diff options
Diffstat (limited to '')
-rw-r--r-- | arch/arm64/mm/fault.c | 914 |
1 files changed, 914 insertions, 0 deletions
diff --git a/arch/arm64/mm/fault.c b/arch/arm64/mm/fault.c new file mode 100644 index 000000000..b046006a3 --- /dev/null +++ b/arch/arm64/mm/fault.c @@ -0,0 +1,914 @@ +/* + * Based on arch/arm/mm/fault.c + * + * Copyright (C) 1995 Linus Torvalds + * Copyright (C) 1995-2004 Russell King + * Copyright (C) 2012 ARM Ltd. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#include <linux/extable.h> +#include <linux/signal.h> +#include <linux/mm.h> +#include <linux/hardirq.h> +#include <linux/init.h> +#include <linux/kprobes.h> +#include <linux/uaccess.h> +#include <linux/page-flags.h> +#include <linux/sched/signal.h> +#include <linux/sched/debug.h> +#include <linux/highmem.h> +#include <linux/perf_event.h> +#include <linux/preempt.h> +#include <linux/hugetlb.h> + +#include <asm/bug.h> +#include <asm/cmpxchg.h> +#include <asm/cpufeature.h> +#include <asm/exception.h> +#include <asm/debug-monitors.h> +#include <asm/esr.h> +#include <asm/sysreg.h> +#include <asm/system_misc.h> +#include <asm/pgtable.h> +#include <asm/tlbflush.h> +#include <asm/traps.h> + +#include <acpi/ghes.h> + +struct fault_info { + int (*fn)(unsigned long addr, unsigned int esr, + struct pt_regs *regs); + int sig; + int code; + const char *name; +}; + +static const struct fault_info fault_info[]; + +static inline const struct fault_info *esr_to_fault_info(unsigned int esr) +{ + return fault_info + (esr & 63); +} + +#ifdef CONFIG_KPROBES +static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr) +{ + int ret = 0; + + /* kprobe_running() needs smp_processor_id() */ + if (!user_mode(regs)) { + preempt_disable(); + if (kprobe_running() && kprobe_fault_handler(regs, esr)) + ret = 1; + preempt_enable(); + } + + return ret; +} +#else +static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr) +{ + return 0; +} +#endif + +static void data_abort_decode(unsigned int esr) +{ + pr_alert("Data abort info:\n"); + + if (esr & ESR_ELx_ISV) { + pr_alert(" Access size = %u byte(s)\n", + 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT)); + pr_alert(" SSE = %lu, SRT = %lu\n", + (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT, + (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT); + pr_alert(" SF = %lu, AR = %lu\n", + (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT, + (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT); + } else { + pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK); + } + + pr_alert(" CM = %lu, WnR = %lu\n", + (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT, + (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT); +} + +static void mem_abort_decode(unsigned int esr) +{ + pr_alert("Mem abort info:\n"); + + pr_alert(" ESR = 0x%08x\n", esr); + pr_alert(" Exception class = %s, IL = %u bits\n", + esr_get_class_string(esr), + (esr & ESR_ELx_IL) ? 32 : 16); + pr_alert(" SET = %lu, FnV = %lu\n", + (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT, + (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT); + pr_alert(" EA = %lu, S1PTW = %lu\n", + (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT, + (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT); + + if (esr_is_data_abort(esr)) + data_abort_decode(esr); +} + +/* + * Dump out the page tables associated with 'addr' in the currently active mm. + */ +void show_pte(unsigned long addr) +{ + struct mm_struct *mm; + pgd_t *pgdp; + pgd_t pgd; + + if (addr < TASK_SIZE) { + /* TTBR0 */ + mm = current->active_mm; + if (mm == &init_mm) { + pr_alert("[%016lx] user address but active_mm is swapper\n", + addr); + return; + } + } else if (addr >= VA_START) { + /* TTBR1 */ + mm = &init_mm; + } else { + pr_alert("[%016lx] address between user and kernel address ranges\n", + addr); + return; + } + + pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp = %p\n", + mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K, + VA_BITS, mm->pgd); + pgdp = pgd_offset(mm, addr); + pgd = READ_ONCE(*pgdp); + pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd)); + + do { + pud_t *pudp, pud; + pmd_t *pmdp, pmd; + pte_t *ptep, pte; + + if (pgd_none(pgd) || pgd_bad(pgd)) + break; + + pudp = pud_offset(pgdp, addr); + pud = READ_ONCE(*pudp); + pr_cont(", pud=%016llx", pud_val(pud)); + if (pud_none(pud) || pud_bad(pud)) + break; + + pmdp = pmd_offset(pudp, addr); + pmd = READ_ONCE(*pmdp); + pr_cont(", pmd=%016llx", pmd_val(pmd)); + if (pmd_none(pmd) || pmd_bad(pmd)) + break; + + ptep = pte_offset_map(pmdp, addr); + pte = READ_ONCE(*ptep); + pr_cont(", pte=%016llx", pte_val(pte)); + pte_unmap(ptep); + } while(0); + + pr_cont("\n"); +} + +/* + * This function sets the access flags (dirty, accessed), as well as write + * permission, and only to a more permissive setting. + * + * It needs to cope with hardware update of the accessed/dirty state by other + * agents in the system and can safely skip the __sync_icache_dcache() call as, + * like set_pte_at(), the PTE is never changed from no-exec to exec here. + * + * Returns whether or not the PTE actually changed. + */ +int ptep_set_access_flags(struct vm_area_struct *vma, + unsigned long address, pte_t *ptep, + pte_t entry, int dirty) +{ + pteval_t old_pteval, pteval; + pte_t pte = READ_ONCE(*ptep); + + if (pte_same(pte, entry)) + return 0; + + /* only preserve the access flags and write permission */ + pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY; + + /* + * Setting the flags must be done atomically to avoid racing with the + * hardware update of the access/dirty state. The PTE_RDONLY bit must + * be set to the most permissive (lowest value) of *ptep and entry + * (calculated as: a & b == ~(~a | ~b)). + */ + pte_val(entry) ^= PTE_RDONLY; + pteval = pte_val(pte); + do { + old_pteval = pteval; + pteval ^= PTE_RDONLY; + pteval |= pte_val(entry); + pteval ^= PTE_RDONLY; + pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); + } while (pteval != old_pteval); + + flush_tlb_fix_spurious_fault(vma, address); + return 1; +} + +static bool is_el1_instruction_abort(unsigned int esr) +{ + return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR; +} + +static inline bool is_el1_permission_fault(unsigned int esr, + struct pt_regs *regs, + unsigned long addr) +{ + unsigned int ec = ESR_ELx_EC(esr); + unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE; + + if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR) + return false; + + if (fsc_type == ESR_ELx_FSC_PERM) + return true; + + if (addr < TASK_SIZE && system_uses_ttbr0_pan()) + return fsc_type == ESR_ELx_FSC_FAULT && + (regs->pstate & PSR_PAN_BIT); + + return false; +} + +static void die_kernel_fault(const char *msg, unsigned long addr, + unsigned int esr, struct pt_regs *regs) +{ + bust_spinlocks(1); + + pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg, + addr); + + mem_abort_decode(esr); + + show_pte(addr); + die("Oops", regs, esr); + bust_spinlocks(0); + do_exit(SIGKILL); +} + +static void __do_kernel_fault(unsigned long addr, unsigned int esr, + struct pt_regs *regs) +{ + const char *msg; + + /* + * Are we prepared to handle this kernel fault? + * We are almost certainly not prepared to handle instruction faults. + */ + if (!is_el1_instruction_abort(esr) && fixup_exception(regs)) + return; + + if (is_el1_permission_fault(esr, regs, addr)) { + if (esr & ESR_ELx_WNR) + msg = "write to read-only memory"; + else + msg = "read from unreadable memory"; + } else if (addr < PAGE_SIZE) { + msg = "NULL pointer dereference"; + } else { + msg = "paging request"; + } + + die_kernel_fault(msg, addr, esr, regs); +} + +static void __do_user_fault(struct siginfo *info, unsigned int esr) +{ + current->thread.fault_address = (unsigned long)info->si_addr; + + /* + * If the faulting address is in the kernel, we must sanitize the ESR. + * From userspace's point of view, kernel-only mappings don't exist + * at all, so we report them as level 0 translation faults. + * (This is not quite the way that "no mapping there at all" behaves: + * an alignment fault not caused by the memory type would take + * precedence over translation fault for a real access to empty + * space. Unfortunately we can't easily distinguish "alignment fault + * not caused by memory type" from "alignment fault caused by memory + * type", so we ignore this wrinkle and just return the translation + * fault.) + */ + if (current->thread.fault_address >= TASK_SIZE) { + switch (ESR_ELx_EC(esr)) { + case ESR_ELx_EC_DABT_LOW: + /* + * These bits provide only information about the + * faulting instruction, which userspace knows already. + * We explicitly clear bits which are architecturally + * RES0 in case they are given meanings in future. + * We always report the ESR as if the fault was taken + * to EL1 and so ISV and the bits in ISS[23:14] are + * clear. (In fact it always will be a fault to EL1.) + */ + esr &= ESR_ELx_EC_MASK | ESR_ELx_IL | + ESR_ELx_CM | ESR_ELx_WNR; + esr |= ESR_ELx_FSC_FAULT; + break; + case ESR_ELx_EC_IABT_LOW: + /* + * Claim a level 0 translation fault. + * All other bits are architecturally RES0 for faults + * reported with that DFSC value, so we clear them. + */ + esr &= ESR_ELx_EC_MASK | ESR_ELx_IL; + esr |= ESR_ELx_FSC_FAULT; + break; + default: + /* + * This should never happen (entry.S only brings us + * into this code for insn and data aborts from a lower + * exception level). Fail safe by not providing an ESR + * context record at all. + */ + WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr); + esr = 0; + break; + } + } + + current->thread.fault_code = esr; + arm64_force_sig_info(info, esr_to_fault_info(esr)->name, current); +} + +static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs) +{ + /* + * If we are in kernel mode at this point, we have no context to + * handle this fault with. + */ + if (user_mode(regs)) { + const struct fault_info *inf = esr_to_fault_info(esr); + struct siginfo si; + + clear_siginfo(&si); + si.si_signo = inf->sig; + si.si_code = inf->code; + si.si_addr = (void __user *)addr; + + __do_user_fault(&si, esr); + } else { + __do_kernel_fault(addr, esr, regs); + } +} + +#define VM_FAULT_BADMAP 0x010000 +#define VM_FAULT_BADACCESS 0x020000 + +static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr, + unsigned int mm_flags, unsigned long vm_flags, + struct task_struct *tsk) +{ + struct vm_area_struct *vma; + vm_fault_t fault; + + vma = find_vma(mm, addr); + fault = VM_FAULT_BADMAP; + if (unlikely(!vma)) + goto out; + if (unlikely(vma->vm_start > addr)) + goto check_stack; + + /* + * Ok, we have a good vm_area for this memory access, so we can handle + * it. + */ +good_area: + /* + * Check that the permissions on the VMA allow for the fault which + * occurred. + */ + if (!(vma->vm_flags & vm_flags)) { + fault = VM_FAULT_BADACCESS; + goto out; + } + + return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags); + +check_stack: + if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr)) + goto good_area; +out: + return fault; +} + +static bool is_el0_instruction_abort(unsigned int esr) +{ + return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW; +} + +static int __kprobes do_page_fault(unsigned long addr, unsigned int esr, + struct pt_regs *regs) +{ + struct task_struct *tsk; + struct mm_struct *mm; + struct siginfo si; + vm_fault_t fault, major = 0; + unsigned long vm_flags = VM_READ | VM_WRITE | VM_EXEC; + unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; + + if (notify_page_fault(regs, esr)) + return 0; + + tsk = current; + mm = tsk->mm; + + /* + * If we're in an interrupt or have no user context, we must not take + * the fault. + */ + if (faulthandler_disabled() || !mm) + goto no_context; + + if (user_mode(regs)) + mm_flags |= FAULT_FLAG_USER; + + if (is_el0_instruction_abort(esr)) { + vm_flags = VM_EXEC; + } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) { + vm_flags = VM_WRITE; + mm_flags |= FAULT_FLAG_WRITE; + } + + if (addr < TASK_SIZE && is_el1_permission_fault(esr, regs, addr)) { + /* regs->orig_addr_limit may be 0 if we entered from EL0 */ + if (regs->orig_addr_limit == KERNEL_DS) + die_kernel_fault("access to user memory with fs=KERNEL_DS", + addr, esr, regs); + + if (is_el1_instruction_abort(esr)) + die_kernel_fault("execution of user memory", + addr, esr, regs); + + if (!search_exception_tables(regs->pc)) + die_kernel_fault("access to user memory outside uaccess routines", + addr, esr, regs); + } + + perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); + + /* + * As per x86, we may deadlock here. However, since the kernel only + * validly references user space from well defined areas of the code, + * we can bug out early if this is from code which shouldn't. + */ + if (!down_read_trylock(&mm->mmap_sem)) { + if (!user_mode(regs) && !search_exception_tables(regs->pc)) + goto no_context; +retry: + down_read(&mm->mmap_sem); + } else { + /* + * The above down_read_trylock() might have succeeded in which + * case, we'll have missed the might_sleep() from down_read(). + */ + might_sleep(); +#ifdef CONFIG_DEBUG_VM + if (!user_mode(regs) && !search_exception_tables(regs->pc)) + goto no_context; +#endif + } + + fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk); + major |= fault & VM_FAULT_MAJOR; + + if (fault & VM_FAULT_RETRY) { + /* + * If we need to retry but a fatal signal is pending, + * handle the signal first. We do not need to release + * the mmap_sem because it would already be released + * in __lock_page_or_retry in mm/filemap.c. + */ + if (fatal_signal_pending(current)) { + if (!user_mode(regs)) + goto no_context; + return 0; + } + + /* + * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of + * starvation. + */ + if (mm_flags & FAULT_FLAG_ALLOW_RETRY) { + mm_flags &= ~FAULT_FLAG_ALLOW_RETRY; + mm_flags |= FAULT_FLAG_TRIED; + goto retry; + } + } + up_read(&mm->mmap_sem); + + /* + * Handle the "normal" (no error) case first. + */ + if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | + VM_FAULT_BADACCESS)))) { + /* + * Major/minor page fault accounting is only done + * once. If we go through a retry, it is extremely + * likely that the page will be found in page cache at + * that point. + */ + if (major) { + tsk->maj_flt++; + perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, + addr); + } else { + tsk->min_flt++; + perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, + addr); + } + + return 0; + } + + /* + * If we are in kernel mode at this point, we have no context to + * handle this fault with. + */ + if (!user_mode(regs)) + goto no_context; + + if (fault & VM_FAULT_OOM) { + /* + * We ran out of memory, call the OOM killer, and return to + * userspace (which will retry the fault, or kill us if we got + * oom-killed). + */ + pagefault_out_of_memory(); + return 0; + } + + clear_siginfo(&si); + si.si_addr = (void __user *)addr; + + if (fault & VM_FAULT_SIGBUS) { + /* + * We had some memory, but were unable to successfully fix up + * this page fault. + */ + si.si_signo = SIGBUS; + si.si_code = BUS_ADRERR; + } else if (fault & VM_FAULT_HWPOISON_LARGE) { + unsigned int hindex = VM_FAULT_GET_HINDEX(fault); + + si.si_signo = SIGBUS; + si.si_code = BUS_MCEERR_AR; + si.si_addr_lsb = hstate_index_to_shift(hindex); + } else if (fault & VM_FAULT_HWPOISON) { + si.si_signo = SIGBUS; + si.si_code = BUS_MCEERR_AR; + si.si_addr_lsb = PAGE_SHIFT; + } else { + /* + * Something tried to access memory that isn't in our memory + * map. + */ + si.si_signo = SIGSEGV; + si.si_code = fault == VM_FAULT_BADACCESS ? + SEGV_ACCERR : SEGV_MAPERR; + } + + __do_user_fault(&si, esr); + return 0; + +no_context: + __do_kernel_fault(addr, esr, regs); + return 0; +} + +static int __kprobes do_translation_fault(unsigned long addr, + unsigned int esr, + struct pt_regs *regs) +{ + if (addr < TASK_SIZE) + return do_page_fault(addr, esr, regs); + + do_bad_area(addr, esr, regs); + return 0; +} + +static int do_alignment_fault(unsigned long addr, unsigned int esr, + struct pt_regs *regs) +{ + do_bad_area(addr, esr, regs); + return 0; +} + +static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs) +{ + return 1; /* "fault" */ +} + +static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs) +{ + struct siginfo info; + const struct fault_info *inf; + + inf = esr_to_fault_info(esr); + + /* + * Synchronous aborts may interrupt code which had interrupts masked. + * Before calling out into the wider kernel tell the interested + * subsystems. + */ + if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) { + if (interrupts_enabled(regs)) + nmi_enter(); + + ghes_notify_sea(); + + if (interrupts_enabled(regs)) + nmi_exit(); + } + + clear_siginfo(&info); + info.si_signo = inf->sig; + info.si_errno = 0; + info.si_code = inf->code; + if (esr & ESR_ELx_FnV) + info.si_addr = NULL; + else + info.si_addr = (void __user *)addr; + arm64_notify_die(inf->name, regs, &info, esr); + + return 0; +} + +static const struct fault_info fault_info[] = { + { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" }, + { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" }, + { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" }, + { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" }, + { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" }, + { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" }, + { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" }, + { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 8" }, + { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" }, + { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" }, + { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 12" }, + { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" }, + { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" }, + { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" }, + { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 17" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 18" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 19" }, + { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" }, + { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" }, + { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" }, + { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" }, + { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented + { do_bad, SIGKILL, SI_KERNEL, "unknown 25" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 26" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 27" }, + { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented + { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented + { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented + { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented + { do_bad, SIGKILL, SI_KERNEL, "unknown 32" }, + { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 34" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 35" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 36" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 37" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 38" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 39" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 40" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 41" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 42" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 43" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 44" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 45" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 46" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 47" }, + { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" }, + { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 50" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 51" }, + { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" }, + { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 54" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 55" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 56" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 57" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 58" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 59" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 60" }, + { do_bad, SIGKILL, SI_KERNEL, "section domain fault" }, + { do_bad, SIGKILL, SI_KERNEL, "page domain fault" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 63" }, +}; + +int handle_guest_sea(phys_addr_t addr, unsigned int esr) +{ + return ghes_notify_sea(); +} + +asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr, + struct pt_regs *regs) +{ + const struct fault_info *inf = esr_to_fault_info(esr); + struct siginfo info; + + if (!inf->fn(addr, esr, regs)) + return; + + if (!user_mode(regs)) { + pr_alert("Unhandled fault at 0x%016lx\n", addr); + mem_abort_decode(esr); + show_pte(addr); + } + + clear_siginfo(&info); + info.si_signo = inf->sig; + info.si_errno = 0; + info.si_code = inf->code; + info.si_addr = (void __user *)addr; + arm64_notify_die(inf->name, regs, &info, esr); +} + +asmlinkage void __exception do_el0_irq_bp_hardening(void) +{ + /* PC has already been checked in entry.S */ + arm64_apply_bp_hardening(); +} + +asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr, + unsigned int esr, + struct pt_regs *regs) +{ + /* + * We've taken an instruction abort from userspace and not yet + * re-enabled IRQs. If the address is a kernel address, apply + * BP hardening prior to enabling IRQs and pre-emption. + */ + if (addr > TASK_SIZE) + arm64_apply_bp_hardening(); + + local_irq_enable(); + do_mem_abort(addr, esr, regs); +} + + +asmlinkage void __exception do_sp_pc_abort(unsigned long addr, + unsigned int esr, + struct pt_regs *regs) +{ + struct siginfo info; + + if (user_mode(regs)) { + if (instruction_pointer(regs) > TASK_SIZE) + arm64_apply_bp_hardening(); + local_irq_enable(); + } + + clear_siginfo(&info); + info.si_signo = SIGBUS; + info.si_errno = 0; + info.si_code = BUS_ADRALN; + info.si_addr = (void __user *)addr; + arm64_notify_die("SP/PC alignment exception", regs, &info, esr); +} + +int __init early_brk64(unsigned long addr, unsigned int esr, + struct pt_regs *regs); + +/* + * __refdata because early_brk64 is __init, but the reference to it is + * clobbered at arch_initcall time. + * See traps.c and debug-monitors.c:debug_traps_init(). + */ +static struct fault_info __refdata debug_fault_info[] = { + { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" }, + { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" }, + { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 3" }, + { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" }, + { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" }, + { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 7" }, +}; + +void __init hook_debug_fault_code(int nr, + int (*fn)(unsigned long, unsigned int, struct pt_regs *), + int sig, int code, const char *name) +{ + BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info)); + + debug_fault_info[nr].fn = fn; + debug_fault_info[nr].sig = sig; + debug_fault_info[nr].code = code; + debug_fault_info[nr].name = name; +} + +#ifdef CONFIG_ARM64_ERRATUM_1463225 +DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa); + +static int __exception +cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs) +{ + if (user_mode(regs)) + return 0; + + if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa)) + return 0; + + /* + * We've taken a dummy step exception from the kernel to ensure + * that interrupts are re-enabled on the syscall path. Return back + * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions + * masked so that we can safely restore the mdscr and get on with + * handling the syscall. + */ + regs->pstate |= PSR_D_BIT; + return 1; +} +#else +static int __exception +cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs) +{ + return 0; +} +#endif /* CONFIG_ARM64_ERRATUM_1463225 */ + +asmlinkage int __exception do_debug_exception(unsigned long addr_if_watchpoint, + unsigned int esr, + struct pt_regs *regs) +{ + const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr); + unsigned long pc = instruction_pointer(regs); + int rv; + + if (cortex_a76_erratum_1463225_debug_handler(regs)) + return 0; + + /* + * Tell lockdep we disabled irqs in entry.S. Do nothing if they were + * already disabled to preserve the last enabled/disabled addresses. + */ + if (interrupts_enabled(regs)) + trace_hardirqs_off(); + + if (user_mode(regs) && pc > TASK_SIZE) + arm64_apply_bp_hardening(); + + if (!inf->fn(addr_if_watchpoint, esr, regs)) { + rv = 1; + } else { + struct siginfo info; + + clear_siginfo(&info); + info.si_signo = inf->sig; + info.si_errno = 0; + info.si_code = inf->code; + info.si_addr = (void __user *)pc; + arm64_notify_die(inf->name, regs, &info, esr); + rv = 0; + } + + if (interrupts_enabled(regs)) + trace_hardirqs_on(); + + return rv; +} +NOKPROBE_SYMBOL(do_debug_exception); + +#ifdef CONFIG_ARM64_PAN +void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused) +{ + /* + * We modify PSTATE. This won't work from irq context as the PSTATE + * is discarded once we return from the exception. + */ + WARN_ON_ONCE(in_interrupt()); + + sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0); + asm(SET_PSTATE_PAN(1)); +} +#endif /* CONFIG_ARM64_PAN */ |