summaryrefslogtreecommitdiffstats
path: root/Documentation/virtual/kvm/locking.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/virtual/kvm/locking.txt')
-rw-r--r--Documentation/virtual/kvm/locking.txt215
1 files changed, 215 insertions, 0 deletions
diff --git a/Documentation/virtual/kvm/locking.txt b/Documentation/virtual/kvm/locking.txt
new file mode 100644
index 000000000..635cd6eaf
--- /dev/null
+++ b/Documentation/virtual/kvm/locking.txt
@@ -0,0 +1,215 @@
+KVM Lock Overview
+=================
+
+1. Acquisition Orders
+---------------------
+
+The acquisition orders for mutexes are as follows:
+
+- kvm->lock is taken outside vcpu->mutex
+
+- kvm->lock is taken outside kvm->slots_lock and kvm->irq_lock
+
+- kvm->slots_lock is taken outside kvm->irq_lock, though acquiring
+ them together is quite rare.
+
+On x86, vcpu->mutex is taken outside kvm->arch.hyperv.hv_lock.
+
+Everything else is a leaf: no other lock is taken inside the critical
+sections.
+
+2: Exception
+------------
+
+Fast page fault:
+
+Fast page fault is the fast path which fixes the guest page fault out of
+the mmu-lock on x86. Currently, the page fault can be fast in one of the
+following two cases:
+
+1. Access Tracking: The SPTE is not present, but it is marked for access
+tracking i.e. the SPTE_SPECIAL_MASK is set. That means we need to
+restore the saved R/X bits. This is described in more detail later below.
+
+2. Write-Protection: The SPTE is present and the fault is
+caused by write-protect. That means we just need to change the W bit of the
+spte.
+
+What we use to avoid all the race is the SPTE_HOST_WRITEABLE bit and
+SPTE_MMU_WRITEABLE bit on the spte:
+- SPTE_HOST_WRITEABLE means the gfn is writable on host.
+- SPTE_MMU_WRITEABLE means the gfn is writable on mmu. The bit is set when
+ the gfn is writable on guest mmu and it is not write-protected by shadow
+ page write-protection.
+
+On fast page fault path, we will use cmpxchg to atomically set the spte W
+bit if spte.SPTE_HOST_WRITEABLE = 1 and spte.SPTE_WRITE_PROTECT = 1, or
+restore the saved R/X bits if VMX_EPT_TRACK_ACCESS mask is set, or both. This
+is safe because whenever changing these bits can be detected by cmpxchg.
+
+But we need carefully check these cases:
+1): The mapping from gfn to pfn
+The mapping from gfn to pfn may be changed since we can only ensure the pfn
+is not changed during cmpxchg. This is a ABA problem, for example, below case
+will happen:
+
+At the beginning:
+gpte = gfn1
+gfn1 is mapped to pfn1 on host
+spte is the shadow page table entry corresponding with gpte and
+spte = pfn1
+
+ VCPU 0 VCPU0
+on fast page fault path:
+
+ old_spte = *spte;
+ pfn1 is swapped out:
+ spte = 0;
+
+ pfn1 is re-alloced for gfn2.
+
+ gpte is changed to point to
+ gfn2 by the guest:
+ spte = pfn1;
+
+ if (cmpxchg(spte, old_spte, old_spte+W)
+ mark_page_dirty(vcpu->kvm, gfn1)
+ OOPS!!!
+
+We dirty-log for gfn1, that means gfn2 is lost in dirty-bitmap.
+
+For direct sp, we can easily avoid it since the spte of direct sp is fixed
+to gfn. For indirect sp, before we do cmpxchg, we call gfn_to_pfn_atomic()
+to pin gfn to pfn, because after gfn_to_pfn_atomic():
+- We have held the refcount of pfn that means the pfn can not be freed and
+ be reused for another gfn.
+- The pfn is writable that means it can not be shared between different gfns
+ by KSM.
+
+Then, we can ensure the dirty bitmaps is correctly set for a gfn.
+
+Currently, to simplify the whole things, we disable fast page fault for
+indirect shadow page.
+
+2): Dirty bit tracking
+In the origin code, the spte can be fast updated (non-atomically) if the
+spte is read-only and the Accessed bit has already been set since the
+Accessed bit and Dirty bit can not be lost.
+
+But it is not true after fast page fault since the spte can be marked
+writable between reading spte and updating spte. Like below case:
+
+At the beginning:
+spte.W = 0
+spte.Accessed = 1
+
+ VCPU 0 VCPU0
+In mmu_spte_clear_track_bits():
+
+ old_spte = *spte;
+
+ /* 'if' condition is satisfied. */
+ if (old_spte.Accessed == 1 &&
+ old_spte.W == 0)
+ spte = 0ull;
+ on fast page fault path:
+ spte.W = 1
+ memory write on the spte:
+ spte.Dirty = 1
+
+
+ else
+ old_spte = xchg(spte, 0ull)
+
+
+ if (old_spte.Accessed == 1)
+ kvm_set_pfn_accessed(spte.pfn);
+ if (old_spte.Dirty == 1)
+ kvm_set_pfn_dirty(spte.pfn);
+ OOPS!!!
+
+The Dirty bit is lost in this case.
+
+In order to avoid this kind of issue, we always treat the spte as "volatile"
+if it can be updated out of mmu-lock, see spte_has_volatile_bits(), it means,
+the spte is always atomically updated in this case.
+
+3): flush tlbs due to spte updated
+If the spte is updated from writable to readonly, we should flush all TLBs,
+otherwise rmap_write_protect will find a read-only spte, even though the
+writable spte might be cached on a CPU's TLB.
+
+As mentioned before, the spte can be updated to writable out of mmu-lock on
+fast page fault path, in order to easily audit the path, we see if TLBs need
+be flushed caused by this reason in mmu_spte_update() since this is a common
+function to update spte (present -> present).
+
+Since the spte is "volatile" if it can be updated out of mmu-lock, we always
+atomically update the spte, the race caused by fast page fault can be avoided,
+See the comments in spte_has_volatile_bits() and mmu_spte_update().
+
+Lockless Access Tracking:
+
+This is used for Intel CPUs that are using EPT but do not support the EPT A/D
+bits. In this case, when the KVM MMU notifier is called to track accesses to a
+page (via kvm_mmu_notifier_clear_flush_young), it marks the PTE as not-present
+by clearing the RWX bits in the PTE and storing the original R & X bits in
+some unused/ignored bits. In addition, the SPTE_SPECIAL_MASK is also set on the
+PTE (using the ignored bit 62). When the VM tries to access the page later on,
+a fault is generated and the fast page fault mechanism described above is used
+to atomically restore the PTE to a Present state. The W bit is not saved when
+the PTE is marked for access tracking and during restoration to the Present
+state, the W bit is set depending on whether or not it was a write access. If
+it wasn't, then the W bit will remain clear until a write access happens, at
+which time it will be set using the Dirty tracking mechanism described above.
+
+3. Reference
+------------
+
+Name: kvm_lock
+Type: mutex
+Arch: any
+Protects: - vm_list
+
+Name: kvm_count_lock
+Type: raw_spinlock_t
+Arch: any
+Protects: - hardware virtualization enable/disable
+Comment: 'raw' because hardware enabling/disabling must be atomic /wrt
+ migration.
+
+Name: kvm_arch::tsc_write_lock
+Type: raw_spinlock
+Arch: x86
+Protects: - kvm_arch::{last_tsc_write,last_tsc_nsec,last_tsc_offset}
+ - tsc offset in vmcb
+Comment: 'raw' because updating the tsc offsets must not be preempted.
+
+Name: kvm->mmu_lock
+Type: spinlock_t
+Arch: any
+Protects: -shadow page/shadow tlb entry
+Comment: it is a spinlock since it is used in mmu notifier.
+
+Name: kvm->srcu
+Type: srcu lock
+Arch: any
+Protects: - kvm->memslots
+ - kvm->buses
+Comment: The srcu read lock must be held while accessing memslots (e.g.
+ when using gfn_to_* functions) and while accessing in-kernel
+ MMIO/PIO address->device structure mapping (kvm->buses).
+ The srcu index can be stored in kvm_vcpu->srcu_idx per vcpu
+ if it is needed by multiple functions.
+
+Name: blocked_vcpu_on_cpu_lock
+Type: spinlock_t
+Arch: x86
+Protects: blocked_vcpu_on_cpu
+Comment: This is a per-CPU lock and it is used for VT-d posted-interrupts.
+ When VT-d posted-interrupts is supported and the VM has assigned
+ devices, we put the blocked vCPU on the list blocked_vcpu_on_cpu
+ protected by blocked_vcpu_on_cpu_lock, when VT-d hardware issues
+ wakeup notification event since external interrupts from the
+ assigned devices happens, we will find the vCPU on the list to
+ wakeup.