summaryrefslogtreecommitdiffstats
path: root/arch/nios2/kernel/insnemu.S
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--arch/nios2/kernel/insnemu.S592
1 files changed, 592 insertions, 0 deletions
diff --git a/arch/nios2/kernel/insnemu.S b/arch/nios2/kernel/insnemu.S
new file mode 100644
index 000000000..1c6b651e7
--- /dev/null
+++ b/arch/nios2/kernel/insnemu.S
@@ -0,0 +1,592 @@
+/*
+ * Copyright (C) 2003-2013 Altera Corporation
+ * All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+
+#include <linux/linkage.h>
+#include <asm/entry.h>
+
+.set noat
+.set nobreak
+
+/*
+* Explicitly allow the use of r1 (the assembler temporary register)
+* within this code. This register is normally reserved for the use of
+* the compiler.
+*/
+
+ENTRY(instruction_trap)
+ ldw r1, PT_R1(sp) // Restore registers
+ ldw r2, PT_R2(sp)
+ ldw r3, PT_R3(sp)
+ ldw r4, PT_R4(sp)
+ ldw r5, PT_R5(sp)
+ ldw r6, PT_R6(sp)
+ ldw r7, PT_R7(sp)
+ ldw r8, PT_R8(sp)
+ ldw r9, PT_R9(sp)
+ ldw r10, PT_R10(sp)
+ ldw r11, PT_R11(sp)
+ ldw r12, PT_R12(sp)
+ ldw r13, PT_R13(sp)
+ ldw r14, PT_R14(sp)
+ ldw r15, PT_R15(sp)
+ ldw ra, PT_RA(sp)
+ ldw fp, PT_FP(sp)
+ ldw gp, PT_GP(sp)
+ ldw et, PT_ESTATUS(sp)
+ wrctl estatus, et
+ ldw ea, PT_EA(sp)
+ ldw et, PT_SP(sp) /* backup sp in et */
+
+ addi sp, sp, PT_REGS_SIZE
+
+ /* INSTRUCTION EMULATION
+ * ---------------------
+ *
+ * Nios II processors generate exceptions for unimplemented instructions.
+ * The routines below emulate these instructions. Depending on the
+ * processor core, the only instructions that might need to be emulated
+ * are div, divu, mul, muli, mulxss, mulxsu, and mulxuu.
+ *
+ * The emulations match the instructions, except for the following
+ * limitations:
+ *
+ * 1) The emulation routines do not emulate the use of the exception
+ * temporary register (et) as a source operand because the exception
+ * handler already has modified it.
+ *
+ * 2) The routines do not emulate the use of the stack pointer (sp) or
+ * the exception return address register (ea) as a destination because
+ * modifying these registers crashes the exception handler or the
+ * interrupted routine.
+ *
+ * Detailed Design
+ * ---------------
+ *
+ * The emulation routines expect the contents of integer registers r0-r31
+ * to be on the stack at addresses sp, 4(sp), 8(sp), ... 124(sp). The
+ * routines retrieve source operands from the stack and modify the
+ * destination register's value on the stack prior to the end of the
+ * exception handler. Then all registers except the destination register
+ * are restored to their previous values.
+ *
+ * The instruction that causes the exception is found at address -4(ea).
+ * The instruction's OP and OPX fields identify the operation to be
+ * performed.
+ *
+ * One instruction, muli, is an I-type instruction that is identified by
+ * an OP field of 0x24.
+ *
+ * muli AAAAA,BBBBB,IIIIIIIIIIIIIIII,-0x24-
+ * 27 22 6 0 <-- LSB of field
+ *
+ * The remaining emulated instructions are R-type and have an OP field
+ * of 0x3a. Their OPX fields identify them.
+ *
+ * R-type AAAAA,BBBBB,CCCCC,XXXXXX,NNNNN,-0x3a-
+ * 27 22 17 11 6 0 <-- LSB of field
+ *
+ *
+ * Opcode Encoding. muli is identified by its OP value. Then OPX & 0x02
+ * is used to differentiate between the division opcodes and the
+ * remaining multiplication opcodes.
+ *
+ * Instruction OP OPX OPX & 0x02
+ * ----------- ---- ---- ----------
+ * muli 0x24
+ * divu 0x3a 0x24 0
+ * div 0x3a 0x25 0
+ * mul 0x3a 0x27 != 0
+ * mulxuu 0x3a 0x07 != 0
+ * mulxsu 0x3a 0x17 != 0
+ * mulxss 0x3a 0x1f != 0
+ */
+
+
+ /*
+ * Save everything on the stack to make it easy for the emulation
+ * routines to retrieve the source register operands.
+ */
+
+ addi sp, sp, -128
+ stw zero, 0(sp) /* Save zero on stack to avoid special case for r0. */
+ stw r1, 4(sp)
+ stw r2, 8(sp)
+ stw r3, 12(sp)
+ stw r4, 16(sp)
+ stw r5, 20(sp)
+ stw r6, 24(sp)
+ stw r7, 28(sp)
+ stw r8, 32(sp)
+ stw r9, 36(sp)
+ stw r10, 40(sp)
+ stw r11, 44(sp)
+ stw r12, 48(sp)
+ stw r13, 52(sp)
+ stw r14, 56(sp)
+ stw r15, 60(sp)
+ stw r16, 64(sp)
+ stw r17, 68(sp)
+ stw r18, 72(sp)
+ stw r19, 76(sp)
+ stw r20, 80(sp)
+ stw r21, 84(sp)
+ stw r22, 88(sp)
+ stw r23, 92(sp)
+ /* Don't bother to save et. It's already been changed. */
+ rdctl r5, estatus
+ stw r5, 100(sp)
+
+ stw gp, 104(sp)
+ stw et, 108(sp) /* et contains previous sp value. */
+ stw fp, 112(sp)
+ stw ea, 116(sp)
+ stw ra, 120(sp)
+
+
+ /*
+ * Split the instruction into its fields. We need 4*A, 4*B, and 4*C as
+ * offsets to the stack pointer for access to the stored register values.
+ */
+ ldw r2,-4(ea) /* r2 = AAAAA,BBBBB,IIIIIIIIIIIIIIII,PPPPPP */
+ roli r3, r2, 7 /* r3 = BBB,IIIIIIIIIIIIIIII,PPPPPP,AAAAA,BB */
+ roli r4, r3, 3 /* r4 = IIIIIIIIIIIIIIII,PPPPPP,AAAAA,BBBBB */
+ roli r5, r4, 2 /* r5 = IIIIIIIIIIIIII,PPPPPP,AAAAA,BBBBB,II */
+ srai r4, r4, 16 /* r4 = (sign-extended) IMM16 */
+ roli r6, r5, 5 /* r6 = XXXX,NNNNN,PPPPPP,AAAAA,BBBBB,CCCCC,XX */
+ andi r2, r2, 0x3f /* r2 = 00000000000000000000000000,PPPPPP */
+ andi r3, r3, 0x7c /* r3 = 0000000000000000000000000,AAAAA,00 */
+ andi r5, r5, 0x7c /* r5 = 0000000000000000000000000,BBBBB,00 */
+ andi r6, r6, 0x7c /* r6 = 0000000000000000000000000,CCCCC,00 */
+
+ /* Now
+ * r2 = OP
+ * r3 = 4*A
+ * r4 = IMM16 (sign extended)
+ * r5 = 4*B
+ * r6 = 4*C
+ */
+
+ /*
+ * Get the operands.
+ *
+ * It is necessary to check for muli because it uses an I-type
+ * instruction format, while the other instructions are have an R-type
+ * format.
+ *
+ * Prepare for either multiplication or division loop.
+ * They both loop 32 times.
+ */
+ movi r14, 32
+
+ add r3, r3, sp /* r3 = address of A-operand. */
+ ldw r3, 0(r3) /* r3 = A-operand. */
+ movi r7, 0x24 /* muli opcode (I-type instruction format) */
+ beq r2, r7, mul_immed /* muli doesn't use the B register as a source */
+
+ add r5, r5, sp /* r5 = address of B-operand. */
+ ldw r5, 0(r5) /* r5 = B-operand. */
+ /* r4 = SSSSSSSSSSSSSSSS,-----IMM16------ */
+ /* IMM16 not needed, align OPX portion */
+ /* r4 = SSSSSSSSSSSSSSSS,CCCCC,-OPX--,00000 */
+ srli r4, r4, 5 /* r4 = 00000,SSSSSSSSSSSSSSSS,CCCCC,-OPX-- */
+ andi r4, r4, 0x3f /* r4 = 00000000000000000000000000,-OPX-- */
+
+ /* Now
+ * r2 = OP
+ * r3 = src1
+ * r5 = src2
+ * r4 = OPX (no longer can be muli)
+ * r6 = 4*C
+ */
+
+
+ /*
+ * Multiply or Divide?
+ */
+ andi r7, r4, 0x02 /* For R-type multiply instructions,
+ OPX & 0x02 != 0 */
+ bne r7, zero, multiply
+
+
+ /* DIVISION
+ *
+ * Divide an unsigned dividend by an unsigned divisor using
+ * a shift-and-subtract algorithm. The example below shows
+ * 43 div 7 = 6 for 8-bit integers. This classic algorithm uses a
+ * single register to store both the dividend and the quotient,
+ * allowing both values to be shifted with a single instruction.
+ *
+ * remainder dividend:quotient
+ * --------- -----------------
+ * initialize 00000000 00101011:
+ * shift 00000000 0101011:_
+ * remainder >= divisor? no 00000000 0101011:0
+ * shift 00000000 101011:0_
+ * remainder >= divisor? no 00000000 101011:00
+ * shift 00000001 01011:00_
+ * remainder >= divisor? no 00000001 01011:000
+ * shift 00000010 1011:000_
+ * remainder >= divisor? no 00000010 1011:0000
+ * shift 00000101 011:0000_
+ * remainder >= divisor? no 00000101 011:00000
+ * shift 00001010 11:00000_
+ * remainder >= divisor? yes 00001010 11:000001
+ * remainder -= divisor - 00000111
+ * ----------
+ * 00000011 11:000001
+ * shift 00000111 1:000001_
+ * remainder >= divisor? yes 00000111 1:0000011
+ * remainder -= divisor - 00000111
+ * ----------
+ * 00000000 1:0000011
+ * shift 00000001 :0000011_
+ * remainder >= divisor? no 00000001 :00000110
+ *
+ * The quotient is 00000110.
+ */
+
+divide:
+ /*
+ * Prepare for division by assuming the result
+ * is unsigned, and storing its "sign" as 0.
+ */
+ movi r17, 0
+
+
+ /* Which division opcode? */
+ xori r7, r4, 0x25 /* OPX of div */
+ bne r7, zero, unsigned_division
+
+
+ /*
+ * OPX is div. Determine and store the sign of the quotient.
+ * Then take the absolute value of both operands.
+ */
+ xor r17, r3, r5 /* MSB contains sign of quotient */
+ bge r3,zero,dividend_is_nonnegative
+ sub r3, zero, r3 /* -r3 */
+dividend_is_nonnegative:
+ bge r5, zero, divisor_is_nonnegative
+ sub r5, zero, r5 /* -r5 */
+divisor_is_nonnegative:
+
+
+unsigned_division:
+ /* Initialize the unsigned-division loop. */
+ movi r13, 0 /* remainder = 0 */
+
+ /* Now
+ * r3 = dividend : quotient
+ * r4 = 0x25 for div, 0x24 for divu
+ * r5 = divisor
+ * r13 = remainder
+ * r14 = loop counter (already initialized to 32)
+ * r17 = MSB contains sign of quotient
+ */
+
+
+ /*
+ * for (count = 32; count > 0; --count)
+ * {
+ */
+divide_loop:
+
+ /*
+ * Division:
+ *
+ * (remainder:dividend:quotient) <<= 1;
+ */
+ slli r13, r13, 1
+ cmplt r7, r3, zero /* r7 = MSB of r3 */
+ or r13, r13, r7
+ slli r3, r3, 1
+
+
+ /*
+ * if (remainder >= divisor)
+ * {
+ * set LSB of quotient
+ * remainder -= divisor;
+ * }
+ */
+ bltu r13, r5, div_skip
+ ori r3, r3, 1
+ sub r13, r13, r5
+div_skip:
+
+ /*
+ * }
+ */
+ subi r14, r14, 1
+ bne r14, zero, divide_loop
+
+
+ /* Now
+ * r3 = quotient
+ * r4 = 0x25 for div, 0x24 for divu
+ * r6 = 4*C
+ * r17 = MSB contains sign of quotient
+ */
+
+
+ /*
+ * Conditionally negate signed quotient. If quotient is unsigned,
+ * the sign already is initialized to 0.
+ */
+ bge r17, zero, quotient_is_nonnegative
+ sub r3, zero, r3 /* -r3 */
+ quotient_is_nonnegative:
+
+
+ /*
+ * Final quotient is in r3.
+ */
+ add r6, r6, sp
+ stw r3, 0(r6) /* write quotient to stack */
+ br restore_registers
+
+
+
+
+ /* MULTIPLICATION
+ *
+ * A "product" is the number that one gets by summing a "multiplicand"
+ * several times. The "multiplier" specifies the number of copies of the
+ * multiplicand that are summed.
+ *
+ * Actual multiplication algorithms don't use repeated addition, however.
+ * Shift-and-add algorithms get the same answer as repeated addition, and
+ * they are faster. To compute the lower half of a product (pppp below)
+ * one shifts the product left before adding in each of the partial
+ * products (a * mmmm) through (d * mmmm).
+ *
+ * To compute the upper half of a product (PPPP below), one adds in the
+ * partial products (d * mmmm) through (a * mmmm), each time following
+ * the add by a right shift of the product.
+ *
+ * mmmm
+ * * abcd
+ * ------
+ * #### = d * mmmm
+ * #### = c * mmmm
+ * #### = b * mmmm
+ * #### = a * mmmm
+ * --------
+ * PPPPpppp
+ *
+ * The example above shows 4 partial products. Computing actual Nios II
+ * products requires 32 partials.
+ *
+ * It is possible to compute the result of mulxsu from the result of
+ * mulxuu because the only difference between the results of these two
+ * opcodes is the value of the partial product associated with the sign
+ * bit of rA.
+ *
+ * mulxsu = mulxuu - (rA < 0) ? rB : 0;
+ *
+ * It is possible to compute the result of mulxss from the result of
+ * mulxsu because the only difference between the results of these two
+ * opcodes is the value of the partial product associated with the sign
+ * bit of rB.
+ *
+ * mulxss = mulxsu - (rB < 0) ? rA : 0;
+ *
+ */
+
+mul_immed:
+ /* Opcode is muli. Change it into mul for remainder of algorithm. */
+ mov r6, r5 /* Field B is dest register, not field C. */
+ mov r5, r4 /* Field IMM16 is src2, not field B. */
+ movi r4, 0x27 /* OPX of mul is 0x27 */
+
+multiply:
+ /* Initialize the multiplication loop. */
+ movi r9, 0 /* mul_product = 0 */
+ movi r10, 0 /* mulxuu_product = 0 */
+ mov r11, r5 /* save original multiplier for mulxsu and mulxss */
+ mov r12, r5 /* mulxuu_multiplier (will be shifted) */
+ movi r16, 1 /* used to create "rori B,A,1" from "ror B,A,r16" */
+
+ /* Now
+ * r3 = multiplicand
+ * r5 = mul_multiplier
+ * r6 = 4 * dest_register (used later as offset to sp)
+ * r7 = temp
+ * r9 = mul_product
+ * r10 = mulxuu_product
+ * r11 = original multiplier
+ * r12 = mulxuu_multiplier
+ * r14 = loop counter (already initialized)
+ * r16 = 1
+ */
+
+
+ /*
+ * for (count = 32; count > 0; --count)
+ * {
+ */
+multiply_loop:
+
+ /*
+ * mul_product <<= 1;
+ * lsb = multiplier & 1;
+ */
+ slli r9, r9, 1
+ andi r7, r12, 1
+
+ /*
+ * if (lsb == 1)
+ * {
+ * mulxuu_product += multiplicand;
+ * }
+ */
+ beq r7, zero, mulx_skip
+ add r10, r10, r3
+ cmpltu r7, r10, r3 /* Save the carry from the MSB of mulxuu_product. */
+ ror r7, r7, r16 /* r7 = 0x80000000 on carry, or else 0x00000000 */
+mulx_skip:
+
+ /*
+ * if (MSB of mul_multiplier == 1)
+ * {
+ * mul_product += multiplicand;
+ * }
+ */
+ bge r5, zero, mul_skip
+ add r9, r9, r3
+mul_skip:
+
+ /*
+ * mulxuu_product >>= 1; logical shift
+ * mul_multiplier <<= 1; done with MSB
+ * mulx_multiplier >>= 1; done with LSB
+ */
+ srli r10, r10, 1
+ or r10, r10, r7 /* OR in the saved carry bit. */
+ slli r5, r5, 1
+ srli r12, r12, 1
+
+
+ /*
+ * }
+ */
+ subi r14, r14, 1
+ bne r14, zero, multiply_loop
+
+
+ /*
+ * Multiply emulation loop done.
+ */
+
+ /* Now
+ * r3 = multiplicand
+ * r4 = OPX
+ * r6 = 4 * dest_register (used later as offset to sp)
+ * r7 = temp
+ * r9 = mul_product
+ * r10 = mulxuu_product
+ * r11 = original multiplier
+ */
+
+
+ /* Calculate address for result from 4 * dest_register */
+ add r6, r6, sp
+
+
+ /*
+ * Select/compute the result based on OPX.
+ */
+
+
+ /* OPX == mul? Then store. */
+ xori r7, r4, 0x27
+ beq r7, zero, store_product
+
+ /* It's one of the mulx.. opcodes. Move over the result. */
+ mov r9, r10
+
+ /* OPX == mulxuu? Then store. */
+ xori r7, r4, 0x07
+ beq r7, zero, store_product
+
+ /* Compute mulxsu
+ *
+ * mulxsu = mulxuu - (rA < 0) ? rB : 0;
+ */
+ bge r3, zero, mulxsu_skip
+ sub r9, r9, r11
+mulxsu_skip:
+
+ /* OPX == mulxsu? Then store. */
+ xori r7, r4, 0x17
+ beq r7, zero, store_product
+
+ /* Compute mulxss
+ *
+ * mulxss = mulxsu - (rB < 0) ? rA : 0;
+ */
+ bge r11,zero,mulxss_skip
+ sub r9, r9, r3
+mulxss_skip:
+ /* At this point, assume that OPX is mulxss, so store*/
+
+
+store_product:
+ stw r9, 0(r6)
+
+
+restore_registers:
+ /* No need to restore r0. */
+ ldw r5, 100(sp)
+ wrctl estatus, r5
+
+ ldw r1, 4(sp)
+ ldw r2, 8(sp)
+ ldw r3, 12(sp)
+ ldw r4, 16(sp)
+ ldw r5, 20(sp)
+ ldw r6, 24(sp)
+ ldw r7, 28(sp)
+ ldw r8, 32(sp)
+ ldw r9, 36(sp)
+ ldw r10, 40(sp)
+ ldw r11, 44(sp)
+ ldw r12, 48(sp)
+ ldw r13, 52(sp)
+ ldw r14, 56(sp)
+ ldw r15, 60(sp)
+ ldw r16, 64(sp)
+ ldw r17, 68(sp)
+ ldw r18, 72(sp)
+ ldw r19, 76(sp)
+ ldw r20, 80(sp)
+ ldw r21, 84(sp)
+ ldw r22, 88(sp)
+ ldw r23, 92(sp)
+ /* Does not need to restore et */
+ ldw gp, 104(sp)
+
+ ldw fp, 112(sp)
+ ldw ea, 116(sp)
+ ldw ra, 120(sp)
+ ldw sp, 108(sp) /* last restore sp */
+ eret
+
+.set at
+.set break