> + report_length - HID report length + subclass - HID subclass to use + +For a keyboard the protocol and the subclass are 1, the report_length is 8, +while the report_desc is: + +$ hd my_report_desc +00000000 05 01 09 06 a1 01 05 07 19 e0 29 e7 15 00 25 01 |..........)...%.| +00000010 75 01 95 08 81 02 95 01 75 08 81 03 95 05 75 01 |u.......u.....u.| +00000020 05 08 19 01 29 05 91 02 95 01 75 03 91 03 95 06 |....).....u.....| +00000030 75 08 15 00 25 65 05 07 19 00 29 65 81 00 c0 |u...%e....)e...| +0000003f + +Such a sequence of bytes can be stored to the attribute with echo: + +$ echo -ne \\x05\\x01\\x09\\x06\\xa1..... + +Testing the HID function +------------------------ + +Device: +- create the gadget +- connect the gadget to a host, preferably not the one used +to control the gadget +- run a program which writes to /dev/hidg<N>, e.g. +a userspace program found in Documentation/usb/gadget_hid.txt: + +$ ./hid_gadget_test /dev/hidg0 keyboard + +Host: +- observe the keystrokes from the gadget + +7. LOOPBACK function +==================== + +The function is provided by usb_f_ss_lb.ko module. + +Function-specific configfs interface +------------------------------------ + +The function name to use when creating the function directory is "Loopback". +The LOOPBACK function provides these attributes in its function directory: + + qlen - depth of loopback queue + bulk_buflen - buffer length + +Testing the LOOPBACK function +----------------------------- + +device: run the gadget +host: test-usb (tools/usb/testusb.c) + +8. MASS STORAGE function +======================== + +The function is provided by usb_f_mass_storage.ko module. + +Function-specific configfs interface +------------------------------------ + +The function name to use when creating the function directory is "mass_storage". +The MASS STORAGE function provides these attributes in its directory: +files: + + stall - Set to permit function to halt bulk endpoints. + Disabled on some USB devices known not to work + correctly. You should set it to true. + num_buffers - Number of pipeline buffers. Valid numbers + are 2..4. Available only if + CONFIG_USB_GADGET_DEBUG_FILES is set. + +and a default lun.0 directory corresponding to SCSI LUN #0. + +A new lun can be added with mkdir: + +$ mkdir functions/mass_storage.0/partition.5 + +Lun numbering does not have to be continuous, except for lun #0 which is +created by default. A maximum of 8 luns can be specified and they all must be +named following the <name>.<number> scheme. The numbers can be 0..8. +Probably a good convention is to name the luns "lun.<number>", +although it is not mandatory. + +In each lun directory there are the following attribute files: + + file - The path to the backing file for the LUN. + Required if LUN is not marked as removable. + ro - Flag specifying access to the LUN shall be + read-only. This is implied if CD-ROM emulation + is enabled as well as when it was impossible + to open "filename" in R/W mode. + removable - Flag specifying that LUN shall be indicated as + being removable. + cdrom - Flag specifying that LUN shall be reported as + being a CD-ROM. + nofua - Flag specifying that FUA flag + in SCSI WRITE(10,12) + +Testing the MASS STORAGE function +--------------------------------- + +device: connect the gadget, enable it +host: dmesg, see the USB drives appear (if system configured to automatically +mount) + +9. MIDI function +================ + +The function is provided by usb_f_midi.ko module. + +Function-specific configfs interface +------------------------------------ + +The function name to use when creating the function directory is "midi". +The MIDI function provides these attributes in its function directory: + + buflen - MIDI buffer length + id - ID string for the USB MIDI adapter + in_ports - number of MIDI input ports + index - index value for the USB MIDI adapter + out_ports - number of MIDI output ports + qlen - USB read request queue length + +Testing the MIDI function +------------------------- + +There are two cases: playing a mid from the gadget to +the host and playing a mid from the host to the gadget. + +1) Playing a mid from the gadget to the host +host) + +$ arecordmidi -l + Port Client name Port name + 14:0 Midi Through Midi Through Port-0 + 24:0 MIDI Gadget MIDI Gadget MIDI 1 +$ arecordmidi -p 24:0 from_gadget.mid + +gadget) + +$ aplaymidi -l + Port Client name Port name + 20:0 f_midi f_midi + +$ aplaymidi -p 20:0 to_host.mid + +2) Playing a mid from the host to the gadget +gadget) + +$ arecordmidi -l + Port Client name Port name + 20:0 f_midi f_midi + +$ arecordmidi -p 20:0 from_host.mid + +host) + +$ aplaymidi -l + Port Client name Port name + 14:0 Midi Through Midi Through Port-0 + 24:0 MIDI Gadget MIDI Gadget MIDI 1 + +$ aplaymidi -p24:0 to_gadget.mid + +The from_gadget.mid should sound identical to the to_host.mid. +The from_host.id should sound identical to the to_gadget.mid. + +MIDI files can be played to speakers/headphones with e.g. timidity installed + +$ aplaymidi -l + Port Client name Port name + 14:0 Midi Through Midi Through Port-0 + 24:0 MIDI Gadget MIDI Gadget MIDI 1 +128:0 TiMidity TiMidity port 0 +128:1 TiMidity TiMidity port 1 +128:2 TiMidity TiMidity port 2 +128:3 TiMidity TiMidity port 3 + +$ aplaymidi -p 128:0 file.mid + +MIDI ports can be logically connected using the aconnect utility, e.g.: + +$ aconnect 24:0 128:0 # try it on the host + +After the gadget's MIDI port is connected to timidity's MIDI port, +whatever is played at the gadget side with aplaymidi -l is audible +in host's speakers/headphones. + +10. NCM function +================ + +The function is provided by usb_f_ncm.ko module. + +Function-specific configfs interface +------------------------------------ + +The function name to use when creating the function directory is "ncm". +The NCM function provides these attributes in its function directory: + + ifname - network device interface name associated with this + function instance + qmult - queue length multiplier for high and super speed + host_addr - MAC address of host's end of this + Ethernet over USB link + dev_addr - MAC address of device's end of this + Ethernet over USB link + +and after creating the functions/ncm.<instance name> they contain default +values: qmult is 5, dev_addr and host_addr are randomly selected. +Except for ifname they can be written to until the function is linked to a +configuration. The ifname is read-only and contains the name of the interface +which was assigned by the net core, e. g. usb0. + +Testing the NCM function +------------------------ + +Configure IP addresses of the device and the host. Then: + +On the device: ping <host's IP> +On the host: ping <device's IP> + +11. OBEX function +================= + +The function is provided by usb_f_obex.ko module. + +Function-specific configfs interface +------------------------------------ + +The function name to use when creating the function directory is "obex". +The OBEX function provides just one attribute in its function directory: + + port_num + +The attribute is read-only. + +There can be at most 4 ACM/generic serial/OBEX ports in the system. + +Testing the OBEX function +------------------------- + +On device: seriald -f /dev/ttyGS<Y> -s 1024 +On host: serialc -v <vendorID> -p <productID> -i<interface#> -a1 -s1024 \ + -t<out endpoint addr> -r<in endpoint addr> + +where seriald and serialc are Felipe's utilities found here: + +https://github.com/felipebalbi/usb-tools.git master + +12. PHONET function +=================== + +The function is provided by usb_f_phonet.ko module. + +Function-specific configfs interface +------------------------------------ + +The function name to use when creating the function directory is "phonet". +The PHONET function provides just one attribute in its function directory: + + ifname - network device interface name associated with this + function instance + +Testing the PHONET function +--------------------------- + +It is not possible to test the SOCK_STREAM protocol without a specific piece +of hardware, so only SOCK_DGRAM has been tested. For the latter to work, +in the past I had to apply the patch mentioned here: + +http://www.spinics.net/lists/linux-usb/msg85689.html + +These tools are required: + +git://git.gitorious.org/meego-cellular/phonet-utils.git + +On the host: + +$ ./phonet -a 0x10 -i usbpn0 +$ ./pnroute add 0x6c usbpn0 +$./pnroute add 0x10 usbpn0 +$ ifconfig usbpn0 up + +On the device: + +$ ./phonet -a 0x6c -i upnlink0 +$ ./pnroute add 0x10 upnlink0 +$ ifconfig upnlink0 up + +Then a test program can be used: + +http://www.spinics.net/lists/linux-usb/msg85690.html + +On the device: + +$ ./pnxmit -a 0x6c -r + +On the host: + +$ ./pnxmit -a 0x10 -s 0x6c + +As a result some data should be sent from host to device. +Then the other way round: + +On the host: + +$ ./pnxmit -a 0x10 -r + +On the device: + +$ ./pnxmit -a 0x6c -s 0x10 + +13. RNDIS function +================== + +The function is provided by usb_f_rndis.ko module. + +Function-specific configfs interface +------------------------------------ + +The function name to use when creating the function directory is "rndis". +The RNDIS function provides these attributes in its function directory: + + ifname - network device interface name associated with this + function instance + qmult - queue length multiplier for high and super speed + host_addr - MAC address of host's end of this + Ethernet over USB link + dev_addr - MAC address of device's end of this + Ethernet over USB link + +and after creating the functions/rndis.<instance name> they contain default +values: qmult is 5, dev_addr and host_addr are randomly selected. +Except for ifname they can be written to until the function is linked to a +configuration. The ifname is read-only and contains the name of the interface +which was assigned by the net core, e. g. usb0. + +Testing the RNDIS function +-------------------------- + +Configure IP addresses of the device and the host. Then: + +On the device: ping <host's IP> +On the host: ping <device's IP> + +14. SERIAL function +=================== + +The function is provided by usb_f_gser.ko module. + +Function-specific configfs interface +------------------------------------ + +The function name to use when creating the function directory is "gser". +The SERIAL function provides just one attribute in its function directory: + + port_num + +The attribute is read-only. + +There can be at most 4 ACM/generic serial/OBEX ports in the system. + +Testing the SERIAL function +--------------------------- + +On host: insmod usbserial + echo VID PID >/sys/bus/usb-serial/drivers/generic/new_id +On host: cat > /dev/ttyUSB<X> +On target: cat /dev/ttyGS<Y> + +then the other way round + +On target: cat > /dev/ttyGS<Y> +On host: cat /dev/ttyUSB<X> + +15. SOURCESINK function +======================= + +The function is provided by usb_f_ss_lb.ko module. + +Function-specific configfs interface +------------------------------------ + +The function name to use when creating the function directory is "SourceSink". +The SOURCESINK function provides these attributes in its function directory: + + pattern - 0 (all zeros), 1 (mod63), 2 (none) + isoc_interval - 1..16 + isoc_maxpacket - 0 - 1023 (fs), 0 - 1024 (hs/ss) + isoc_mult - 0..2 (hs/ss only) + isoc_maxburst - 0..15 (ss only) + bulk_buflen - buffer length + bulk_qlen - depth of queue for bulk + iso_qlen - depth of queue for iso + +Testing the SOURCESINK function +------------------------------- + +device: run the gadget +host: test-usb (tools/usb/testusb.c) + + +16. UAC1 function (legacy implementation) +================= + +The function is provided by usb_f_uac1_legacy.ko module. + +Function-specific configfs interface +------------------------------------ + +The function name to use when creating the function directory +is "uac1_legacy". +The uac1 function provides these attributes in its function directory: + + audio_buf_size - audio buffer size + fn_cap - capture pcm device file name + fn_cntl - control device file name + fn_play - playback pcm device file name + req_buf_size - ISO OUT endpoint request buffer size + req_count - ISO OUT endpoint request count + +The attributes have sane default values. + +Testing the UAC1 function +------------------------- + +device: run the gadget +host: aplay -l # should list our USB Audio Gadget + +17. UAC2 function +================= + +The function is provided by usb_f_uac2.ko module. + +Function-specific configfs interface +------------------------------------ + +The function name to use when creating the function directory is "uac2". +The uac2 function provides these attributes in its function directory: + + c_chmask - capture channel mask + c_srate - capture sampling rate + c_ssize - capture sample size (bytes) + p_chmask - playback channel mask + p_srate - playback sampling rate + p_ssize - playback sample size (bytes) + req_number - the number of pre-allocated request for both capture + and playback + +The attributes have sane default values. + +Testing the UAC2 function +------------------------- + +device: run the gadget +host: aplay -l # should list our USB Audio Gadget + +This function does not require real hardware support, it just +sends a stream of audio data to/from the host. In order to +actually hear something at the device side, a command similar +to this must be used at the device side: + +$ arecord -f dat -t wav -D hw:2,0 | aplay -D hw:0,0 & + +e.g.: + +$ arecord -f dat -t wav -D hw:CARD=UAC2Gadget,DEV=0 | \ +aplay -D default:CARD=OdroidU3 + +18. UVC function +================ + +The function is provided by usb_f_uvc.ko module. + +Function-specific configfs interface +------------------------------------ + +The function name to use when creating the function directory is "uvc". +The uvc function provides these attributes in its function directory: + + streaming_interval - interval for polling endpoint for data transfers + streaming_maxburst - bMaxBurst for super speed companion descriptor + streaming_maxpacket - maximum packet size this endpoint is capable of + sending or receiving when this configuration is + selected + +There are also "control" and "streaming" subdirectories, each of which contain +a number of their subdirectories. There are some sane defaults provided, but +the user must provide the following: + + control header - create in control/header, link from control/class/fs + and/or control/class/ss + streaming header - create in streaming/header, link from + streaming/class/fs and/or streaming/class/hs and/or + streaming/class/ss + format description - create in streaming/mjpeg and/or + streaming/uncompressed + frame description - create in streaming/mjpeg/<format> and/or in + streaming/uncompressed/<format> + +Each frame description contains frame interval specification, and each +such specification consists of a number of lines with an inverval value +in each line. The rules stated above are best illustrated with an example: + +# mkdir functions/uvc.usb0/control/header/h +# cd functions/uvc.usb0/control/ +# ln -s header/h class/fs +# ln -s header/h class/ss +# mkdir -p functions/uvc.usb0/streaming/uncompressed/u/360p +# cat <<EOF > functions/uvc.usb0/streaming/uncompressed/u/360p/dwFrameInterval +666666 +1000000 +5000000 +EOF +# cd $GADGET_CONFIGFS_ROOT +# mkdir functions/uvc.usb0/streaming/header/h +# cd functions/uvc.usb0/streaming/header/h +# ln -s ../../uncompressed/u +# cd ../../class/fs +# ln -s ../../header/h +# cd ../../class/hs +# ln -s ../../header/h +# cd ../../class/ss +# ln -s ../../header/h + + +Testing the UVC function +------------------------ + +device: run the gadget, modprobe vivid + +# uvc-gadget -u /dev/video<uvc video node #> -v /dev/video<vivid video node #> + +where uvc-gadget is this program: +http://git.ideasonboard.org/uvc-gadget.git + +with these patches: +http://www.spinics.net/lists/linux-usb/msg99220.html + +host: luvcview -f yuv + +19. PRINTER function +==================== + +The function is provided by usb_f_printer.ko module. + +Function-specific configfs interface +------------------------------------ + +The function name to use when creating the function directory is "printer". +The printer function provides these attributes in its function directory: + + pnp_string - Data to be passed to the host in pnp string + q_len - Number of requests per endpoint + +Testing the PRINTER function +---------------------------- + +The most basic testing: + +device: run the gadget +# ls -l /devices/virtual/usb_printer_gadget/ + +should show g_printer<number>. + +If udev is active, then /dev/g_printer<number> should appear automatically. + +host: + +If udev is active, then e.g. /dev/usb/lp0 should appear. + +host->device transmission: + +device: +# cat /dev/g_printer<number> +host: +# cat > /dev/usb/lp0 + +device->host transmission: + +# cat > /dev/g_printer<number> +host: +# cat /dev/usb/lp0 + +More advanced testing can be done with the prn_example +described in Documentation/usb/gadget_printer.txt. + + +20. UAC1 function (virtual ALSA card, using u_audio API) +================= + +The function is provided by usb_f_uac1.ko module. +It will create a virtual ALSA card and the audio streams are simply +sinked to and sourced from it. + +Function-specific configfs interface +------------------------------------ + +The function name to use when creating the function directory is "uac1". +The uac1 function provides these attributes in its function directory: + + c_chmask - capture channel mask + c_srate - capture sampling rate + c_ssize - capture sample size (bytes) + p_chmask - playback channel mask + p_srate - playback sampling rate + p_ssize - playback sample size (bytes) + req_number - the number of pre-allocated request for both capture + and playback + +The attributes have sane default values. + +Testing the UAC1 function +------------------------- + +device: run the gadget +host: aplay -l # should list our USB Audio Gadget + +This function does not require real hardware support, it just +sends a stream of audio data to/from the host. In order to +actually hear something at the device side, a command similar +to this must be used at the device side: + +$ arecord -f dat -t wav -D hw:2,0 | aplay -D hw:0,0 & + +e.g.: + +$ arecord -f dat -t wav -D hw:CARD=UAC1Gadget,DEV=0 | \ +aplay -D default:CARD=OdroidU3 diff --git a/Documentation/usb/gadget_configfs.txt b/Documentation/usb/gadget_configfs.txt new file mode 100644 index 000000000..b8cb38a98 --- /dev/null +++ b/Documentation/usb/gadget_configfs.txt @@ -0,0 +1,384 @@ + + + + + Linux USB gadget configured through configfs + + + 25th April 2013 + + + + +Overview +======== + +A USB Linux Gadget is a device which has a UDC (USB Device Controller) and can +be connected to a USB Host to extend it with additional functions like a serial +port or a mass storage capability. + +A gadget is seen by its host as a set of configurations, each of which contains +a number of interfaces which, from the gadget's perspective, are known as +functions, each function representing e.g. a serial connection or a SCSI disk. + +Linux provides a number of functions for gadgets to use. + +Creating a gadget means deciding what configurations there will be +and which functions each configuration will provide. + +Configfs (please see Documentation/filesystems/configfs/*) lends itself nicely +for the purpose of telling the kernel about the above mentioned decision. +This document is about how to do it. + +It also describes how configfs integration into gadget is designed. + + + + +Requirements +============ + +In order for this to work configfs must be available, so CONFIGFS_FS must be +'y' or 'm' in .config. As of this writing USB_LIBCOMPOSITE selects CONFIGFS_FS. + + + + +Usage +===== + +(The original post describing the first function +made available through configfs can be seen here: +http://www.spinics.net/lists/linux-usb/msg76388.html) + +$ modprobe libcomposite +$ mount none $CONFIGFS_HOME -t configfs + +where CONFIGFS_HOME is the mount point for configfs + +1. Creating the gadgets +----------------------- + +For each gadget to be created its corresponding directory must be created: + +$ mkdir $CONFIGFS_HOME/usb_gadget/<gadget name> + +e.g.: + +$ mkdir $CONFIGFS_HOME/usb_gadget/g1 + +... +... +... + +$ cd $CONFIGFS_HOME/usb_gadget/g1 + +Each gadget needs to have its vendor id <VID> and product id <PID> specified: + +$ echo <VID> > idVendor +$ echo <PID> > idProduct + +A gadget also needs its serial number, manufacturer and product strings. +In order to have a place to store them, a strings subdirectory must be created +for each language, e.g.: + +$ mkdir strings/0x409 + +Then the strings can be specified: + +$ echo <serial number> > strings/0x409/serialnumber +$ echo <manufacturer> > strings/0x409/manufacturer +$ echo <product> > strings/0x409/product + +2. Creating the configurations +------------------------------ + +Each gadget will consist of a number of configurations, their corresponding +directories must be created: + +$ mkdir configs/<name>.<number> + +where <name> can be any string which is legal in a filesystem and the +<number> is the configuration's number, e.g.: + +$ mkdir configs/c.1 + +... +... +... + +Each configuration also needs its strings, so a subdirectory must be created +for each language, e.g.: + +$ mkdir configs/c.1/strings/0x409 + +Then the configuration string can be specified: + +$ echo <configuration> > configs/c.1/strings/0x409/configuration + +Some attributes can also be set for a configuration, e.g.: + +$ echo 120 > configs/c.1/MaxPower + +3. Creating the functions +------------------------- + +The gadget will provide some functions, for each function its corresponding +directory must be created: + +$ mkdir functions/<name>.<instance name> + +where <name> corresponds to one of allowed function names and instance name +is an arbitrary string allowed in a filesystem, e.g.: + +$ mkdir functions/ncm.usb0 # usb_f_ncm.ko gets loaded with request_module() + +... +... +... + +Each function provides its specific set of attributes, with either read-only +or read-write access. Where applicable they need to be written to as +appropriate. +Please refer to Documentation/ABI/*/configfs-usb-gadget* for more information. + +4. Associating the functions with their configurations +------------------------------------------------------ + +At this moment a number of gadgets is created, each of which has a number of +configurations specified and a number of functions available. What remains +is specifying which function is available in which configuration (the same +function can be used in multiple configurations). This is achieved with +creating symbolic links: + +$ ln -s functions/<name>.<instance name> configs/<name>.<number> + +e.g.: + +$ ln -s functions/ncm.usb0 configs/c.1 + +... +... +... + +5. Enabling the gadget +---------------------- + +All the above steps serve the purpose of composing the gadget of +configurations and functions. + +An example directory structure might look like this: + +. +./strings +./strings/0x409 +./strings/0x409/serialnumber +./strings/0x409/product +./strings/0x409/manufacturer +./configs +./configs/c.1 +./configs/c.1/ncm.usb0 -> ../../../../usb_gadget/g1/functions/ncm.usb0 +./configs/c.1/strings +./configs/c.1/strings/0x409 +./configs/c.1/strings/0x409/configuration +./configs/c.1/bmAttributes +./configs/c.1/MaxPower +./functions +./functions/ncm.usb0 +./functions/ncm.usb0/ifname +./functions/ncm.usb0/qmult +./functions/ncm.usb0/host_addr +./functions/ncm.usb0/dev_addr +./UDC +./bcdUSB +./bcdDevice +./idProduct +./idVendor +./bMaxPacketSize0 +./bDeviceProtocol +./bDeviceSubClass +./bDeviceClass + + +Such a gadget must be finally enabled so that the USB host can enumerate it. +In order to enable the gadget it must be bound to a UDC (USB Device Controller). + +$ echo <udc name> > UDC + +where <udc name> is one of those found in /sys/class/udc/* +e.g.: + +$ echo s3c-hsotg > UDC + + +6. Disabling the gadget +----------------------- + +$ echo "" > UDC + +7. Cleaning up +-------------- + +Remove functions from configurations: + +$ rm configs/<config name>.<number>/<function> + +where <config name>.<number> specify the configuration and <function> is +a symlink to a function being removed from the configuration, e.g.: + +$ rm configs/c.1/ncm.usb0 + +... +... +... + +Remove strings directories in configurations + +$ rmdir configs/<config name>.<number>/strings/<lang> + +e.g.: + +$ rmdir configs/c.1/strings/0x409 + +... +... +... + +and remove the configurations + +$ rmdir configs/<config name>.<number> + +e.g.: + +rmdir configs/c.1 + +... +... +... + +Remove functions (function modules are not unloaded, though) + +$ rmdir functions/<name>.<instance name> + +e.g.: + +$ rmdir functions/ncm.usb0 + +... +... +... + +Remove strings directories in the gadget + +$ rmdir strings/<lang> + +e.g.: + +$ rmdir strings/0x409 + +and finally remove the gadget: + +$ cd .. +$ rmdir <gadget name> + +e.g.: + +$ rmdir g1 + + + + +Implementation design +===================== + +Below the idea of how configfs works is presented. +In configfs there are items and groups, both represented as directories. +The difference between an item and a group is that a group can contain +other groups. In the picture below only an item is shown. +Both items and groups can have attributes, which are represented as files. +The user can create and remove directories, but cannot remove files, +which can be read-only or read-write, depending on what they represent. + +The filesystem part of configfs operates on config_items/groups and +configfs_attributes which are generic and of the same type for all +configured elements. However, they are embedded in usage-specific +larger structures. In the picture below there is a "cs" which contains +a config_item and an "sa" which contains a configfs_attribute. + +The filesystem view would be like this: + +./ +./cs (directory) + | + +--sa (file) + | + . + . + . + +Whenever a user reads/writes the "sa" file, a function is called +which accepts a struct config_item and a struct configfs_attribute. +In the said function the "cs" and "sa" are retrieved using the well +known container_of technique and an appropriate sa's function (show or +store) is called and passed the "cs" and a character buffer. The "show" +is for displaying the file's contents (copy data from the cs to the +buffer), while the "store" is for modifying the file's contents (copy data +from the buffer to the cs), but it is up to the implementer of the +two functions to decide what they actually do. + +typedef struct configured_structure cs; +typedef struct specific_attribute sa; + + sa + +----------------------------------+ + cs | (*show)(cs *, buffer); | ++-----------------+ | (*store)(cs *, buffer, length); | +| | | | +| +-------------+ | | +------------------+ | +| | struct |-|----|------>|struct | | +| | config_item | | | |configfs_attribute| | +| +-------------+ | | +------------------+ | +| | +----------------------------------+ +| data to be set | . +| | . ++-----------------+ . + +The file names are decided by the config item/group designer, while +the directories in general can be named at will. A group can have +a number of its default sub-groups created automatically. + +For more information on configfs please see +Documentation/filesystems/configfs/*. + +The concepts described above translate to USB gadgets like this: + +1. A gadget has its config group, which has some attributes (idVendor, +idProduct etc) and default sub-groups (configs, functions, strings). +Writing to the attributes causes the information to be stored in +appropriate locations. In the configs, functions and strings sub-groups +a user can create their sub-groups to represent configurations, functions, +and groups of strings in a given language. + +2. The user creates configurations and functions, in the configurations +creates symbolic links to functions. This information is used when the +gadget's UDC attribute is written to, which means binding the gadget +to the UDC. The code in drivers/usb/gadget/configfs.c iterates over +all configurations, and in each configuration it iterates over all +functions and binds them. This way the whole gadget is bound. + +3. The file drivers/usb/gadget/configfs.c contains code for + + - gadget's config_group + - gadget's default groups (configs, functions, strings) + - associating functions with configurations (symlinks) + +4. Each USB function naturally has its own view of what it wants +configured, so config_groups for particular functions are defined +in the functions implementation files drivers/usb/gadget/f_*.c. + +5. Function's code is written in such a way that it uses + +usb_get_function_instance(), which, in turn, calls request_module. +So, provided that modprobe works, modules for particular functions +are loaded automatically. Please note that the converse is not true: +after a gadget is disabled and torn down, the modules remain loaded. diff --git a/Documentation/usb/gadget_hid.txt b/Documentation/usb/gadget_hid.txt new file mode 100644 index 000000000..7a0fb8e16 --- /dev/null +++ b/Documentation/usb/gadget_hid.txt @@ -0,0 +1,452 @@ + + Linux USB HID gadget driver + +Introduction + + The HID Gadget driver provides emulation of USB Human Interface + Devices (HID). The basic HID handling is done in the kernel, + and HID reports can be sent/received through I/O on the + /dev/hidgX character devices. + + For more details about HID, see the developer page on + http://www.usb.org/developers/hidpage/ + +Configuration + + g_hid is a platform driver, so to use it you need to add + struct platform_device(s) to your platform code defining the + HID function descriptors you want to use - E.G. something + like: + +#include <linux/platform_device.h> +#include <linux/usb/g_hid.h> + +/* hid descriptor for a keyboard */ +static struct hidg_func_descriptor my_hid_data = { + .subclass = 0, /* No subclass */ + .protocol = 1, /* Keyboard */ + .report_length = 8, + .report_desc_length = 63, + .report_desc = { + 0x05, 0x01, /* USAGE_PAGE (Generic Desktop) */ + 0x09, 0x06, /* USAGE (Keyboard) */ + 0xa1, 0x01, /* COLLECTION (Application) */ + 0x05, 0x07, /* USAGE_PAGE (Keyboard) */ + 0x19, 0xe0, /* USAGE_MINIMUM (Keyboard LeftControl) */ + 0x29, 0xe7, /* USAGE_MAXIMUM (Keyboard Right GUI) */ + 0x15, 0x00, /* LOGICAL_MINIMUM (0) */ + 0x25, 0x01, /* LOGICAL_MAXIMUM (1) */ + 0x75, 0x01, /* REPORT_SIZE (1) */ + 0x95, 0x08, /* REPORT_COUNT (8) */ + 0x81, 0x02, /* INPUT (Data,Var,Abs) */ + 0x95, 0x01, /* REPORT_COUNT (1) */ + 0x75, 0x08, /* REPORT_SIZE (8) */ + 0x81, 0x03, /* INPUT (Cnst,Var,Abs) */ + 0x95, 0x05, /* REPORT_COUNT (5) */ + 0x75, 0x01, /* REPORT_SIZE (1) */ + 0x05, 0x08, /* USAGE_PAGE (LEDs) */ + 0x19, 0x01, /* USAGE_MINIMUM (Num Lock) */ + 0x29, 0x05, /* USAGE_MAXIMUM (Kana) */ + 0x91, 0x02, /* OUTPUT (Data,Var,Abs) */ + 0x95, 0x01, /* REPORT_COUNT (1) */ + 0x75, 0x03, /* REPORT_SIZE (3) */ + 0x91, 0x03, /* OUTPUT (Cnst,Var,Abs) */ + 0x95, 0x06, /* REPORT_COUNT (6) */ + 0x75, 0x08, /* REPORT_SIZE (8) */ + 0x15, 0x00, /* LOGICAL_MINIMUM (0) */ + 0x25, 0x65, /* LOGICAL_MAXIMUM (101) */ + 0x05, 0x07, /* USAGE_PAGE (Keyboard) */ + 0x19, 0x00, /* USAGE_MINIMUM (Reserved) */ + 0x29, 0x65, /* USAGE_MAXIMUM (Keyboard Application) */ + 0x81, 0x00, /* INPUT (Data,Ary,Abs) */ + 0xc0 /* END_COLLECTION */ + } +}; + +static struct platform_device my_hid = { + .name = "hidg", + .id = 0, + .num_resources = 0, + .resource = 0, + .dev.platform_data = &my_hid_data, +}; + + You can add as many HID functions as you want, only limited by + the amount of interrupt endpoints your gadget driver supports. + +Configuration with configfs + + Instead of adding fake platform devices and drivers in order to pass + some data to the kernel, if HID is a part of a gadget composed with + configfs the hidg_func_descriptor.report_desc is passed to the kernel + by writing the appropriate stream of bytes to a configfs attribute. + +Send and receive HID reports + + HID reports can be sent/received using read/write on the + /dev/hidgX character devices. See below for an example program + to do this. + + hid_gadget_test is a small interactive program to test the HID + gadget driver. To use, point it at a hidg device and set the + device type (keyboard / mouse / joystick) - E.G.: + + # hid_gadget_test /dev/hidg0 keyboard + + You are now in the prompt of hid_gadget_test. You can type any + combination of options and values. Available options and + values are listed at program start. In keyboard mode you can + send up to six values. + + For example type: g i s t r --left-shift + + Hit return and the corresponding report will be sent by the + HID gadget. + + Another interesting example is the caps lock test. Type + --caps-lock and hit return. A report is then sent by the + gadget and you should receive the host answer, corresponding + to the caps lock LED status. + + --caps-lock + recv report:2 + + With this command: + + # hid_gadget_test /dev/hidg1 mouse + + You can test the mouse emulation. Values are two signed numbers. + + +Sample code + +/* hid_gadget_test */ + +#include <pthread.h> +#include <string.h> +#include <stdio.h> +#include <ctype.h> +#include <fcntl.h> +#include <errno.h> +#include <stdio.h> +#include <stdlib.h> +#include <unistd.h> + +#define BUF_LEN 512 + +struct options { + const char *opt; + unsigned char val; +}; + +static struct options kmod[] = { + {.opt = "--left-ctrl", .val = 0x01}, + {.opt = "--right-ctrl", .val = 0x10}, + {.opt = "--left-shift", .val = 0x02}, + {.opt = "--right-shift", .val = 0x20}, + {.opt = "--left-alt", .val = 0x04}, + {.opt = "--right-alt", .val = 0x40}, + {.opt = "--left-meta", .val = 0x08}, + {.opt = "--right-meta", .val = 0x80}, + {.opt = NULL} +}; + +static struct options kval[] = { + {.opt = "--return", .val = 0x28}, + {.opt = "--esc", .val = 0x29}, + {.opt = "--bckspc", .val = 0x2a}, + {.opt = "--tab", .val = 0x2b}, + {.opt = "--spacebar", .val = 0x2c}, + {.opt = "--caps-lock", .val = 0x39}, + {.opt = "--f1", .val = 0x3a}, + {.opt = "--f2", .val = 0x3b}, + {.opt = "--f3", .val = 0x3c}, + {.opt = "--f4", .val = 0x3d}, + {.opt = "--f5", .val = 0x3e}, + {.opt = "--f6", .val = 0x3f}, + {.opt = "--f7", .val = 0x40}, + {.opt = "--f8", .val = 0x41}, + {.opt = "--f9", .val = 0x42}, + {.opt = "--f10", .val = 0x43}, + {.opt = "--f11", .val = 0x44}, + {.opt = "--f12", .val = 0x45}, + {.opt = "--insert", .val = 0x49}, + {.opt = "--home", .val = 0x4a}, + {.opt = "--pageup", .val = 0x4b}, + {.opt = "--del", .val = 0x4c}, + {.opt = "--end", .val = 0x4d}, + {.opt = "--pagedown", .val = 0x4e}, + {.opt = "--right", .val = 0x4f}, + {.opt = "--left", .val = 0x50}, + {.opt = "--down", .val = 0x51}, + {.opt = "--kp-enter", .val = 0x58}, + {.opt = "--up", .val = 0x52}, + {.opt = "--num-lock", .val = 0x53}, + {.opt = NULL} +}; + +int keyboard_fill_report(char report[8], char buf[BUF_LEN], int *hold) +{ + char *tok = strtok(buf, " "); + int key = 0; + int i = 0; + + for (; tok != NULL; tok = strtok(NULL, " ")) { + + if (strcmp(tok, "--quit") == 0) + return -1; + + if (strcmp(tok, "--hold") == 0) { + *hold = 1; + continue; + } + + if (key < 6) { + for (i = 0; kval[i].opt != NULL; i++) + if (strcmp(tok, kval[i].opt) == 0) { + report[2 + key++] = kval[i].val; + break; + } + if (kval[i].opt != NULL) + continue; + } + + if (key < 6) + if (islower(tok[0])) { + report[2 + key++] = (tok[0] - ('a' - 0x04)); + continue; + } + + for (i = 0; kmod[i].opt != NULL; i++) + if (strcmp(tok, kmod[i].opt) == 0) { + report[0] = report[0] | kmod[i].val; + break; + } + if (kmod[i].opt != NULL) + continue; + + if (key < 6) + fprintf(stderr, "unknown option: %s\n", tok); + } + return 8; +} + +static struct options mmod[] = { + {.opt = "--b1", .val = 0x01}, + {.opt = "--b2", .val = 0x02}, + {.opt = "--b3", .val = 0x04}, + {.opt = NULL} +}; + +int mouse_fill_report(char report[8], char buf[BUF_LEN], int *hold) +{ + char *tok = strtok(buf, " "); + int mvt = 0; + int i = 0; + for (; tok != NULL; tok = strtok(NULL, " ")) { + + if (strcmp(tok, "--quit") == 0) + return -1; + + if (strcmp(tok, "--hold") == 0) { + *hold = 1; + continue; + } + + for (i = 0; mmod[i].opt != NULL; i++) + if (strcmp(tok, mmod[i].opt) == 0) { + report[0] = report[0] | mmod[i].val; + break; + } + if (mmod[i].opt != NULL) + continue; + + if (!(tok[0] == '-' && tok[1] == '-') && mvt < 2) { + errno = 0; + report[1 + mvt++] = (char)strtol(tok, NULL, 0); + if (errno != 0) { + fprintf(stderr, "Bad value:'%s'\n", tok); + report[1 + mvt--] = 0; + } + continue; + } + + fprintf(stderr, "unknown option: %s\n", tok); + } + return 3; +} + +static struct options jmod[] = { + {.opt = "--b1", .val = 0x10}, + {.opt = "--b2", .val = 0x20}, + {.opt = "--b3", .val = 0x40}, + {.opt = "--b4", .val = 0x80}, + {.opt = "--hat1", .val = 0x00}, + {.opt = "--hat2", .val = 0x01}, + {.opt = "--hat3", .val = 0x02}, + {.opt = "--hat4", .val = 0x03}, + {.opt = "--hatneutral", .val = 0x04}, + {.opt = NULL} +}; + +int joystick_fill_report(char report[8], char buf[BUF_LEN], int *hold) +{ + char *tok = strtok(buf, " "); + int mvt = 0; + int i = 0; + + *hold = 1; + + /* set default hat position: neutral */ + report[3] = 0x04; + + for (; tok != NULL; tok = strtok(NULL, " ")) { + + if (strcmp(tok, "--quit") == 0) + return -1; + + for (i = 0; jmod[i].opt != NULL; i++) + if (strcmp(tok, jmod[i].opt) == 0) { + report[3] = (report[3] & 0xF0) | jmod[i].val; + break; + } + if (jmod[i].opt != NULL) + continue; + + if (!(tok[0] == '-' && tok[1] == '-') && mvt < 3) { + errno = 0; + report[mvt++] = (char)strtol(tok, NULL, 0); + if (errno != 0) { + fprintf(stderr, "Bad value:'%s'\n", tok); + report[mvt--] = 0; + } + continue; + } + + fprintf(stderr, "unknown option: %s\n", tok); + } + return 4; +} + +void print_options(char c) +{ + int i = 0; + + if (c == 'k') { + printf(" keyboard options:\n" + " --hold\n"); + for (i = 0; kmod[i].opt != NULL; i++) + printf("\t\t%s\n", kmod[i].opt); + printf("\n keyboard values:\n" + " [a-z] or\n"); + for (i = 0; kval[i].opt != NULL; i++) + printf("\t\t%-8s%s", kval[i].opt, i % 2 ? "\n" : ""); + printf("\n"); + } else if (c == 'm') { + printf(" mouse options:\n" + " --hold\n"); + for (i = 0; mmod[i].opt != NULL; i++) + printf("\t\t%s\n", mmod[i].opt); + printf("\n mouse values:\n" + " Two signed numbers\n" + "--quit to close\n"); + } else { + printf(" joystick options:\n"); + for (i = 0; jmod[i].opt != NULL; i++) + printf("\t\t%s\n", jmod[i].opt); + printf("\n joystick values:\n" + " three signed numbers\n" + "--quit to close\n"); + } +} + +int main(int argc, const char *argv[]) +{ + const char *filename = NULL; + int fd = 0; + char buf[BUF_LEN]; + int cmd_len; + char report[8]; + int to_send = 8; + int hold = 0; + fd_set rfds; + int retval, i; + + if (argc < 3) { + fprintf(stderr, "Usage: %s devname mouse|keyboard|joystick\n", + argv[0]); + return 1; + } + + if (argv[2][0] != 'k' && argv[2][0] != 'm' && argv[2][0] != 'j') + return 2; + + filename = argv[1]; + + if ((fd = open(filename, O_RDWR, 0666)) == -1) { + perror(filename); + return 3; + } + + print_options(argv[2][0]); + + while (42) { + + FD_ZERO(&rfds); + FD_SET(STDIN_FILENO, &rfds); + FD_SET(fd, &rfds); + + retval = select(fd + 1, &rfds, NULL, NULL, NULL); + if (retval == -1 && errno == EINTR) + continue; + if (retval < 0) { + perror("select()"); + return 4; + } + + if (FD_ISSET(fd, &rfds)) { + cmd_len = read(fd, buf, BUF_LEN - 1); + printf("recv report:"); + for (i = 0; i < cmd_len; i++) + printf(" %02x", buf[i]); + printf("\n"); + } + + if (FD_ISSET(STDIN_FILENO, &rfds)) { + memset(report, 0x0, sizeof(report)); + cmd_len = read(STDIN_FILENO, buf, BUF_LEN - 1); + + if (cmd_len == 0) + break; + + buf[cmd_len - 1] = '\0'; + hold = 0; + + memset(report, 0x0, sizeof(report)); + if (argv[2][0] == 'k') + to_send = keyboard_fill_report(report, buf, &hold); + else if (argv[2][0] == 'm') + to_send = mouse_fill_report(report, buf, &hold); + else + to_send = joystick_fill_report(report, buf, &hold); + + if (to_send == -1) + break; + + if (write(fd, report, to_send) != to_send) { + perror(filename); + return 5; + } + if (!hold) { + memset(report, 0x0, sizeof(report)); + if (write(fd, report, to_send) != to_send) { + perror(filename); + return 6; + } + } + } + } + + close(fd); + return 0; +} diff --git a/Documentation/usb/gadget_multi.txt b/Documentation/usb/gadget_multi.txt new file mode 100644 index 000000000..b3146dd7a --- /dev/null +++ b/Documentation/usb/gadget_multi.txt @@ -0,0 +1,150 @@ + -*- org -*- + +* Overview + +The Multifunction Composite Gadget (or g_multi) is a composite gadget +that makes extensive use of the composite framework to provide +a... multifunction gadget. + +In it's standard configuration it provides a single USB configuration +with RNDIS[1] (that is Ethernet), USB CDC[2] ACM (that is serial) and +USB Mass Storage functions. + +A CDC ECM (Ethernet) function may be turned on via a Kconfig option +and RNDIS can be turned off. If they are both enabled the gadget will +have two configurations -- one with RNDIS and another with CDC ECM[3]. + +Please note that if you use non-standard configuration (that is enable +CDC ECM) you may need to change vendor and/or product ID. + +* Host drivers + +To make use of the gadget one needs to make it work on host side -- +without that there's no hope of achieving anything with the gadget. +As one might expect, things one need to do very from system to system. + +** Linux host drivers + +Since the gadget uses standard composite framework and appears as such +to Linux host it does not need any additional drivers on Linux host +side. All the functions are handled by respective drivers developed +for them. + +This is also true for two configuration set-up with RNDIS +configuration being the first one. Linux host will use the second +configuration with CDC ECM which should work better under Linux. + +** Windows host drivers + +For the gadget to work under Windows two conditions have to be met: + +*** Detecting as composite gadget + +First of all, Windows need to detect the gadget as an USB composite +gadget which on its own have some conditions[4]. If they are met, +Windows lets USB Generic Parent Driver[5] handle the device which then +tries to match drivers for each individual interface (sort of, don't +get into too many details). + +The good news is: you do not have to worry about most of the +conditions! + +The only thing to worry is that the gadget has to have a single +configuration so a dual RNDIS and CDC ECM gadget won't work unless you +create a proper INF -- and of course, if you do submit it! + +*** Installing drivers for each function + +The other, trickier thing is making Windows install drivers for each +individual function. + +For mass storage it is trivial since Windows detect it's an interface +implementing USB Mass Storage class and selects appropriate driver. + +Things are harder with RDNIS and CDC ACM. + +**** RNDIS + +To make Windows select RNDIS drivers for the first function in the +gadget, one needs to use the [[file:linux.inf]] file provided with this +document. It "attaches" Window's RNDIS driver to the first interface +of the gadget. + +Please note, that while testing we encountered some issues[6] when +RNDIS was not the first interface. You do not need to worry abut it +unless you are trying to develop your own gadget in which case watch +out for this bug. + +**** CDC ACM + +Similarly, [[file:linux-cdc-acm.inf]] is provided for CDC ACM. + +**** Customising the gadget + +If you intend to hack the g_multi gadget be advised that rearranging +functions will obviously change interface numbers for each of the +functionality. As an effect provided INFs won't work since they have +interface numbers hard-coded in them (it's not hard to change those +though[7]). + +This also means, that after experimenting with g_multi and changing +provided functions one should change gadget's vendor and/or product ID +so there will be no collision with other customised gadgets or the +original gadget. + +Failing to comply may cause brain damage after wondering for hours why +things don't work as intended before realising Windows have cached +some drivers information (changing USB port may sometimes help plus +you might try using USBDeview[8] to remove the phantom device). + +**** INF testing + +Provided INF files have been tested on Windows XP SP3, Windows Vista +and Windows 7, all 32-bit versions. It should work on 64-bit versions +as well. It most likely won't work on Windows prior to Windows XP +SP2. + +** Other systems + +At this moment, drivers for any other systems have not been tested. +Knowing how MacOS is based on BSD and BSD is an Open Source it is +believed that it should (read: "I have no idea whether it will") work +out-of-the-box. + +For more exotic systems I have even less to say... + +Any testing and drivers *are* *welcome*! + +* Authors + +This document has been written by Michal Nazarewicz +([[mailto:mina86@mina86.com]]). INF files have been hacked with +support of Marek Szyprowski ([[mailto:m.szyprowski@samsung.com]]) and +Xiaofan Chen ([[mailto:xiaofanc@gmail.com]]) basing on the MS RNDIS +template[9], Microchip's CDC ACM INF file and David Brownell's +([[mailto:dbrownell@users.sourceforge.net]]) original INF files. + +* Footnotes + +[1] Remote Network Driver Interface Specification, +[[http://msdn.microsoft.com/en-us/library/ee484414.aspx]]. + +[2] Communications Device Class Abstract Control Model, spec for this +and other USB classes can be found at +[[http://www.usb.org/developers/devclass_docs/]]. + +[3] CDC Ethernet Control Model. + +[4] [[http://msdn.microsoft.com/en-us/library/ff537109(v=VS.85).aspx]] + +[5] [[http://msdn.microsoft.com/en-us/library/ff539234(v=VS.85).aspx]] + +[6] To put it in some other nice words, Windows failed to respond to +any user input. + +[7] You may find [[http://www.cygnal.org/ubb/Forum9/HTML/001050.html]] +useful. + +[8] http://www.nirsoft.net/utils/usb_devices_view.html + +[9] [[http://msdn.microsoft.com/en-us/library/ff570620.aspx]] diff --git a/Documentation/usb/gadget_printer.txt b/Documentation/usb/gadget_printer.txt new file mode 100644 index 000000000..ad995bf0d --- /dev/null +++ b/Documentation/usb/gadget_printer.txt @@ -0,0 +1,510 @@ + + Linux USB Printer Gadget Driver + 06/04/2007 + + Copyright (C) 2007 Craig W. Nadler <craig@nadler.us> + + + +GENERAL +======= + +This driver may be used if you are writing printer firmware using Linux as +the embedded OS. This driver has nothing to do with using a printer with +your Linux host system. + +You will need a USB device controller and a Linux driver for it that accepts +a gadget / "device class" driver using the Linux USB Gadget API. After the +USB device controller driver is loaded then load the printer gadget driver. +This will present a printer interface to the USB Host that your USB Device +port is connected to. + +This driver is structured for printer firmware that runs in user mode. The +user mode printer firmware will read and write data from the kernel mode +printer gadget driver using a device file. The printer returns a printer status +byte when the USB HOST sends a device request to get the printer status. The +user space firmware can read or write this status byte using a device file +/dev/g_printer . Both blocking and non-blocking read/write calls are supported. + + + + +HOWTO USE THIS DRIVER +===================== + +To load the USB device controller driver and the printer gadget driver. The +following example uses the Netchip 2280 USB device controller driver: + +modprobe net2280 +modprobe g_printer + + +The follow command line parameter can be used when loading the printer gadget +(ex: modprobe g_printer idVendor=0x0525 idProduct=0xa4a8 ): + +idVendor - This is the Vendor ID used in the device descriptor. The default is + the Netchip vendor id 0x0525. YOU MUST CHANGE TO YOUR OWN VENDOR ID + BEFORE RELEASING A PRODUCT. If you plan to release a product and don't + already have a Vendor ID please see www.usb.org for details on how to + get one. + +idProduct - This is the Product ID used in the device descriptor. The default + is 0xa4a8, you should change this to an ID that's not used by any of + your other USB products if you have any. It would be a good idea to + start numbering your products starting with say 0x0001. + +bcdDevice - This is the version number of your product. It would be a good idea + to put your firmware version here. + +iManufacturer - A string containing the name of the Vendor. + +iProduct - A string containing the Product Name. + +iSerialNum - A string containing the Serial Number. This should be changed for + each unit of your product. + +iPNPstring - The PNP ID string used for this printer. You will want to set + either on the command line or hard code the PNP ID string used for + your printer product. + +qlen - The number of 8k buffers to use per endpoint. The default is 10, you + should tune this for your product. You may also want to tune the + size of each buffer for your product. + + + + +USING THE EXAMPLE CODE +====================== + +This example code talks to stdout, instead of a print engine. + +To compile the test code below: + +1) save it to a file called prn_example.c +2) compile the code with the follow command: + gcc prn_example.c -o prn_example + + + +To read printer data from the host to stdout: + + # prn_example -read_data + + +To write printer data from a file (data_file) to the host: + + # cat data_file | prn_example -write_data + + +To get the current printer status for the gadget driver: + + # prn_example -get_status + + Printer status is: + Printer is NOT Selected + Paper is Out + Printer OK + + +To set printer to Selected/On-line: + + # prn_example -selected + + +To set printer to Not Selected/Off-line: + + # prn_example -not_selected + + +To set paper status to paper out: + + # prn_example -paper_out + + +To set paper status to paper loaded: + + # prn_example -paper_loaded + + +To set error status to printer OK: + + # prn_example -no_error + + +To set error status to ERROR: + + # prn_example -error + + + + +EXAMPLE CODE +============ + + +#include <stdio.h> +#include <stdlib.h> +#include <fcntl.h> +#include <linux/poll.h> +#include <sys/ioctl.h> +#include <linux/usb/g_printer.h> + +#define PRINTER_FILE "/dev/g_printer" +#define BUF_SIZE 512 + + +/* + * 'usage()' - Show program usage. + */ + +static void +usage(const char *option) /* I - Option string or NULL */ +{ + if (option) { + fprintf(stderr,"prn_example: Unknown option \"%s\"!\n", + option); + } + + fputs("\n", stderr); + fputs("Usage: prn_example -[options]\n", stderr); + fputs("Options:\n", stderr); + fputs("\n", stderr); + fputs("-get_status Get the current printer status.\n", stderr); + fputs("-selected Set the selected status to selected.\n", stderr); + fputs("-not_selected Set the selected status to NOT selected.\n", + stderr); + fputs("-error Set the error status to error.\n", stderr); + fputs("-no_error Set the error status to NO error.\n", stderr); + fputs("-paper_out Set the paper status to paper out.\n", stderr); + fputs("-paper_loaded Set the paper status to paper loaded.\n", + stderr); + fputs("-read_data Read printer data from driver.\n", stderr); + fputs("-write_data Write printer sata to driver.\n", stderr); + fputs("-NB_read_data (Non-Blocking) Read printer data from driver.\n", + stderr); + fputs("\n\n", stderr); + + exit(1); +} + + +static int +read_printer_data() +{ + struct pollfd fd[1]; + + /* Open device file for printer gadget. */ + fd[0].fd = open(PRINTER_FILE, O_RDWR); + if (fd[0].fd < 0) { + printf("Error %d opening %s\n", fd[0].fd, PRINTER_FILE); + close(fd[0].fd); + return(-1); + } + + fd[0].events = POLLIN | POLLRDNORM; + + while (1) { + static char buf[BUF_SIZE]; + int bytes_read; + int retval; + + /* Wait for up to 1 second for data. */ + retval = poll(fd, 1, 1000); + + if (retval && (fd[0].revents & POLLRDNORM)) { + + /* Read data from printer gadget driver. */ + bytes_read = read(fd[0].fd, buf, BUF_SIZE); + + if (bytes_read < 0) { + printf("Error %d reading from %s\n", + fd[0].fd, PRINTER_FILE); + close(fd[0].fd); + return(-1); + } else if (bytes_read > 0) { + /* Write data to standard OUTPUT (stdout). */ + fwrite(buf, 1, bytes_read, stdout); + fflush(stdout); + } + + } + + } + + /* Close the device file. */ + close(fd[0].fd); + + return 0; +} + + +static int +write_printer_data() +{ + struct pollfd fd[1]; + + /* Open device file for printer gadget. */ + fd[0].fd = open (PRINTER_FILE, O_RDWR); + if (fd[0].fd < 0) { + printf("Error %d opening %s\n", fd[0].fd, PRINTER_FILE); + close(fd[0].fd); + return(-1); + } + + fd[0].events = POLLOUT | POLLWRNORM; + + while (1) { + int retval; + static char buf[BUF_SIZE]; + /* Read data from standard INPUT (stdin). */ + int bytes_read = fread(buf, 1, BUF_SIZE, stdin); + + if (!bytes_read) { + break; + } + + while (bytes_read) { + + /* Wait for up to 1 second to sent data. */ + retval = poll(fd, 1, 1000); + + /* Write data to printer gadget driver. */ + if (retval && (fd[0].revents & POLLWRNORM)) { + retval = write(fd[0].fd, buf, bytes_read); + if (retval < 0) { + printf("Error %d writing to %s\n", + fd[0].fd, + PRINTER_FILE); + close(fd[0].fd); + return(-1); + } else { + bytes_read -= retval; + } + + } + + } + + } + + /* Wait until the data has been sent. */ + fsync(fd[0].fd); + + /* Close the device file. */ + close(fd[0].fd); + + return 0; +} + + +static int +read_NB_printer_data() +{ + int fd; + static char buf[BUF_SIZE]; + int bytes_read; + + /* Open device file for printer gadget. */ + fd = open(PRINTER_FILE, O_RDWR|O_NONBLOCK); + if (fd < 0) { + printf("Error %d opening %s\n", fd, PRINTER_FILE); + close(fd); + return(-1); + } + + while (1) { + /* Read data from printer gadget driver. */ + bytes_read = read(fd, buf, BUF_SIZE); + if (bytes_read <= 0) { + break; + } + + /* Write data to standard OUTPUT (stdout). */ + fwrite(buf, 1, bytes_read, stdout); + fflush(stdout); + } + + /* Close the device file. */ + close(fd); + + return 0; +} + + +static int +get_printer_status() +{ + int retval; + int fd; + + /* Open device file for printer gadget. */ + fd = open(PRINTER_FILE, O_RDWR); + if (fd < 0) { + printf("Error %d opening %s\n", fd, PRINTER_FILE); + close(fd); + return(-1); + } + + /* Make the IOCTL call. */ + retval = ioctl(fd, GADGET_GET_PRINTER_STATUS); + if (retval < 0) { + fprintf(stderr, "ERROR: Failed to set printer status\n"); + return(-1); + } + + /* Close the device file. */ + close(fd); + + return(retval); +} + + +static int +set_printer_status(unsigned char buf, int clear_printer_status_bit) +{ + int retval; + int fd; + + retval = get_printer_status(); + if (retval < 0) { + fprintf(stderr, "ERROR: Failed to get printer status\n"); + return(-1); + } + + /* Open device file for printer gadget. */ + fd = open(PRINTER_FILE, O_RDWR); + + if (fd < 0) { + printf("Error %d opening %s\n", fd, PRINTER_FILE); + close(fd); + return(-1); + } + + if (clear_printer_status_bit) { + retval &= ~buf; + } else { + retval |= buf; + } + + /* Make the IOCTL call. */ + if (ioctl(fd, GADGET_SET_PRINTER_STATUS, (unsigned char)retval)) { + fprintf(stderr, "ERROR: Failed to set printer status\n"); + return(-1); + } + + /* Close the device file. */ + close(fd); + + return 0; +} + + +static int +display_printer_status() +{ + char printer_status; + + printer_status = get_printer_status(); + if (printer_status < 0) { + fprintf(stderr, "ERROR: Failed to get printer status\n"); + return(-1); + } + + printf("Printer status is:\n"); + if (printer_status & PRINTER_SELECTED) { + printf(" Printer is Selected\n"); + } else { + printf(" Printer is NOT Selected\n"); + } + if (printer_status & PRINTER_PAPER_EMPTY) { + printf(" Paper is Out\n"); + } else { + printf(" Paper is Loaded\n"); + } + if (printer_status & PRINTER_NOT_ERROR) { + printf(" Printer OK\n"); + } else { + printf(" Printer ERROR\n"); + } + + return(0); +} + + +int +main(int argc, char *argv[]) +{ + int i; /* Looping var */ + int retval = 0; + + /* No Args */ + if (argc == 1) { + usage(0); + exit(0); + } + + for (i = 1; i < argc && !retval; i ++) { + + if (argv[i][0] != '-') { + continue; + } + + if (!strcmp(argv[i], "-get_status")) { + if (display_printer_status()) { + retval = 1; + } + + } else if (!strcmp(argv[i], "-paper_loaded")) { + if (set_printer_status(PRINTER_PAPER_EMPTY, 1)) { + retval = 1; + } + + } else if (!strcmp(argv[i], "-paper_out")) { + if (set_printer_status(PRINTER_PAPER_EMPTY, 0)) { + retval = 1; + } + + } else if (!strcmp(argv[i], "-selected")) { + if (set_printer_status(PRINTER_SELECTED, 0)) { + retval = 1; + } + + } else if (!strcmp(argv[i], "-not_selected")) { + if (set_printer_status(PRINTER_SELECTED, 1)) { + retval = 1; + } + + } else if (!strcmp(argv[i], "-error")) { + if (set_printer_status(PRINTER_NOT_ERROR, 1)) { + retval = 1; + } + + } else if (!strcmp(argv[i], "-no_error")) { + if (set_printer_status(PRINTER_NOT_ERROR, 0)) { + retval = 1; + } + + } else if (!strcmp(argv[i], "-read_data")) { + if (read_printer_data()) { + retval = 1; + } + + } else if (!strcmp(argv[i], "-write_data")) { + if (write_printer_data()) { + retval = 1; + } + + } else if (!strcmp(argv[i], "-NB_read_data")) { + if (read_NB_printer_data()) { + retval = 1; + } + + } else { + usage(argv[i]); + retval = 1; + } + } + + exit(retval); +} diff --git a/Documentation/usb/gadget_serial.txt b/Documentation/usb/gadget_serial.txt new file mode 100644 index 000000000..d1def3186 --- /dev/null +++ b/Documentation/usb/gadget_serial.txt @@ -0,0 +1,286 @@ + + Linux Gadget Serial Driver v2.0 + 11/20/2004 + (updated 8-May-2008 for v2.3) + + +License and Disclaimer +---------------------- +This program is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public License as +published by the Free Software Foundation; either version 2 of +the License, or (at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public +License along with this program; if not, write to the Free +Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, +MA 02111-1307 USA. + +This document and the gadget serial driver itself are +Copyright (C) 2004 by Al Borchers (alborchers@steinerpoint.com). + +If you have questions, problems, or suggestions for this driver +please contact Al Borchers at alborchers@steinerpoint.com. + + +Prerequisites +------------- +Versions of the gadget serial driver are available for the +2.4 Linux kernels, but this document assumes you are using +version 2.3 or later of the gadget serial driver in a 2.6 +Linux kernel. + +This document assumes that you are familiar with Linux and +Windows and know how to configure and build Linux kernels, run +standard utilities, use minicom and HyperTerminal, and work with +USB and serial devices. It also assumes you configure the Linux +gadget and usb drivers as modules. + +With version 2.3 of the driver, major and minor device nodes are +no longer statically defined. Your Linux based system should mount +sysfs in /sys, and use "mdev" (in Busybox) or "udev" to make the +/dev nodes matching the sysfs /sys/class/tty files. + + + +Overview +-------- +The gadget serial driver is a Linux USB gadget driver, a USB device +side driver. It runs on a Linux system that has USB device side +hardware; for example, a PDA, an embedded Linux system, or a PC +with a USB development card. + +The gadget serial driver talks over USB to either a CDC ACM driver +or a generic USB serial driver running on a host PC. + + Host + -------------------------------------- + | Host-Side CDC ACM USB Host | + | Operating | or | Controller | USB + | System | Generic USB | Driver |-------- + | (Linux or | Serial | and | | + | Windows) Driver USB Stack | | + -------------------------------------- | + | + | + | + Gadget | + -------------------------------------- | + | Gadget USB Periph. | | + | Device-Side | Gadget | Controller | | + | Linux | Serial | Driver |-------- + | Operating | Driver | and | + | System USB Stack | + -------------------------------------- + +On the device-side Linux system, the gadget serial driver looks +like a serial device. + +On the host-side system, the gadget serial device looks like a +CDC ACM compliant class device or a simple vendor specific device +with bulk in and bulk out endpoints, and it is treated similarly +to other serial devices. + +The host side driver can potentially be any ACM compliant driver +or any driver that can talk to a device with a simple bulk in/out +interface. Gadget serial has been tested with the Linux ACM driver, +the Windows usbser.sys ACM driver, and the Linux USB generic serial +driver. + +With the gadget serial driver and the host side ACM or generic +serial driver running, you should be able to communicate between +the host and the gadget side systems as if they were connected by a +serial cable. + +The gadget serial driver only provides simple unreliable data +communication. It does not yet handle flow control or many other +features of normal serial devices. + + +Installing the Gadget Serial Driver +----------------------------------- +To use the gadget serial driver you must configure the Linux gadget +side kernel for "Support for USB Gadgets", for a "USB Peripheral +Controller" (for example, net2280), and for the "Serial Gadget" +driver. All this are listed under "USB Gadget Support" when +configuring the kernel. Then rebuild and install the kernel or +modules. + +Then you must load the gadget serial driver. To load it as an +ACM device (recommended for interoperability), do this: + + modprobe g_serial + +To load it as a vendor specific bulk in/out device, do this: + + modprobe g_serial use_acm=0 + +This will also automatically load the underlying gadget peripheral +controller driver. This must be done each time you reboot the gadget +side Linux system. You can add this to the start up scripts, if +desired. + +Your system should use mdev (from busybox) or udev to make the +device nodes. After this gadget driver has been set up you should +then see a /dev/ttyGS0 node: + + # ls -l /dev/ttyGS0 | cat + crw-rw---- 1 root root 253, 0 May 8 14:10 /dev/ttyGS0 + # + +Note that the major number (253, above) is system-specific. If +you need to create /dev nodes by hand, the right numbers to use +will be in the /sys/class/tty/ttyGS0/dev file. + +When you link this gadget driver early, perhaps even statically, +you may want to set up an /etc/inittab entry to run "getty" on it. +The /dev/ttyGS0 line should work like most any other serial port. + + +If gadget serial is loaded as an ACM device you will want to use +either the Windows or Linux ACM driver on the host side. If gadget +serial is loaded as a bulk in/out device, you will want to use the +Linux generic serial driver on the host side. Follow the appropriate +instructions below to install the host side driver. + + +Installing the Windows Host ACM Driver +-------------------------------------- +To use the Windows ACM driver you must have the "linux-cdc-acm.inf" +file (provided along this document) which supports all recent versions +of Windows. + +When the gadget serial driver is loaded and the USB device connected +to the Windows host with a USB cable, Windows should recognize the +gadget serial device and ask for a driver. Tell Windows to find the +driver in the folder that contains the "linux-cdc-acm.inf" file. + +For example, on Windows XP, when the gadget serial device is first +plugged in, the "Found New Hardware Wizard" starts up. Select +"Install from a list or specific location (Advanced)", then on the +next screen select "Include this location in the search" and enter the +path or browse to the folder containing the "linux-cdc-acm.inf" file. +Windows will complain that the Gadget Serial driver has not passed +Windows Logo testing, but select "Continue anyway" and finish the +driver installation. + +On Windows XP, in the "Device Manager" (under "Control Panel", +"System", "Hardware") expand the "Ports (COM & LPT)" entry and you +should see "Gadget Serial" listed as the driver for one of the COM +ports. + +To uninstall the Windows XP driver for "Gadget Serial", right click +on the "Gadget Serial" entry in the "Device Manager" and select +"Uninstall". + + +Installing the Linux Host ACM Driver +------------------------------------ +To use the Linux ACM driver you must configure the Linux host side +kernel for "Support for Host-side USB" and for "USB Modem (CDC ACM) +support". + +Once the gadget serial driver is loaded and the USB device connected +to the Linux host with a USB cable, the host system should recognize +the gadget serial device. For example, the command + + cat /sys/kernel/debug/usb/devices + +should show something like this: + +T: Bus=01 Lev=01 Prnt=01 Port=01 Cnt=02 Dev#= 5 Spd=480 MxCh= 0 +D: Ver= 2.00 Cls=02(comm.) Sub=00 Prot=00 MxPS=64 #Cfgs= 1 +P: Vendor=0525 ProdID=a4a7 Rev= 2.01 +S: Manufacturer=Linux 2.6.8.1 with net2280 +S: Product=Gadget Serial +S: SerialNumber=0 +C:* #Ifs= 2 Cfg#= 2 Atr=c0 MxPwr= 2mA +I: If#= 0 Alt= 0 #EPs= 1 Cls=02(comm.) Sub=02 Prot=01 Driver=acm +E: Ad=83(I) Atr=03(Int.) MxPS= 8 Ivl=32ms +I: If#= 1 Alt= 0 #EPs= 2 Cls=0a(data ) Sub=00 Prot=00 Driver=acm +E: Ad=81(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms +E: Ad=02(O) Atr=02(Bulk) MxPS= 512 Ivl=0ms + +If the host side Linux system is configured properly, the ACM driver +should be loaded automatically. The command "lsmod" should show the +"acm" module is loaded. + + +Installing the Linux Host Generic USB Serial Driver +--------------------------------------------------- +To use the Linux generic USB serial driver you must configure the +Linux host side kernel for "Support for Host-side USB", for "USB +Serial Converter support", and for the "USB Generic Serial Driver". + +Once the gadget serial driver is loaded and the USB device connected +to the Linux host with a USB cable, the host system should recognize +the gadget serial device. For example, the command + + cat /sys/kernel/debug/usb/devices + +should show something like this: + +T: Bus=01 Lev=01 Prnt=01 Port=01 Cnt=02 Dev#= 6 Spd=480 MxCh= 0 +D: Ver= 2.00 Cls=ff(vend.) Sub=00 Prot=00 MxPS=64 #Cfgs= 1 +P: Vendor=0525 ProdID=a4a6 Rev= 2.01 +S: Manufacturer=Linux 2.6.8.1 with net2280 +S: Product=Gadget Serial +S: SerialNumber=0 +C:* #Ifs= 1 Cfg#= 1 Atr=c0 MxPwr= 2mA +I: If#= 0 Alt= 0 #EPs= 2 Cls=0a(data ) Sub=00 Prot=00 Driver=serial +E: Ad=81(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms +E: Ad=02(O) Atr=02(Bulk) MxPS= 512 Ivl=0ms + +You must load the usbserial driver and explicitly set its parameters +to configure it to recognize the gadget serial device, like this: + + echo 0x0525 0xA4A6 >/sys/bus/usb-serial/drivers/generic/new_id + +The legacy way is to use module parameters: + + modprobe usbserial vendor=0x0525 product=0xA4A6 + +If everything is working, usbserial will print a message in the +system log saying something like "Gadget Serial converter now +attached to ttyUSB0". + + +Testing with Minicom or HyperTerminal +------------------------------------- +Once the gadget serial driver and the host driver are both installed, +and a USB cable connects the gadget device to the host, you should +be able to communicate over USB between the gadget and host systems. +You can use minicom or HyperTerminal to try this out. + +On the gadget side run "minicom -s" to configure a new minicom +session. Under "Serial port setup" set "/dev/ttygserial" as the +"Serial Device". Set baud rate, data bits, parity, and stop bits, +to 9600, 8, none, and 1--these settings mostly do not matter. +Under "Modem and dialing" erase all the modem and dialing strings. + +On a Linux host running the ACM driver, configure minicom similarly +but use "/dev/ttyACM0" as the "Serial Device". (If you have other +ACM devices connected, change the device name appropriately.) + +On a Linux host running the USB generic serial driver, configure +minicom similarly, but use "/dev/ttyUSB0" as the "Serial Device". +(If you have other USB serial devices connected, change the device +name appropriately.) + +On a Windows host configure a new HyperTerminal session to use the +COM port assigned to Gadget Serial. The "Port Settings" will be +set automatically when HyperTerminal connects to the gadget serial +device, so you can leave them set to the default values--these +settings mostly do not matter. + +With minicom configured and running on the gadget side and with +minicom or HyperTerminal configured and running on the host side, +you should be able to send data back and forth between the gadget +side and host side systems. Anything you type on the terminal +window on the gadget side should appear in the terminal window on +the host side and vice versa. diff --git a/Documentation/usb/iuu_phoenix.txt b/Documentation/usb/iuu_phoenix.txt new file mode 100644 index 000000000..e5f048067 --- /dev/null +++ b/Documentation/usb/iuu_phoenix.txt @@ -0,0 +1,84 @@ +Infinity Usb Unlimited Readme +----------------------------- + +Hi all, + + +This module provide a serial interface to use your +IUU unit in phoenix mode. Loading this module will +bring a ttyUSB[0-x] interface. This driver must be +used by your favorite application to pilot the IUU + +This driver is still in beta stage, so bugs can +occur and your system may freeze. As far I now, +I never had any problem with it, but I'm not a real +guru, so don't blame me if your system is unstable + +You can plug more than one IUU. Every unit will +have his own device file(/dev/ttyUSB0,/dev/ttyUSB1,...) + + + +How to tune the reader speed ? + + A few parameters can be used at load time + To use parameters, just unload the module if it is + already loaded and use modprobe iuu_phoenix param=value. + In case of prebuilt module, use the command + insmod iuu_phoenix param=value. + + Example: + + modprobe iuu_phoenix clockmode=3 + + The parameters are: + + parm: clockmode:1=3Mhz579,2=3Mhz680,3=6Mhz (int) + parm: boost:overclock boost percent 100 to 500 (int) + parm: cdmode:Card detect mode 0=none, 1=CD, 2=!CD, 3=DSR, 4=!DSR, 5=CTS, 6=!CTS, 7=RING, 8=!RING (int) + parm: xmas:xmas color enabled or not (bool) + parm: debug:Debug enabled or not (bool) + +- clockmode will provide 3 different base settings commonly adopted by + different software: + 1. 3Mhz579 + 2. 3Mhz680 + 3. 6Mhz + +- boost provide a way to overclock the reader ( my favorite :-) ) + For example to have best performance than a simple clockmode=3, try this: + + modprobe boost=195 + + This will put the reader in a base of 3Mhz579 but boosted a 195 % ! + the real clock will be now : 6979050 Hz ( 6Mhz979 ) and will increase + the speed to a score 10 to 20% better than the simple clockmode=3 !!! + + +- cdmode permit to setup the signal used to inform the userland ( ioctl answer ) + if the card is present or not. Eight signals are possible. + +- xmas is completely useless except for your eyes. This is one of my friend who was + so sad to have a nice device like the iuu without seeing all color range available. + So I have added this option to permit him to see a lot of color ( each activity change the color + and the frequency randomly ) + +- debug will produce a lot of debugging messages... + + + Last notes: + + Don't worry about the serial settings, the serial emulation + is an abstraction, so use any speed or parity setting will + work. ( This will not change anything ).Later I will perhaps + use this settings to deduce de boost but is that feature + really necessary ? + The autodetect feature used is the serial CD. If that doesn't + work for your software, disable detection mechanism in it. + + + Have fun ! + + Alain Degreffe + + eczema(at)ecze.com diff --git a/Documentation/usb/linux-cdc-acm.inf b/Documentation/usb/linux-cdc-acm.inf new file mode 100644 index 000000000..f0ffc27d4 --- /dev/null +++ b/Documentation/usb/linux-cdc-acm.inf @@ -0,0 +1,107 @@ +; Windows USB CDC ACM Setup File + +; Based on INF template which was: +; Copyright (c) 2000 Microsoft Corporation +; Copyright (c) 2007 Microchip Technology Inc. +; likely to be covered by the MLPL as found at: +; <http://msdn.microsoft.com/en-us/cc300389.aspx#MLPL>. +; For use only on Windows operating systems. + +[Version] +Signature="$Windows NT$" +Class=Ports +ClassGuid={4D36E978-E325-11CE-BFC1-08002BE10318} +Provider=%Linux% +DriverVer=11/15/2007,5.1.2600.0 + +[Manufacturer] +%Linux%=DeviceList, NTamd64 + +[DestinationDirs] +DefaultDestDir=12 + + +;------------------------------------------------------------------------------ +; Windows 2000/XP/Vista-32bit Sections +;------------------------------------------------------------------------------ + +[DriverInstall.nt] +include=mdmcpq.inf +CopyFiles=DriverCopyFiles.nt +AddReg=DriverInstall.nt.AddReg + +[DriverCopyFiles.nt] +usbser.sys,,,0x20 + +[DriverInstall.nt.AddReg] +HKR,,DevLoader,,*ntkern +HKR,,NTMPDriver,,USBSER.sys +HKR,,EnumPropPages32,,"MsPorts.dll,SerialPortPropPageProvider" + +[DriverInstall.nt.Services] +AddService=usbser, 0x00000002, DriverService.nt + +[DriverService.nt] +DisplayName=%SERVICE% +ServiceType=1 +StartType=3 +ErrorControl=1 +ServiceBinary=%12%\USBSER.sys + +;------------------------------------------------------------------------------ +; Vista-64bit Sections +;------------------------------------------------------------------------------ + +[DriverInstall.NTamd64] +include=mdmcpq.inf +CopyFiles=DriverCopyFiles.NTamd64 +AddReg=DriverInstall.NTamd64.AddReg + +[DriverCopyFiles.NTamd64] +USBSER.sys,,,0x20 + +[DriverInstall.NTamd64.AddReg] +HKR,,DevLoader,,*ntkern +HKR,,NTMPDriver,,USBSER.sys +HKR,,EnumPropPages32,,"MsPorts.dll,SerialPortPropPageProvider" + +[DriverInstall.NTamd64.Services] +AddService=usbser, 0x00000002, DriverService.NTamd64 + +[DriverService.NTamd64] +DisplayName=%SERVICE% +ServiceType=1 +StartType=3 +ErrorControl=1 +ServiceBinary=%12%\USBSER.sys + + +;------------------------------------------------------------------------------ +; Vendor and Product ID Definitions +;------------------------------------------------------------------------------ +; When developing your USB device, the VID and PID used in the PC side +; application program and the firmware on the microcontroller must match. +; Modify the below line to use your VID and PID. Use the format as shown +; below. +; Note: One INF file can be used for multiple devices with different +; VID and PIDs. For each supported device, append +; ",USB\VID_xxxx&PID_yyyy" to the end of the line. +;------------------------------------------------------------------------------ +[SourceDisksFiles] +[SourceDisksNames] +[DeviceList] +%DESCRIPTION%=DriverInstall, USB\VID_0525&PID_A4A7, USB\VID_1D6B&PID_0104&MI_02, USB\VID_1D6B&PID_0106&MI_00 + +[DeviceList.NTamd64] +%DESCRIPTION%=DriverInstall, USB\VID_0525&PID_A4A7, USB\VID_1D6B&PID_0104&MI_02, USB\VID_1D6B&PID_0106&MI_00 + + +;------------------------------------------------------------------------------ +; String Definitions +;------------------------------------------------------------------------------ +;Modify these strings to customize your device +;------------------------------------------------------------------------------ +[Strings] +Linux = "Linux Developer Community" +DESCRIPTION = "Gadget Serial" +SERVICE = "USB RS-232 Emulation Driver" diff --git a/Documentation/usb/linux.inf b/Documentation/usb/linux.inf new file mode 100644 index 000000000..4ffa715b0 --- /dev/null +++ b/Documentation/usb/linux.inf @@ -0,0 +1,66 @@ +; Based on template INF file found at +; <http://msdn.microsoft.com/en-us/library/ff570620.aspx> +; which was: +; Copyright (c) Microsoft Corporation +; and released under the MLPL as found at: +; <http://msdn.microsoft.com/en-us/cc300389.aspx#MLPL>. +; For use only on Windows operating systems. + +[Version] +Signature = "$Windows NT$" +Class = Net +ClassGUID = {4d36e972-e325-11ce-bfc1-08002be10318} +Provider = %Linux% +DriverVer = 06/21/2006,6.0.6000.16384 + +[Manufacturer] +%Linux% = LinuxDevices,NTx86,NTamd64,NTia64 + +; Decoration for x86 architecture +[LinuxDevices.NTx86] +%LinuxDevice% = RNDIS.NT.5.1, USB\VID_0525&PID_a4a2, USB\VID_1d6b&PID_0104&MI_00 + +; Decoration for x64 architecture +[LinuxDevices.NTamd64] +%LinuxDevice% = RNDIS.NT.5.1, USB\VID_0525&PID_a4a2, USB\VID_1d6b&PID_0104&MI_00 + +; Decoration for ia64 architecture +[LinuxDevices.NTia64] +%LinuxDevice% = RNDIS.NT.5.1, USB\VID_0525&PID_a4a2, USB\VID_1d6b&PID_0104&MI_00 + +;@@@ This is the common setting for setup +[ControlFlags] +ExcludeFromSelect=* + +; DDInstall section +; References the in-build Netrndis.inf +[RNDIS.NT.5.1] +Characteristics = 0x84 ; NCF_PHYSICAL + NCF_HAS_UI +BusType = 15 +; NEVER REMOVE THE FOLLOWING REFERENCE FOR NETRNDIS.INF +include = netrndis.inf +needs = Usb_Rndis.ndi +AddReg = Rndis_AddReg_Vista + +; DDInstal.Services section +[RNDIS.NT.5.1.Services] +include = netrndis.inf +needs = Usb_Rndis.ndi.Services + +; Optional registry settings. You can modify as needed. +[RNDIS_AddReg_Vista] +HKR, NDI\params\VistaProperty, ParamDesc, 0, %Vista_Property% +HKR, NDI\params\VistaProperty, type, 0, "edit" +HKR, NDI\params\VistaProperty, LimitText, 0, "12" +HKR, NDI\params\VistaProperty, UpperCase, 0, "1" +HKR, NDI\params\VistaProperty, default, 0, " " +HKR, NDI\params\VistaProperty, optional, 0, "1" + +; No sys copyfiles - the sys files are already in-build +; (part of the operating system). +; We do not support XP SP1-, 2003 SP1-, ME, 9x. + +[Strings] +Linux = "Linux Developer Community" +LinuxDevice = "Linux USB Ethernet/RNDIS Gadget" +Vista_Property = "Optional Vista Property" diff --git a/Documentation/usb/mass-storage.txt b/Documentation/usb/mass-storage.txt new file mode 100644 index 000000000..e89803a5a --- /dev/null +++ b/Documentation/usb/mass-storage.txt @@ -0,0 +1,225 @@ +* Overview + + Mass Storage Gadget (or MSG) acts as a USB Mass Storage device, + appearing to the host as a disk or a CD-ROM drive. It supports + multiple logical units (LUNs). Backing storage for each LUN is + provided by a regular file or a block device, access can be limited + to read-only, and gadget can indicate that it is removable and/or + CD-ROM (the latter implies read-only access). + + Its requirements are modest; only a bulk-in and a bulk-out endpoint + are needed. The memory requirement amounts to two 16K buffers. + Support is included for full-speed, high-speed and SuperSpeed + operation. + + Note that the driver is slightly non-portable in that it assumes + a single memory/DMA buffer will be usable for bulk-in and bulk-out + endpoints. With most device controllers this is not an issue, but + there may be some with hardware restrictions that prevent a buffer + from being used by more than one endpoint. + + This document describes how to use the gadget from user space, its + relation to mass storage function (or MSF) and different gadgets + using it, and how it differs from File Storage Gadget (or FSG) + (which is no longer included in Linux). It will talk only briefly + about how to use MSF within composite gadgets. + +* Module parameters + + The mass storage gadget accepts the following mass storage specific + module parameters: + + - file=filename[,filename...] + + This parameter lists paths to files or block devices used for + backing storage for each logical unit. There may be at most + FSG_MAX_LUNS (8) LUNs set. If more files are specified, they will + be silently ignored. See also “luns” parameter. + + *BEWARE* that if a file is used as a backing storage, it may not + be modified by any other process. This is because the host + assumes the data does not change without its knowledge. It may be + read, but (if the logical unit is writable) due to buffering on + the host side, the contents are not well defined. + + The size of the logical unit will be rounded down to a full + logical block. The logical block size is 2048 bytes for LUNs + simulating CD-ROM, block size of the device if the backing file is + a block device, or 512 bytes otherwise. + + - removable=b[,b...] + + This parameter specifies whether each logical unit should be + removable. “b” here is either “y”, “Y” or “1” for true or “n”, + “N” or “0” for false. + + If this option is set for a logical unit, gadget will accept an + “eject” SCSI request (Start/Stop Unit). When it is sent, the + backing file will be closed to simulate ejection and the logical + unit will not be mountable by the host until a new backing file is + specified by userspace on the device (see “sysfs entries” + section). + + If a logical unit is not removable (the default), a backing file + must be specified for it with the “file” parameter as the module + is loaded. The same applies if the module is built in, no + exceptions. + + The default value of the flag is false, *HOWEVER* it used to be + true. This has been changed to better match File Storage Gadget + and because it seems like a saner default after all. Thus to + maintain compatibility with older kernels, it's best to specify + the default values. Also, if one relied on old default, explicit + “n” needs to be specified now. + + Note that “removable” means the logical unit's media can be + ejected or removed (as is true for a CD-ROM drive or a card + reader). It does *not* mean that the entire gadget can be + unplugged from the host; the proper term for that is + “hot-unpluggable”. + + - cdrom=b[,b...] + + This parameter specifies whether each logical unit should simulate + CD-ROM. The default is false. + + - ro=b[,b...] + + This parameter specifies whether each logical unit should be + reported as read only. This will prevent host from modifying the + backing files. + + Note that if this flag for given logical unit is false but the + backing file could not be opened in read/write mode, the gadget + will fall back to read only mode anyway. + + The default value for non-CD-ROM logical units is false; for + logical units simulating CD-ROM it is forced to true. + + - nofua=b[,b...] + + This parameter specifies whether FUA flag should be ignored in SCSI + Write10 and Write12 commands sent to given logical units. + + MS Windows mounts removable storage in “Removal optimised mode” by + default. All the writes to the media are synchronous, which is + achieved by setting the FUA (Force Unit Access) bit in SCSI + Write(10,12) commands. This forces each write to wait until the + data has actually been written out and prevents I/O requests + aggregation in block layer dramatically decreasing performance. + + Note that this may mean that if the device is powered from USB and + the user unplugs the device without unmounting it first (which at + least some Windows users do), the data may be lost. + + The default value is false. + + - luns=N + + This parameter specifies number of logical units the gadget will + have. It is limited by FSG_MAX_LUNS (8) and higher value will be + capped. + + If this parameter is provided, and the number of files specified + in “file” argument is greater then the value of “luns”, all excess + files will be ignored. + + If this parameter is not present, the number of logical units will + be deduced from the number of files specified in the “file” + parameter. If the file parameter is missing as well, one is + assumed. + + - stall=b + + Specifies whether the gadget is allowed to halt bulk endpoints. + The default is determined according to the type of USB device + controller, but usually true. + + In addition to the above, the gadget also accepts the following + parameters defined by the composite framework (they are common to + all composite gadgets so just a quick listing): + + - idVendor -- USB Vendor ID (16 bit integer) + - idProduct -- USB Product ID (16 bit integer) + - bcdDevice -- USB Device version (BCD) (16 bit integer) + - iManufacturer -- USB Manufacturer string (string) + - iProduct -- USB Product string (string) + - iSerialNumber -- SerialNumber string (sting) + +* sysfs entries + + For each logical unit, the gadget creates a directory in the sysfs + hierarchy. Inside of it the following three files are created: + + - file + + When read it returns the path to the backing file for the given + logical unit. If there is no backing file (possible only if the + logical unit is removable), the content is empty. + + When written into, it changes the backing file for given logical + unit. This change can be performed even if given logical unit is + not specified as removable (but that may look strange to the + host). It may fail, however, if host disallowed medium removal + with the Prevent-Allow Medium Removal SCSI command. + + - ro + + Reflects the state of ro flag for the given logical unit. It can + be read any time, and written to when there is no backing file + open for given logical unit. + + - nofua + + Reflects the state of nofua flag for given logical unit. It can + be read and written. + + Other then those, as usual, the values of module parameters can be + read from /sys/module/g_mass_storage/parameters/* files. + +* Other gadgets using mass storage function + + The Mass Storage Gadget uses the Mass Storage Function to handle + mass storage protocol. As a composite function, MSF may be used by + other gadgets as well (eg. g_multi and acm_ms). + + All of the information in previous sections are valid for other + gadgets using MSF, except that support for mass storage related + module parameters may be missing, or the parameters may have + a prefix. To figure out whether any of this is true one needs to + consult the gadget's documentation or its source code. + + For examples of how to include mass storage function in gadgets, one + may take a look at mass_storage.c, acm_ms.c and multi.c (sorted by + complexity). + +* Relation to file storage gadget + + The Mass Storage Function and thus the Mass Storage Gadget has been + based on the File Storage Gadget. The difference between the two is + that MSG is a composite gadget (ie. uses the composite framework) + while file storage gadget was a traditional gadget. From userspace + point of view this distinction does not really matter, but from + kernel hacker's point of view, this means that (i) MSG does not + duplicate code needed for handling basic USB protocol commands and + (ii) MSF can be used in any other composite gadget. + + Because of that, File Storage Gadget has been removed in Linux 3.8. + All users need to transition to the Mass Storage Gadget. The two + gadgets behave mostly the same from the outside except: + + 1. In FSG the “removable” and “cdrom” module parameters set the flag + for all logical units whereas in MSG they accept a list of y/n + values for each logical unit. If one uses only a single logical + unit this does not matter, but if there are more, the y/n value + needs to be repeated for each logical unit. + + 2. FSG's “serial”, “vendor”, “product” and “release” module + parameters are handled in MSG by the composite layer's parameters + named respectively: “iSerialnumber”, “idVendor”, “idProduct” and + “bcdDevice”. + + 3. MSG does not support FSG's test mode, thus “transport”, + “protocol” and “buflen” FSG's module parameters are not + supported. MSG always uses SCSI protocol with bulk only + transport mode and 16 KiB buffers. diff --git a/Documentation/usb/misc_usbsevseg.txt b/Documentation/usb/misc_usbsevseg.txt new file mode 100644 index 000000000..0f6be4f99 --- /dev/null +++ b/Documentation/usb/misc_usbsevseg.txt @@ -0,0 +1,46 @@ +USB 7-Segment Numeric Display +Manufactured by Delcom Engineering + +Device Information +------------------ +USB VENDOR_ID 0x0fc5 +USB PRODUCT_ID 0x1227 +Both the 6 character and 8 character displays have PRODUCT_ID, +and according to Delcom Engineering no queryable information +can be obtained from the device to tell them apart. + +Device Modes +------------ +By default, the driver assumes the display is only 6 characters +The mode for 6 characters is: + MSB 0x06; LSB 0x3f +For the 8 character display: + MSB 0x08; LSB 0xff +The device can accept "text" either in raw, hex, or ascii textmode. +raw controls each segment manually, +hex expects a value between 0-15 per character, +ascii expects a value between '0'-'9' and 'A'-'F'. +The default is ascii. + +Device Operation +---------------- +1. Turn on the device: + echo 1 > /sys/bus/usb/.../powered +2. Set the device's mode: + echo $mode_msb > /sys/bus/usb/.../mode_msb + echo $mode_lsb > /sys/bus/usb/.../mode_lsb +3. Set the textmode: + echo $textmode > /sys/bus/usb/.../textmode +4. set the text (for example): + echo "123ABC" > /sys/bus/usb/.../text (ascii) + echo "A1B2" > /sys/bus/usb/.../text (ascii) + echo -ne "\x01\x02\x03" > /sys/bus/usb/.../text (hex) +5. Set the decimal places. + The device has either 6 or 8 decimal points. + to set the nth decimal place calculate 10 ** n + and echo it in to /sys/bus/usb/.../decimals + To set multiple decimals points sum up each power. + For example, to set the 0th and 3rd decimal place + echo 1001 > /sys/bus/usb/.../decimals + + diff --git a/Documentation/usb/mtouchusb.txt b/Documentation/usb/mtouchusb.txt new file mode 100644 index 000000000..a91adb26e --- /dev/null +++ b/Documentation/usb/mtouchusb.txt @@ -0,0 +1,72 @@ +CHANGES + +- 0.3 - Created based off of scanner & INSTALL from the original touchscreen + driver on freecode (http://freecode.com/projects/3mtouchscreendriver) +- Amended for linux-2.4.18, then 2.4.19 + +- 0.5 - Complete rewrite using Linux Input in 2.6.3 + Unfortunately no calibration support at this time + +- 1.4 - Multiple changes to support the EXII 5000UC and house cleaning + Changed reset from standard USB dev reset to vendor reset + Changed data sent to host from compensated to raw coordinates + Eliminated vendor/product module params + Performed multiple successful tests with an EXII-5010UC + +SUPPORTED HARDWARE: + + All controllers have the Vendor: 0x0596 & Product: 0x0001 + + + Controller Description Part Number + ------------------------------------------------------ + + USB Capacitive - Pearl Case 14-205 (Discontinued) + USB Capacitive - Black Case 14-124 (Discontinued) + USB Capacitive - No Case 14-206 (Discontinued) + + USB Capacitive - Pearl Case EXII-5010UC + USB Capacitive - Black Case EXII-5030UC + USB Capacitive - No Case EXII-5050UC + +DRIVER NOTES: + +Installation is simple, you only need to add Linux Input, Linux USB, and the +driver to the kernel. The driver can also be optionally built as a module. + +This driver appears to be one of possible 2 Linux USB Input Touchscreen +drivers. Although 3M produces a binary only driver available for +download, I persist in updating this driver since I would like to use the +touchscreen for embedded apps using QTEmbedded, DirectFB, etc. So I feel the +logical choice is to use Linux Input. + +Currently there is no way to calibrate the device via this driver. Even if +the device could be calibrated, the driver pulls to raw coordinate data from +the controller. This means calibration must be performed within the +userspace. + +The controller screen resolution is now 0 to 16384 for both X and Y reporting +the raw touch data. This is the same for the old and new capacitive USB +controllers. + +Perhaps at some point an abstract function will be placed into evdev so +generic functions like calibrations, resets, and vendor information can be +requested from the userspace (And the drivers would handle the vendor specific +tasks). + +TODO: + +Implement a control urb again to handle requests to and from the device +such as calibration, etc once/if it becomes available. + +DISCLAIMER: + +I am not a MicroTouch/3M employee, nor have I ever been. 3M does not support +this driver! If you want touch drivers only supported within X, please go to: + +http://www.3m.com/3MTouchSystems/ + +THANKS: + +A huge thank you to 3M Touch Systems for the EXII-5010UC controllers for +testing! diff --git a/Documentation/usb/ohci.txt b/Documentation/usb/ohci.txt new file mode 100644 index 000000000..99320d9fa --- /dev/null +++ b/Documentation/usb/ohci.txt @@ -0,0 +1,32 @@ +23-Aug-2002 + +The "ohci-hcd" driver is a USB Host Controller Driver (HCD) that is derived +from the "usb-ohci" driver from the 2.4 kernel series. The "usb-ohci" code +was written primarily by Roman Weissgaerber <weissg@vienna.at> but with +contributions from many others (read its copyright/licencing header). + +It supports the "Open Host Controller Interface" (OHCI), which standardizes +hardware register protocols used to talk to USB 1.1 host controllers. As +compared to the earlier "Universal Host Controller Interface" (UHCI) from +Intel, it pushes more intelligence into the hardware. USB 1.1 controllers +from vendors other than Intel and VIA generally use OHCI. + +Changes since the 2.4 kernel include + + - improved robustness; bugfixes; and less overhead + - supports the updated and simplified usbcore APIs + - interrupt transfers can be larger, and can be queued + - less code, by using the upper level "hcd" framework + - supports some non-PCI implementations of OHCI + - ... more + +The "ohci-hcd" driver handles all USB 1.1 transfer types. Transfers of all +types can be queued. That was also true in "usb-ohci", except for interrupt +transfers. Previously, using periods of one frame would risk data loss due +to overhead in IRQ processing. When interrupt transfers are queued, those +risks can be minimized by making sure the hardware always has transfers to +work on while the OS is getting around to the relevant IRQ processing. + +- David Brownell + <dbrownell@users.sourceforge.net> + diff --git a/Documentation/usb/usb-help.txt b/Documentation/usb/usb-help.txt new file mode 100644 index 000000000..4273ca2b8 --- /dev/null +++ b/Documentation/usb/usb-help.txt @@ -0,0 +1,16 @@ +usb-help.txt +2008-Mar-7 + +For USB help other than the readme files that are located in +Documentation/usb/*, see the following: + +Linux-USB project: http://www.linux-usb.org + mirrors at http://usb.in.tum.de/linux-usb/ + and http://it.linux-usb.org +Linux USB Guide: http://linux-usb.sourceforge.net +Linux-USB device overview (working devices and drivers): + http://www.qbik.ch/usb/devices/ + +The Linux-USB mailing list is at linux-usb@vger.kernel.org + +### diff --git a/Documentation/usb/usb-serial.txt b/Documentation/usb/usb-serial.txt new file mode 100644 index 000000000..ab100d6ee --- /dev/null +++ b/Documentation/usb/usb-serial.txt @@ -0,0 +1,486 @@ +INTRODUCTION + + The USB serial driver currently supports a number of different USB to + serial converter products, as well as some devices that use a serial + interface from userspace to talk to the device. + + See the individual product section below for specific information about + the different devices. + + +CONFIGURATION + + Currently the driver can handle up to 256 different serial interfaces at + one time. + + The major number that the driver uses is 188 so to use the driver, + create the following nodes: + mknod /dev/ttyUSB0 c 188 0 + mknod /dev/ttyUSB1 c 188 1 + mknod /dev/ttyUSB2 c 188 2 + mknod /dev/ttyUSB3 c 188 3 + . + . + . + mknod /dev/ttyUSB254 c 188 254 + mknod /dev/ttyUSB255 c 188 255 + + When the device is connected and recognized by the driver, the driver + will print to the system log, which node(s) the device has been bound + to. + + +SPECIFIC DEVICES SUPPORTED + + +ConnectTech WhiteHEAT 4 port converter + + ConnectTech has been very forthcoming with information about their + device, including providing a unit to test with. + + The driver is officially supported by Connect Tech Inc. + http://www.connecttech.com + + For any questions or problems with this driver, please contact + Connect Tech's Support Department at support@connecttech.com + + +HandSpring Visor, Palm USB, and Clié USB driver + + This driver works with all HandSpring USB, Palm USB, and Sony Clié USB + devices. + + Only when the device tries to connect to the host, will the device show + up to the host as a valid USB device. When this happens, the device is + properly enumerated, assigned a port, and then communication _should_ be + possible. The driver cleans up properly when the device is removed, or + the connection is canceled on the device. + + NOTE: + This means that in order to talk to the device, the sync button must be + pressed BEFORE trying to get any program to communicate to the device. + This goes against the current documentation for pilot-xfer and other + packages, but is the only way that it will work due to the hardware + in the device. + + When the device is connected, try talking to it on the second port + (this is usually /dev/ttyUSB1 if you do not have any other usb-serial + devices in the system.) The system log should tell you which port is + the port to use for the HotSync transfer. The "Generic" port can be used + for other device communication, such as a PPP link. + + For some Sony Clié devices, /dev/ttyUSB0 must be used to talk to the + device. This is true for all OS version 3.5 devices, and most devices + that have had a flash upgrade to a newer version of the OS. See the + kernel system log for information on which is the correct port to use. + + If after pressing the sync button, nothing shows up in the system log, + try resetting the device, first a hot reset, and then a cold reset if + necessary. Some devices need this before they can talk to the USB port + properly. + + Devices that are not compiled into the kernel can be specified with module + parameters. e.g. modprobe visor vendor=0x54c product=0x66 + + There is a webpage and mailing lists for this portion of the driver at: + http://sourceforge.net/projects/usbvisor/ + + For any questions or problems with this driver, please contact Greg + Kroah-Hartman at greg@kroah.com + + +PocketPC PDA Driver + + This driver can be used to connect to Compaq iPAQ, HP Jornada, Casio EM500 + and other PDAs running Windows CE 3.0 or PocketPC 2002 using a USB + cable/cradle. + Most devices supported by ActiveSync are supported out of the box. + For others, please use module parameters to specify the product and vendor + id. e.g. modprobe ipaq vendor=0x3f0 product=0x1125 + + The driver presents a serial interface (usually on /dev/ttyUSB0) over + which one may run ppp and establish a TCP/IP link to the PDA. Once this + is done, you can transfer files, backup, download email etc. The most + significant advantage of using USB is speed - I can get 73 to 113 + kbytes/sec for download/upload to my iPAQ. + + This driver is only one of a set of components required to utilize + the USB connection. Please visit http://synce.sourceforge.net which + contains the necessary packages and a simple step-by-step howto. + + Once connected, you can use Win CE programs like ftpView, Pocket Outlook + from the PDA and xcerdisp, synce utilities from the Linux side. + + To use Pocket IE, follow the instructions given at + http://www.tekguru.co.uk/EM500/usbtonet.htm to achieve the same thing + on Win98. Omit the proxy server part; Linux is quite capable of forwarding + packets unlike Win98. Another modification is required at least for the + iPAQ - disable autosync by going to the Start/Settings/Connections menu + and unchecking the "Automatically synchronize ..." box. Go to + Start/Programs/Connections, connect the cable and select "usbdial" (or + whatever you named your new USB connection). You should finally wind + up with a "Connected to usbdial" window with status shown as connected. + Now start up PIE and browse away. + + If it doesn't work for some reason, load both the usbserial and ipaq module + with the module parameter "debug" set to 1 and examine the system log. + You can also try soft-resetting your PDA before attempting a connection. + + Other functionality may be possible depending on your PDA. According to + Wes Cilldhaire <billybobjoehenrybob@hotmail.com>, with the Toshiba E570, + ...if you boot into the bootloader (hold down the power when hitting the + reset button, continuing to hold onto the power until the bootloader screen + is displayed), then put it in the cradle with the ipaq driver loaded, open + a terminal on /dev/ttyUSB0, it gives you a "USB Reflash" terminal, which can + be used to flash the ROM, as well as the microP code.. so much for needing + Toshiba's $350 serial cable for flashing!! :D + NOTE: This has NOT been tested. Use at your own risk. + + For any questions or problems with the driver, please contact Ganesh + Varadarajan <ganesh@veritas.com> + + +Keyspan PDA Serial Adapter + + Single port DB-9 serial adapter, pushed as a PDA adapter for iMacs (mostly + sold in Macintosh catalogs, comes in a translucent white/green dongle). + Fairly simple device. Firmware is homebrew. + This driver also works for the Xircom/Entrega single port serial adapter. + + Current status: + Things that work: + basic input/output (tested with 'cu') + blocking write when serial line can't keep up + changing baud rates (up to 115200) + getting/setting modem control pins (TIOCM{GET,SET,BIS,BIC}) + sending break (although duration looks suspect) + Things that don't: + device strings (as logged by kernel) have trailing binary garbage + device ID isn't right, might collide with other Keyspan products + changing baud rates ought to flush tx/rx to avoid mangled half characters + Big Things on the todo list: + parity, 7 vs 8 bits per char, 1 or 2 stop bits + HW flow control + not all of the standard USB descriptors are handled: Get_Status, Set_Feature + O_NONBLOCK, select() + + For any questions or problems with this driver, please contact Brian + Warner at warner@lothar.com + + +Keyspan USA-series Serial Adapters + + Single, Dual and Quad port adapters - driver uses Keyspan supplied + firmware and is being developed with their support. + + Current status: + The USA-18X, USA-28X, USA-19, USA-19W and USA-49W are supported and + have been pretty thoroughly tested at various baud rates with 8-N-1 + character settings. Other character lengths and parity setups are + presently untested. + + The USA-28 isn't yet supported though doing so should be pretty + straightforward. Contact the maintainer if you require this + functionality. + + More information is available at: + http://www.carnationsoftware.com/carnation/Keyspan.html + + For any questions or problems with this driver, please contact Hugh + Blemings at hugh@misc.nu + + +FTDI Single Port Serial Driver + + This is a single port DB-25 serial adapter. + + Devices supported include: + -TripNav TN-200 USB GPS + -Navis Engineering Bureau CH-4711 USB GPS + + For any questions or problems with this driver, please contact Bill Ryder. + + +ZyXEL omni.net lcd plus ISDN TA + + This is an ISDN TA. Please report both successes and troubles to + azummo@towertech.it + + +Cypress M8 CY4601 Family Serial Driver + + This driver was in most part developed by Neil "koyama" Whelchel. It + has been improved since that previous form to support dynamic serial + line settings and improved line handling. The driver is for the most + part stable and has been tested on an smp machine. (dual p2) + + Chipsets supported under CY4601 family: + + CY7C63723, CY7C63742, CY7C63743, CY7C64013 + + Devices supported: + + -DeLorme's USB Earthmate GPS (SiRF Star II lp arch) + -Cypress HID->COM RS232 adapter + + Note: Cypress Semiconductor claims no affiliation with the + hid->com device. + + Most devices using chipsets under the CY4601 family should + work with the driver. As long as they stay true to the CY4601 + usbserial specification. + + Technical notes: + + The Earthmate starts out at 4800 8N1 by default... the driver will + upon start init to this setting. usbserial core provides the rest + of the termios settings, along with some custom termios so that the + output is in proper format and parsable. + + The device can be put into sirf mode by issuing NMEA command: + $PSRF100,<protocol>,<baud>,<databits>,<stopbits>,<parity>*CHECKSUM + $PSRF100,0,9600,8,1,0*0C + + It should then be sufficient to change the port termios to match this + to begin communicating. + + As far as I can tell it supports pretty much every sirf command as + documented online available with firmware 2.31, with some unknown + message ids. + + The hid->com adapter can run at a maximum baud of 115200bps. Please note + that the device has trouble or is incapable of raising line voltage properly. + It will be fine with null modem links, as long as you do not try to link two + together without hacking the adapter to set the line high. + + The driver is smp safe. Performance with the driver is rather low when using + it for transferring files. This is being worked on, but I would be willing to + accept patches. An urb queue or packet buffer would likely fit the bill here. + + If you have any questions, problems, patches, feature requests, etc. you can + contact me here via email: + dignome@gmail.com + (your problems/patches can alternately be submitted to usb-devel) + + +Digi AccelePort Driver + + This driver supports the Digi AccelePort USB 2 and 4 devices, 2 port + (plus a parallel port) and 4 port USB serial converters. The driver + does NOT yet support the Digi AccelePort USB 8. + + This driver works under SMP with the usb-uhci driver. It does not + work under SMP with the uhci driver. + + The driver is generally working, though we still have a few more ioctls + to implement and final testing and debugging to do. The parallel port + on the USB 2 is supported as a serial to parallel converter; in other + words, it appears as another USB serial port on Linux, even though + physically it is really a parallel port. The Digi Acceleport USB 8 + is not yet supported. + + Please contact Peter Berger (pberger@brimson.com) or Al Borchers + (alborchers@steinerpoint.com) for questions or problems with this + driver. + + +Belkin USB Serial Adapter F5U103 + + Single port DB-9/PS-2 serial adapter from Belkin with firmware by eTEK Labs. + The Peracom single port serial adapter also works with this driver, as + well as the GoHubs adapter. + + Current status: + The following have been tested and work: + Baud rate 300-230400 + Data bits 5-8 + Stop bits 1-2 + Parity N,E,O,M,S + Handshake None, Software (XON/XOFF), Hardware (CTSRTS,CTSDTR)* + Break Set and clear + Line control Input/Output query and control ** + + * Hardware input flow control is only enabled for firmware + levels above 2.06. Read source code comments describing Belkin + firmware errata. Hardware output flow control is working for all + firmware versions. + ** Queries of inputs (CTS,DSR,CD,RI) show the last + reported state. Queries of outputs (DTR,RTS) show the last + requested state and may not reflect current state as set by + automatic hardware flow control. + + TO DO List: + -- Add true modem control line query capability. Currently tracks the + states reported by the interrupt and the states requested. + -- Add error reporting back to application for UART error conditions. + -- Add support for flush ioctls. + -- Add everything else that is missing :) + + For any questions or problems with this driver, please contact William + Greathouse at wgreathouse@smva.com + + +Empeg empeg-car Mark I/II Driver + + This is an experimental driver to provide connectivity support for the + client synchronization tools for an Empeg empeg-car mp3 player. + + Tips: + * Don't forget to create the device nodes for ttyUSB{0,1,2,...} + * modprobe empeg (modprobe is your friend) + * emptool --usb /dev/ttyUSB0 (or whatever you named your device node) + + For any questions or problems with this driver, please contact Gary + Brubaker at xavyer@ix.netcom.com + + +MCT USB Single Port Serial Adapter U232 + + This driver is for the MCT USB-RS232 Converter (25 pin, Model No. + U232-P25) from Magic Control Technology Corp. (there is also a 9 pin + Model No. U232-P9). More information about this device can be found at + the manufacturer's web-site: http://www.mct.com.tw. + + The driver is generally working, though it still needs some more testing. + It is derived from the Belkin USB Serial Adapter F5U103 driver and its + TODO list is valid for this driver as well. + + This driver has also been found to work for other products, which have + the same Vendor ID but different Product IDs. Sitecom's U232-P25 serial + converter uses Product ID 0x230 and Vendor ID 0x711 and works with this + driver. Also, D-Link's DU-H3SP USB BAY also works with this driver. + + For any questions or problems with this driver, please contact Wolfgang + Grandegger at wolfgang@ces.ch + + +Inside Out Networks Edgeport Driver + + This driver supports all devices made by Inside Out Networks, specifically + the following models: + Edgeport/4 + Rapidport/4 + Edgeport/4t + Edgeport/2 + Edgeport/4i + Edgeport/2i + Edgeport/421 + Edgeport/21 + Edgeport/8 + Edgeport/8 Dual + Edgeport/2D8 + Edgeport/4D8 + Edgeport/8i + Edgeport/2 DIN + Edgeport/4 DIN + Edgeport/16 Dual + + For any questions or problems with this driver, please contact Greg + Kroah-Hartman at greg@kroah.com + + +REINER SCT cyberJack pinpad/e-com USB chipcard reader + + Interface to ISO 7816 compatible contactbased chipcards, e.g. GSM SIMs. + + Current status: + This is the kernel part of the driver for this USB card reader. + There is also a user part for a CT-API driver available. A site + for downloading is TBA. For now, you can request it from the + maintainer (linux-usb@sii.li). + + For any questions or problems with this driver, please contact + linux-usb@sii.li + + +Prolific PL2303 Driver + + This driver supports any device that has the PL2303 chip from Prolific + in it. This includes a number of single port USB to serial converters, + more than 70% of USB GPS devices (in 2010), and some USB UPSes. Devices + from Aten (the UC-232) and IO-Data work with this driver, as does + the DCU-11 mobile-phone cable. + + For any questions or problems with this driver, please contact Greg + Kroah-Hartman at greg@kroah.com + + +KL5KUSB105 chipset / PalmConnect USB single-port adapter + +Current status: + The driver was put together by looking at the usb bus transactions + done by Palm's driver under Windows, so a lot of functionality is + still missing. Notably, serial ioctls are sometimes faked or not yet + implemented. Support for finding out about DSR and CTS line status is + however implemented (though not nicely), so your favorite autopilot(1) + and pilot-manager -daemon calls will work. Baud rates up to 115200 + are supported, but handshaking (software or hardware) is not, which is + why it is wise to cut down on the rate used is wise for large + transfers until this is settled. + + See http://www.uuhaus.de/linux/palmconnect.html for up-to-date + information on this driver. + +Winchiphead CH341 Driver + + This driver is for the Winchiphead CH341 USB-RS232 Converter. This chip + also implements an IEEE 1284 parallel port, I2C and SPI, but that is not + supported by the driver. The protocol was analyzed from the behaviour + of the Windows driver, no datasheet is available at present. + The manufacturer's website: http://www.winchiphead.com/. + For any questions or problems with this driver, please contact + frank@kingswood-consulting.co.uk. + +Moschip MCS7720, MCS7715 driver + + These chips are present in devices sold by various manufacturers, such as Syba + and Cables Unlimited. There may be others. The 7720 provides two serial + ports, and the 7715 provides one serial and one standard PC parallel port. + Support for the 7715's parallel port is enabled by a separate option, which + will not appear unless parallel port support is first enabled at the top-level + of the Device Drivers config menu. Currently only compatibility mode is + supported on the parallel port (no ECP/EPP). + + TODO: + - Implement ECP/EPP modes for the parallel port. + - Baud rates higher than 115200 are currently broken. + - Devices with a single serial port based on the Moschip MCS7703 may work + with this driver with a simple addition to the usb_device_id table. I + don't have one of these devices, so I can't say for sure. + +Generic Serial driver + + If your device is not one of the above listed devices, compatible with + the above models, you can try out the "generic" interface. This + interface does not provide any type of control messages sent to the + device, and does not support any kind of device flow control. All that + is required of your device is that it has at least one bulk in endpoint, + or one bulk out endpoint. + + To enable the generic driver to recognize your device, provide + echo <vid> <pid> >/sys/bus/usb-serial/drivers/generic/new_id + where the <vid> and <pid> is replaced with the hex representation of your + device's vendor id and product id. + If the driver is compiled as a module you can also provide one id when + loading the module + insmod usbserial vendor=0x#### product=0x#### + + This driver has been successfully used to connect to the NetChip USB + development board, providing a way to develop USB firmware without + having to write a custom driver. + + For any questions or problems with this driver, please contact Greg + Kroah-Hartman at greg@kroah.com + + +CONTACT: + + If anyone has any problems using these drivers, with any of the above + specified products, please contact the specific driver's author listed + above, or join the Linux-USB mailing list (information on joining the + mailing list, as well as a link to its searchable archive is at + http://www.linux-usb.org/ ) + + +Greg Kroah-Hartman +greg@kroah.com diff --git a/Documentation/usb/usbdevfs-drop-permissions.c b/Documentation/usb/usbdevfs-drop-permissions.c new file mode 100644 index 000000000..6b8da6ef0 --- /dev/null +++ b/Documentation/usb/usbdevfs-drop-permissions.c @@ -0,0 +1,120 @@ +#include <sys/ioctl.h> +#include <sys/types.h> +#include <sys/stat.h> +#include <fcntl.h> +#include <stdio.h> +#include <errno.h> +#include <string.h> +#include <inttypes.h> +#include <unistd.h> + +#include <linux/usbdevice_fs.h> + +/* For building without an updated set of headers */ +#ifndef USBDEVFS_DROP_PRIVILEGES +#define USBDEVFS_DROP_PRIVILEGES _IOW('U', 30, __u32) +#define USBDEVFS_CAP_DROP_PRIVILEGES 0x40 +#endif + +void drop_privileges(int fd, uint32_t mask) +{ + int res; + + res = ioctl(fd, USBDEVFS_DROP_PRIVILEGES, &mask); + if (res) + printf("ERROR: USBDEVFS_DROP_PRIVILEGES returned %d\n", res); + else + printf("OK: privileges dropped!\n"); +} + +void reset_device(int fd) +{ + int res; + + res = ioctl(fd, USBDEVFS_RESET); + if (!res) + printf("OK: USBDEVFS_RESET succeeded\n"); + else + printf("ERROR: reset failed! (%d - %s)\n", + -res, strerror(-res)); +} + +void claim_some_intf(int fd) +{ + int i, res; + + for (i = 0; i < 4; i++) { + res = ioctl(fd, USBDEVFS_CLAIMINTERFACE, &i); + if (!res) + printf("OK: claimed if %d\n", i); + else + printf("ERROR claiming if %d (%d - %s)\n", + i, -res, strerror(-res)); + } +} + +int main(int argc, char *argv[]) +{ + uint32_t mask, caps; + int c, fd; + + fd = open(argv[1], O_RDWR); + if (fd < 0) { + printf("Failed to open file\n"); + goto err_fd; + } + + /* + * check if dropping privileges is supported, + * bail on systems where the capability is not present + */ + ioctl(fd, USBDEVFS_GET_CAPABILITIES, &caps); + if (!(caps & USBDEVFS_CAP_DROP_PRIVILEGES)) { + printf("DROP_PRIVILEGES not supported\n"); + goto err; + } + + /* + * Drop privileges but keep the ability to claim all + * free interfaces (i.e., those not used by kernel drivers) + */ + drop_privileges(fd, -1U); + + printf("Available options:\n" + "[0] Exit now\n" + "[1] Reset device. Should fail if device is in use\n" + "[2] Claim 4 interfaces. Should succeed where not in use\n" + "[3] Narrow interface permission mask\n" + "Which option shall I run?: "); + + while (scanf("%d", &c) == 1) { + switch (c) { + case 0: + goto exit; + case 1: + reset_device(fd); + break; + case 2: + claim_some_intf(fd); + break; + case 3: + printf("Insert new mask: "); + scanf("%x", &mask); + drop_privileges(fd, mask); + break; + default: + printf("I don't recognize that\n"); + } + + printf("Which test shall I run next?: "); + } + +exit: + close(fd); + return 0; + +err: + close(fd); +err_fd: + return 1; +} diff --git a/Documentation/usb/usbip_protocol.txt b/Documentation/usb/usbip_protocol.txt new file mode 100644 index 000000000..c7a0f4c7e --- /dev/null +++ b/Documentation/usb/usbip_protocol.txt @@ -0,0 +1,357 @@ +PRELIMINARY DRAFT, MAY CONTAIN MISTAKES! +28 Jun 2011 + +The USB/IP protocol follows a server/client architecture. The server exports the +USB devices and the clients imports them. The device driver for the exported +USB device runs on the client machine. + +The client may ask for the list of the exported USB devices. To get the list the +client opens a TCP/IP connection towards the server, and sends an OP_REQ_DEVLIST +packet on top of the TCP/IP connection (so the actual OP_REQ_DEVLIST may be sent +in one or more pieces at the low level transport layer). The server sends back +the OP_REP_DEVLIST packet which lists the exported USB devices. Finally the +TCP/IP connection is closed. + + virtual host controller usb host + "client" "server" + (imports USB devices) (exports USB devices) + | | + | OP_REQ_DEVLIST | + | ----------------------------------------------> | + | | + | OP_REP_DEVLIST | + | <---------------------------------------------- | + | | + +Once the client knows the list of exported USB devices it may decide to use one +of them. First the client opens a TCP/IP connection towards the server and +sends an OP_REQ_IMPORT packet. The server replies with OP_REP_IMPORT. If the +import was successful the TCP/IP connection remains open and will be used +to transfer the URB traffic between the client and the server. The client may +send two types of packets: the USBIP_CMD_SUBMIT to submit an URB, and +USBIP_CMD_UNLINK to unlink a previously submitted URB. The answers of the +server may be USBIP_RET_SUBMIT and USBIP_RET_UNLINK respectively. + + virtual host controller usb host + "client" "server" + (imports USB devices) (exports USB devices) + | | + | OP_REQ_IMPORT | + | ----------------------------------------------> | + | | + | OP_REP_IMPORT | + | <---------------------------------------------- | + | | + | | + | USBIP_CMD_SUBMIT(seqnum = n) | + | ----------------------------------------------> | + | | + | USBIP_RET_SUBMIT(seqnum = n) | + | <---------------------------------------------- | + | . | + | : | + | | + | USBIP_CMD_SUBMIT(seqnum = m) | + | ----------------------------------------------> | + | | + | USBIP_CMD_SUBMIT(seqnum = m+1) | + | ----------------------------------------------> | + | | + | USBIP_CMD_SUBMIT(seqnum = m+2) | + | ----------------------------------------------> | + | | + | USBIP_RET_SUBMIT(seqnum = m) | + | <---------------------------------------------- | + | | + | USBIP_CMD_SUBMIT(seqnum = m+3) | + | ----------------------------------------------> | + | | + | USBIP_RET_SUBMIT(seqnum = m+1) | + | <---------------------------------------------- | + | | + | USBIP_CMD_SUBMIT(seqnum = m+4) | + | ----------------------------------------------> | + | | + | USBIP_RET_SUBMIT(seqnum = m+2) | + | <---------------------------------------------- | + | . | + | : | + | | + | USBIP_CMD_UNLINK | + | ----------------------------------------------> | + | | + | USBIP_RET_UNLINK | + | <---------------------------------------------- | + | | + +The fields are in network (big endian) byte order meaning that the most significant +byte (MSB) is stored at the lowest address. + + +OP_REQ_DEVLIST: Retrieve the list of exported USB devices. + + Offset | Length | Value | Description +-----------+--------+------------+--------------------------------------------------- + 0 | 2 | 0x0100 | Binary-coded decimal USBIP version number: v1.0.0 +-----------+--------+------------+--------------------------------------------------- + 2 | 2 | 0x8005 | Command code: Retrieve the list of exported USB + | | | devices. +-----------+--------+------------+--------------------------------------------------- + 4 | 4 | 0x00000000 | Status: unused, shall be set to 0 + +OP_REP_DEVLIST: Reply with the list of exported USB devices. + + Offset | Length | Value | Description +-----------+--------+------------+--------------------------------------------------- + 0 | 2 | 0x0100 | Binary-coded decimal USBIP version number: v1.0.0. +-----------+--------+------------+--------------------------------------------------- + 2 | 2 | 0x0005 | Reply code: The list of exported USB devices. +-----------+--------+------------+--------------------------------------------------- + 4 | 4 | 0x00000000 | Status: 0 for OK +-----------+--------+------------+--------------------------------------------------- + 8 | 4 | n | Number of exported devices: 0 means no exported + | | | devices. +-----------+--------+------------+--------------------------------------------------- + 0x0C | | | From now on the exported n devices are described, + | | | if any. If no devices are exported the message + | | | ends with the previous "number of exported + | | | devices" field. +-----------+--------+------------+--------------------------------------------------- + | 256 | | path: Path of the device on the host exporting the + | | | USB device, string closed with zero byte, e.g. + | | | "/sys/devices/pci0000:00/0000:00:1d.1/usb3/3-2" + | | | The unused bytes shall be filled with zero + | | | bytes. +-----------+--------+------------+--------------------------------------------------- + 0x10C | 32 | | busid: Bus ID of the exported device, string + | | | closed with zero byte, e.g. "3-2". The unused + | | | bytes shall be filled with zero bytes. +-----------+--------+------------+--------------------------------------------------- + 0x12C | 4 | | busnum +-----------+--------+------------+--------------------------------------------------- + 0x130 | 4 | | devnum +-----------+--------+------------+--------------------------------------------------- + 0x134 | 4 | | speed +-----------+--------+------------+--------------------------------------------------- + 0x138 | 2 | | idVendor +-----------+--------+------------+--------------------------------------------------- + 0x13A | 2 | | idProduct +-----------+--------+------------+--------------------------------------------------- + 0x13C | 2 | | bcdDevice +-----------+--------+------------+--------------------------------------------------- + 0x13E | 1 | | bDeviceClass +-----------+--------+------------+--------------------------------------------------- + 0x13F | 1 | | bDeviceSubClass +-----------+--------+------------+--------------------------------------------------- + 0x140 | 1 | | bDeviceProtocol +-----------+--------+------------+--------------------------------------------------- + 0x141 | 1 | | bConfigurationValue +-----------+--------+------------+--------------------------------------------------- + 0x142 | 1 | | bNumConfigurations +-----------+--------+------------+--------------------------------------------------- + 0x143 | 1 | | bNumInterfaces +-----------+--------+------------+--------------------------------------------------- + 0x144 | | m_0 | From now on each interface is described, all + | | | together bNumInterfaces times, with the + | | | the following 4 fields: +-----------+--------+------------+--------------------------------------------------- + | 1 | | bInterfaceClass +-----------+--------+------------+--------------------------------------------------- + 0x145 | 1 | | bInterfaceSubClass +-----------+--------+------------+--------------------------------------------------- + 0x146 | 1 | | bInterfaceProtocol +-----------+--------+------------+--------------------------------------------------- + 0x147 | 1 | | padding byte for alignment, shall be set to zero +-----------+--------+------------+--------------------------------------------------- + 0xC + | | | The second exported USB device starts at i=1 + i*0x138 + | | | with the busid field. + m_(i-1)*4 | | | + +OP_REQ_IMPORT: Request to import (attach) a remote USB device. + + Offset | Length | Value | Description +-----------+--------+------------+--------------------------------------------------- + 0 | 2 | 0x0100 | Binary-coded decimal USBIP version number: v1.0.0 +-----------+--------+------------+--------------------------------------------------- + 2 | 2 | 0x8003 | Command code: import a remote USB device. +-----------+--------+------------+--------------------------------------------------- + 4 | 4 | 0x00000000 | Status: unused, shall be set to 0 +-----------+--------+------------+--------------------------------------------------- + 8 | 32 | | busid: the busid of the exported device on the + | | | remote host. The possible values are taken + | | | from the message field OP_REP_DEVLIST.busid. + | | | A string closed with zero, the unused bytes + | | | shall be filled with zeros. +-----------+--------+------------+--------------------------------------------------- + +OP_REP_IMPORT: Reply to import (attach) a remote USB device. + + Offset | Length | Value | Description +-----------+--------+------------+--------------------------------------------------- + 0 | 2 | 0x0100 | Binary-coded decimal USBIP version number: v1.0.0 +-----------+--------+------------+--------------------------------------------------- + 2 | 2 | 0x0003 | Reply code: Reply to import. +-----------+--------+------------+--------------------------------------------------- + 4 | 4 | 0x00000000 | Status: 0 for OK + | | | 1 for error +-----------+--------+------------+--------------------------------------------------- + 8 | | | From now on comes the details of the imported + | | | device, if the previous status field was OK (0), + | | | otherwise the reply ends with the status field. +-----------+--------+------------+--------------------------------------------------- + | 256 | | path: Path of the device on the host exporting the + | | | USB device, string closed with zero byte, e.g. + | | | "/sys/devices/pci0000:00/0000:00:1d.1/usb3/3-2" + | | | The unused bytes shall be filled with zero + | | | bytes. +-----------+--------+------------+--------------------------------------------------- + 0x108 | 32 | | busid: Bus ID of the exported device, string + | | | closed with zero byte, e.g. "3-2". The unused + | | | bytes shall be filled with zero bytes. +-----------+--------+------------+--------------------------------------------------- + 0x128 | 4 | | busnum +-----------+--------+------------+--------------------------------------------------- + 0x12C | 4 | | devnum +-----------+--------+------------+--------------------------------------------------- + 0x130 | 4 | | speed +-----------+--------+------------+--------------------------------------------------- + 0x134 | 2 | | idVendor +-----------+--------+------------+--------------------------------------------------- + 0x136 | 2 | | idProduct +-----------+--------+------------+--------------------------------------------------- + 0x138 | 2 | | bcdDevice +-----------+--------+------------+--------------------------------------------------- + 0x139 | 1 | | bDeviceClass +-----------+--------+------------+--------------------------------------------------- + 0x13A | 1 | | bDeviceSubClass +-----------+--------+------------+--------------------------------------------------- + 0x13B | 1 | | bDeviceProtocol +-----------+--------+------------+--------------------------------------------------- + 0x13C | 1 | | bConfigurationValue +-----------+--------+------------+--------------------------------------------------- + 0x13D | 1 | | bNumConfigurations +-----------+--------+------------+--------------------------------------------------- + 0x13E | 1 | | bNumInterfaces + +USBIP_CMD_SUBMIT: Submit an URB + + Offset | Length | Value | Description +-----------+--------+------------+--------------------------------------------------- + 0 | 4 | 0x00000001 | command: Submit an URB +-----------+--------+------------+--------------------------------------------------- + 4 | 4 | | seqnum: the sequence number of the URB to submit +-----------+--------+------------+--------------------------------------------------- + 8 | 4 | | devid +-----------+--------+------------+--------------------------------------------------- + 0xC | 4 | | direction: 0: USBIP_DIR_OUT + | | | 1: USBIP_DIR_IN +-----------+--------+------------+--------------------------------------------------- + 0x10 | 4 | | ep: endpoint number, possible values are: 0...15 +-----------+--------+------------+--------------------------------------------------- + 0x14 | 4 | | transfer_flags: possible values depend on the + | | | URB transfer type, see below +-----------+--------+------------+--------------------------------------------------- + 0x18 | 4 | | transfer_buffer_length +-----------+--------+------------+--------------------------------------------------- + 0x1C | 4 | | start_frame: specify the selected frame to + | | | transmit an ISO frame, ignored if URB_ISO_ASAP + | | | is specified at transfer_flags +-----------+--------+------------+--------------------------------------------------- + 0x20 | 4 | | number_of_packets: number of ISO packets +-----------+--------+------------+--------------------------------------------------- + 0x24 | 4 | | interval: maximum time for the request on the + | | | server-side host controller +-----------+--------+------------+--------------------------------------------------- + 0x28 | 8 | | setup: data bytes for USB setup, filled with + | | | zeros if not used +-----------+--------+------------+--------------------------------------------------- + 0x30 | | | URB data. For ISO transfers the padding between + | | | each ISO packets is not transmitted. + + + Allowed transfer_flags | value | control | interrupt | bulk | isochronous + -------------------------+------------+---------+-----------+----------+------------- + URB_SHORT_NOT_OK | 0x00000001 | only in | only in | only in | no + URB_ISO_ASAP | 0x00000002 | no | no | no | yes + URB_NO_TRANSFER_DMA_MAP | 0x00000004 | yes | yes | yes | yes + URB_ZERO_PACKET | 0x00000040 | no | no | only out | no + URB_NO_INTERRUPT | 0x00000080 | yes | yes | yes | yes + URB_FREE_BUFFER | 0x00000100 | yes | yes | yes | yes + URB_DIR_MASK | 0x00000200 | yes | yes | yes | yes + + +USBIP_RET_SUBMIT: Reply for submitting an URB + + Offset | Length | Value | Description +-----------+--------+------------+--------------------------------------------------- + 0 | 4 | 0x00000003 | command +-----------+--------+------------+--------------------------------------------------- + 4 | 4 | | seqnum: URB sequence number +-----------+--------+------------+--------------------------------------------------- + 8 | 4 | | devid +-----------+--------+------------+--------------------------------------------------- + 0xC | 4 | | direction: 0: USBIP_DIR_OUT + | | | 1: USBIP_DIR_IN +-----------+--------+------------+--------------------------------------------------- + 0x10 | 4 | | ep: endpoint number +-----------+--------+------------+--------------------------------------------------- + 0x14 | 4 | | status: zero for successful URB transaction, + | | | otherwise some kind of error happened. +-----------+--------+------------+--------------------------------------------------- + 0x18 | 4 | n | actual_length: number of URB data bytes +-----------+--------+------------+--------------------------------------------------- + 0x1C | 4 | | start_frame: for an ISO frame the actually + | | | selected frame for transmit. +-----------+--------+------------+--------------------------------------------------- + 0x20 | 4 | | number_of_packets +-----------+--------+------------+--------------------------------------------------- + 0x24 | 4 | | error_count +-----------+--------+------------+--------------------------------------------------- + 0x28 | 8 | | setup: data bytes for USB setup, filled with + | | | zeros if not used +-----------+--------+------------+--------------------------------------------------- + 0x30 | n | | URB data bytes. For ISO transfers the padding + | | | between each ISO packets is not transmitted. + +USBIP_CMD_UNLINK: Unlink an URB + + Offset | Length | Value | Description +-----------+--------+------------+--------------------------------------------------- + 0 | 4 | 0x00000002 | command: URB unlink command +-----------+--------+------------+--------------------------------------------------- + 4 | 4 | | seqnum: URB sequence number to unlink: FIXME: is this so? +-----------+--------+------------+--------------------------------------------------- + 8 | 4 | | devid +-----------+--------+------------+--------------------------------------------------- + 0xC | 4 | | direction: 0: USBIP_DIR_OUT + | | | 1: USBIP_DIR_IN +-----------+--------+------------+--------------------------------------------------- + 0x10 | 4 | | ep: endpoint number: zero +-----------+--------+------------+--------------------------------------------------- + 0x14 | 4 | | seqnum: the URB sequence number given previously + | | | at USBIP_CMD_SUBMIT.seqnum field +-----------+--------+------------+--------------------------------------------------- + 0x30 | n | | URB data bytes. For ISO transfers the padding + | | | between each ISO packets is not transmitted. + +USBIP_RET_UNLINK: Reply for URB unlink + + Offset | Length | Value | Description +-----------+--------+------------+--------------------------------------------------- + 0 | 4 | 0x00000004 | command: reply for the URB unlink command +-----------+--------+------------+--------------------------------------------------- + 4 | 4 | | seqnum: the unlinked URB sequence number +-----------+--------+------------+--------------------------------------------------- + 8 | 4 | | devid +-----------+--------+------------+--------------------------------------------------- + 0xC | 4 | | direction: 0: USBIP_DIR_OUT + | | | 1: USBIP_DIR_IN +-----------+--------+------------+--------------------------------------------------- + 0x10 | 4 | | ep: endpoint number +-----------+--------+------------+--------------------------------------------------- + 0x14 | 4 | | status: This is the value contained in the + | | | urb->status in the URB completition handler. + | | | FIXME: a better explanation needed. +-----------+--------+------------+--------------------------------------------------- + 0x30 | n | | URB data bytes. For ISO transfers the padding + | | | between each ISO packets is not transmitted. diff --git a/Documentation/usb/usbmon.txt b/Documentation/usb/usbmon.txt new file mode 100644 index 000000000..28425f736 --- /dev/null +++ b/Documentation/usb/usbmon.txt @@ -0,0 +1,355 @@ +* Introduction + +The name "usbmon" in lowercase refers to a facility in kernel which is +used to collect traces of I/O on the USB bus. This function is analogous +to a packet socket used by network monitoring tools such as tcpdump(1) +or Ethereal. Similarly, it is expected that a tool such as usbdump or +USBMon (with uppercase letters) is used to examine raw traces produced +by usbmon. + +The usbmon reports requests made by peripheral-specific drivers to Host +Controller Drivers (HCD). So, if HCD is buggy, the traces reported by +usbmon may not correspond to bus transactions precisely. This is the same +situation as with tcpdump. + +Two APIs are currently implemented: "text" and "binary". The binary API +is available through a character device in /dev namespace and is an ABI. +The text API is deprecated since 2.6.35, but available for convenience. + +* How to use usbmon to collect raw text traces + +Unlike the packet socket, usbmon has an interface which provides traces +in a text format. This is used for two purposes. First, it serves as a +common trace exchange format for tools while more sophisticated formats +are finalized. Second, humans can read it in case tools are not available. + +To collect a raw text trace, execute following steps. + +1. Prepare + +Mount debugfs (it has to be enabled in your kernel configuration), and +load the usbmon module (if built as module). The second step is skipped +if usbmon is built into the kernel. + +# mount -t debugfs none_debugs /sys/kernel/debug +# modprobe usbmon +# + +Verify that bus sockets are present. + +# ls /sys/kernel/debug/usb/usbmon +0s 0u 1s 1t 1u 2s 2t 2u 3s 3t 3u 4s 4t 4u +# + +Now you can choose to either use the socket '0u' (to capture packets on all +buses), and skip to step #3, or find the bus used by your device with step #2. +This allows to filter away annoying devices that talk continuously. + +2. Find which bus connects to the desired device + +Run "cat /sys/kernel/debug/usb/devices", and find the T-line which corresponds +to the device. Usually you do it by looking for the vendor string. If you have +many similar devices, unplug one and compare the two +/sys/kernel/debug/usb/devices outputs. The T-line will have a bus number. +Example: + +T: Bus=03 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 0 +D: Ver= 1.10 Cls=00(>ifc ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1 +P: Vendor=0557 ProdID=2004 Rev= 1.00 +S: Manufacturer=ATEN +S: Product=UC100KM V2.00 + +"Bus=03" means it's bus 3. Alternatively, you can look at the output from +"lsusb" and get the bus number from the appropriate line. Example: + +Bus 003 Device 002: ID 0557:2004 ATEN UC100KM V2.00 + +3. Start 'cat' + +# cat /sys/kernel/debug/usb/usbmon/3u > /tmp/1.mon.out + +to listen on a single bus, otherwise, to listen on all buses, type: + +# cat /sys/kernel/debug/usb/usbmon/0u > /tmp/1.mon.out + +This process will read until it is killed. Naturally, the output can be +redirected to a desirable location. This is preferred, because it is going +to be quite long. + +4. Perform the desired operation on the USB bus + +This is where you do something that creates the traffic: plug in a flash key, +copy files, control a webcam, etc. + +5. Kill cat + +Usually it's done with a keyboard interrupt (Control-C). + +At this point the output file (/tmp/1.mon.out in this example) can be saved, +sent by e-mail, or inspected with a text editor. In the last case make sure +that the file size is not excessive for your favourite editor. + +* Raw text data format + +Two formats are supported currently: the original, or '1t' format, and +the '1u' format. The '1t' format is deprecated in kernel 2.6.21. The '1u' +format adds a few fields, such as ISO frame descriptors, interval, etc. +It produces slightly longer lines, but otherwise is a perfect superset +of '1t' format. + +If it is desired to recognize one from the other in a program, look at the +"address" word (see below), where '1u' format adds a bus number. If 2 colons +are present, it's the '1t' format, otherwise '1u'. + +Any text format data consists of a stream of events, such as URB submission, +URB callback, submission error. Every event is a text line, which consists +of whitespace separated words. The number or position of words may depend +on the event type, but there is a set of words, common for all types. + +Here is the list of words, from left to right: + +- URB Tag. This is used to identify URBs, and is normally an in-kernel address + of the URB structure in hexadecimal, but can be a sequence number or any + other unique string, within reason. + +- Timestamp in microseconds, a decimal number. The timestamp's resolution + depends on available clock, and so it can be much worse than a microsecond + (if the implementation uses jiffies, for example). + +- Event Type. This type refers to the format of the event, not URB type. + Available types are: S - submission, C - callback, E - submission error. + +- "Address" word (formerly a "pipe"). It consists of four fields, separated by + colons: URB type and direction, Bus number, Device address, Endpoint number. + Type and direction are encoded with two bytes in the following manner: + Ci Co Control input and output + Zi Zo Isochronous input and output + Ii Io Interrupt input and output + Bi Bo Bulk input and output + Bus number, Device address, and Endpoint are decimal numbers, but they may + have leading zeros, for the sake of human readers. + +- URB Status word. This is either a letter, or several numbers separated + by colons: URB status, interval, start frame, and error count. Unlike the + "address" word, all fields save the status are optional. Interval is printed + only for interrupt and isochronous URBs. Start frame is printed only for + isochronous URBs. Error count is printed only for isochronous callback + events. + + The status field is a decimal number, sometimes negative, which represents + a "status" field of the URB. This field makes no sense for submissions, but + is present anyway to help scripts with parsing. When an error occurs, the + field contains the error code. + + In case of a submission of a Control packet, this field contains a Setup Tag + instead of an group of numbers. It is easy to tell whether the Setup Tag is + present because it is never a number. Thus if scripts find a set of numbers + in this word, they proceed to read Data Length (except for isochronous URBs). + If they find something else, like a letter, they read the setup packet before + reading the Data Length or isochronous descriptors. + +- Setup packet, if present, consists of 5 words: one of each for bmRequestType, + bRequest, wValue, wIndex, wLength, as specified by the USB Specification 2.0. + These words are safe to decode if Setup Tag was 's'. Otherwise, the setup + packet was present, but not captured, and the fields contain filler. + +- Number of isochronous frame descriptors and descriptors themselves. + If an Isochronous transfer event has a set of descriptors, a total number + of them in an URB is printed first, then a word per descriptor, up to a + total of 5. The word consists of 3 colon-separated decimal numbers for + status, offset, and length respectively. For submissions, initial length + is reported. For callbacks, actual length is reported. + +- Data Length. For submissions, this is the requested length. For callbacks, + this is the actual length. + +- Data tag. The usbmon may not always capture data, even if length is nonzero. + The data words are present only if this tag is '='. + +- Data words follow, in big endian hexadecimal format. Notice that they are + not machine words, but really just a byte stream split into words to make + it easier to read. Thus, the last word may contain from one to four bytes. + The length of collected data is limited and can be less than the data length + reported in the Data Length word. In the case of an Isochronous input (Zi) + completion where the received data is sparse in the buffer, the length of + the collected data can be greater than the Data Length value (because Data + Length counts only the bytes that were received whereas the Data words + contain the entire transfer buffer). + +Examples: + +An input control transfer to get a port status. + +d5ea89a0 3575914555 S Ci:1:001:0 s a3 00 0000 0003 0004 4 < +d5ea89a0 3575914560 C Ci:1:001:0 0 4 = 01050000 + +An output bulk transfer to send a SCSI command 0x28 (READ_10) in a 31-byte +Bulk wrapper to a storage device at address 5: + +dd65f0e8 4128379752 S Bo:1:005:2 -115 31 = 55534243 ad000000 00800000 80010a28 20000000 20000040 00000000 000000 +dd65f0e8 4128379808 C Bo:1:005:2 0 31 > + +* Raw binary format and API + +The overall architecture of the API is about the same as the one above, +only the events are delivered in binary format. Each event is sent in +the following structure (its name is made up, so that we can refer to it): + +struct usbmon_packet { + u64 id; /* 0: URB ID - from submission to callback */ + unsigned char type; /* 8: Same as text; extensible. */ + unsigned char xfer_type; /* ISO (0), Intr, Control, Bulk (3) */ + unsigned char epnum; /* Endpoint number and transfer direction */ + unsigned char devnum; /* Device address */ + u16 busnum; /* 12: Bus number */ + char flag_setup; /* 14: Same as text */ + char flag_data; /* 15: Same as text; Binary zero is OK. */ + s64 ts_sec; /* 16: gettimeofday */ + s32 ts_usec; /* 24: gettimeofday */ + int status; /* 28: */ + unsigned int length; /* 32: Length of data (submitted or actual) */ + unsigned int len_cap; /* 36: Delivered length */ + union { /* 40: */ + unsigned char setup[SETUP_LEN]; /* Only for Control S-type */ + struct iso_rec { /* Only for ISO */ + int error_count; + int numdesc; + } iso; + } s; + int interval; /* 48: Only for Interrupt and ISO */ + int start_frame; /* 52: For ISO */ + unsigned int xfer_flags; /* 56: copy of URB's transfer_flags */ + unsigned int ndesc; /* 60: Actual number of ISO descriptors */ +}; /* 64 total length */ + +These events can be received from a character device by reading with read(2), +with an ioctl(2), or by accessing the buffer with mmap. However, read(2) +only returns first 48 bytes for compatibility reasons. + +The character device is usually called /dev/usbmonN, where N is the USB bus +number. Number zero (/dev/usbmon0) is special and means "all buses". +Note that specific naming policy is set by your Linux distribution. + +If you create /dev/usbmon0 by hand, make sure that it is owned by root +and has mode 0600. Otherwise, unprivileged users will be able to snoop +keyboard traffic. + +The following ioctl calls are available, with MON_IOC_MAGIC 0x92: + + MON_IOCQ_URB_LEN, defined as _IO(MON_IOC_MAGIC, 1) + +This call returns the length of data in the next event. Note that majority of +events contain no data, so if this call returns zero, it does not mean that +no events are available. + + MON_IOCG_STATS, defined as _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats) + +The argument is a pointer to the following structure: + +struct mon_bin_stats { + u32 queued; + u32 dropped; +}; + +The member "queued" refers to the number of events currently queued in the +buffer (and not to the number of events processed since the last reset). + +The member "dropped" is the number of events lost since the last call +to MON_IOCG_STATS. + + MON_IOCT_RING_SIZE, defined as _IO(MON_IOC_MAGIC, 4) + +This call sets the buffer size. The argument is the size in bytes. +The size may be rounded down to the next chunk (or page). If the requested +size is out of [unspecified] bounds for this kernel, the call fails with +-EINVAL. + + MON_IOCQ_RING_SIZE, defined as _IO(MON_IOC_MAGIC, 5) + +This call returns the current size of the buffer in bytes. + + MON_IOCX_GET, defined as _IOW(MON_IOC_MAGIC, 6, struct mon_get_arg) + MON_IOCX_GETX, defined as _IOW(MON_IOC_MAGIC, 10, struct mon_get_arg) + +These calls wait for events to arrive if none were in the kernel buffer, +then return the first event. The argument is a pointer to the following +structure: + +struct mon_get_arg { + struct usbmon_packet *hdr; + void *data; + size_t alloc; /* Length of data (can be zero) */ +}; + +Before the call, hdr, data, and alloc should be filled. Upon return, the area +pointed by hdr contains the next event structure, and the data buffer contains +the data, if any. The event is removed from the kernel buffer. + +The MON_IOCX_GET copies 48 bytes to hdr area, MON_IOCX_GETX copies 64 bytes. + + MON_IOCX_MFETCH, defined as _IOWR(MON_IOC_MAGIC, 7, struct mon_mfetch_arg) + +This ioctl is primarily used when the application accesses the buffer +with mmap(2). Its argument is a pointer to the following structure: + +struct mon_mfetch_arg { + uint32_t *offvec; /* Vector of events fetched */ + uint32_t nfetch; /* Number of events to fetch (out: fetched) */ + uint32_t nflush; /* Number of events to flush */ +}; + +The ioctl operates in 3 stages. + +First, it removes and discards up to nflush events from the kernel buffer. +The actual number of events discarded is returned in nflush. + +Second, it waits for an event to be present in the buffer, unless the pseudo- +device is open with O_NONBLOCK. + +Third, it extracts up to nfetch offsets into the mmap buffer, and stores +them into the offvec. The actual number of event offsets is stored into +the nfetch. + + MON_IOCH_MFLUSH, defined as _IO(MON_IOC_MAGIC, 8) + +This call removes a number of events from the kernel buffer. Its argument +is the number of events to remove. If the buffer contains fewer events +than requested, all events present are removed, and no error is reported. +This works when no events are available too. + + FIONBIO + +The ioctl FIONBIO may be implemented in the future, if there's a need. + +In addition to ioctl(2) and read(2), the special file of binary API can +be polled with select(2) and poll(2). But lseek(2) does not work. + +* Memory-mapped access of the kernel buffer for the binary API + +The basic idea is simple: + +To prepare, map the buffer by getting the current size, then using mmap(2). +Then, execute a loop similar to the one written in pseudo-code below: + + struct mon_mfetch_arg fetch; + struct usbmon_packet *hdr; + int nflush = 0; + for (;;) { + fetch.offvec = vec; // Has N 32-bit words + fetch.nfetch = N; // Or less than N + fetch.nflush = nflush; + ioctl(fd, MON_IOCX_MFETCH, &fetch); // Process errors, too + nflush = fetch.nfetch; // This many packets to flush when done + for (i = 0; i < nflush; i++) { + hdr = (struct ubsmon_packet *) &mmap_area[vec[i]]; + if (hdr->type == '@') // Filler packet + continue; + caddr_t data = &mmap_area[vec[i]] + 64; + process_packet(hdr, data); + } + } + +Thus, the main idea is to execute only one ioctl per N events. + +Although the buffer is circular, the returned headers and data do not cross +the end of the buffer, so the above pseudo-code does not need any gathering. diff --git a/Documentation/usb/wusb-cbaf b/Documentation/usb/wusb-cbaf new file mode 100644 index 000000000..8b3d43efc --- /dev/null +++ b/Documentation/usb/wusb-cbaf @@ -0,0 +1,130 @@ +#! /bin/bash +# + +set -e + +progname=$(basename $0) +function help +{ + cat <<EOF +Usage: $progname COMMAND DEVICEs [ARGS] + +Command for manipulating the pairing/authentication credentials of a +Wireless USB device that supports wired-mode Cable-Based-Association. + +Works in conjunction with the wusb-cba.ko driver from http://linuxuwb.org. + + +DEVICE + + sysfs path to the device to authenticate; for example, both this + guys are the same: + + /sys/devices/pci0000:00/0000:00:1d.7/usb1/1-4/1-4.4/1-4.4:1.1 + /sys/bus/usb/drivers/wusb-cbaf/1-4.4:1.1 + +COMMAND/ARGS are + + start + + Start a WUSB host controller (by setting up a CHID) + + set-chid DEVICE HOST-CHID HOST-BANDGROUP HOST-NAME + + Sets host information in the device; after this you can call the + get-cdid to see how does this device report itself to us. + + get-cdid DEVICE + + Get the device ID associated to the HOST-CHID we sent with + 'set-chid'. We might not know about it. + + set-cc DEVICE + + If we allow the device to connect, set a random new CDID and CK + (connection key). Device saves them for the next time it wants to + connect wireless. We save them for that next time also so we can + authenticate the device (when we see the CDID he uses to id + itself) and the CK to crypto talk to it. + +CHID is always 16 hex bytes in 'XX YY ZZ...' form +BANDGROUP is almost always 0001 + +Examples: + + You can default most arguments to '' to get a sane value: + + $ $progname set-chid '' '' '' "My host name" + + A full sequence: + + $ $progname set-chid '' '' '' "My host name" + $ $progname get-cdid '' + $ $progname set-cc '' + +EOF +} + + +# Defaults +# FIXME: CHID should come from a database :), band group from the host +host_CHID="00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff" +host_band_group="0001" +host_name=$(hostname) + +devs="$(echo /sys/bus/usb/drivers/wusb-cbaf/[0-9]*)" +hdevs="$(for h in /sys/class/uwb_rc/*/wusbhc; do readlink -f $h; done)" + +result=0 +case $1 in + start) + for dev in ${2:-$hdevs} + do + echo $host_CHID > $dev/wusb_chid + echo I: started host $(basename $dev) >&2 + done + ;; + stop) + for dev in ${2:-$hdevs} + do + echo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 > $dev/wusb_chid + echo I: stopped host $(basename $dev) >&2 + done + ;; + set-chid) + shift + for dev in ${2:-$devs}; do + echo "${4:-$host_name}" > $dev/wusb_host_name + echo "${3:-$host_band_group}" > $dev/wusb_host_band_groups + echo ${2:-$host_CHID} > $dev/wusb_chid + done + ;; + get-cdid) + for dev in ${2:-$devs} + do + cat $dev/wusb_cdid + done + ;; + set-cc) + for dev in ${2:-$devs}; do + shift + CDID="$(head --bytes=16 /dev/urandom | od -tx1 -An)" + CK="$(head --bytes=16 /dev/urandom | od -tx1 -An)" + echo "$CDID" > $dev/wusb_cdid + echo "$CK" > $dev/wusb_ck + + echo I: CC set >&2 + echo "CHID: $(cat $dev/wusb_chid)" + echo "CDID:$CDID" + echo "CK: $CK" + done + ;; + help|h|--help|-h) + help + ;; + *) + echo "E: Unknown usage" 1>&2 + help 1>&2 + result=1 +esac +exit $result |